
94

Chapter 6

SYMMETRY IN SATISFIABILITY SOLVERS

As discussed earlier, we have seen tremendous improvement in the capabilities of
general purpose SAT solvers in the past decade. The state-of-the-art techniques make
them quite effective in solving challenging problems from various domains. Despite
the success, one aspect of many theoretical as well as real-world problems that we
argue has not been fully exploited is the presence of symmetry or equivalence amongst
the underlying objects.

The concept of symmetry in the context of SAT solvers is best explained through
some examples of the many application areas where it naturally occurs. For instance,
in FPGA (field programmable gate array) routing used in electronics design, all wires
or channels connecting two switch boxes are equivalent; in circuit modeling, all inputs
to a multiple fanin and or or gate are equivalent; in planning, all boxes that need
to be moved from city A to city B are equivalent; in multi-processor scheduling,
all available processors are equivalent; in cache coherency protocols in distributed
computing, all available caches are typically equivalent. When such problems are
translated into CNF formulas to be fed to a SAT solver, the underlying equivalence
or symmetry translates into a symmetry between the variables of the formula.

There has been work on using this symmetry in domain-specific algorithms and
techniques. However, our experimental results suggest that current general purpose
complete SAT solvers are unable to fully capitalize on symmetry. This chapter focuses
on developing a new general purpose technique towards this end and on empirically
evaluating its effectiveness in comparison with other known approaches.

Example 6.1. For concreteness, we give one simple but detailed example of symmetry
in SAT solvers. At the risk of appearing narrow in scope, we choose the pigeonhole
principle PHP n

m: given n pigeons and m holes, there is no one-one mapping of the
pigeons to the holes when n > m. Translated into a CNF formula over variables xi,j

denoting that pigeon i is mapped to hole j, this has two kinds of clauses. We use the
notation [p] to denote the set {1, 2, . . . , p}.

(a) Pigeon clauses: for i ∈ [n], clause (xi,1 ∨ xi,2 ∨ . . . ∨ xi,m) says that pigeon i is
mapped to some hole, and

(b) Hole clauses: for i 6= k ∈ [n], j ∈ [m], hole clauses (¬xi,j ∨ ¬xk,j) say that no
two pigeons are mapped to one hole.

95

This formula, despite being extremely simple to state, is a cornerstone of proof
complexity research. Haken [60] used PHP n

n−1 to show the first ever exponential
lower bound for resolution. Since then several researchers have improved upon and
generalized his result to m � n, to other counting-based formulas, and to stronger
proof systems. Needless to say, the results from the 2005 SAT competition [78] testify
that the pigeonhole formulas provide a class of hard instances for most of the com-
plete SAT solvers which are based on the clause learning proof system, and hence on
resolution (cf. Chapter 4).

Returning to the context of symmetry, PHP n
m contains two natural sets of equiv-

alent or symmetric objects, the n pigeons and the m holes. Accordingly, all variables
xi,j in this formula are symmetric to each other. As we will see, it helps to distin-
guish between the “pigeon-symmetry” between xi,j and xk,j, and the “hole-symmetry”
between xi,j and xi,`.

Remark 6.1. While we use PHP n
m as a motivation for the work presented in this

chapter, we would like to remind the reader that the techniques we develop are much
more general and capable of handling symmetry in more complex forms that we will
describe in due course. There are known techniques to handle the pigeonhole problem
in SAT solvers, such as the use of cardinality constraints by Chai and Kuehlmann
[32] and Dixon et al. [49]. However, such approaches either do not generalize or do
not perform as well in the presence of more complex forms of symmetry.

Previous Work

A technique due to Crawford et al. [41] that has worked quite well in handling sym-
metry is to add symmetry breaking predicates to the input specification to weed out
all but the lexically-first solutions. The idea is to identify the group of permutations
of variables that keep the CNF formula unchanged. For each such permutation π,
clauses are added so that for every satisfying assignment σ for the original problem,
whose permutation π(σ) is also a satisfying assignment, only the lexically-first of σ
and π(σ) satisfies the added clauses. Tools such as Shatter by Aloul et al. [4] im-
prove upon this technique and use graph isomorphism detectors like Saucy by Darga
et al. [42] to generate symmetry breaking predicates. This latter problem of comput-
ing graph isomorphism is not known to have any polynomial time solution, and is
conjectured to be strictly between the complexity classes P and NP [cf. 73]. Hence,
one must resort to heuristic or approximate solutions. Further, the number of sym-
metry breaking predicates one needs to add in order to break all symmetries may
be prohibitively large. This is typically handled by discarding “large” symmetries.
This may, however, result in a much slower SAT solution as indicated by some of our
experiments.

