

 1

Beyond Traditional SAT Reasoning:
QBF, Model Counting, and Solution Sampling

Ashish Sabharwal and Bart Selman

Cornell University

July, 2007

AAAI Conference
Vancouver, BC

2

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

PART I: Automated Reasoning

4

The Quest for Machine Reasoning

Objective:

Develop foundations and technology to enable
effective, practical, large-scale automated reasoning.

Computational complexity of reasoning
appears to severely limit real-world
applications

Current reasoning technology

Revisiting the challenge:
Significant progress with new
ideas / tools for dealing with
complexity (scale-up),
uncertainty, and multi-agent
reasoning

Machine Reasoning (1960-90s)

 2

5

General Automated Reasoning

General
Inference
Engine

Solution

Domain-specific

Problem
instance

applicable to all domains
within range of modeling language

Model
Generator
(Encoder)

Research objective

Better reasoning and
modeling technology

Impact

Faster solutions
in several domains

e.g. logistics, chess,
planning, scheduling, ...

Generic

6

• EXPONENTIAL COMPLEXITY: INHERENT
 AN worst case
 N= No. of Variables/Objects A= Object states

• TIME/SPACE
 ↑Granularity  ↑ Object states

• Current implementations trade
 time with soundness

Question: Given: X1= true; X2 = false; X7=true.
What is X4 = ?

Answer Development: Inference Chain

Step 1: X7 ⇒ X8 (rule 4)
Step 2: X8 ⇒ X5 (rule 6)
Step 3: X5 ⇒ X3 or X6 (rule 3)

Case A: X6 = true
Step 4: X6 ⇒ not X9
Step 5: X9 ⇒ not X8
Step 6: Contradiction
 Backtrack to M

Case B: X3 = true
X1 & (not X2) & X3 ⇒ X4
Step 7: X4 = true (Rule 1)

M

Search for rules to apply

Check Contradictions

For N variables: 2N cases drive
complexity!

Simple Example:

Variables (binary)
X1 = email_ received
X2 = in_ meeting
X3 = urgent
X4 = respond_to_email

X5 = near_deadline
X6 = postpone

X7 = air_ticket_info_request
X8 = travel_ request
X9 = info_request

Rules:
1. X1 & (not X2) & X3 ⇒ X4
2. X2 ⇒ not X4

3. X5 ⇒ X3 or X6
4. X7 ⇒ X8
5. X8 ⇒ X9
6. X8 ⇒ X5
7. X6 ⇒ not X9

Knowledge Base

Reasoning Complexity

7

Exponential Complexity Growth:
The Challenge of Complex Domains

100
 200

10K
50K

20K
100K

0.5M
1M

1M
5M

 Variables

1030

10301,020

10150,500

106020

103010

 C
as

e
co

m
pl

ex
ity

Car repair diagnosis

Deep space mission control

Chess (20 steps deep)

VLSI
Verification

War Gaming

100K
 450K

Military Logistics

Seconds until heat
death of sun

Protein folding
Calculation
(petaflop-year)

No. of atoms
on the earth

1047

100 10K 20K 100K 1M
Rules (Constraints)

Exponential

Com
ple

xit
y

Note: rough estimates, for propositional reasoning

[Credit: Kumar, DARPA; Cited in Computer World magazine] 8

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

 3

9

Focus: Combinatorial Search Spaces
Specifically, the Boolean satisfiability problem, SAT

Significant progress since the 1990’s.

How much?

• Problem size: We went from 100 variables, 200 constraints (early
90’s) to 1,000,000 vars. and 5,000,000 constraints in 15 years.

Search space: from 10^15 to 10^300,000.
[Aside: “one can encode quite a bit in 1M variables.”]

• Tools: 50+ competitive SAT solvers available

Overview of the state of the art:
Plenary talk at IJCAI-05 (Selman); Discrete App. Math. article (Kautz-Selman ’06)

Progress in Last 15 Years

10

How Large are the Problems?

A bounded model checking problem:

11

i.e., ((not x1) or x7)
 ((not x1) or x6)

 etc.

x1, x2, x3, etc. are our Boolean variables
(to be set to True or False)

Should x1 be set to False??

SAT Encoding
(automatically generated from problem specification)

12

i.e., (x177 or x169 or x161 or x153 …
x33 or x25 or x17 or x9 or x1 or (not x185))

clauses / constraints are getting more interesting…

…

Note x1 …

10 Pages Later:

 4

13

…

4,000 Pages Later:

14

Current SAT solvers solve this instance in
under 30 seconds!

Search space of truth assignments:

Finally, 15,000 Pages Later:

15

SAT Solver Progress

Instance Posit' 94 Grasp' 96 Sato' 98 Chaff' 01

ssa2670-136 40.66s 1.20s 0.95s 0.02s

bf1355-638 1805.21s 0.11s 0.04s 0.01s

pret150_25 >3000s 0.21s 0.09s 0.01s

dubois100 >3000s 11.85s 0.08s 0.01s

aim200-2_0-no-1 >3000s 0.01s < 0.01s < 0.01s

2dlx_..._bug005 >3000s >3000s >3000s 2.90s

c6288 >3000s >3000s >3000s >3000s

Source: Marques-Silva 2002

Solvers have continually improved over time

16

How do SAT Solvers Keep Improving?

From academically interesting to practically relevant.

We now have regular SAT solver competitions.
(Germany ’89, Dimacs ’93, China ’96, SAT-02, SAT-03, …, SAT-07)

E.g. at SAT-2006 (Seattle, Aug ’06):
• 35+ solvers submitted, most of them open source
• 500+ industrial benchmarks

• 50,000+ benchmark instances available on the www

This constant improvement in SAT solvers is the key to making, e.g.,
SAT-based planning very successful.

 5

17

Current Automated Reasoning Tools
Most-successful fully automated methods:

based on Boolean Satisfiability (SAT) / Propositional Reasoning

– Problems modeled as rules / constraints over Boolean variables
– “SAT solver” used as the inference engine

Applications: single-agent search
• AI planning

SATPLAN-06, fastest optimal planner;
ICAPS-06 competition (Kautz & Selman ’06)

• Verification – hardware and software
Major groups at Intel, IBM, Microsoft, and universities
such as CMU, Cornell, and Princeton.
SAT has become the dominant technology.

• Many other domains: Test pattern generation, Scheduling,
Optimal Control, Protocol Design, Routers, Multi-agent systems,
E-Commerce (E-auctions and electronic trading agents), etc.

18

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

19

Boolean Logic

Defined over Boolean (binary) variables a, b, c, …
Each of these can be True (1, T) or False (0, F)

Variables connected together with logic operators: and, or, not (denoted ¬)
E.g. ((c ∧ ¬d) ∨ f) is True iff

 either c is True and d is False, or f is True

Fact: All other Boolean logic operators can be expressed with and, or, not
 E.g. (a ⇒ b) same as (¬a or b)

Boolean formula, e.g. F = (a or b) and ¬(a and (b or c))

(Truth) Assignment: any setting of the variables to True or False
Satisfying assignment: assignment where the formula evaluates to True
 E.g. F has 3 satisfying assignments: (0,1,0), (0,1,1), (1,0,0)

20

Rules:
1. X1 & (not X2) & X3 ⇒ X4
2. X2 ⇒ not X4

3. X5 ⇒ X3 or X6
4. X7 ⇒ X8
5. X8 ⇒ X9
6. X8 ⇒ X5
7. X6 ⇒ not X9

Variables
X1 = email_ received
X2 = in_ meeting
X3 = urgent
X4 = respond_to_email

X5 = near_deadline
X6 = postpone

X7 = air_ticket_info_request
X8 = travel_ request
X9 = info_request

Boolean Logic: Expressivity
All discrete single-agent search problems can be

cast as a Boolean formula

Variables a, b, c, … often represent “states” of the
system, “events”, “actions”, etc.
(more on this later, using Planning as an example)

