Usable Privacy Technologies

Bart P. Knijnenburg
@usabart

Find me at:
www.usabart.nl + bartk@clemson.edu
Hello, I’m Bart

bartk@clemson.edu
www.usabart.nl
@usabart

Clemson University (Assoc. Prof.)
UC Irvine (PhD)
Carnegie Mellon University (M)
TU Eindhoven (BS + MS)

My son Tolga (who wants to be a farmer when he grows up)
How can we help users to balance the benefits and risks of information disclosure in a user-friendly manner, so that they can make good privacy decisions?
Outline

Show that existing solutions to make privacy technologies more usable do not work

Argue that we must either design for elaboration...

...and/or design personalized privacy decision support
Usable Privacy Technologies
A tale of transparency and control
What are privacy technologies?

Seasons (2022) “Privacy-Enhancing Technologies”
Making privacy usable

Early work: Why are privacy technologies not usable?

A slew of “Johnny papers” followed
Making privacy usable?

Nowadays: several conferences / tracks that cover usable privacy

Symposium On Usable Privacy and Security (SOUPS)

Privacy Enhancing Technologies Symposium (PETS)

Privacy track at the ACM conference on Human Factors in Computing Systems (CHI) and the ACM conference on Computer-Supported Collaborative Work and Social Computing (CSCW)
Ex 1: privacy nutrition labels

Early academic work:

Kelly et al. (2009) “A “Nutrition Label” for Privacy”

Implementation in iOS and Android in 2020 rather disappointing:

Cranor (2022) “Mobile-App Privacy Nutrition Labels Missing Key Ingredients for Success”
Ex. 2: privacy policy comics

Knijnenburg and Cherry (2016) “Comics as a Medium for Privacy Notices”
OR UNLINK AN OLD APP... A VERY OLD APP...

THAT THE WORLD HAS FORGOTTEN...

NO
ONE USES MYSPACE ANYMORE!!!!

...OR YOUR CONTACTS...

1,000+ CONTACTS?! I DON'T EVEN KNOW HALF OF THESE PEOPLE!

IT ALSO SHOWS THE NUMBER OF CONVERSATIONS YOU'VE HAD THROUGH GMAIL.

WELL, I DID HAVE GMAIL FOR A WHILE NOW...
Privacy screensavers

Wilkinson et al. (2020) “Privacy at a Glance”
Ex 4: social circles

Most social networks allow you to define “circles” and share selectively. Most people don’t do this.

- Strater & Lipford (2008) “Strategies and struggles with privacy in an online social networking community”
- Watson et al. (2012) “+Your circles: sharing behavior on Google+”

Doesn’t reduce threat of oversharing.

From the U.S. Privacy directive

Transparency (consent)

“companies should provide clear descriptions of [...] why they need the data, how they will use it”

Control (empowerment)

“companies should offer consumers clear and simple choices [...] about personal data collection, use, and disclosure”
Death to the Privacy Calculus?
Why transparency and control don’t actually work
Transparency and control

Privacy Calculus: People weigh the risks and benefits of disclosure

Prerequisites of privacy calculus are:
- being able to **control** the decision;
- having adequate **information** about the decision.

Transparency and control **empower** users to regulate their privacy at the desired level.
Quiz #1

After what length of time is the privacy policy no longer taken into account?
Quiz #2

Which version leads to more submitted forms? With TRUSTe logo to without logo?
Hypothesis 3 was supported, but Hypothesis 2b was not. An average of about 31.4% more opt-in participation relative to opt-out was observed. Therefore, Hypothesis 3 was supported, but Hypothesis 2b was not.

We further evaluate the conditions adhering to opt-in: (2) choice-frame, unchecked-default and (3) rejection-frame, checked-default. The difference was 0.250 and statistically significant (t=2.236, p<0.05). Also, an evaluation of conditions (1) choice-frame, unchecked-default and (3) rejection-frame, checked-default. These results are consistent with Hypotheses 1a and 1b.