Solvers such as PBS by Aloul et al. [5], pbChaff by Dixon et al. [49], and Galena

by Chai and Kuehlmann [32] utilize non-CNF formulations known as pseudo-Boolean

96

inequalities. They are based on the cutting planes proof system which, as mentioned
in Section 3.2, is strictly stronger than resolution on which DPLL type CNF solvers
are based. Since this more powerful proof system is difficult to implement in its
full generality, pseudo-Boolean solvers often implement only a subset of it, typically
learning only CNF clauses or restricted pseudo-Boolean constraints upon a conflict.
Pseudo-Boolean solvers may lead to purely syntactic representational efficiency in
cases where a single constraint such as y1 +y2 + . . .+yk ≤ 1 is equivalent to

(
k
2

)
binary

clauses. More importantly, they are relevant to symmetry because they sometimes
allow implicit encoding. For instance, the single constraint x1 +x2 + . . .+xn ≤ m over
n variables captures the essence of the pigeonhole formula PHP n

m over nm variables
which is provably exponentially hard to solve using resolution-based methods without
symmetry considerations. This implicit representation, however, is not suitable in
certain applications such as clique coloring and planning that we discuss.

One could conceivably keep the CNF input unchanged but modify the solver to
detect and handle symmetries during the search phase as they occur. Although this
approach is quite natural, we are unaware of its implementation in a general purpose
SAT solver besides sEqSatz by Li et al. [81] whose technique appears to be somewhat
specific and whose results are not too impressive compared to zChaff itself. Related
work has been done in the specific areas of automatic test pattern generation by
Marques-Silva and Sakallah [85] and SAT-based model checking by Shtrichman [102].
In both cases, the solver utilizes global information obtained at a stage to make
subsequent stages faster.

In other domain-specific work, Fox and Long [52] presented a framework for plan-
ning problems that is very similar to ours in essence. However, their work has two
disadvantages. The obvious one is that they provide a planner, not a general purpose
reasoning engine. The second is that their approach does not guarantee plans of op-
timal length when multiple (non-conflicting) actions are allowed to be performed at
each time step.

Dixon et al. [48] give a generic method of representing and dynamically main-
taining symmetry using group theoretic techniques that guarantee polynomial size
proofs of many difficult formulas. The strength of their work lies in a strong group
theoretic foundation and comprehensiveness in handling all possible symmetries. The
computations involving group operations that underlie their current implementation
are, however, often quite expensive.

Our Contribution

We propose a new technique for representing and dynamically maintaining symmetry
information for DPLL-based satisfiability solvers. We present an evaluation of our ideas
through our tool SymChaff and demonstrate empirical exponential speedup in a variety
of problem domains from theory and practice. While our framework as presented
applies to both CNF and pseudo-Boolean formulations, the current implementation

97

of SymChaff uses pure CNF representation.
A key difference between our approach and that based on symmetry breaking

predicates is that we use a high level description of a problem rather than its CNF
representation to obtain symmetry information. (We give concrete examples of this
later in this chapter.) This leads to several advantages. The high level description
of a problem is typically very concise and reveals its structure much better than a
relatively large set of clauses encoding the same problem. It is simple, in many cases
almost trivial, for the problem designer to specify global symmetries at this level using
straightforward “tagging.” If one prefers to compute these symmetries automatically,
off-the-shelf graph isomorphism tools can be used. Using these tools on the concise
high level description will, of course, be much faster than using the same tools on a
substantially larger CNF encoding.

While it is natural to choose a variable and branch two ways by setting it to true

and false, this is not necessarily the best option when k variables, x1, x2, . . . , xk,
are known to be arbitrarily interchangeable. The same applies to more complex
symmetries where multiple classes of variables simultaneously depend on an index set
I = {1, 2, . . . , k} and can be arbitrarily interchanged in parallel within their respective
classes. We formalize this as a k-complete multi-class symmetry and handle it using a
(k + 1)-way branch based on I that maintains completeness of the search and shrinks
the search space by as much as O(k!). The index sets are implicitly determined
from the many-sorted first order logic representation of the problem at hand. We
extend the standard notions of conflict and clause learning to the multiway branch
setting, introducing symmetric learning. Our solver SymChaff integrates seamlessly
with most of the standard features of modern SAT solvers, extending them in the
context of symmetry wherever necessary. These include fast unit propagation, good
restart strategy, effective constraint database management, etc.

6.1 Preliminaries

The technique we present in this work can be applied to all DPLL based systematic
SAT solvers designed for CNF as well as pseudo-Boolean formulas.

Definition 6.1. A pseudo-Boolean formula is a conjunction of pseudo-Boolean con-
straints, where each pseudo-Boolean constraint is a weighted inequality over proposi-
tional variables with typically integer coefficients.

This generalizes the notion of a clause; (a ∨ b ∨ c) is equivalent to the pseudo-
Boolean inequality a + b + c ≥ 1.

Recall that a CNF clause is called “unit” if all but one of its literals are set to
false; the remaining literal must be set to true to satisfy the clause. Similarly, a
pseudo-Boolean constraint is called “unit” if variables have been set in such a way that
all its unset literals must be set to true to satisfy the constraint. Unit propagation

98

is a technique common to SAT and pseudo-Boolean solvers that recursively simplifies
the formula by appropriately setting unset variables in unit constraints.

A DPLL-based systematic SAT or pseudo-Boolean solver implements the basic
branch-and-backtrack procedure described in Section 2.3. Various features and opti-
mizations, such as conflict clause learning, random restarts, watched literals, conflict-
directed backjumping, etc., are added to this simple DPLL process in order to increase
efficiency.

