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Abstract. We present a new decision rule, maximin safety, that seeks
to maintain a large margin from the worst outcome, in much the same
way minimax regret seeks to minimize distance from the best. We argue
that maximin safety is valuable both descriptively and normatively. De-
scriptively, maximin safety explains the well-known decoy effect, in which
the introduction of a dominated option changes preferences among the
other options. Normatively, we provide an axiomatization that charac-
terizes preferences induced by maximin safety, and show that maximin
safety shares much of the same behavioral basis with minimax regret.

1 Introduction

Representing uncertainty using a probability distribution, and making decisions
by maximizing expected utility, is widely accepted, founded on formal math-
ematical principles, and satisfies intuitive notions of rationality such as inde-
pendence of irrelevant alternatives and the sure thing principle [20]. However,
enforcing seemingly appealing concepts of rationality can ultimately lead to de-
cisions inconsistent with what real humans consider reasonable. For example,
observed behavior under unquantified (Knightian [14]/ strict [15]) uncertainty,
such as that in the Ellsberg paradox [8], demonstrates how appealing concepts
of rationality can lead to inconsistency with human choices. Alternative decision
rules, such as maximin utility [25] and minimax regret [20, 17] provide rationally
plausible decisions in ambiguous situations and can be used to resolve such para-
doxes, but still fail to explain some human behavioral patterns. A particularly
illustrative example of such behavior is called the decoy effect [13], in which the
introduction of a dominated option changes the preference among the undomi-
nated ones. While the decoy effect has been investigated in the psychology [6,
26] and economics literature [3, 22], we are unaware of any axiomatic treatment
of it. To address this, we introduce a criterion called safety as the basis for a
maximin safety decision rule. 1 Safety serves as a dual to regret that quantifies
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1 This decision rule has been mentioned in passing, inside a proof by Hayashi [11],
where it was referred to as ‘maximin joy’. We use the term ‘safety’ rather than ‘joy’
to avoid confusion with the concept called ‘joy of winning’ in [11].



distance from a worst outcome, much as regret quantifies proximity to a best
outcome. Maximin safety also satisfies familiar properties common to maximin
utility and minimax regret, and hence also resolves the Ellsberg paradox. More-
over, maximin safety accommodates observed preferences that are incompatible
with minimax regret and maximin utility. We demonstrate how safety-seeking
behavior can produce the decoy effect, and show how maximin safety can ex-
plain it. We also extend Stoye’s [24] axiomatizations of standard decision rules
to include maximin safety, thus allowing a comparison between maximin safety
and state-of-the-art decision rules.

1.1 Relative Preferences and Regret

It is not hard to imagine situations in which performance relative to other pos-
sible outcomes is more important than absolute performance. Consider, for ex-
ample, a group of duck hunters surprised by a hungry bear [5, 4]. The hunters
all attempt to escape by running in the same direction while the slowest one
despairs: “this is hopeless, we can never outrun the bear.” The hunter in front
of him snickers, “I don’t need to outrun the bear, I just need to outrun you.”
Whether the prospect is being picked from a group of peers for a date [2], win-
ning a gold medal, or obtaining an ‘A’ in a class, success is often measured by
relative performance, rather than by an absolute standard. One such preference
for relative performance is embodied in the well-known decision theoretical con-
cept of regret [20, 17]. While psychological literature on regret focuses on the
bad feelings that occur after a choice leads to an inferior outcome, some also
considers that anticipation of such negative emotions may influence the choice
itself [22, 16, 19].

In this paper, we assume that uncertainty is captured by a set of possible
worlds, one of which is the true state of the world. Regret is a measure of distance
between the value of a considered outcome and the value of the best possible out-
come, under a given state. This leads to an important property that is always true
for regret – the introduction of a dominated option does not change the regrets of
the existing options. We will refer to this property as independence of dominated
alternatives (IDA). Those who believe in regret avoidance may think that this
property is perfectly reasonable. For example, suppose you have a $10 bill and
you can either buy a $10 lottery ticket, or two $5 lottery tickets. Most would agree
that your choice should not be affected by a dominated third option, “burning
the $10 bill”. Other standard decision rules, such as expected utility maximiza-
tion, have even stronger independence guarantees. The ranking of two choices
under expected utility maximization is menu-independent, i.e., completely inde-
pendent of the set of feasible choices (the menu). Menu-independence implies
IDA. In contrast, regret-based preferences are menu-dependent, but since they
conform to IDA, they are not compatible with observed biases sensitive to dom-
inated options [2]. While IDA seems intuitively appealing, there is a great deal
of empirical evidence that human preferences are indeed affected by dominated
options in measurable and sometimes profound ways.