An analysis of variance (ANOVA) revealed a significant main effect of choice framing on the level of consumer participation as compared with the checked-default treatment within each condition (F=9.148, p=0.004). These are consistent with Hypotheses 1a and 1b. There was also a significant interaction effect between checked/unchecked-default and the question frame of (1) choice-frame, checked-default (2) choice-frame, unchecked-default (3) rejection-frame, checked-default and (4) rejection-frame, unchecked-default (F=3.662, p=0.060). There was also a significant interaction effect of choice framing on the level of consumer participation between the two default stipulations was slightly larger at 0.368 and statistically significant (t=3.240, p<0.01. The unchecked-default defaults (3) rejection-frame, checked-default and (4) rejection-frame, unchecked-default between the two default stipulations was slightly larger at 0.368 and statistically significant (t=3.240, p<0.01. The unchecked-default

The intensity of privacy concern may additionally mitigate the impact of attribute framing effects.

Since the issue in the research question pertains to the forays of possible unwanted intrusions into one's private space, it is significantly salient when approximating performance of others [e.g. 27].

Previous studies have revealed framing effects are consistently absent when subjects were requested to rate the possibility of being a cheater himself/herself but detected a difference in the conditions when the subjects were requested to rate their "percentage correct" vis-à-vis "percentage wrong", but outcomes of an action (e.g., to opt in or opt out of online activities), be weaker [2]. Intuitively, if a person were apprehensive about the outcomes of an action (e.g., to opt in or opt out of online activities), the anchoring effect that is induced by a default option may necessarily regard the default option as the "norm". Hence, we hypothesize the following moderating effect:

Quiz #3

Which version leads to more newsletter subscriptions? Opt-in or opt-out? Negative or positive framing?

Figure 4: Subjects were assigned one of the following conditions in the registration page.
Why is this happening?

Transparency paradox (Nissenbaum, 2011):

Privacy notices that are sufficiently detailed to have an impact are often too long for people to read

Control paradox (Compañó and Lusoli, 2010):

While users claim to want full control over their data, they avoid the hassle of actually exploiting this control
Privacy Nudging

An alternative solution
(that also doesn’t really work)
We can influence people!

Justification nudge

A succinct reason to disclose (or not disclose) information

Order nudge

Change request order to increase disclosure (foot-in-the-door, door-in-the-face)

Default/framing nudge

Set the default and/or framing in such a way that it increases or decreases disclosure
Nudge 1: justification

Mobile app recommender

Asks 31 questions
(12 context, 19 demographics)

Gives recommendations based on users’ answers

Users are allowed to withhold information
Nudge 1: justification

How useful is this for me?

How many others are disclosing this?

How useful was it for them?

What are you gonna do with it?
Nudge 2: Request order

LOCATION, ETC.

GENDER, ETC.

LOCATION, ETC.

GENDER, ETC.
Asks first = more disclosure

Disclosure behavior

Demographics disclosure
- Context first
- Demographics first

Context disclosure
- Context first
- Demographics first
Justifications don't work
Justifications don’t work

Nudge 3: Defaults/framing

Data: 14,729 household IoT-related scenarios + decisions from 1133 participants

Manipulate scenarios along 5 dimensions

Example scenario: “Your smart TV (Who) uses a camera (What) to give you timely alerts (Purpose), the data is stored locally (Storage) and used to optimize the service (Action).”
Nudge 3: Defaults/framing

Behavior: Allow/reject decision (see next slide)

Attitudes:

How expected/unexpected is this scenario?
How risky or safe is this scenario?
How useful/useless is this scenario to you?
How comfortable/uncomfortable do you feel about this scenario?
How appropriate/inappropriate do you consider this situation?
Nudge 3: Defaults/framing

Framing:

None: What would you do with this feature? (enable/disable)
Pos: Would you enable this feature? (yes/no)
Neg: Would you disable this feature? (no/yes)

Default option:

None: ○ enable ○ disable
Pos: ○ enable ○ disable
None: ○ enable ○ disable
Disclosure can be influenced

Defaults influence disclosure!