6.1.1 Constraint Satisfaction Problems and Symmetry

A constraint satisfaction problem (CSP) is a collection of constraints over a set V =
{x1, x2, . . . , xn} of variables. Although the following notions are generic, our focus in
this work will be on CNF and pseudo-Boolean constraints over propositional variables.

Symmetry may exist in various forms in a CSP. We define it in terms of per-
mutations of variables that preserve certain properties. Let σ be a permutation of
[n]. Extend σ by defining σ(xi) = xσ(i) for xi ∈ V and σ(V ′) = {σ(x) | x ∈ V ′} for
V ′ ⊆ V . For a constraint C over V , let σ(C) be the constraint resulting from C
by applying σ to each variable of C. For a CSP Γ, define σ(Γ) to be the new CSP
consisting of the constraints {σ(C) | C ∈ Γ}.

Definition 6.2. A permutation σ of the variables of a CSP Γ is a global symmetry
of Γ if σ(Γ) = Γ.

Definition 6.3. Let V be a the set of variables of a CSP Γ. V ′ ⊆ V, |V ′| = k, is a
k-complete (global) symmetry of Γ if every permutation σ of V satisfying σ(V ′) = V ′

and σ(x) = x for x 6∈ V ′ is a global symmetry of Γ.

In other words, the k variables in V ′ can be arbitrarily interchanged without
changing the original problem. Such symmetries exist in simple problems such as
the pigeonhole principle where all pigeons (and holes) are symmetric. This can be
detected and exploited using various known techniques such as cardinality constraints
by Chai and Kuehlmann [32] and Dixon et al. [49].

6.1.2 Many-Sorted First Order Logic

In first order logic, one can express universally and existentially quantified logical
statements about variables and constants that range over a certain domain with some
inherent structure. For instance, the domain could be {1, 2, . . . , n} with the successor
relationship of the first n natural numbers as its structure, and a (false) universally
quantified logical statement over it could be that every element in the domain has a
successor.

In many-sorted logic, the domain of variables and constants may be divided up into
various types or “sorts” of elements that are quantified over independently. In other

99

words, many-sorted first order logic extends first order logic with type information.
The reader is referred to standard texts such as by Gallier [54] for further details. We
remark here that many-sorted first order logic is known to be exactly as expressive
as first order logic itself. In this sense, sorts or types add convenience but not power
to the logic.

As an example, consider again the pigeonhole principle where the domain consists
of a set P of pigeons and a set H of holes. The problem can be stated as the succinct
2-sorted first order formula [∀(p ∈ P) ∃(h ∈ H) . X(p, h)] ∧ [∀(h ∈ H, p1 ∈ P, p2 ∈
P) . (p1 6= p2 → (¬X(p1, h) ∨ ¬X(p2, h)))], where X(p, h) is the predicate “pigeon
p maps to hole h.” We can alternatively write this 2-sorted first order logic formula
even more concisely as [∀P i ∃Hj . xi,j] ∧ [∀Hj ∀P i, k . (i 6= k → (¬xi,j ∨ ¬xk,j))]

Recall on the other hand from Example 6.1 that the CNF formulation of same
problem requires |P |+|H|

(|P |
2

)
clauses. As we will see shortly, the sort-based quantified

representation of problems lies at the heart of our approach by providing us the base
“symmetry sets” to start with.

6.2 Symmetry Framework and SymChaff

We describe in this section our new symmetry framework in a generic way, briefly
referring to specific implementation aspects of SymChaff as appropriate.

The motivation and description of our techniques can be best understood with
a few concrete examples in mind. We use three relatively simple logistics planning
problems depicted in Figure 6.1. In all three of these problems, there are k trucks
T1, T2, . . . , Tk initially at a location LTB (truckbase). There are several locations as
well as a number of packages. Each package is initially at a certain location and needs
to be transported to a certain destination location. Actions that can be taken at any
step include driving a truck from one location to another, and loading or unloading
multiple boxes (in parallel) onto or from a truck. The task is to find a minimum
length plan such that all boxes arrive at their destined locations and all trucks return
to LTB. Actions that do not conflict in their pre- or post-conditions can be taken in
parallel.

Let s(i) = (i mod n) + 1 denote the cyclic successor of i in [n].

Example 6.2 (PlanningA). Let k = d3n/4e. For 1 ≤ i ≤ n, there is a location Li

that has two packages Pi,1 and Pi,2. The goal is to deliver package Pi,1 to location
Ls(i) and package Pi,2 to location Ls(s(i)).

The shortest plan for this problem is of length 7 for any n. The idea behind the
plan is to use 3 trucks to handle 4 locations. E.g., truck T1 transports P1,1, P1,2, and
P2,1, truck T2 transports P3,1, P3,2, and P4,1, and truck T3 transports P2,2 and P4,2.
The 7 steps for T1 involve (i) driving to L1, (ii) loading the two boxes there, (iii)
driving to L2, (iv) unloading P1,1 and loading P2,1, (v) driving to L3, (vi) unloading
the two boxes it is carrying, and (vii) driving back to LTB.

100

�����

�����
�����

�����

Figure 6.1: The setup for logistic planning examples

Example 6.3 (PlanningB). Let k = dn/2e. For 1 ≤ i ≤ n, there are 5 packages at
location Li that are all destined for location Ls(i). This problem has more symmetries
than PlanningA because all packages initially at the same location are symmetric.