Very general encoding language. E.g. can handle
• Numbers (k-bit binary representation)
• Floating-point numbers
• Arithmetic operators like +, x, exp(), log()
• …

SAT encodings (generated automatically from high
level languages) routinely used in domains like
planning, scheduling, verification, e-commerce,
network design, …

Recall Example:

“state”

“action”

constraint

“event”

 6

21

Boolean Logic: Standard Representations

Each problem constraint typically specified as (a set of) clauses:
E.g. (a or b), (c or d or ¬f), (¬a or c or d), …

Formula in conjunctive normal form, or CNF: a conjunction of clauses
E.g. F = (a or b) and ¬(a and (b or c)) changes to

 FCNF = (a or b) and (¬a or ¬b) and (b or ¬c)

Alternative [useful for QBF]: specify each constraint as a term (only “and”, “not”):
E.g. (a and ¬d), (b and ¬a and f), (¬b and d and e), …

Formula in disjunctive normal form, or DNF: a disjunction of terms
E.g. FDNF = (¬a and b) or (a and ¬b and ¬c)

clauses (only “or”, “not”)

22

Boolean Satisfiability Testing

• A wide range of applications
• Relatively easy to test for small formulas (e.g. with a Truth Table)
• However, very quickly becomes hard to solve

– Search space grows exponentially with formula size
 (more on this next)

SAT technology has been very successful in taming this exponential blow up!

The Boolean Satisfiability Problem, or SAT:

Given a Boolean formula F,

• find a satisfying assignment for F

• or prove that no such assignment exists.

PART II: QBF Reasoning

24

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

 7

25

The Next Challenge in Reasoning Technology

Multi-Agent Reasoning:
Quantified Boolean Formulae (QBF)

– Allow use of Forall and Exists quantifiers over Boolean variables
– QBF significantly more expressive than SAT:

from single-person puzzles to competitive games

New application domains:
• Unbounded length planning and verification
• Multi-agent scenarios, strategic decision making
• Adversarial settings, contingency situations
• Incomplete / probabilistic information

But, computationally *much* harder (formally PSPACE-complete rather than NP-complete)

Key challenge: Can we do for QBF what was done for SAT solving in the last decade?

Would open up a tremendous range of advanced automated reasoning capabilities!

26

SAT Reasoning vs. QBF Reasoning

 SAT Reasoning
 Combinatorial search

for optimal and near-
optimal solutions

 NP-complete
(hard)

 planning, scheduling,
verification, model
checking, …

 From 200 vars in early
’90s to 1M vars. Now a
commercially viable
technology.

 QBF Reasoning
 Combinatorial search

for optimal and near-
optimal solutions in
multi-agent, uncertain, or
hostile environments

 PSPACE-complete
(harder)

 adversarial planning,
gaming, security protocols,
contingency planning, …

 From 200 vars in late 90’s
to 100K vars currently. Still
rapidly moving.

Scope of
technology

Worst-case
complexity

Application
areas

Research
status

27

The Need for QBF Reasoning

SAT technology, while very successful for single-agent search,
is not suitable for adversarial reasoning.

Must model the adversary and incorporate his actions into reasoning
• SAT does not provide a framework for this

Two examples next:

1. Network planning: create a data/communication network between N
nodes which is robust under failures during and after network creation

2. Logistics planning: achieve a transportation goal in uncertain
environments

28

Adversarial Planning: Motivating Example
Network Planning Problem:

– Input: 5 nodes, 9 available edges that can be placed between any two nodes
– Goal: all nodes finally connected to each other (directly or indirectly)
– Requirement (A): final network must be robust against 2 node failures
– Requirement (B): network creation process must be robust against 1 node failure

E.g. a sample robust
final configuration:
(uses only 8 edges)

Side note: Mathematical structure of the problem:

1. (A) implies every node must have degree ≥ 3
(otherwise it can easily be “isolated”)

2. At least one node must have degree ≥ 4
(follows from 1. and that not all 5 nodes can have odd degree in
any graph)

3. Need at least 8 edges total (follows from 1. and 2.)

4. If one node fails during creation, the remaining 4 must be
connected with 6 edges to satisfy (A)

5. Actually need 9 edges to guarantee construction (follows
from 4. because a node may fail as soon as its degree becomes 3)

 8

29

Example: A SAT-Based Sequential Plan

Ideal situation: No failure during network creation

The plan goes smoothly and we end up with the target
network, which is robust against any 2 node failures

Create edge

Next move if no failures

Final network robust against
2 failures

30

Example: A SAT-Based Sequential Plan

What if the left
node fails?

Can still make the remaining 4 nodes
robust using 2 more edges (total 8 used)

• Feasible, but must re-plan to find
 a different final configuration

Ideal situation: No failure during network creation

Node failures may render the
original plan ineffective, but
re-planning could help make
the remaining network robust.

Create edge

Node failure during network creation

Next move if a particular node fails

Next move if no failures

Final network robust against
2 more failures

31

Example: A SAT-Based Sequential Plan

What if the top
node fails?

Need to create 4 more edges to
make the remaining 4 nodes robust

• Stuck! Have already used up 6
 of the 9 available edges!

Ideal situation: No failure during network creation

Trouble! Can get stuck if

• Resources are limited
(only 9 edges)

• Adversary is smart
(takes out node with degree 4)

• Poor decisions were made early
on in the network plan

32

Example: A QBF-Based Contingency Plan
A QBF solver will return a robust contingency plan (a tree)
• Will consider all relevant failure modes and responses

(only some “interesting” parts of the plan tree are shown here)

9 edges
needed

only 8
edges
used

9 edges
needed

only 8
edges
used

Create edge

Node failure during network creation

Next move if a particular node fails

Next move if no failures

…
.

…
.

…
.

Final networks robust against
2 more failures

…
.

…
.

…
.

…
.

…
.

…
.

…
.

 9

33

Another Example: Logistics Planning

!

Base 1

City-1

City-2 City-4

Base 2

City-3

• Blue nodes are cities, green nodes are military bases

• Blue edges are commercial transports, green edges are
military

• Green edges (transports) have a capacity of 60 people, blue
edges have a capacity of 100 people

• operator: “transport” t(who, amount, from, to, step)

• parallel actions can be taken at each step

• Goal: Send 60 personal from Base-1 to Base-2 in at most 3
steps

60p

• One player: military player, deterministic classic planning, SatPlan

• (1) Sat-Plan: t(m, 60, base-1, city-3, 1), t(m, 60, city-3, city-4, 2), t(m, 60, city-4, base-2, 3)

• Two players: deterministic adversarial planning QB Plan

• Military Player (m) is “white player”, Commercial Player (c) is “black player” (Chess analogy).
Commercial player can move up to 80 civilians between cities. Commercial moves can not be
invalidated. Goal can be read as: “send 60 personal from Base-1 to Base-2 in at most 3 steps
whatever commercial needs (moves) are”

• If commercial player decides to move 80 civilians from city-3 to city-4 at the second step, we should
replan (1). Indeed, the goal can not be achieved if we have already taken the first action of (1)

• (2) QB-Plan: t(m, 20, base-1, city-1, 1), t(m, 20, base-1, city-2, 1), t(m, 20, base-1, city-3, 1), t(m, 20, city-1, city-4, 2),
t(m, 20, city-2, city-4, 2), t(m, 20, city-3, city-4, 2), t(m, 60, city-4, base-2, 3)

(1) SatPlan

(s1) (s2)

(s3)

*At any step commercial
player can transport up to
80 civilians

(60p) + (80c) > 100 (civilian transport capacity) Re-planning needed !!!