1.2 The Decoy Effect in Decision Theory

Suppose you are offered $6 in cash, and the option of trading it for a Cross pen.
The pen is nice, but you have plenty of pens, so decide to keep the cash. Right
before you walk away, you are offered an alternative pen in exchange for the $6.
You see the new pen and find it hideous. A smile comes to your face as you turn
around and say, “you know, I’ll take that original Cross pen after all.”

This story dramatizes an actual experiment [13]. When the first choice was
offered to 106 people, 64% took the cash, 36% took the pen. When the second
pen was added to the offer to 115 other subjects, 52% took the cash, 46% took
the Cross pen, and 2% took the decoy. Generally, a decoy is an option that is
designed to be inferior to another option in every way (i.e., it is a dominated
option). Despite the intuitive appeal of IDA, the presence of a dominated option
drove selection of the Cross pen from 36% to 46%. In this paper, we focus on
a particular class of decoy effect, called asymmetric dominance, which occurs
when the decoy is dominated by one existing alternative, but not by another.
Empirical studies show that the decoy is rarely chosen, but its addition to a set
of choices consistently drives decision makers toward the dominating choice.

Numerous empirical studies have also shown decoy effects in class action
settlements [27], recreational land management [3], choice of healthcare plans
and political candidates [12], purchase of consumer goods such as cameras and
personal computers [22], restaurant choices [13], and even romantic attraction [2].
Surprisingly, a decoy effect can occur even if the decoy is not actually an option,
but merely a recent memory of an option (a phantom decoy [9, 6]). Furthermore,
the decoy effect is not limited to humans, but is also observed in honeybees and
grey jays [21].

In an attempt to explain the decoy effect, experts in the behavioral sciences
have offered a variety of domain-specific analyses, including “perceptual fram-
ing” [13], “value-shift” [26], “extremeness aversion” [22], and “contrast bias”
[22, 27]. All of these explanations focus on valuing the discrepancy between the
decoy and the dominating alternative. Intuitively, this provides a compelling ex-
ample of preferring the margin of safety from the worst outcome. As we are not
aware of any formalization in decision theory that is consistent with the intuitive
preference for “margin of safety”, we offer one here.

Wet
Road

Dry
Road

Sprint 1 9
Hustle 3 6

Jog 2 2

Table 1: Hunters
running from a
bear.

To illustrate our new decision rule, recall the example
of the unfortunate duck hunters. As they run from the
bear, they approach a blind curve and have no idea what
is around it: it could be wet or dry. If it is dry they will
cover the most ground if they try to run faster, however if
it is wet (thus slippery) they will be better off if they slow
down and maintain balance. The options and the distance
traveled under each circumstance are summarized in Ta-
ble 1. In general, exerting excessive effort on a wet road
leads to slipping and less distance covered; exerting effort
on a dry road leads to more distance covered.



If the probability of the road conditions is unknown, and only the first two
options are available (sprint and hustle), there is no intuitively preferred choice
and we may assume there are enough hunters such that at least one will pick each
option. However, if we add a new option, jog, something interesting happens. As
jog is dominated by hustle, IDA requires that its availability should not change
the preferences among the other options. However, regardless of whether the
road is wet or dry, hustle is never the worst alternative: if the road is wet, hustle
(3) is faster than sprint (1), and if the road is dry, hustle (6) is faster than jog
(2). In either case, selecting hustle prevents the hunter from being the slowest
and getting caught by the bear.

While it may be callous, it seems perfectly reasonable for a hunter to decide
to run just fast enough to make sure there is someone behind him. In other
words, the most sensible decision might be to run just fast enough to guarantee
the maximum possible margin between himself and the slowest runner, in the
worst scenario. This margin between the hunter and his slowest compatriot can
be considered a measure of safety , which is at the heart of our paper.