The shortest plan for this problem is of length 7 and assigns one truck to two
consecutive locations. E.g., the 7 steps for truck T1 include (i) driving to L1, (ii)
loading all boxes there, (iii) driving to L2, (iv) unloading the boxes it is carrying and
loading all boxes originally present at L2, (v) driving to L2, (vi) unloading all boxes
it is carrying, and (vii) driving back to LTB.

Example 6.4 (PlanningC). Let k = n. For 1 ≤ i ≤ n, there are locations Lsrc
i , Ldest

i

and packages Pi,1, Pi,2. Both these packages are initially at location Lsrc
i and must be

delivered to location Ldest
i . Here not only the two packages at each source location

are symmetric but all n tuples (Lsrc
i , Ldest

i , Pi,1, Pi,2) are symmetric as well.
It is easily seen that the shortest plan for this problem is of length 5 and assigns

one truck to each source-destination pair. E.g., the 5 steps for T1 involve (i) driving
to Lsrc

1 , (ii) loading the two boxes there, (iii) driving to Ldest
1 , (iv) unloading the two

boxes it is carrying, and (v) driving back to LTB.

For a given plan length, such a planning problem can be converted into a CNF
formula using tools such as Blackbox by Kautz and Selman [72] and then solved using
standard SAT solvers. The variables in this formula are of the form load-Pi,1-onto-

Tj-at-Lk-time-t, etc. We omit the details [see 70].

6.2.1 k-complete m-class Symmetries

Consider a CSP Γ over a set V = {x1, x2, . . . , xn} of variables as before. We gen-
eralize the idea of complete symmetry for Γ to complete multi-class symmetry. Let

V1, V2, . . . , Vm be disjoint subsets of V of cardinality k each. Let V0 = V \
(⋃

i∈[m] Vi

)
.

Order the variables in each Vi, i ∈ [m], arbitrarily and let yj
i , j ∈ [k], denote the jth

variable of Vi.

101

Let σ be a permutation of the set [k]. Define σ̄ to be the permutation of V

induced by σ and Vi, 0 ≤ i ≤ m, as follows: σ̄(x) = x for x ∈ V0 and σ̄(x) = y
σ(j)
i for

x = yj
i ∈ Vi, i ∈ [m]. In other words, σ̄ maps variables in V0 to themselves and applies

σ in parallel to the indices of the variables in each class Vi, i ∈ [m], simultaneously.

Definition 6.4. If σ̄ is a global symmetry of Γ for every permutation σ of [k] then
the set {V1, V2, . . . , Vm} is a k-complete m-class (global) symmetry of Γ. The sets
Vi, i ∈ [m], are referred to as the variable classes. Variables in Vi are said to be
indexed by the symindex set [k].

Note that a k-complete 1-class symmetry is simply a k-complete symmetry. Com-
plete multi-class symmetries correspond to the case where variables from multiple
classes can be simultaneously and coherently changed in parallel without affecting
the problem. This happens naturally in many problem domains.

Example 6.5. Consider the logistics planning problem PlanningA (Example 6.2) for
n = 4 converted into a unsatisfiable CNF formula corresponding to plan length 6.
The problem has k = 3 trucks and is 3-complete m-class symmetric for appropriate
m. The variable classes Vi of size 3 are indexed by the symindex set {1, 2, 3} and
correspond to sets of 3 variables that differ only in which truck they use. For ex-
ample, variables unload-P2,1-from-T1-at-L2-time-5, unload-P2,1-from-T2-at-L2-time-5,
and unload-P2,1-from-T3-at-L2-time-5 comprise one variable class which is denoted
by unload-P2,1-from-Tj-at-L2-time-5. The many-sorted representation of the problem
has one universally quantified sort for the trucks. The problem PlanningA remains
unchanged, e.g., when T1 and T2 are swapped in all variable classes simultaneously.

In more complex scenarios, a variable class may be indexed by multiple symindex
sets and be part of more than one complete multi-class symmetry. This will happen,
for instance, in the PlanningB problem (Example 6.3) where variables load-P2,a-onto-

Tj-at-L4-time-4 are indexed by two symindex sets, a ∈ [5] and j ∈ [3], each acting
independent of the other. This problem has a universally quantified 2-sorted first
order representation.

Alternatively, multiple object classes, even in the high level description, may be
indexed by the same symindex set. This happens, for example, in the PlanningC

problem (Example 6.4), where Lsrc
i , Ldest

i , Pi,1, and Pi,2 are all indexed by i. This
results in symmetries involving an even higher number of variable classes indexed by
the same symindex set than in the case of PlanningA type problems.

6.2.2 Symmetry Representation

SymChaff takes as input a CNF file in the standard DIMACS format [68] as well as a
.sym symmetry file S that encodes the complete multi-class symmetries of the input
formula. Lines in S that begin with c are treated as comments. S contains a header

102

line p sym nsi ncl nsv declaring that it is a symmetry file with nsi symindex sets,
ncl variable classes, and nsv symmetric variables.