(2) QbPlan

20p20p 20p

(s1)

(s1)

(s1)

(s2)

(s2)

(s2)

60p

(s3)

(20p) + (up to 80c) <= 100

34

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

35

Boolean logic extended with “quantifiers” on the variables

– “there exists a value of x in {True,False}”, represented by ∃x
– “for every value of y in {True,False}”, represented by ∀y

– The rest of the Boolean formula structure similar to SAT,
usually specified in CNF form

E.g. QBF formula F(v,w,x,y) =
∃v ∀w ∃x ∀y : (¬v or w or x) and (v or ¬w) and (v or y)

Quantified Boolean Logic

Quantified Boolean variables constraints (as before)

36

Quantified Boolean Logic: Semantics

F(v,w,x,y,z) = ∃v ∀w ∃x ∀y : (¬v or w or x) and (v or ¬w) and (v or y)

What does this QBF formula mean?

Semantic interpretation:

 F is True iff “There exists a value of v s.t.

 for both values of w

 there exists a value of x s.t.

 for both values of y
 (¬v or w or x) and (v or ¬w) and (v or y) is True”

 10

37

Quantified Boolean Logic: Example
F(v,w,x,y,z) = ∃v ∀w ∃x ∀y : (¬v or w or x) and (v or ¬w) and (v or y)

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

v
0000

1100

0010

1110

0001

0101

0011

0111

Truth Table for F as a SAT formula

1101

1111

1011

1001

1110

1010

0100

0000

Fyxw

Is F True as a QBF formula?

Without quantifiers (as SAT):
have many satisfying assignments
e.g. (v=0, w=0, x=0, y=1)

With quantifiers (as QBF):
many of these don’t work
e.g. no solution with v=0

F does have a QBF solution
with v=1 and x set depending on w

38

QBF Modeling Examples

Example 1: a 4-move chess game

There exists a move of the white s.t.
 for every move of the black
 there exists a move of the white s.t.
 for every move of the black
 the white player wins

Example 2: contingency planning
 for disaster relief

There exist preparatory steps s.t.
 for every disaster scenario within limits
 there exists a sequence of actions s.t.
 necessary food and shelter can
 be guaranteed within two days

39

Adversarial Uncertainty Modeled as QBF
• Two agents: self and adversary
• Both have their own set of actions, rules, etc.
• Self performs actions at time steps 1, 3, 5, …, T
• Adversary performs actions at time steps 2, 4, 6, …, T-1

There exists a self action at step 1 s.t.
 for every adversary action at step 2
 there exists a self action at step 3 s.t.
 for every adversary action at step 4
 …
 there exists a self action at step T s.t.
 ((initialState(time=1) and
 self-respects-modeled-behavior(1,3,5,…,T) and goal(T))
 OR (NOT adversary-respects-modeled-behavior(2,4,…,T-1)))

The following QBF formulation is True if and only if
self can achieve the goal no matter what actions adversary takes

40

QBF Search Space

Recall traditional SAT-type search space

Adversary action

Self action

Adversary
 action

Initial state

Self action

Goal GoalNo goal No goal

Self action

Self action

Initial state

Goal GoalNo goal

∃ : self

∀ : adversary

 11

41

QBF Solution: A Policy or Strategy

Contingency plan
• A policy / strategy of actions for self
• A subtree of the QBF search tree (contrast with

a linear sequence of actions in SAT-based planning)

Adversary action

Adversary
 action

Initial state

Self action

Self action

Self action

Self action

Initial state

GoalNo goal

Goal Goal
Goal

No goal Goal

42

Exponential Complexity Growth
Planning (single-agent):
 find the right sequence of actions

HARD: 10 actions, 10! = 3 x 106 possible plans

REALLY HARD: 10 x 92 x 84 x 78 x … x 2256 =
 10224 possible contingency plans!

Contingency planning (multi-agent):
 actions may or may not
 produce the desired effect!

exponential

polynomial

…1 out
of 10

2 out
of 9

4 out
of 8

43

P

NP

PSPACE

EXP

NP-complete:
 SAT, scheduling,
 graph coloring, …

PSPACE-complete:
 QBF, adversarial
 planning, …

EXP-complete:
 games like Go, …

P-complete:
 circuit-value, …

Note: widely believed hierarchy; know P≠EXP for sure

In P:
 sorting, shortest path…

Computational Complexity Hierarchy

Easy

Hard

PH

44

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

 12

45

QBF Solution Techniques

• DPLL-based: the dominant solution method
E.g. Quaffle, QuBE, Semprop, Evaluate, Decide, QRSat

• Local search methods:
E.g. WalkQSAT

• Skolemization based solvers:
E.g. sKizzo

• q-resolution based:
E.g. Quantor

• BDD based:
E.g. QMRES, QBDD

46

Focus: DPLL-Based Methods for QBF

• Similar to DPLL-based SAT solvers, except for branching variables
being labeled as existential or universal

• In usual “top-down” DPLL-based QBF solvers,
– Branching variables must respect the quantification ordering

i.e., variables in outer quantification levels are branched on first
– Selection of branching variables from within a quantifier level done

heuristically

47

DPLL-Based Methods for QBF
• For existential (or universal, resp.) branching variables

– Success: sub-formula evaluates to True (False, resp.)
– Failure : sub-formula evaluates to False (True, resp.)

• For an existential variable:
o If left branch is True, then success (subtree evaluates to True)
o Else if right branch is True, then success
o Else failure
– On success, try the last universal not fully explored yet
– On failure, try the last existential not fully explored yet

• For a universal variable:
o If left branch is False, then success (subtree evaluates to False)
o Else if right branch is False, then success
o Else failure
– On success, try the last existential not fully explored yet
– On failure, try the last universal not fully explored yet

48

Learning Techniques in QBF

• Can adapt clause learning techniques from SAT

• Existential “player” tries to satisfy the formula
– Prune based on partial assignments that are known to falsify the formula

and thus can’t help the existential player
– E.g. add a CNF clause when a sub-formula is found to be unsatisfiable
– Conflict clause learning
– Uses implication graph analysis similar to SAT

• Universal “player” tries to falsify the formula
– Prune based on partial assignments that are known to satisfy the formula

and thus can’t help the universal player
– E.g. add a DNF term (cube) when a sub-formula is found to be satisfiable
– Solution learning
– When satisfiable due to previously added DNF terms, uses implication

graph analysis; when satisfiable due to all CNF clauses being satisfied,
uses a covering analysis to find a small set of True literals covering clauses

 13

49

Preprocessing for QBF

• Preprocessing the input often results in a significant reduction in the
QBF solution cost --- much more so than for SAT

• Has played a key role in the success of the winning QBF solvers in the
2006 competition [Samulowitz et al. ’06]

• E.g. binary clause reasoning / hyper-binary resolution

• Simplification steps performed at the beginning and sometimes also
dynamically during the search

– Typically too costly to be done dynamically in SAT solvers
– But pay off well in QBF solvers

50

Eliminating Variables with the
Deepest Quantification

• Consider ∃w ∀x ∃y ∀z . (w ∨ x ∨ y ∨ z)
• Fix any truth values of w, x, and y
• Since (w ∨ x ∨ y ∨ z) has to be True for both z=True and z=False,

it must be that (w ∨ x ∨ y) itself is True
⇒ Can simplify to ∃w ∀x ∃y . (w ∨ x ∨ y) without changing semantics

• Note: cannot proceed to similarly remove x from this clause because
the value of y may depend on x (e.g. suppose w=F. When x=T then y
may need to be F to help satisfy other constraints.)