Negative default: 1.37 times less likely to enable \((p = .006) \)
Positive default: 2.57 times more likely to enable \((p < .001) \)

Framing too (but less)

Negative framing: 1.31 times more likely to enable \((p = .0205) \)
No significant decrease for positive framing
Decision process deteriorates

However, they also make people’s decisions less nuanced!

Defaults reduce the effect of attitudes on disclosure

Framing also (kind of)

Negative framing reduces the effect of attitudes

Positive framing: certain attitudes have a stronger effect, others have a weaker effect
Combining them?

Adding justifications to defaults and framing exacerbates their effect!

In other words: justifications make people elaborate even less.
Nudging does not work!

Conclusion: Nudges have unwanted side-effects

People are either annoyed by them...

...or they influence the decision process in unwanted ways.

Also, how should we nudge people?

Towards more privacy?

Towards more benefits?

The answer depends on the person and the context!
Design for elaboration
Making people think about privacy.
Dual-route processing

Kahneman (2013) “Thinking, fast and slow”

If we want lasting change, we must improve motivation and self-efficacy
Design for elaboration

Modern browsers offer an auto-completion feature that reduces the effort of filling out web forms.

These tools may cause users to complete more fields than they intended.

They make it so easy to submit a fully completed form that users may skip weighing benefits and risk.
Create a Profile

Please create your profile by entering your information below. Note that FormFiller will store the information locally on your device, and only for the duration of this study. We will never submit any forms automatically or disclose this information to others without your active involvement.

About you:

First name: [] Last name: []

Gender: []

Age: []

Address: []

City: [] State: [] Zip: []

E-mail: [] Phone: []
About you:

<table>
<thead>
<tr>
<th>Field</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>First name</td>
<td></td>
</tr>
<tr>
<td>Last name</td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Address</td>
<td></td>
</tr>
<tr>
<td>City</td>
<td></td>
</tr>
<tr>
<td>State</td>
<td></td>
</tr>
<tr>
<td>Zip</td>
<td></td>
</tr>
<tr>
<td>E-mail</td>
<td></td>
</tr>
<tr>
<td>Phone</td>
<td></td>
</tr>
</tbody>
</table>

Tastes and Preferences:

<table>
<thead>
<tr>
<th>Preference</th>
<th>Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favorite movie</td>
<td></td>
</tr>
<tr>
<td>Favorite band/artist</td>
<td></td>
</tr>
<tr>
<td>Favorite food</td>
<td></td>
</tr>
<tr>
<td>Favorite weekend pastime</td>
<td></td>
</tr>
<tr>
<td>Last holiday location</td>
<td></td>
</tr>
<tr>
<td>Political views</td>
<td></td>
</tr>
</tbody>
</table>
Work and education:

<table>
<thead>
<tr>
<th>Field</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current/previous job</td>
<td></td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
</tr>
<tr>
<td>Work experience (yrs)</td>
<td></td>
</tr>
<tr>
<td>Income level</td>
<td></td>
</tr>
<tr>
<td>Highest completed degree</td>
<td></td>
</tr>
<tr>
<td>Computer skills</td>
<td></td>
</tr>
</tbody>
</table>

Health and lifestyle:

<table>
<thead>
<tr>
<th>Field</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall health</td>
<td></td>
</tr>
<tr>
<td>Dietary restrictions</td>
<td></td>
</tr>
<tr>
<td>Number of doctor visits</td>
<td></td>
</tr>
<tr>
<td>last month</td>
<td></td>
</tr>
<tr>
<td>Weight (lbs)</td>
<td></td>
</tr>
<tr>
<td>Birth control usage</td>
<td></td>
</tr>
<tr>
<td>(you or your partner)</td>
<td></td>
</tr>
<tr>
<td>Medical conditions</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td></td>
</tr>
<tr>
<td>Respiratory (COPD etc.)</td>
<td></td>
</tr>
<tr>
<td>Overweight</td>
<td></td>
</tr>
<tr>
<td>Hypertension</td>
<td></td>
</tr>
<tr>
<td>High cholesterol</td>
<td></td>
</tr>
<tr>
<td>Heart problems/conditions</td>
<td></td>
</tr>
</tbody>
</table>
Study Procedures