Symmetry is represented in the input file S and maintained inside SymChaff in
three phases. First, symindex sets are represented as consecutive, disjoint intervals
of positive integers. In the PlanningB example for n = 4, the three trucks would be
indexed by the set [1 .. 3] and the 5 packages at location Li, 1 ≤ i ≤ 4, by symindex sets
[3 + 5(i− 1) + 1 .. 3 + 5i], respectively. Here [p .. q] denotes the set {p, p + 1, . . . , q}.
Second, one variable class is defined for each variable class Vi and associated with
each symindex set that indexes variables in it. Finally, a symindex map is created
that associates with each symmetric variable the variable class it belongs to and
the indices in the symindex sets it is indexed by. For instance, variable load-P2,4-

onto-T3-at-L4-time-4 in problem PlanningB will be associated with the variable class
load-P2,a-onto-Tj-at-L4-time-4 and with indices j = 3 and a = 3 + 5(2− 1) + 4 = 12.
The symmetry input file S is a straightforward encoding of symindex sets, variable
classes, and symindex map.

Example 6.6. As another example and as an illustration of the exact syntax of S, we
give the actual symmetry input file for the pigeonhole problem PHP 4

3 in Figure 6.2.
There are two symindex sets, one for the 4 pigeons and the other for the 3 holes. These
correspond to the consecutive, disjoint intervals [1 .. 4] and [5 .. 7], respectively, and
are associated with the right end-points of the intervals, 4 and 7. All 12 variables of
the problem are symmetric to each other and thus belong to the only variable class for
the problem (commented as “vartype” in the Figure). This variable class is indexed
by the two symindex sets associated with the right end-points 4 and 7. Finally, the
symindex map says, for example, that variable 5, which happens to correspond to the
variable x2,2 in PHP 4

3 , belongs to the first (and only) variable class and is indexed
by the index 2 from the first symindex set and the index 6 from the second symindex
set associated with its variable class.

Note that while the variable classes and the symindex map remain static, the sy-
mindex sets change dynamically as SymChaff proceeds assigning values to variables.
In fact, when sufficiently many variables have been assigned truth values, all com-
plete multi-class symmetries will be destroyed. For efficient access and manipulation,
SymChaff stores variable classes in a vector data structure from the Standard Tem-
plate Library (STL) of C++, the symindex map as a hash table, and symindex sets
together as a multiset containing only the right end-points of the consecutive, disjoint
intervals corresponding to the symindex sets. A symindex set split is achieved by
adding the corresponding new right end-point to the multiset, and symindex sets are
combined when backtracking by deleting the end-point.

103

c Symmetry file for php-004-003.cnf

c 4 pigeons, 3 holes, 12 symmetric variables

c 2 symindex sets, 1 vartype

c

p sym 12 2 1

c

c symindex sets

1 4 0

2 7 0

0

c vartypes

1 4 7 0

0

c

c symindex mappings

1 1 1 5 0

2 1 1 6 0

3 1 1 7 0

4 1 2 5 0

5 1 2 6 0

6 1 2 7 0

7 1 3 5 0

8 1 3 6 0

9 1 3 7 0

10 1 4 5 0

11 1 4 6 0

12 1 4 7 0

0

Figure 6.2: A sample symmetry file, php-004-003.sym

6.2.3 Multiway Index-based Branching

A distinctive feature of SymChaff is multiway symindex-based branching. Suppose
at a certain stage the variable selection heuristic suggests that we branch by setting
variable x to false. SymChaff checks to see whether x has any complete multi-class
symmetry left in the current stage. (Note that symmetry in our framework reduces
as variables are assigned truth values.) x, of course, may not be symmetric at all to
start with. If x doesn’t have any symmetry, SymChaff proceeds with the usual DPLL

style 2-way branch by setting x now to false and later to true. If it does have
symmetry, SymChaff arbitrarily chooses a symindex set I, |I| = k ≥ 2, that indexes
x and creates a (k + 1)-way branch. Let x1, x2, . . . , xk be the variables indexed by

104

I in the variable class V ′ to which x belongs (x = xj for some j). For 0 ≤ i ≤ k,
the ith branch sets x1, . . . , xi to false and xi+1, . . . , xk to true. The idea behind
this multiway branching is that it only matters how many of the xi are set to false

and not which exact ones. This reduces the search for a satisfying assignment from
up to 2k different partial assignments of x1, . . . , xk to only k + 1 different ones. This
clearly maintains completeness of the search and is the key to the good performance
of SymChaff.

When one branches and sets variables, the symindex sets must be updated to
reflect this change. When proceeding along the ith branch in the above setting, two
kinds of symindex splits happen. First, if x is also indexed by an index j in a symindex
set J = [a .. b] 6= I, we must split J into up to three symindex sets given by the
intervals [a .. j − 1], [j .. j], and [j + 1 .. b] because j’s symmetry has been destroyed
by this assignment. To reduce the number of splits, SymChaff replaces x with another
variable in its variable class for which j = a and thus the split divides J into two new
symindex sets only, [a .. a] and [a + 1 .. b]. This first kind of split is done once for
the multiway branch for x and is independent of the value of i. The second kind of
split divides I = [c .. d] into up to two symindex sets given by [c .. i] and [i + 1 .. d].
This, of course, captures the fact that both the first i and the last k − i indices of I
remain symmetric in the ith branch of the multiway branching step.