In general,
If a variable of a CNF clause with the deepest quantification is
universal, can “delete” this variable from the clause

If a variable in a DNF term with the deepest quantification is existential,
can “delete” this variable from the term

51

Unit Propagation

• Unit propagation on CNF clauses sets existential variables,
 on DNF terms sets universal variables

• Elimination of variables with the deepest quantification results in
stronger unit propagation

• E.g. again consider ∃w ∀x ∃y ∀z . (w ∨ x ∨ y ∨ z)

When w=F and x=F,
– No SAT-style unit propagation from (w ∨ x ∨ y ∨ z)
– However, as a QBF clause, can first remove z to obtain (w ∨ x ∨ y).

Unit propagation now sets y=T

52

Challenge #1

• Most QBF benchmarks have only 2-3 quantifier levels
– Might as well translate into SAT (it often works well!)
– Early QBF solvers focused on such instances
– Benchmarks with many quantifier levels are often the hardest

• Practical issues in both modeling and solving become much more
apparent with many quantifier levels

Can QBF solvers be made to scale well with
10+ quantifier alternations?

 14

53

Challenge #2

QBF solvers are extremely sensitive to encoding!
– Especially with many quantifier levels,

e.g., evader-pursuer chess instances
[Madhusudan et al. 2003]

55800--------78

0.040.0628--------94

0.030.0337497>2030>2030203074

Cond-
Quaffle

Best other
solver

Cond-
Quaffle

Best other
solverQuaffleSempropQuBEJ

Model B
[Ansotegui et al. ’05]

Model A
[Ansotegui et al. ’05]

Model X
[Madhusudan et al. ’03]

Instance
(N, steps)

Can we design generic QBF modeling techniques
that are simple and efficient for solvers?

54

Challenge #3

For QBF, traditional encodings hinder unit propagation
– E.g. unsatisfiable “reachability” queries
– A SAT solver would have simply unit propagated
– Most QBF solvers need 1000’s of backtracks and relatively complex

mechanisms like learning to achieve simple propagation

7.1>21600conf-r6

5.48603conf-r5

0.22.5conf-r1

Best solver
(Qbf-Cornell)
with learning

Best solver
with only unit
propagation

q-unsat: too few steps for White

?

Can we achieve effective propagation across quantifiers?

55

Example: Lack of Effective Propagation
(in Traditional QBF Solvers)

Impossible! White has one too
few available moves

Question:
Can White reach the
pink square without
being captured?

This instance should ideally be easy even with many additional (irrelevant) pieces!
Unfortunately, all CNF-based QBF solvers scale exponentially 

Good news: Duaffle based on dual CNF-DNF encoding resolves this issue

[click image
 for video]

56

Challenge #4
QBF solvers suffer from the “illegal search space issue”

[Ansotegui-Gomes-Selman 2005]

• Auxiliary variables needed for conversion into CNF form
• Can push solver into large irrelevant parts of search space
• Bottleneck: detecting clause violation is easy (local check) but detecting

that all residual clauses can be easily satisfied [no matter what the
universal vars are] is much harder esp. with learning (global check)

• Note: negligible impact on SAT solvers due to effective propagation

• Solution A: CondQuaffle [Ansotegui et al. ’05]
– Pass “flags” to the solver, which detect this event and trigger backtracking

• Solution B: Duaffle [Sabharwal et al. ’06]
– Solver based on dual CNF-DNF encoding simply avoids this issue

• Solution C: Restricted quantification [Benedetti et al. ’07]
– Adds constraints under which quantification applies

 15

57

Original
Search Space

2N

Search Space
SAT Encoding

2N+M

Space Searched
by SAT Solvers

2N/C ; Nlog(N); Poly(N)

Original
2N

Intuition for Illegal Search Space:
Search Space for SAT Approaches

In practice, for
many real-world
applications,
polytime scaling.

58

Original
Search Space

2N

Search Space
QBF Encoding

2N+M’

Space Searched
by Qbf-Cornell

with Streamlining

Search Space of QBF
Search Space

Standard QBF Encoding
2N+M’’

Original
2N

59

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

60

Modeling Problems as QBF

• In principle, traditional QBF encodings similar to SAT encodings
– Create propositional variables capturing problem variables
– Create a set of constraints
– Conjoin (AND) these constraints together: obtain a CNF
– Add “appropriate” quantification for variables

• In practice, can often be much harder / more tedious than for SAT
– E.g. in many “game-like” scenarios, must ensure that

1. If existential agent violates constraints, formula falsified
 : easy, some clause violation

2. If universal agent violates constraints, formula satisfied
 : harder, all clauses must be satisfied,
 could use auxiliary variables for cascading effect

 16

61

Encoding: The Traditional Approach

Problem
of interest

e.g. circuit minimization

CNF-based
QBF encoding QBF Solver

Solution!
Any discrete

adversarial task

62

Encoding: A Game-Based Approach

Adversarial
Task

e.g. circuit minimization

Game G:

players E & U,
states, actions,

rules, goal

“Planning as Satisfiability”
framework

[Selman-
Kautz ’96]

Create CNF encoding
separately for E and U:

initial state axioms,
action implies precondition,

fact implies achieving action,
frame axioms,
goal condition

Dual (split)
CNF-DNF encoding

QBF Solver
Duaffle
[2006]

Negate
CNF part for U
(creates DNF)

Solution!

Flag-based
CNF encoding

QBF Solver
CondQuaffle

[2005]

Solution!

63

From Adversarial Tasks To Games

Example #1:
Circuit Minimization: Given a circuit C, is there a smaller circuit

computing the same function as C?
– Related QBF benchmarks: adder circuits, sorting networks

– A game with 2 turns
• Moves : First, E commits to a circuit CE; second, U produces

 an input p and computations of CE, C on p.

• Rules : CE must be a legal circuit smaller than C; U must
 correctly compute CE(p) and C(p).

• Goal : E wins if CE(p) = C(p) no matter how U chooses p

– “E wins” iff there is a smaller circuit

64

From Adversarial Tasks To Games

Example #2:
The Chromatic Number Problem: Given a graph G and a positive

number k, does G have chromatic number k?
– Chromatic number: minimum number of colors needed to color G so

that every two adjacent vertices get different colors

– A game with 2 turns
• Moves : First, E produces a coloring S of G; second, U produces

 a coloring T of G

• Rules : S must be a legal k-coloring of G; T must be a legal
 (k-1)-coloring of G

• Goal : E wins if S is valid and T is not

– “E wins” iff graph G has chromatic number k

 17

65

From Games to Formulas

Use the “planning as satisfiability” framework [Kautz-Selman ’96]

– I : Initial conditions
– TrE : Rules for legal transitions/moves of E
– TrU : Rules for legal transitions/moves of U
– GE : Goal of E (negation of goal of U)

Two alternative formulations of the QBF Matrix

M1 = I ∧ TrE ∧ (TrU → GE)

M2 = TrU → (I ∧ TrE ∧ GE)

Fits circuit minimization,
chromatic number problem, etc.

Fits games like chess, etc.

CNF
clauses

66

On Normal Forms for Formulas
• Expressions like TrU → (I ∧ TrE ∧ GE) need to be converted to standard

forms for formulas, like CNF

• Should we stick to the CNF format for QBF?

At least many good reasons to use the CNF format for SAT:

– Fairly “natural” representation: Many problems are a conjunction of several
“simple” constraints

– Efficient pruning of unsat. parts of the search space using violated clauses
– Simplicity: A clear uniform standard that facilitates clever techniques (e.g.

watched literals, implication graph, …)

However, CNF form for QBF does appear to lead to illegal search space
issues and to hinder unit propagation across quantifiers.