The rest of the paper proceeds as follows. Section 2 provides a formalization
of the decoy paradox along with basic decision-theoretical notation. Section 3 de-
scribes the relationship between minimax regret and maximin safety and shows
how maximin safety resolves the decoy paradox. Section 4 provide an axiomatic
characterization of maximin safety. Section 5 suggests a unification of utility,
regret, and safety using anchoring functions, and also considers a generalization
to qualitative relative preferences.

2 The Formal Framework

Given a set S of states and a set X of outcomes, an act a (over S and X) is a
function mapping S to X. The set of all acts is thus XS , which we will denote
by A. For simplicity in this paper, we take S to be finite. Associated with each
outcome x ∈ X is a utility : U(x) is the utility of outcome x. For convenience,
we will omit the explicit representation of the outcome, and denote U(a(s)) by
U(a, s) for each state s ∈ S. We call a tuple (S,X,U) a (non-probabilistic)
decision problem. To define regret and safety, we need to assume that we are
also given a set M ⊆ A of feasible acts, called the menu. The reason for the
menu is that, as we have shown, regret and safety can depend on the menu. We
will only consider finite menus, from which randomized strategies can be chosen.

s1
Safari

s2
World Cup

a1: Travel 4 4
a2: Sports 2 6
a3: Decoy 3 3

Table 2: Utilities in the camera
purchase example.

Consider the problem of a decision maker
(DM) contemplating a camera purchase,
summarized in Table 2. The DM has a choice
between buying a rugged travel camera (a1)
that takes decent pictures in a wide variety of
circumstances, and buying a delicate sports
camera with higher speed and image quality
(a2). Each state characterizes the possible sit-
uations that a purchaser may experience dur-



Decision Rule Value of an act a Decision rule description Best

maximax utility V (a) = maxs∈S U(a, s) Optimize the best-case outcome. a2

maximin utility V (a) = mins∈S U(a, s) Optimize the worst-case outcome. a1

minimax regret V (a,M) = −regM (a) Pick an act to minimize the worst-case
distance from the best outcome.

a1, a2

Table 3: Standard decision rules and most valued acts in the camera example.

ing the useful life of the camera (Will the DM experience harsh conditions? Or
win tickets to the World Cup?) The utility U(a, s) of act a under state s repre-
sents an abstract net value to the DM if the true world is state s.

If the DM ends up going on a safari (s1), then act a1 results in moderate
quality pictures of exciting wildlife (U(a1, s1) = 4), but act a2 results in a few
exquisite shots and many missed opportunities (U(a2, s1) = 2). On the other
hand, if the DM goes to the World Cup (s2), then act a2 results in many great
pictures in a safe environment (U(a2, s2) = 6), while act a1 provides only mod-
erate quality pictures (U(a1, s2) = 4).

If the DM can assign probabilities P (s1) and P (s2) to the states, she can
calculate an expected utility E[U(ai)] =

∑
s∈S P (s)U(ai, s), and simply select

the act that maximizes expected utility. However, if the state probabilities are
unavailable, we have unquantified uncertainty. In such cases, the DM must find
another method for aggregating the utility of each act across states in order to
assign a value to each camera. Here we will focus on the methods of maximax
utility, minimax utility, and minimax regret. To understand minimax regret, we
need to define the notion of regret. For a menu M and act a ∈M , the regret of
a with respect to M and decision problem (S,X,U) is

max
s∈S

(max
a′∈M

U(a′, s)− U(a, s)).

We denote this as reg
(S,X,U)
M (a), and usually omit the superscript (S,X,U).

When comparing decision rules, it is often convenient to define a value func-
tion that assigns a numeric value to each act, for the purpose of ranking the
acts. Formally, for a decision problem (S,X,U), a value function is a function

V (S,X,U)(a,M) : XS × 2A → R.

We will usually omit the superscript (S,X,U) and just write V (a,M), or V (a)
if the value function is menu-independent.

We say that the value function V represents the family of preference relations
�V,M , if for all menus M and all a, a′ ∈M ,

a �V,M a′ ⇔ V (a,M) > V (a′,M).

