

SAT Encoding		Seiters Infection				
(automatically generated from p	problem specification)	CORNELL				
The instance bmc-ibm-6.cnf, IBM LSU 1997:						
n cnf 51639 36835	2					
-1 7 0	i.e., ((not x_1) or x_7)					
-160	$((not x_1) or x_2)$					
-150	etc					
-1 -4 0	010.					
-130						
-120	x ₁ , x ₂ , x ₃ , etc. are our Boolean variables					
-1 -8 0	(to be set to True or False)					
— 9 15 0						
— 9 14 0						
— 9 13 0	Should x ₁ be set to False??					
<u> </u>						
— 9 11 0						
— 9 10 0						
<u> </u>						
-17 23 0						
-17 22 0						
		11				

4,000 Pages Later:	Fi
$\begin{array}{c} 10236 & -10050 \ 0 \\ 10236 & -10051 \ 0 \\ 10236 & -10235 \ 0 \\ 10008 \ 10009 \ 10010 \ 10011 \ 10012 \ 10013 \ 10014 \\ 10015 \ 10016 \ 10017 \ 10018 \ 10019 \ 10020 \ 10021 \\ 10022 \ 10023 \ 10024 \ 10025 \ 10026 \ 10027 \ 10028 \\ 10029 \ 10030 \ 10031 \ 10032 \ 10038 \ 10039 \ 10090 \\ 10091 \ 10092 \ 10093 \ 10094 \ 10095 \ 10096 \ 10097 \\ 10098 \ 10099 \ 10100 \ 10101 \ 10102 \ 10103 \ 1014 \\ 10105 \ 10106 \ 10107 \ 10108 \ -55 \ -54 \ 53 \ -52 \ -51 \ 50 \\ 10047 \ 10048 \ 10049 \ 10050 \ 10051 \ 10235 \ -10236 \ 0 \\ 10237 \ -10008 \ 0 \\ 10237 \ -10008 \ 0 \\ 10237 \ -10008 \ 0 \\ 10237 \ -10010 \ 0 \\ \end{array}$	
13	

SAT Solver Pro	gress				Section before
Solvers have continually improved over time					
Instance	Posiť 94	Grasp' 96	Sato' 98	Chaff' 01	
ssa2670-136	40.66s			0.02s	
bf1355-638	1805.21s			0.01s	
pret150_25	>3000s			0.01s	
dubois100	>3000s			0.01s	
aim200-2_0-no-1	>3000s			< 0.01s	
2dlxbug005	>3000s			2.90s	
c6288	>3000s				
Source: Marques-Silva 20	02				15

SAT Re	asoning vs. QBF	Reasoning
	SAT Reasoning	QBF Reasoning
Scope of technology	 Combinatorial search for optimal and near- optimal solutions 	 Combinatorial search for optimal and near- optimal solutions in multi-agent, uncertain, or hostile environments
Worst-case complexity	 NP-complete (hard) 	 PSPACE-complete (harder)
Application areas	 planning, scheduling, verification, model checking, … 	 adversarial planning, gaming, security protocols, contingency planning,
Research status	 From 200 vars in early '90s to 1M vars. Now a commercially viable technology. 	 From 200 vars in late 90's to 100K vars currently. Still rapidly moving.

- DPLL-based: the dominant solution method E.g. Quaffle, QuBE, Semprop, Evaluate, Decide, QRSat
- Local search methods: E.g. WalkQSAT
- Skolemization based solvers: E.g. sKizzo
- q-resolution based: E.g. Quantor
- BDD based:
 E.g. QMRES, QBDD

Preprocessing for QBF

49

- Preprocessing the input often results in a significant reduction in the QBF solution cost --- much more so than for SAT
- Has played a key role in the success of the winning QBF solvers in the 2006 competition [Samulowitz et al. '06]
- E.g. binary clause reasoning / hyper-binary resolution
- Simplification steps performed at the beginning and sometimes also dynamically during the search
 - Typically too costly to be done dynamically in SAT solvers
 - But pay off well in QBF solvers

Eliminating Variables with the Deepest Quantification

- Fix any truth values of w, x, and y
- Since (w v x v y v z) has to be True for both z=True and z=False, it must be that (w v x v y) itself is True

 \Rightarrow Can simplify to $\exists w \ \forall x \ \exists y$. (w v x v y) without changing semantics

 Note: cannot proceed to similarly remove x from this clause because the value of y may depend on x (e.g. suppose w=F. When x=T then y may need to be F to help satisfy other constraints.)