For QBF, no a priori reason to prefer CNF over DNF: equally simple, etc.
Dual CNF-DNF forms quite advantageous [Sabharwal et al. ’06, Zhang ’06]

67

The Dual Encoding

M’1 = (I ∧ TrE) ∧ (¬TrU ∨ ¬GU)

M’2 = (I ∧ TrE ∧ GE) ∨ ¬TrU

Two alternative formulations of the dual QBF matrix

CNF DNF

Variables : state vars S1, S2, …, Sk+1

 action vars A1, A2, …, Ak

∃S1 ∃A1∃S2 ∀A2∀S3 ∃A3∃S4 ∀Ak∀Sk+1 M’i
i ∈ {1,2}

(negation of CNF clauses)

In contrast with
[Zhang, AAAI ’06]:
split, non-redundant

68

The Dual Encoding: Example

• Chess: White as E, Black as U

• TrE: Transition axioms for E: CNF clauses
e.g. ¬ Move(Wking, sqA, sqB, step 5) ∨ Loc(Wking, sqA, 5)

• TrU: Transition axioms for U: DNF terms
(negated “traditional” axiom clauses)
e.g. Move(Bking, sqA, sqB, step 5) ∧ ¬ Loc(Bking, sqA, 5)

 18

69

Dual Input Format: Example
c Dual QBF format
c 100 variables
c 25 CNF clauses, 32 DNF terms
c
p cnfdnf and 100 25 32
c
c Quantifiers
e 1 2 5 9 23 56 … 0
a 6 7 21 22 … 0
…
…
c CNF clauses
-4 -7 8 12 0
9 5 -55 0
…
…
c DNF terms
43 -61 -2 0
4 1 -100 0
…
…

• Straightforward extension
of QDIMACS format

• Specifies quantification,
CNF clauses, DNF terms

• Flag for choosing
between formulations
M’1 (connective ∧) and
M’2 (connective ∨)

• Existential player: CNF

• Universal player: DNF

70

QBF Solver Duaffle

• Extends QBF solver Quaffle [Zhang-Malik ’02] (“dual-Quaffle”)
– Already has support for DNF terms (cubes)
– However, its DNF terms logically imply the CNF part

• Exploits the CNF-DNF format
⇒ simpler and more succinct encoding mechanism

• DNF and CNF parts are “independent”
⇒ requires variation in propagation method, backtrack policy
 (e.g. what to do if CNF part is falsified but DNF part is undecided?)

• Incorporates features of successful SAT/QBF solvers
(e.g. clever data structures, dynamic decision heuristic,
 clause and cube learning, fast backjumping, …)

71

Where Does QBF Reasoning Stand?

We have come a long way since the first QBF solvers several years ago

• From 200 variable problems to 100,000 variable problems
• From 2-3 quantifier alternations to 10+ quantifiers

• New techniques for modeling and solving
• A better understanding of issues like

 propagation across quantifiers and illegal search space
• Many more benchmarks and test suites
• Regular QBF competitions and evaluations

72

QBF Summary

QBF Reasoning: a promising new automated reasoning technology!

On the road to a whole new range of applications:

• Strategic decision making

• Performance guarantees in complex multi-agent scenarios
• Secure communication and data networks in hostile environments
• Robust logistics planning in adversarial settings
• Large scale contingency planning
• Provably robust and secure software and hardware

 19

PART III: Model Counting

74

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

75

Model Counting vs. Solution Sampling
[model ≡ solution ≡ satisfying assignment]

Model Counting (#SAT): Given a CNF formula F,
how many satisfying assignments does F have?

– Must continue searching after one solution is found
– With N variables, can have anywhere from 0 to 2N solutions
– Will denote the model count by #F or M(F) or simply M

Solution Sampling: Given a CNF formula F,
produce a uniform sample from the solution set of F

– SAT solver heuristics designed to quickly narrow down to certain parts
of the search space where it’s “easy” to find solutions

– Resulting solution typically far from a uniform sample
– Other techniques (e.g. MCMC) have their own drawbacks

76

Counting and Sampling: Inter-related

From sampling to counting
• [Jerrum et al. ’86] Fix a variable x. Compute fractions M(x+) and M(x-)

of solutions, count one side (either x+ or x-), scale up appropriately
• [Wei-Selman ’05] ApproxCount: the above strategy made practical

using local search sampling
• [Gomes et al. ’07] SampleCount: the above with (probabilistic)

correctness guarantees

From counting to sampling
• Brute-force: compute M, the number of solutions; choose k in {1, 2, …,

M} uniformly at random; output the kth solution (requires solution
enumeration in addition to counting)

• Another approach: compute M. Fix a variable x. Compute M(x+). Let
p = M(x+) / M. Set x to True with prob. p, and to False with prob. 1-p,
obtain F’. Recurse on F’ until all variables have been set.

 20

77

Why Model Counting?

Efficient model counting techniques will extend the reach of SAT to a whole
new range of applications

– Probabilistic reasoning / uncertainty
e.g. Markov logic networks [Richardson-Domingos ’06]

– Multi-agent / adversarial reasoning (bounded length)

[Roth’96, Littman et al.’01, Park ’02, Sang et al.’04, Darwiche’05, Domingos’06]

…1 out
of 10

2 out
of 9

4 out
of 8

Planning with
uncertain outcomes

78

The Challenge of Model Counting

• In theory
– Model counting is #P-complete

(believed to be much harder than NP-complete problems)
– E.g. #P-complete even for 2CNF-SAT and Horn-SAT

(recall: satisfiability testing for these is in P)

• Practical issues
– Often finding even a single solution is quite difficult!
– Typically have huge search spaces

• E.g. 21000 ≈ 10300 truth assignments for a 1000 variable formula
– Solutions often sprinkled unevenly throughout this space

• E.g. with 1060 solutions, the chance of hitting a solution at random is
10−240

79

Computational Complexity of Counting

• #P doesn’t quite fit directly in
the hierarchy --- not a
decision problem

• But P#P contains all of PH,
the polynomial time hierarchy

• Hence, in theory, again much
harder than SAT

P

NP

PSPACE

EXP

Easy

Hard

PH

80

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

 21

81

How Might One Count?

Problem characteristics:

 Space naturally divided into
rows, columns, sections, …

 Many seats empty

 Uneven distribution of people
(e.g. more near door, aisles,
front, etc.)

How many people are present in the hall?

82

Counting People and Counting Solutions

Consider a formula F over N variables.

Auditorium : Boolean search space for F
Seats : 2N truth assignments
M occupied seats : M satisfying assignments of F

Selecting part of room: setting a variable to T/F
 or adding a constraint

A person walking out : adding additional constraint eliminating
 that satisfying assignment

83

How Might One Count?

Various approaches:

A. Exact model counting
1. Brute force
2. Branch-and-bound (DPLL)
3. Conversion to normal forms

B. Count estimation
1. Using solution sampling -- naïve
2. Using solution sampling -- smarter

C. Estimation with guarantees
1. XOR streamlining
2. Using solution sampling

: occupied seats (47)
: empty seats (49)

84

A.1 (exact): Brute-Force

Idea:
– Go through every seat
– If occupied, increment counter

Advantage:
– Simplicity, accuracy

Drawback:
– Scalability

For SAT: go through each
truth assignment and check
whether it satisfies F

 22

85

A.1: Brute-Force Counting Example
Consider F = (a ∨ b) ∧ (c ∨ d) ∧ (¬d ∨ e)

25 = 32 truth assignments to (a,b,c,d,e)

Enumerate all 32 assignments.
For each, test whether or not it satisfies F.