Symindex sets that are split while branching must be restored when a backtrack
happens. When a backtrack moves the search from the ith branch of a multiway
branching step to the i + 1st branch, SymChaff deletes the symindex set split of the
second type created for the ith branch and creates a new one for the i + 1st branch.
When all k + 1 branches are finished, SymChaff also deletes the split of the first type
created for this multiway branch and backtracks.

6.2.4 Symmetric Learning

We extend the notion of conflict-directed clause learning to our symmetry framework.
When all branches of a (k +1)-way symmetric branch b have been explored, SymChaff

learns a symconflict clause C such that when all literals of C are set to false, unit
propagation falsifies every branch of b. This process clearly maintains soundness of
the search. The symconflict clause is learned even for 2-way branches and is computed
as follows.

Suppose a k-way branch b starts at decision level d. If the ith branch of b leads to a
conflict without any further branches, two things happen. First, SymChaff learns the
FirstUIP clause following the conflict analysis strategy of zChaff (see Section 4.2.5).
Second, it stores in a set Sb associated with b the decision literals at levels higher
than d that are involved in the conflict. On the other hand, if the ith branch of b
develops further into another branch b′, SymChaff stores in Sb those literals of the
symconflict clause recursively learned for b′ that have decision level higher than d.
When all branches at b have been explored, the symconflict clause learned for b is

105

∨
`∈Sb
¬`.

6.2.5 Static Ordering of Symmetry Classes and Indices

It is well known that the variable order chosen for branching in any DPLL-based solver
has tremendous impact on efficiency. Along similar lines, the order in which variable
classes and symindex sets are chosen for multiway branching can have significant
impact on the speed of SymChaff.

While we leave dynamic strategies for selecting variable classes and symindex sets
as ongoing and future work, SymChaff does support static ordering through a very
simple and optional .ord order file given as input. This file specifies an ordering of
variable classes as an initial guide to the VSIDS variable selection heuristic of zChaff

(cf. Section 2.3.2), treating asymmetric variables in a class of their own. Further,
for each variable class indexed by multiple symindex sets, it allows one to specify an
order of priority on symindex sets. The exact file structure is omitted due to lack of
space.

6.2.6 Integration of Standard Features

The efficiency of state-of-the-art SAT and pseudo-Boolean solvers relies heavily on
various features that have been developed, analyzed, and tested over the last decade.
SymChaff integrates well with most of these features, either using them without any
change or extending them in the context of multiway branching and symmetric learn-
ing. The only significant and relatively new feature that neither SymChaff nor the
version of zChaff on which it is based currently support is assignment stack shrinking
based on conflict clauses which was introduced by Nadel [91] in the solver Jerusat.

For completeness, we make a digression to give a flavor of how assignment stack
shrinking works. When a conflict occurs because a clause C ′ is violated and the
resulting conflict clause C to be learned exceeds a certain threshold length, the solver
backtracks to almost the highest decision level of the literals in C. It then starts
assigning to false the unassigned literals of the violated clause C ′ until a new conflict
is encountered, which is expected to result in a smaller and more pertinent conflict
clause to be learned.

Returning to SymChaff, it supports fast unit propagation using watched literals,
good restart strategies, effective constraint database management, and smart branch-
ing heuristics in a very natural way (cf. Sections 2.3.2 and 4.2). In particular, it
uses zChaff’s watched literals scheme for unit propagation, deterministic and random-
ized restart strategies, and clause deletion mechanisms without any modification, and
thus gains by their use as any other SAT solver would. While performing multiway
branching for classes of variables that are known to be symmetric, SymChaff starts
every new multiway branch based on the variable that would have been chosen by

106

VSIDS branch selection heuristic of zChaff, thereby retaining many advantages that
effective branch selection heuristics like VSIDS have to offer.

Conflict clause learning is extended to symmetric learning as described earlier.
Conflict-directed backjumping in the traditional context allows a solver to backtrack
directly to a decision level d if variables at levels d or higher are the only ones involved
in the conflicts in both branches at a point other than the branch variable itself.
SymChaff extends this to multiway branching by computing this level d for all branches
at a multiway branch point by looking at the symconflict clause for that branch,
discarding all intermediate branches and their respective partial symconflict clauses,
backtracking to level d, and updating the symindex sets.

While conflict-directed backjumping is always beneficial, fast backjumping may
not be so. This latter technique, relevant mostly to the firstUIP learning scheme of
zChaff, allows a solver to jump directly to a higher decision level d when even one
branch leads to a conflict involving variables at levels d or higher only (in addition
to the variable at the current branch). This discards intermediate decisions which
may actually be relevant and in the worst case will be made again unchanged after
fast backjumping. SymChaff provides this feature as an option which turns out to
be helpful in certain domains and detrimental in others. To maintain consistency
of symconflict clauses learned later, the level d′ to backjump to is computed as the
maximum of the level d as above and the maximum decision level d̄ of any variable
in the partial symconflict clause associated with the current multiway branch.