In other words, act a is (strictly) preferred to act a′ with respect to menu M if
and only if V (a,M) > V (a′,M). The value functions and preferences of several
standard decision rules are given in Table 3.

Now, perhaps the camera vendor would like to sell more travel cameras, so
the vender puts an obsolete travel camera a3 next to a1 as a decoy. Camera



a3 has the same price as a1, but fewer features and lower picture quality. The
vendor hopes to make a1 more appealing by contrast with a3. Table 2 illustrates
the decision problem when a3 is added to the menu. The ranking between a1
and a2 according to each of the decision rules in Table 3 is unaffected by the
introduction of a3 to the menu. The addition of a3 also illustrates the concept of
dominance. We say that an act a dominates a′, if for all s ∈ S, U(a, s) > U(a′, s).

3 Maximin Safety

While minimax regret seeks to minimize separation from best outcomes, maximin
safety is a conceptual dual that seeks to maximize separation from the worst
outcomes. For a menu M and act a ∈M , the safety of a in state s is defined as:

safety
(S,X,U)
M (a, s) = U(a, s)− min

a′∈M
(U(a′, s)),

and in keeping with the convention for regret, the safety of an act is defined as:

safety
(S,X,U)
M (a) = min

s∈S
(safety

(S,X,U)
M (a, s)).

We will often omit the superscript (S,X,U).
The family of maximin safety preferences �saf ,M represented by the safety

value function satisfies, for all M and a, a′ ∈M ,

a �saf ,M a′ ⇔ safetyM (a) > safetyM (a′).

Utility Safety
(no decoy)

Safety
(w. decoy)

s1 s2 s1 s2 s1 s2
a1: travel 4 4 2 0 2 1

a2: sports 2 6 0 2 0 3

a3: decoy 3 3 1 0

Table 4: Camera purchase with and
without decoy.

Utility Regret Safety Optimal for

s1 s2 s1 s2 s1 s2
a1 1 9 3 0 0 5 maximax utility

a2 3 6 1 3 2 2 maximin safety

a3 2 7 2 2 1 3 minimax regret

a4 4 4 0 5 3 0 maximin utility

Table 5: Different decision rules select
different acts for the same problem.

Now we reconsider the camera example using safety (Table 4). Without the
decoy, both acts have the same safety of 0, since each act has the lowest utility
in some state; so there is no clear safety preference. However, when the decoy is
present, the act a1 never has the lowest utility at any state, and thus it has a
strictly positive safety. In this case, safety{a1,a2,a3}(a1) is the unique maximum
among the acts {a1, a2, a3}, and therefore a1 is the preferred choice. The relative
increase in the safety of an act due to the addition of the dominated act is an
essential element in solving the decoy paradox. Intuitively, this may correspond
to a sense that even if a particular act gets low utility in the realized state, the
DM may think that “I’m better off than the fools who bought the worse camera”,



or in a more positive light, “I must be getting a steal with this better camera
for the same price”. In competitive survival games (such as the reality game
show Survivor), the notion of maximizing safety may also embody a preference
to maintain a maximal distance from the lowest performer, which reduces the
chance of elimination. Table 5 compactly demonstrates how choices based on
maximin safety differs from the other standard decision rules.

Utility
Safety(no

decoy)
Safety (w.
decoy a4)

s1 s2 s3 s1 s2 s3 s1 s2 s3
a1 9 2 6 5 0 0 8 0 0
a2 5 3 7 1 1 1 4 1 1
a3 4 8 8 0 6 2 3 6 2
a4 1 5 6 0 3 0

Table 6: Without a4, M =
{a1, a2, a3}, and a2 �saf ,M a3.
Adding a4 (dominated by a3) re-
verses the maximin safety prefer-
ence between a2 and a3.

In the camera example, the addition of
a decoy created a strict preference between
two acts that were initially tied. The in-
troduction of a dominated act can actu-
ally reverse preferences between acts. Ta-
ble 6 shows a menu of three acts: M =
{a1, a2, a3}. Act a2 has a minimum safety
of 1, while both a1 and a3 have the low-
est utility for some state, so each has min-
imum safety of 0. Consequently, a2 is the
most preferred choice under the safety pref-
erence. When a new choice a4 is added, act
a4 is dominated by a3, but it has higher util-
ity than the other acts in some states. This
situation is known as asymmetric dominance, which is typically associated with
decoy effects. In this example, asymmetric dominance guarantees that a3 is never
one of the worst choices, and thus has a strictly positive safety value. In other
words, the addition of a4 to the menu M does not affect the safety of a1 or a2,
but increases the safety of a3 to make a3 �saf ,M∪{a4} a2.