F has 12 satisfying assignments:

(0,1,0,1,1), (0,1,1,0,0), (0,1,1,0,1), (0,1,1,1,1),
(1,0,0,1,1), (1,0,1,0,0), (1,0,1,0,1), (1,0,1,1,1),
(1,1,0,1,1), (1,1,1,0,0), (1,1,1,0,1), (1,1,1,1,1),

86

A.2 (exact): Branch-and-Bound, DPLL-style

Idea:
– Split space into sections

e.g. front/back, left/right/ctr, …
– Use smart detection of full/empty

sections
– Add up all partial counts

Advantage:
– Relatively faster, exact
– Works quite well on moderate-size

problems in practice
Drawback:

– Still “accounts for” every single
person present: need extremely
fine granularity

– Scalability

Framework used in DPLL-based
systematic exact counters
e.g. Relsat [Bayardo-Pehoushek ’00],
Cachet [Sang et al. ’04]

87

A.2: DPLL-Style Exact Counting

• For an N variable formula, if the residual formula is satisfiable after
fixing d variables, count 2N-d as the model count for this branch and
backtrack.

Again consider F = (a ∨ b) ∧ (c ∨ d) ∧ (¬d ∨ e)

c

d

a



b

d

e e



0

0

0

1

1

1

1

1

1

1

c

dd

0 1

… …

21

solns.

22

solns.

21

solns.4 solns.

Total 12 solutions


0


0


0


0

88

A.2: DPLL-Style Exact Counting

• For efficiency, divide the problem into independent components:
G is a component of F if variables of G do not appear in F − G.

F = (a ∨ b) ∧ (c ∨ d) ∧ (¬d ∨ e)

– Use “DFS” on F for component analysis (unique decomposition)
– Compute model count of each component
– Total count = product of component counts

– Components created dynamically/recursively as variables are set
– Component analysis pays off here much more than in SAT

• Must traverse the whole search tree, not only till the first solution

Component #1
model count = 3

Component #2
model count = 4 Total model count = 4 x 3 = 12

 23

89

A.2: Components, Caching, and Learning

• Save or cache the results obtained for sub-formulas of the original
formula --- again, much more helpful than for SAT

• Component caching: record counts of component sub-formulas
 [Bacchus-Dalmao-Pitassi ’03], [Formula caching: Majercik-Littman ’98,
Beame-Impagliazzo-Pitassi-Segerlind ’03]

• Cachet [Sang et al. ’04] efficiently combines two somewhat
complementary techniques: component caching and clause learning
– Save counts in a hash table
– Periodically discard old entries (otherwise very space intensive)

• Also, new variable/value selection heuristics found to be more effective
for model counting
– E.g. VSADS [Sang-Beame-Kautz ’05]

90

A.3 (exact): Conversion to Normal Forms

Idea:
– Convert the CNF formula into

another normal form
– Deduce count “easily” from this

normal form
Advantage:

– Exact, normal form often yields
other statistics as well in linear time

Drawback:
– Still “accounts for” every single

person present: need extremely
fine granularity

– Scalability issues
– May lead to exponential size

normal form formula

Framework used in DNNF-based
systematic exact counter
c2d [Darwiche ’02]

91

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

92

B.1 (estimation): Using Sampling -- Naïve

Idea:
– Randomly select a region
– Count within this region
– Scale up appropriately

Advantage:
– Quite fast

Drawback:
– Robustness: can easily under- or

over-estimate
– Relies on near-uniform sampling,

which itself is hard
– Scalability in sparse spaces:

e.g. 1060 solutions out of 10300

means need region much larger
than 10240 to “hit” any solutions

 24

93

B.2 (estimation): Using Sampling -- Smarter

Idea:
– Randomly sample k occupied seats
– Compute fraction in front & back
– Recursively count only front
– Scale with appropriate multiplier

Advantage:
– Quite fast

Drawback:
– Relies on uniform sampling of

occupied seats -- not any easier
than counting itself

– Robustness: often under- or over-
estimates; no guarantees

Framework used in
approximate counters
like ApproxCount
[Wei-Selman ’05]

94

B.2: ApproxCount

Idea goes back to Jerrum-Valiant-Vazirani [’86], made practical for SAT by
Wei-Selman ’05 using solution sampler SampleSat [Wei et al. ’04]

• Let formula F have M solutions
• Select a variable x. Let F|x=T have M+ solutions and F|x=F have M-

solutions (M+ + M- = M)
• Let p = M+ / M : fraction of solutions of F with x=T
• Solution count given by M = M+ • (1/p)

• Estimate M+ recursively by considering the simpler formula F|x=T

• Estimate p using solution sampling:
– obtain S samples, compute S+ and S-, compute est(p) = S+ / S
– est(p) converges to p as S increases

• Estimated number of solutions: est(F) = est(F|x=T) / est(p)

the “multiplier”

95

B.2: ApproxCount

The quality of the estimate of M depends on various factors.

• Variable selection heuristic
– If unit clause, apply unit propagation. Otherwise use solution samples:
– E.g. pick the most “balanced” variable: S+ as close to S/2 as possible
– Or pick the most “unbalanced” variable: S+ as close to 0 or S as possible

• Value selection heuristic
– If S+ > S-, set x=F: leads to small multipliers ⇒ more stability, fewer errors

• Sampling quality
– If samples are biased and/or too few, can easily under-count or over-count
– Note: effect of biased sampling does partially cancel out in the multipliers
– SampleSat samples solutions quite well in practice

• Hybridization
– Once enough variables are set, use Relsat/Cachet for exact residual count

96

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

 25

97

Idea:
– Identify a “balanced” row split or

column split (roughly equal number
of people on each side)

• Use sampling for estimate
– Pick one side at random
– Count on that side recursively
– Multiply result by 2

This provably yields the true count on average!
– Even when an unbalanced row/column is picked accidentally

for the split, e.g. even when samples are biased or insufficiently many
– Surprisingly good in practice, using SampleSat as the sampler

C.1 (estimation with guarantees):
 Using Sampling for Counting

98

C.1: SampleCount

• Extends the strategy of ApproxCount
• But, provides concrete correctness guarantees without assuming

anything about the quality of the solution samples

• Key ideas:
– Use randomization (rather than heuristics) to fix variable values

• Basic version: unbiased coin
• Extended version: biased coin based on sample estimates

– Use balanced vars as well as balanced var-pairs to boost quality
– Use simple repetition to boost confidence and stability
– Analyze correctness using Markov’s inequality

Balanced var x : S/2 samples have x=T, S/2 have x=F
Balanced var-pair (x,y) : S/2 samples have x=y, S/2 have x≠y

99

Using Local Search for Counting

• Local search methods like WalkSat very efficient on certain problems
beyond systematic (DPLL) SAT solvers

• Can be used to quickly provide solution samples by mixing in
“Metropolis moves”: SampleSat [Wei-Selman ’05]

• However, as we saw, no guarantees on the sample quality

Can we exploit local search methods without guarantees
to obtain model counts with guarantees?

100

Algorithm SampleCount

Input: Boolean formula F

1. Set numFixed = 0, slack = some constant (e.g. 2, 4, 7, …)

2. Repeat until F becomes feasible for exact counting

a. Obtain s solution samples for F

b. Identify the most balanced variable and variable-pair

c. If x is more balanced than (x,y)
 then randomly set x to T or F (with prob. 1/2)
 else randomly replace x with y or –y (with prob. 1/2)

d. Simplify F

e. Increment numFixed

Output: model count ≥ 2numFixed – slack × exactCount(simplified F)
 with confidence (1 – 2– slack)

Note: showing one iteration

[Gomes-Hoffmann-Sabharwal-Selman ’07]

 26

101

Correctness Guarantee

Key properties:
– Theorem holds irrespective of the quality of the sampler used
– Correctness confidence grows exponentially with slack

Proof sketch:
– Conditioned on numFixed, expected model count = true count
– Account for conditioning by averaging twice: E[E[X|Y]] = E[X]
– Markov’s inequality gives Pr[error in a single run] ≤ 2− slack

– Using independence of runs, Pr[error over t runs] ≤ 2− slack × t

Theorem: SampleCount with t iterations gives a correct
 lower bound with probability ≥ (1 – 2– slack × t)

e.g. slack =2, t =4 ⇒ 99% correctness confidence

102

Fast Convergence with Balanced Selection

Balanced selection as well as equivalences between variable pairs
are key to fast convergence to the true count in practice

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 0 200 400 600 800 1000 1200 1400 1600 1800

C
u
m
u
l
a
t
i
v
e

a
v
e
r
a
g
e

o
f

s
o
l
u
t
i
o
n

c
o
u
n
t

Number of iterations

Model counts for ls7-normalized.cnf

true count = 1.69e+07
with balanced variable selection

with random variable selection

Extreme jumps,
≥ 100 × True count

Relatively quick
stabilization

• Each point is a single run of SampleCount without any slack or correctness guarantee.
• Both processes provably converge to the true count eventually.