6.3 Benchmark Problems and Experimental Results

SymChaff is implemented on top of zChaff version 2003.11.04. The input to SymChaff

is a .cnf formula file in the standard DIMACS format, a .sym symmetry file, and
an optional .ord static symmetry order file. It uses the default parameters of zChaff.
The program was compiled using g++ 3.3.3 for RedHat Linux 3.3.3-7. Experiments
were conducted on a cluster of 36 machines running Linux 2.6.11 with four 2.8 GHz
Intel Xeon processors on each machine, each with 1 GB memory and 512 KB cache.

Tables 6.1 and 6.2 report results for several parameterizations of two problems
from proof complexity theory, three planning problems, and a routing problem from
design automation. These problems are discussed below. Satisfiable instances of
some of these problems were easy for all solvers considered and are thus omitted
from the table. Except for the planning problems for which automatic “tags” were
used (described later), the .sym symmetry files were automatically generated by a
straightforward modification to the scripts used to create the .cnf files from the
problem descriptions. For all instances, the time required to generate the .sym file
was negligible compared to the .cnf file and is therefore not reported. The .sym files
were in addition extremely small compared to the corresponding .cnf files.

The solvers used were SymChaff, zChaff version 2003.11.04, and March-eq-100 by

107

Huele et al. [64]. Symmetry breaking predicates were generated using Shatter version
0.3 that uses the graph isomorphism tool Saucy. Note that zChaff won the best solver
award for industrial benchmarks in the SAT 2004 competition [77] while March-eq-100

won the award for handmade benchmarks.

SymChaff outperformed the other two solvers without symmetry breaking predi-
cates in all but excessively easy instances. Generating symmetry breaking predicates
from the input CNF formula was typically quite slow compared to a complete solu-
tion by SymChaff. The effect of adding symmetry breaking predicates before feeding
the problem to zChaff was mixed, helping to various extents in some instances and
hurting in others. In either case, it was never any better than using SymChaff without
symmetry breaking predicates.

6.3.1 Problems from Proof Complexity

Pigeonhole Principle: php-n-m is the classic pigeonhole problem described in Example
6.1 for n pigeons and m holes. The corresponding formulas are satisfiable iff n ≤ m.
They are known to be exponentially hard for resolution [60, 94] but easy when the
symmetry rule is added [76]. Symmetry breaking predicates can therefore be used for
fast CNF SAT solutions. The price to pay is symmetry detection in the CNF formula,
i.e., generation of symmetry breaking predicates using graph isomorphism tools. We
found this process to be significantly costly in terms of the overall runtime.

pbChaff and Galena, on the other hand, use an explicit pseudo-Boolean encoding
and rely on learning good pseudo-Boolean conflict constraints. They do overcome the
drawbacks of the symmetry breaking predicates technique but are nonetheless slower
than SymChaff.

SymChaff uses two symindex sets corresponding to the pigeons and the holes, and
one variable class containing all the variables. It solves this problem in time Θ(m2).
Note that although it must read the entire input file containing Θ(nm2) clauses, it does
not need to process all of these clauses given the symmetry information. Although
reading the input file is quite fast in practice, we do not include the time spent on it
when claiming the Θ(m2) bound.

This contrasts well with one of the fastest current techniques for this problem
(other than the implicit pseudo-Boolean encoding) by Motter and Markov [89] which
is based on ZBDDs and requires a fairly involved analysis to prove that it runs in
time Θ(m4) [90].

Clique Coloring Principle: The formula clqcolor-n-m-k encodes the clique coloring
problem whose solution is a set of edges that form an undirected graph G over n
nodes such that two conditions hold: G contains a clique of size m and G can be
colored using k colors so that no two adjacent nodes get the same color. The formula

108

is satisfiable iff m ≤ n and m ≤ k.
At first glance, this problem might appear to be a simple generalization of the

pigeonhole problem. However, it evades fast solutions using SAT as well as pseudo-
Boolean techniques even when the clique part is encoded implicitly using pseudo-
Boolean methods. Indeed, Pudlák [93] has shown it to be exponentially hard for the
cutting planes proof system on which pseudo-Boolean solvers are based.

Our experiments indicate that not only finding symmetries from the corresponding
CNF formulas is time consuming, zChaff is extremely slow even after taking symmetry
breaking predicates into account. SymChaff, on the other hand, uses three symindex
sets corresponding to nodes, membership in clique, and colors, and three variable
classes corresponding to edge variables, clique variables, and coloring variables. It
solves the problem in time Θ(k2), again ignoring the time spent on reading the input
file.

We note that this problem can also be solved in polynomial time using the group
theoretic technique of Dixon et al. [48]. However, the group operations that underlie
their implementation are polynomials of degree as high as 6 or 7, making the approach
significantly slower in practice.

6.3.2 Problems from Applications

All planning problems were encoded using the high level STRIPS formulation of Plan-
ning Domain Description Language (PDDL) introduced by Fikes and Nilsson [51].
These were then converted into CNF formulas using the tool Blackbox version 4.1 by
Kautz and Selman [72]. A PDDL description of a planning problem is a straight-
forward Lisp-style specification that declares the objects involved, their initial state,
and their goal state. In addition to this instance-specific description, it also uses a
domain-specific file that describes the available actions in terms of their preconditions
and effects.