4 Axiomatic Analysis

To provide an axiomatic characterization of maximin safety, we employ the stan-
dard Anscombe-Aumann (AA) framework [1], where outcomes are restricted to
lotteries. Maximin safety is characterized by modifying one of the axioms in an
existing characterization of minimax regret provided by Stoye [24].

Given a set Y of prizes, a lottery over Y is just a probability with finite
support on Y . As in the AA framework, we let the set of outcomes be ∆(Y ),
the set of all lotteries over Y . Thus, acts are functions from S to ∆(Y ). We can
think of a lottery as modeling objective, quantified uncertainty, while the states
model unquantified uncertainty. The technical advantage of considering such a
set of outcomes is that we can consider convex combinations of acts. If f and g
are acts, define the act αf + (1 − α)g to be the act that maps a state s to the
lottery αf(s) + (1 − α)g(s). For simplicity, we follow Stoye [24] and restrict to
menus that are the convex hull of a finite number of acts, so that if f and g are
acts in M , then so is pf + (1− p)g for all p ∈ [0, 1].

In this setting, we assume that there is a utility function U on prizes in Y ,
and that there are at least two prizes y1 and y2 in Y , with different utilities. Note
that l(y) is the probability of getting prize y if lottery l is played. We will use l∗ to



denote a constant act that maps all states to l. The utility of a lottery l is just the
expected utility of the prizes obtained, that is, u(l) =

∑
{y∈Y : l(y)>0} l(y)U(y).

The expected utility of an act f with respect to a probability Pr is then just
u(f) =

∑
s∈S Pr(s)u(f(s)), as usual. Given a set Y of prizes, a utility U on the

prizes, and a state space S, we have a family �S,∆(Y ),u
saf ,M of preference orders on

acts determined by maximin safety, where u is the utility function on lotteries as
determined by U .2 For convenience, from here on we will write�S,Y,UM rather than

�S,∆(Y ),u
saf ,M . We will state the axioms in a way such that they can be compared to

standard axioms and those for minimax regret in [24]. The axioms are universally
quantified over acts f , g, and h, menus M and M ′, and p ∈ (0, 1). Whenever we
write f �M g we assume that f, g ∈M .

Axiom 1 (Monotonicity) f �M g if (f(s))∗ �{(f(s))∗,(g(s))∗} (g(s))∗,∀s ∈ S .

Axiom 2 (Completeness) f �M g or g �M f .

Axiom 3 (Nontriviality) f �M g for some acts f and g and menu M .

Axiom 4 (Mixture Continuity) If f �M g �M h, then there exists q, r ∈ (0, 1)
such that qf + (1− q)h �M g �M rf + (1− r)h.

Axiom 5 (Transitivity) f �M g �M h⇒ f �M h.

Menu-independent versions of Axioms 1 to 5 are standard in other axioma-
tizations, and in particular hold for maximin utility. Axiom 3 is used in the
standard axiomatizations to get a nonconstant utility function in the represen-
tation. While maximin safety does not satisfy menu-independence, it does satisfy
menu-independence when restricted to menus consisting of only constant acts.
This property is captured by the following axiom.

Axiom 6 (Menu independence for constant acts) If l∗ and (l′)∗ are constant
acts, then l∗ �M (l′)∗ iff l∗ �M ′ (l′)∗.

We also have a menu-dependent version of the von Neumann-Morgenstern
(VNM) Independence axiom. Like the VNM Independence axiom, Axiom 7 says
that ranking between two acts does not change when both acts are mixed with a
third act; but unlike VNM Independence, the menu used to compare the original
acts in Axiom 7 is different from that used to compare the mixtures. Axiom 7
holds for minimax regret and maximin safety, but not for maximin utility.

Axiom 7 (Independence) f �M g ⇔ pf + (1− p)h �pM+(1−p)h pg + (1− p)h.