Create a Profile
Please create your profile by entering your information below. Note that FormFiller will store the information locally on your device, and only for the duration of this study. We will never submit any forms automatically or disclose this information to others without your active involvement.

About you:
- First name:
- Last name:
- Gender:
- Age:
- Address:
- City:
- State:
- Zip:
- E-mail:
- Phone:

Tastes and Preferences:
- Favorite movie:
- Favorite band/artist:
- Favorite food:
- Favorite weekend pastime:
- Last holiday location:

FormFiller
Study Procedures

Each site corresponds to a particular type of info:
blogging community = personal interest items
job search website = job skills items
health insurer = health record items

They requested all the info, not just the relevant stuff!
We introduce two new efficacy-increasing designs.

We compare three tools:

- **Auto FormFiller**: auto-fills fields, users can remove manually
- **Remove FormFiller**: click to remove each field
- **Add FormFiller**: click to fill each field

![Image of form fillers](image-url)
Design for elaboration

Disclosure was not \textit{purpose-specific} for users of the Auto FormFiller.

Disclosure was \textit{purpose-specific} for users of the Remove and Add FormFillers.

Knijnenburg et al. (2013) “Counteracting the Negative Effect of Form Auto-completion on the Privacy Calculus”
Privacy decisions are too hard!

Problem: Most systems are much too complex
- Privacy policies are increasing in length
- Facebook’s privacy controls are “Labyrinthian”

It’s easy to fall back on heuristic decision-making practices
- Which makes us fall prey to external influences such as defaults and framing
Gulf of Evaluation
What's the current system state?

Gulf of Execution
How do I use this system?

The User

The World
The Two UX Gulfs
(Hutchins, Hollan & Norman 1986)

Users have difficulties translating their **goals** (desired privacy) into **actions** (settings).
User-Tailored Privacy
Privacy recommendations: Figure out what people want, then help them do that.
User-Tailored Privacy

Knijnenburg et al. (2022) “User-Tailored Privacy”
Use case:

Facebook privacy management practices
32 individual privacy behaviors that Facebook users could perform using the native Facebook interface
Create privacy profiles

Wisniewski et al. (2017) “Making Privacy Personal”
see www.usabart.nl/chart
Adapt the interface

More prominent audience selection (selective sharers)

More prominent timeline moderation (time savers)

Wilkinson et al. (2017) “User-Tailored Privacy by Design”
Give recommendations

Audience suggestion (selective sharers)

Automatically turn off chat (time savers)

Namara et al. (2022) “The Effectiveness of Adaptation Methods in Improving User Engagement and Privacy Protection on Social Network Sites”
Other adaptations

Adapt the nudge
Adapt the available options
Adapt the order of requests

Knijnenburg and Kobsa (2013) “Helping users with information disclosure decisions: potential for adaptation”
Other adaptations

Adapt the nudge

Adapt the available options

Adapt the order of requests

Knijnenburg and Jin (2013) “The persuasive effect of privacy recommendations for location sharing services”
Other adaptations