103

Sample Results: Latin Square, Langford Problems

 1

 1e+20

 1e+40

 1e+60

 1e+80

 1e+100

 1e+120

 1e+140

 8 9 10 11 12 13 14 15 16

R
e
p
o
r
t
e
d

m
o
d
e
l

c
o
u
n
t

(
l
o
g
s
c
a
l
e
)

Order (size) of Latin square

Scaling of model counters on Latin square formulas

True count
SampleCount (20-70 min)

Relsat (12 hrs)
Cachet (12 hrs)

ApproxCount (1-200 min)

• SampleCount [-----] scales well, produces guaranteed lower bounds
close to the true count [-----] within 1 hour

• Exact counters [-----, -----] do not scale well at all (12 hours)
• ApproxCount [-----] overestimates, does not provide guarantees

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 1e+35

 27 24 23 20 19 16 15

R
e
p
o
r
t
e
d

m
o
d
e
l

c
o
u
n
t

(
l
o
g
s
c
a
l
e
)

Order (sequence length) of Langford problem

Scaling of model counters on Langford formulas

True count
SampleCount (1-2 hrs)

Relsat (12 hrs)
Cachet (12 hrs)

ApproxCount (0-3 hrs)

104

C.2 (estimation with guarantees):
 Using BP Techniques

• A variant of SampleCount where M+ / M is estimated using
Belief Propagation (BP) techniques rather than sampling

 [Kroc-Sabharwal-Selman (in progress)]

• BP is a general iterative message-passing algorithm to compute
marginal probabilities over “graphical models”
– Convert F into a two-layer Bayesian network B
– Variables of F become variable nodes of B
– Clauses of F become function nodes of B

a b c d e

f1 f2 f3

(a ∨ b) (c ∨ d) (¬d ∨ e)

variable nodes

function nodes

Iterative
message
passing

 27

105

C.2: Using BP Techniques

• For each variable x, use BP equations to estimate marginal prob.

 Pr [x=T | all function nodes evaluate to 1]

Note: this is estimating precisely M+ / M !

• Using these values, apply the counting framework of SampleCount

• Challenge #1: Because of “loops” in formulas, BP equations may not
converge to the desired value
– Fortunately, SampleCount framework does not require any quality

guarantees on the estimate for M+ / M

• Challenge #2: Iterative BP equations simply do not converge for many
formulas of interest
– Can add a “damping parameter” to BP equations to enforce convergence
– Too detailed to describe here, but good results in practice!

106

Idea (intuition):
In each round
– Everyone independently

tosses a coin
– If heads ⇒ stays

if tails ⇒ walks out
Repeat till only one person remains
Estimate: 2#(rounds)

Does this work?
• On average, Yes!
• With M people present, need roughly log2 M rounds till

only one person remains

C.3 (estimation with guarantees):
 Distributed Counting Using XORs

[Gomes-Sabharwal-Selman ’06]

107

XOR Streamlining:
Making the Intuitive Idea Concrete

• How can we make each solution “flip” a coin?
– Recall: solutions are implicitly “hidden” in the formula
– Don’t know anything about the solution space structure

• What if we don’t hit a unique solution?

• How do we transform the average behavior into a robust
method with provable correctness guarantees?

Somewhat surprisingly, all these issues can be resolved

108

XOR Constraints to the Rescue

• Special constraints on Boolean variables

– a ⊕ b ⊕ c ⊕ d = 1 :
 satisfied if an odd number of a,b,c,d are set to 1

 e.g. (a,b,c,d) = (1,1,1,0) satisfies it
 (1,1,1,1) does not

– b ⊕ d ⊕ e = 0 :
 satisfied if an even number of b,d,e are set to 1

– These translate into a small set of CNF clauses
(using auxiliary variables [Tseitin ’68])

– Used earlier in randomized reductions in Theoretical CS
[Valiant-Vazirani ’86]

 28

109

Using XORs for Counting: MBound

Given a formula F
1. Add some XOR constraints to F to get F’

(this eliminates some solutions of F)
2. Check whether F’ is satisfiable
3. Conclude “something” about the model count of F

Key difference from previous methods:
o The formula changes
o The search method stays the same (SAT solver)

Streamlined
formula

CNF formula

XOR
constraints

Off-the-shelf
SAT Solver

Model
count

110

The Desired Effect

M = 50 solutions 22 survive

7 survive

13 survive

3 surviveunique solution

If each XOR cut the solution space roughly in half, would
get down to a unique solution in roughly log2 M steps

111

Which XOR Constraints to Use?

• A possibility: analyze structural properties of the instance
so that F and F’ are “related” in some controllable way

• MBound approach: keep it simple ---
choose constraint X uniformly at random from all XOR
constraints of size k (i.e. with k variables)

Two crucial properties
1. For any k, for every truth assignment A,

Pr [A satisfies X] = 0.5

2. When k=n/2, for every two truth assignments A and B,
“A satisfies X” and “B satisfies X” are independent events
(pairwise independence)

Good average behavior,
some guarantees,

lower bounds

Provides low variation,
stronger guarantees,
upper bounds 112

Obtaining Correctness Guarantees

• For formula F with M models/solutions,
should ideally add log2M XOR constraints

• Instead, suppose we add s > log2M + α constraints
Fix any solution A.
Pr [A survives s XOR constraints] = 1/2s < 1/(2αM)

⇒ Exp [number of surviving solutions] < M / (2αM) = 2−α

⇒ Pr [no. of surviving solns. ≥ 1] < 2−α (by Markov’s Ineq.)

slack factor

If we add “too many” XORs,
Pr [F remains satisfiable] is “low”

too many

 29

113

Obtaining Correctness Guarantees

Theorem: If F is still satisfiable after s random XOR constraints,
 then F has ≥ 2s−α solutions with prob. ≥ (1 − 2−α)

e.g. α=4 ⇒ 93% correctness confidence

Observe: confidence increases exponentially with α

If we add “too many” XORs,
Pr [F remains satisfiable] is “low”

If F is still satisfiable,
with high prob., must not have

added too many XORs
i.e., s ≤ log2M + α

contrapositive

114

Boosting Correctness Guarantees

Simply repeat the whole process!
E.g. iterate 4 times independently with s constraints and α=2.
Pr [F is satisfiable in every iteration] ≤ 1/44 < 0.004

If F is satisfiable after adding s random XOR constraints
in each of 4 iterations,

then F has at least 2s-2 solutions with prob. ≥ 0.996.

115

Algorithm Mbound [lower bound]

Parameters: slack factor α, num iterations t, XOR length k
Input : Boolean formula F
Output: lower bound on model count of F

1. Repeat t times:
a. Add s random XOR constrains of size k to F to get F’
b. Check F’ for satisfiability using a SAT solver

2. If F’ is satisfiable in all t cases, output 2s−α

Theorem: MBound returns a correct lower bound with
 probability at least (1 − 2−αt)

116

Algorithm Mbound [upper bound]

Parameters: slack factor α, num iterations t
Input : Boolean formula F on n variables
Output: lower bound on model count of F

1. Repeat t times:
a. Add s random XOR constrains of size n/2 to get F’
b. Check F’ for satisfiability using a SAT solver

2. If F’ is unsatisfiable in all t cases, output 2s+α

Theorem: MBound returns a correct upper bound with
 probability at least (1 − 2−αt)

Analysis relies on pairwise independence, Chebychev’s ineq.