In general,

If a variable of a CNF clause with the deepest quantification is universal, can "delete" this variable from the clause

If a variable in a DNF term with the deepest quantification is existential, can "delete" this variable from the term

Challenge #2									
[Insta	ance	[Ma	Model X dhusudan et	al. '03]	Mode [Ansotegui	el A et al. '05]	Mode [Ansotegui	et al. '05]
	(N, steps)	teps)	QuBEJ	Semprop	Quaffle	Best other solver	Cond- Quaffle	Best other solver	Cond- Quaffle
	4	7	2030	>2030	>2030	7497	3	0.03	0.03
Ī	4	9					28	0.06	0.04
ſ	8	7					800	5	5
		C	Can we tha	design at are sir	generic mple an	QBF m d efficie	odeling nt for s	ı techniqı olvers?	ues

The Challenge of Model Counting

In theory

_

- Model counting is #P-complete (believed to be much harder than NP-complete problems)
- E.g. #P-complete even for 2CNF-SAT and Horn-SAT (recall: satisfiability testing for these is in P)
- Practical issues
 - Often finding even a single solution is quite difficult!
 - Typically have huge search spaces • E.g. 2¹⁰⁰⁰ ≈ 10³⁰⁰ truth assignments for a 1000 variable formula
 - Solutions often sprinkled unevenly throughout this space
 - E.g. with 10^{60} solutions, the chance of hitting a solution at random is 10^{-240}

How Might One Count?

81

How many people are present in the hall?

Problem characteristics:

- Space naturally divided into rows, columns, sections, ...
- Many seats empty
- Uneven distribution of people (e.g. more near door, aisles, front, etc.)

- E.g. VSADS [Sang-Beame-Kautz '05]

B.2: ApproxCount

The quality of the estimate of M depends on various factors.

- · Variable selection heuristic
 - If unit clause, apply unit propagation. Otherwise use solution samples:
 - E.g. pick the most "balanced" variable: S+ as close to S/2 as possible
 - Or pick the most "unbalanced" variable: S+ as close to 0 or S as possible
- Value selection heuristic
 - If S+ > S-, set x=F: leads to small multipliers ⇒ more stability, fewer errors
- Sampling quality
 - If samples are biased and/or too few, can easily under-count or over-count
 - Note: effect of biased sampling does partially cancel out in the multipliers
 - SampleSat samples solutions quite well in practice
- Hybridization
 - Once enough variables are set, use Relsat/Cachet for exact residual count 95

- Too detailed to describe here, but good results in practice!

XOR Streamlining: Making the Intuitive Idea Concrete

107

- How can we make each solution "flip" a coin?
 - Recall: solutions are implicitly "hidden" in the formula
 - Don't know anything about the solution space structure
- · What if we don't hit a unique solution?
- How do we transform the average behavior into a robust method with provable correctness guarantees?

Somewhat surprisingly, all these issues can be resolved

XOR Constraints to the Rescue · Special constraints on Boolean variables $- a \oplus b \oplus c \oplus d = 1$: satisfied if an odd number of a,b,c,d are set to 1 e.g. (a,b,c,d) = (1,1,1,0) satisfies it (1,1,1,1) does not $-b \oplus d \oplus e = 0$: satisfied if an even number of b.d.e are set to 1 - These translate into a small set of CNF clauses (using auxiliary variables [Tseitin '68]) - Used earlier in randomized reductions in Theoretical CS [Valiant-Vazirani '86]

Sampling Using Local Search

126

128

WalkSat-based Sampling

[Selman-Kautz-Coen '93]

- Local search for SAT: repeatedly update current assignment (variable "flipping") based on local neighborhood information, until solution found
- WalkSat: Performs focused local search giving priority to variables from currently unsatisfied clauses
 - Mixes in freebie-, random-, and greedy-moves
- * Efficient on many domains but far from ideal for uniform sampling
 - Quickly narrows down to certain parts of the search space which have "high attraction" for the local search heuristic
 - Further, it mostly outputs solutions that are on cluster boundaries

 Walksat doesn't quite get to each cluster with probability proportional to cluster size