Adapt the nudge
Adapt the available options
Adapt the order of requests

Knijnenburg (2015) “A user-tailored approach to privacy decision support”

\[u_v = \sum_{i} \frac{v_i}{d_{i\min}} \quad \text{where} \quad d_{i\min} = \text{abs}(w_{i\min} - \bar{w}_i) + .0001 \]

\[r_i = \begin{cases}
 u_i & \text{if } \delta_i < \alpha, \\
 -\delta_i & \text{if } \delta_i \geq \alpha.
\end{cases} \]

\[\beta_n = \text{mean}_n(\delta) + \sqrt{1 + \text{var}_n(\delta)} \frac{2.9}{2.9} \ln \left(\frac{|D_n|}{|D_n| - |D_n|} \right) \quad \text{and} \quad \alpha''_n = \beta_n - 1.5 \]
IoT privacy

An example of user-tailored privacy to inspire interface design and smart profiles.
Use case:

2,800 public IoT-related scenarios + decisions from 200 participants

Manipulate scenarios along 5 dimensions

Example: “A device of a friend (who) records your video to detect your presence (what). This happens continuously (when), while you are at someone else’s place (where), for your safety (why).”

Choice to allow or reject this scenario
Results

Let's say we create a layered settings interface. What parameter should be at the top? What has the most influence on the user’s decision?

Regression modeling to determine parameter order.
Result: who > what > why > when > where

Bahirat et al. (2018) “A data-driven approach to developing IoT privacy-setting interfaces”
IoT Settings

Which devices may collect your personal information?

- **My own devices**
- **Friends' devices**
- **Colleagues' devices**
- **Devices of nearby businesses**
- **My employer's devices**
- **Government devices**
- **Unknown devices**

Friends' devices

What type of data may your friends' devices collect?

Voice, to determine my...

- **age**
- **identity**
- **gender**
- **mood**
- **presence**
- **(other)**

Photos, to determine my...

- **age**
- **identity**
- **gender**

Voice - age

For what purpose may your friends' devices record your voice to determine your age?

- **Safety**
 - never
 - once
 - continuously

- **Health**
 - never
 - once
 - continuously

- **Convenience**
 - never
 - once
Results

What about the default setting?
Everything on by default: 28% correct
Everything off by default: 72% correct

What if we make our best guess?
Predict based on who, what, where, when, why:
75% correct
Divide participants based on overall attitudes?

Two profiles: Correct 77% of the time!
Results

What if we divide participants on the fly?
Three profiles: Correct 82% of the time!
Step 1: choose a profile

Default profiles
- **Limited collection**
 - This profile allows the collection of:
 - any data by the your own devices, your friends' devices, your employer/school's devices, and devices of nearby businesses
 - any data by your colleagues' devices, but only for certain reasons
- **Limited collection, personal devices only**
 - This profile allows the collection of:
 - certain types of data by the your own devices
- **No collection**
 - This profile prevents the collection of any data

Profiles
- Please select a profile
 (you can change individual settings on the next screen)

IoT Settings
- Which devices may collect your personal information?
 - My own devices
 - Friends' devices
 - Colleagues' devices
 - Devices of nearby businesses
 - My employer's devices
 - Government devices
 - Unknown devices

Settings
- For what purpose may your friends' devices record your voice to determine your age?
 - Safety
 - never
 - once
 - continuously
 - Health
 - never
 - once
 - continuously
 - Convenience
 - never
 - once

Friends
- Voice - age
- What type of data may your friends' devices collect?
 - Voice, to determine my...
 - age
 - identity
 - gender
 - mood
 - presence
 - (other)
 - Photos, to determine my...
 - age
 - identity

Step 2: adjust the default settings
Conclusion

Next steps in usable privacy research.
My contribution

I argued that privacy scholars need to move beyond the “one-size-fits-all” approach to privacy.

I presented the idea of “design for elaboration”, which:

- Aims to increase motivation and self-efficacy, thereby encouraging people to think slow.
- Nudges people to take control of their own privacy.

I presented the idea of “user-tailored privacy”, which:

- Provides realistic empowerment by relieving some of the burden of controlling privacy, while at the same time respecting each individual’s preferences.
- Refrains from making moral judgments about what the “right” level of privacy should be.
Future research questions

Knijnenburg et al. (2017) “Death to the Privacy Calculus”