 30

117

Algorithm Mbound [hybrid]

Parameters: slack factor α, number of iterations t
Input : Boolean formula F on n variables
Output: lower bound on model count of F

1. Repeat t times:
a. Add s random XOR constrains to F to get F’
b. Count solutions of F’ using an exact counter

2. Let m = min count for F’ obtained over t iterations
3. Output m.2s−α

Theorem: MBound-hybrid returns a correct lower bound
 with probability at least (1 − 2−αt)

118

Summarizing MBound
• Can use any state-of-the-art SAT solver off the shelf

• Random XOR constraints independent of both the problem domain
and the SAT solver used

• Very high provable correctness guarantees on reported bounds on the
model count
– May be boosted simply by repetition
– Further boosted by “averaging within buckets, minimizing over buckets”

• Purely random XOR constraints are generally large
– Not ideal for current SAT solvers

• In practice, must use relatively short XORs
– Issue: Higher variation over different runs
– Good news: lower bound correctness guarantees still hold
– Better news: short XORs do work surprisingly well in practice

(fairly low variation) [Gomes-Hoffmann-Sabharwal-Selman ’07]

119

XORs for General CSPs

General constraint satisfaction problems (CSPs):
– Domains richer than {0,1}
– Constraints richer than “clauses”

• any constraint, specified succinctly or even as a truth table
– E.g. x1 ∈ {0,1,2,3,4}, x2 ∈ {30, 31, …, 50},

 x3 ∈ {Mon, Tue, Wed, …}, …
if (x3 after Mon) then (x2 * x1 ≤ x7)

MBound can be extended to CSPs
Method 1: Link CSP variables to binary vars. (xi = k ⇔ yik = True)

a. Individual domain filtering for XORs
b. Global domain filtering using Gaussian elimination

Method 2: Use “generalized XORs” directly on CSP variables
e.g. x1 + x7 + x22 + x34 = r (mod d)

Largest domain size

[Gomes-vanHoeve-Sabharwal-Selman;
AAAI-07 talk on Wed 5 PM]

PART IV: Solution Sampling

 31

121

Tutorial Roadmap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

122

Solution Sampling

• Problem: Given a CNF formula F, generate a uniform sample from the
set of solutions of F.

• Worst-case computational complexity: #P-hard
– Recall P#P contains PH
– NP is the first level out of an infinite number of levels in PH

• In practice, can often settle for
“near”-uniform samples

P

NP

PSPACE

EXP

PH

123

Sampling Using Systematic Search #1

Enumeration-based solution sampling

• Compute the model count M of F (systematic search)
• Select k from {1, 2, …, M} uniformly at random
• Systematically scan the solutions again and output the kth solution of F

(solution enumeration)

 Purely uniform sampling
 Works well on small formulas (e.g. residual formulas in hybrid

samplers)

 Requires two runs of exact counters/enumerators like Relsat (modified)
 Scalability issues as in exact model counters



124

Sampling Using Systematic Search #2

“Decimation”-based solution sampling

• Arbitrarily select a variable x to assign value to
• Compute M, the model count of F
• Compute M+, the model count of F|x=T

• With prob. M+/M, set value=T; otherwise set value=F
• Let F ← F|x=value; Repeat the process

 Purely uniform sampling
 Works well on small formulas (e.g. hybrid samplers)
 Does not require solution enumeration ⇒ easier to use advanced

techniques like component caching

 Requires 2N runs of exact counters
 Scalability issues as in exact model counters

decimation
step

 32

125

Markov Chain Monte Carlo Sampling

MCMC-based Samplers

• Based on a Markov chain simulation
– Create a Markov chain with states {0,1}N whose stationary distribution is

the uniform distribution on the set of satisfying assignments of F
• Purely-uniform samples if converges to stationary distribution

 Often takes exponential time to converge on hard combinatorial
problems

 In fact, these techniques often cannot even find a single solution to
hard satisfiability problems

 Newer work: using approximations based on factored probability
distributions has yielded good results
E.g. Iterative Join Graph Propagation (IJGP)
[Dechter-Kask-Mateescu ’02, Gogate-Dechter ’06]

[Madras ’02; Metropolis et al. ’53; Kirkpatrick et al. ’83]

126

Sampling Using Local Search

WalkSat-based Sampling

• Local search for SAT: repeatedly update current assignment (variable
“flipping”) based on local neighborhood information, until solution found

• WalkSat: Performs focused local search giving priority to variables from
currently unsatisfied clauses

– Mixes in freebie-, random-, and greedy-moves

 Efficient on many domains but far from ideal for uniform sampling
– Quickly narrows down to certain parts of the search space which have

“high attraction” for the local search heuristic
– Further, it mostly outputs solutions that are on cluster boundaries

[Selman-Kautz-Coen ’93]

127

Sampling Using Local Search

• Walksat approach is made more suitable for sampling by mixing-in
occasional simulated annealing (SA) moves: SampleSat
[Wei-Erenrich-Selman ’04]

• With prob. p, make a random walk move
with prob. (1-p), make a fixed-temperature annealing move, i.e.
– Choose a neighboring assignment B uniformly at random
– If B has equal or more satisfied clauses, select B
– Else select B with prob. e−Δcost(B) / temperature

(otherwise stay at current assignment and repeat)

 Walksat moves help reach solution clusters with various probabilities
 SA ensures purely uniform sampling from within each cluster

 Quite efficient and successful, but has a known “band effect”
– Walksat doesn’t quite get to each cluster with probability proportional to

cluster size

Metropolis
move

128

XorSample: Sampling using XORs

XOR constraints can also be used for near-uniform sampling

Given a formula F on n variables,
1. Add “a bit too many” random XORs of size k=n/2 to F to get F’
2. Check whether F’ has exactly one solution

o If so, output that solution as a sample

Correctness relies on pairwise independence

Hybrid variation: Add “a bit too few”. Enumerate all solutions of F’ and
choose one uniformly at random (using an exact model
counter+enumerator / pure sampler)

Correctness relies on “three-wise” independence

[Gomes-Sabharwal-Selman ’06]

 33

129

The “Band Effect”

KL-divergence from uniform:

XORSample: 0.002
SampleSat : 0.085

Sampling disparity in SampleSat:

 solns. 1-32 sampled ∼2,900x each
 solns. 33-48 sampled ~6,700x each

XORSample does not have the “band effect” of SampleSat

E.g. a random 3-CNF formula

130

Recap

1. Automated Reasoning
– The complexity challenge
– State of the art in Boolean reasoning
– Boolean logic, expressivity

2. QBF Reasoning
– A new range of applications
– Quantified Boolean logic
– Solution techniques overview
– Modeling

1. Game-based framework
2. Dual CNF-DNF approach

3. Model Counting
– Connection with sampling
– A new range of applications
– Solution techniques

1. Exact counting
2. Estimation
3. Bounds with correctness

guarantees

4. Solution Sampling
– Solution techniques

1. Systematic search
2. MCMC methods
3. Local search
4. Random Streamlining

Thank you for attending!

Tutorial slides: http://www.cs.cornell.edu/~sabhar/tutorials/AAAI07-BeyondSAT

A recent SAT (and beyond) survey chapter to appear in the Handbook of
Knowledge Representation, available at Ashish’s webpage

Ashish Sabharwal : http://www.cs.cornell.edu/~sabhar

Bart Selman : http://www.cs.cornell.edu/selman