Axiom 8 (Symmetry) For a menu M , suppose that E,F ∈ 2S\{∅} are disjoint
events such that for all f ∈M , f is constant on E and on F . Define f ′ by

f ′(s) =


f(s′) for some s′ ∈ E, if s ∈ F
f(s′) for some s′ ∈ F , if s ∈ E
f(s) otherwise

2 We let f �S,∆(Y ),u
saf ,M g iff g 6�S,∆(Y ),u

saf ,M f , and f ∼M g iff f �M g and g �M f .



Let M ′ be the menu generated by replacing every act f ∈M with f ′. Then

f �M g ⇔ f ′ �M ′ g′

Symmetry, which is one of the characterizing axioms for minimax regret in [24],
captures the intuition that no state can be considered more or less likely than
another. Therefore Symmetry helps distinguish the probability-free decision rules
maximin utility, minimax regret, and maximin safety, from their probabilistic
counterparts [10, 23].

Axiom 9 (Ambiguity Aversion) f ∼M g ⇒ pf + (1− p)g �M g.

Axiom 9 says that the decision maker weakly prefers to hedge her bets. Axioms
1-9 are all part of the characterization in [24] of minimax regret (which consists
of Axioms 1-9 and Symmetry). Axioms 1-5 and 9 are also sound for the maximin
decision rule [24].

In [24], one of the axioms characterizing minimax regret is Independence of
Never Strictly Optimal alternatives (INA), which states that adding or removing
acts that are not strictly potentially optimal in the menu does not affect the
ordering of acts. 3 By varying this INA axiom, we obtain a characterization for
maximin safety. We say that an act a is never strictly worst relative to M if, for
all states s ∈ S, there is some a′ ∈M such that a(s) � a′(s).

Axiom 10 (Independence of Never Strictly Worst Alternatives (INWA)) If an
act a is never strictly worst relative to M , then f �M g iff f �M∪{a} g.

Although adding acts to the menu, in general, can affect minimax regret
preferences, INA implies the Independence of Dominated Alternatives property
that we used earlier when discussing the decoy effect. Thus, INA guarantees that
minimax regret can never be compatible with the decoy effect.

Theorem 1 For all Y,U, S, the family of maximin safety preference orders
�S,Y,Usaf ,M induced by a decision problem (S,∆(Y ), u) satisfies Axioms 1–10. Con-

versely, if the family of preference orders �M on the acts in ∆(Y )S satisfies
Axioms 1–10, then there exists a utility function U on Y that determines a
utility u on ∆(Y ) such that �M=�S,Y,usaf ,M . Moreover, U is unique up to affine
transformations.

Proof. The soundness of the axioms are straightforwardly verified, so we show
only the completeness of the axioms. We will use the same general sequence
of arguments that Stoye uses in [24]. First, we establish a nonconstant utility
function U , where constant acts are ranked by their expected utilities. Since we
have the standard axioms (1− 5), we get U from standard arguments, and it is
unique up to affine transformations. Next, we observe the following lemma:

3 An act h is never strictly optimal relative to M if, for all states s ∈ S, there is some
f ∈M such that (f(s))∗ � (h(s))∗.



Lemma 1. Suppose the family �M satisfies Axioms 1-10, and �M+ is repre-
sentable by maximin safety, where M+ is the menu of all acts with nonnegative
utilities. Then the family �M is representable by maximin safety.

Lemma 1 follows from an argument analogous to that for regret in [24]. The next
step is to establish that the axioms on �M restrict �M+ to satisfy the axioms of
ambiguity aversion, monotonicity, completeness, transitivity, non-triviality, and
symmetry. It is a straightforward verification that will not be reproduced here.
Theorem 1 (iii) of [24] then implies that �M+ is the maximin utility ordering.
Next, let gM be an act such that u ◦ gM (s) = −minh∈M u(h, s), so that we have

f �M g ⇔ 1
2f + 1

2gM �M+
1
2g + 1

2gM
⇔ mins∈S u( 1

2f + 1
2gM , s) ≥ mins∈S u( 1

2g + 1
2gM , s)

⇔ min
s∈S

(
1

2
(u(f, s)− min

h∈M
u(h, s))) ≥ min

s∈S
(
1

2
(u(g, s)− min

h∈M
u(h, s))).

ut
The characterizing axioms serve as a justification for maximin safety in the

sense that behaving as a safety maximizer is equivalent to accepting the axioms.
Axioms 1-7 are standard and broadly accepted to be reasonable, while symme-
try and ambiguity aversion are implied by both maximin utility and minimax
regret. Whether the INA axiom (for regret) or the INWA axiom (for safety) is
more reasonable would depend on the individual and the nature of the decision
problem. Thus, we believe that the reasonableness of the maximin safety decision
rule is comparable to that of minimax regret.

