Understanding Host Interconnect Congestion

Saksham Agarwal
Cornell University

In collaboration with:
Rachit Agarwal (Cornell)
Behnam Montazeri (Google)
Masoud Moshref (Google)
Khaled Elmeleegy (Google)
Luigi Rizzo (Google)
Marc Asher de Kruijf (Google)
Gautam Kumar (Google)
Sylvia Ratnasamy (Google & UC Berkeley)
David Culler (Google)
Amin Vahdat (Google)
Conventional wisdom: Congestion in the network core

Congestion happens in the network core: at switches
Due to oversubscribed topologies, incast traffic pattern, and/or poor load balancing

Decades of work; deep understanding of:
- Reasons for congestion
- Congestion signals
- Congestion response
- …..
This work: Host Congestion

Due to emergence of host interconnect bottlenecks
Data path between the NIC and the CPU/memory

Understanding host congestion
And its impact

Root causes of host congestion
Building a deeper understanding

Towards resolving host congestion
Need for:
- New host architectures
- New congestion signals
- New congestion response
This work: **Host Congestion**

- Due to emergence of host interconnect bottlenecks
- Data path between the NIC and the CPU/memory

Understanding host congestion
And its impact

Root causes of host congestion
Building a deeper understanding

Towards resolving host congestion
Need for:
- New host architectures
- New congestion signals
- New congestion response
Host Interconnect: a brief primer

Host interconnect comprises multiple subsystems
Peripheral interconnect (PCIe), processor interconnect, memory channels, etc.
All operating independently in a closed-loop system (to enable losslessness)

Lossless interconnect
- “credit”-based
- Hop-by-hop

Shared interconnect
- compute & peripheral traffic share:
 - Both processor interconnect
 - And, memory channels
Host Congestion

NIC unable to drain packets at the same rate at which it receives packets

PCIe bandwidth is underutilized

NIC buffers build up even before senders can respond; packets dropped
Host Congestion in production clusters

Google production cluster
Runs SNAP with Swift as congestion control protocol (also Linux + TCP)
Minimal in-network congestion, and auto-scaling for CPU bottlenecks

Impact of host congestion
Poor isolation, inflated tail latency, low throughput
This work: **Host Congestion**

Due to emergence of host interconnect bottlenecks
Data path between the NIC and the CPU/memory

Understanding host congestion
And its impact

Root causes of host congestion
Building a deeper understanding

Towards resolving host congestion
Need for:
- New host architectures
- New congestion signals
- New congestion response
Host Congestion due to Host Interconnect Bottlenecks [1]

Reducing ratio of DRAM bandwidth to IO bandwidth (+CPU bandwidth)
+ Poor isolation at the DRAM controller
Host Congestion due to Host Interconnect Bottlenecks [2]

Inefficient mechanisms for memory protection

NIC deals with virtual addresses; final operations on physical addresses
IOMMU translates addresses using an IO page table; IOTLB is cache for IO page table
Host Congestion due to Host Interconnect Bottlenecks [2]

Inefficient mechanisms for memory protection

NIC deals with virtual addresses; final operations on physical addresses

IOMMU translates addresses using an IO page table; IOTLB is cache for IO page table
Host Congestion: more details in the paper

Existing CC protocols do not account for host congestion

- Reducing rate \Rightarrow reduce contention (e.g., IOMMU)
- Several unexpected behavior
 - Non-monotonic relationship between contention & drops
 - Using Hugepages results in higher drops
 - ...

Workloads that lead to host congestion

Common workloads: one-to-one, incast, all-to-all

Observed in large-scale Google production clusters

- Results reproducible on commodity machines with Linux
- Paper: minimalistic workloads for reproducing results
- Reach out to me for help.
This work: **Host Congestion**

Due to emergence of host interconnect bottlenecks

Data path between the NIC and the CPU/memory

- Understanding host congestion
- And its impact
- Root causes of host congestion
- Building a deeper understanding

Towards resolving host congestion

Need for:
- New host architectures
- New congestion signals
- New congestion response
Host Congestion: Looking forward

Need to rethink host architecture, network stack, network protocols
Bring together ideas from networking, operating systems, and architecture

Rethink Host architecture
- PCIe enhancements (e.g., CXL)
 - Stronger semantics, lower latency
- Memory protection mechanisms (e.g., ATS)
 - Address translation offload
- Memory controller architecture
 - Sharing mechanisms for memory channels

Rethink network stacks and protocols
- New congestion signals
 - from “outside” the network
 - e.g., memory load, fragmentation, etc.
- New congestion response
 - Different for different root causes (memory vs IOMMU)?
 - sub-RTT response
Host Congestion

Due to emergence of host interconnect bottlenecks
Data path between the NIC and the CPU/memory

Understanding host congestion
And its impact

Root causes of host congestion
Building a deeper understanding

Resolving host congestion
Need for:
- New host architectures
- New congestion signals
- New congestion response