Individual necessity of the axioms can be established, as is commonly done
[11, 24], by giving examples of preferences that satisfy all the axioms except for
the one whose necessity is being shown. For the axioms shared with minimax
regret, the same examples found in [24] shows their individual necessity. For the
INWA axiom, the required example is minimax regret. Indeed, a decision rule
equivalent to maximin safety was used by Hayashi [11] as an example to justify
minimax regret’s entailment of INA.

Clearly, just as minimax regret is readily generalized to minimax expected re-
gret when uncertainty is represented by a set of probability distributions over the
state space, maximin safety can be readily extended to maximin expected safety
in the same manner. As one would expect, given an axiomatization of minimax
expected regret [23], the modification of the INA axiom to INWA results in an
axiomatization for maximin expected safety.

5 Discussion, Generalizations, and Future Work

Both minimax regret and maximin safety embody preferences based on relative,
rather than absolute utility. In Table 5, the act preferred by safety has a lower
minimum utility than the act preferred by maximin utility, just as the act picked
by minimax regret neglects a higher maximum utility in order to minimize the
margin to each state’s maximum utility. The shared preference for relative over
absolute performance is reflected in a striking similarity in the structure of the



value functions for regret and safety. In comparison, minimax regret can be
expressed for all acts a, b as:

a �reg,M b iff min
s∈S

(U(a, s)− max
a′∈M

U(a′, s)) > min
s∈S

(U(b, s)− max
a′∈M

U(a′, s)).

Similarly, maximin safety is represented for all acts a, b as

a �saf ,M b iff min
s∈S

(U(a, s)− min
a′∈M

U(a′, s)) > min
s∈S

(U(b, s)− min
a′∈M

U(a′, s)).

The structural resemblance suggests a common form for the value function. By
defining a menu-dependent anchoring function t : S×2A → R, we can represent
several previously discussed value functions as:

Vt(a,M) = mins∈S U
′(a, s,M, t),

where U ′(a, s,M, t) = U(a, s) − t(s,M) can be viewed as an anchored effective
utility. One can see that Vt represents maximin utility if t(s,M) = 0; min-
imax regret if t(s,M) = maxa′∈M U(a′, s); and maximin safety if t(s,M) =
mina′∈M U(a′, s). Note that by varying just the anchoring function t, we can ob-
tain all the mentioned decision rules, and more. While we focus only on maximin
safety in this paper, other forms for t(s,M) maximize the positive margin from
a state-dependent average, median, or some other characteristic of interest to a
DM. For example, college students might seek to conservatively maximize their
margin above a desired quantile, in order to achieve a particular grade.

The present work is motivated by behavioral observations of the decoy effect
that are typically described in empirical quantities such as distance, price and
volume, and thus is most intuitive in a quantitative framework. However, the key
observation is that safety, like regret, is a notion of relative performance with
respect to a set of outcomes, rather than absolute performance. As absolute
quantitative utility U : X → R can be generalized to a qualitative framework
by replacing the U with a mapping X → L for some ordered set L, relative
utility may be made qualitative by considering the mapping with 2X ×X → L.
In the case of safety and regret, the particular element of 2X is the set of all
possible outcomes in a state, given a menu of acts. Aggregation ofN state-specific
orderings into an ordering over acts can be accomplished by an aggregation
function M : LN → L [18]. This generalization can be readily applied to various
characterizations of uncertainty, including probability, plausibility, and the strict
uncertainty used in this paper [15]. While the authors expect that the present
quantitative axiomatization can be adapted to a qualitative framework (see, e.g.
[7]), it is beyond the scope of the current paper.
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