We modified Blackbox to generate symmetry information as well by using a very
simple “tagged” PDDL description where an original PDDL declaration such as

(:OBJECTS T1 T2 T3

Lsrc
1 Lsrc

2 Ldest
1 Ldest

2

P1,1 P2,1 P1,2 P2,2)

in the PlanningC example is replaced with

(:OBJECTS T1 T2 T3 - SYMTRUCKS

Lsrc
1 Lsrc

2 - SYMLOCS

Ldest
1 Ldest

2 - SYMLOCS

P1,1 P2,1 - SYMLOCS

P1,2 P2,2 - SYMLOCS)

109

The rest of the PDDL description remains unchanged and a .sym file is automatically
generated using these tags.

Example 6.7. For concreteness, we give the actual PDDL specification for our
PlanningA example with n = 3 locations and k = d3n/4e = 3 trucks in Figure
6.3. The “tag” in bold is the only change to the usual specification of the problem
needed to process symmetry information automatically.

(define (problem PlanningA-03)

(:domain logistics-strips-sym)

(:objects

truck1

truck2

truck3 - SYMTRUCKS

package1

package2

package3

package4

package5

package6

truckbase

location1

location2

location3

city1

)

(:init

(TRUCK truck1)

(TRUCK truck2)

(TRUCK truck3)

(OBJ package1)

(OBJ package2)

(OBJ package3)

(OBJ package4)

(OBJ package5)

(OBJ package6)

continued. . .

. . .continued
(LOCATION truckbase)

(LOCATION location1)

(LOCATION location2)

(LOCATION location3)

(CITY city1)

(at package1 location1)

(at package2 location1)

(at package3 location2)

(at package4 location2)

(at package5 location3)

(at package6 location3)

(at truck1 truckbase)

(at truck2 truckbase)

(at truck3 truckbase)

(in-city truckbase city1)

(in-city location1 city1)

(in-city location2 city1)

(in-city location3 city1)

)

(:goal (and

(at package1 location2)

(at package2 location3)

(at package3 location3)

(at package4 location1)

(at package5 location1)

(at package6 location2)

))

)

Figure 6.3: A sample PDDL file for PlanningA with n = 3

We are now ready to present the four application-oriented problems for which we
have experimental results. Three of these are planning problems.

110

Gripper Planning: The problem gripper-n-t is our simplest planning example. It
consists of 2n balls in a room that need to be moved to another room in t steps using
a robot that has two grippers that it can use to pick up balls. The corresponding
formulas are satisfiable iff t ≥ 4n− 1.

SymChaff uses two symindex sets corresponding to the balls and the grippers.
The number of variable classes is relatively large and corresponds to each action
that can be performed without taking into account the specific ball or gripper used.
While SymChaff solves this problem easily in both unsatisfiable and satisfiable cases,
the other two solvers perform poorly. Further, detecting symmetries from CNF using
Shatter is not too difficult but does not speed up the solution process by any significant
amount.

Logistics Planning log-rotate: The problem log-rotate-n-t is the logistics planning
example PlanningA with n as the number of locations and t as the maximum plan
length. As described earlier, it involves moving boxes in a cyclic rotation fashion
between the locations. The formula is satisfiable iff t ≥ 7.

SymChaff uses one symindex set corresponding to the trucks, and several variable
classes. Here again symmetry breaking predicates, although not too hard to compute,
provide less than a factor of two improvement. March-eq and zChaff were much slower
than SymChaff on large instances, both unsatisfiable and satisfiable.

Logistics Planning log-pairs: The problem log-pairs-n-t is the logistics planning
example PlanningC with n as the number of location pairs and t as the maximum
plan length. As described earlier, it involves moving boxes between n disjoint location
pairs. The corresponding formula is satisfiable iff t ≥ 5.

SymChaff uses n + 1 symindex sets corresponding to the trucks and the location
pairs, and several variable classes. This problem provides an interesting scenario
where zChaff normally compares well with SymChaff but performs worse by a factor
of two when symmetry breaking predicates are added. We also note that computing
symmetry breaking predicates for this problem is quite expensive by itself.

Channel Routing: The problem chnl-t-n is from design automation and has been
considered in previous works on symmetry and pseudo-Boolean solvers [4, 6]. It
consists of two blocks of circuits with t tracks connecting them. Each track can hold
one wire (or “net” as it is sometimes called). The task is to route n wires from
one block to the other using these tracks. The underlying problem is a disguised
pigeonhole principle. The formula is solvable iff t ≥ n.

111

Table 6.1: Experimental results on UNSAT formulas. ‡ indicates > 6 hours.

Problem zChaff
+ parameters

SymChaff zChaff March-eq Shatter
after Shatter

009-008 0.01 0.22 1.55 0.07 0.10
013-012 0.01 1017 ‡ 0.09 0.01
051-050 0.24 ‡ ‡ 13.71 0.50
091-090 0.84 ‡ ‡ 245 3.47

p
h
p

101-100 1.20 ‡ ‡ 466 6.48

05-03-04 0.02 0.01 0.21 0.09 0.01
12-07-08 0.03 ‡ ‡ 5.09 4929
20-15-16 0.26 ‡ ‡ 748 ‡
30-18-21 0.60 ‡ ‡ 20801 ‡c

l
q
c
o
l
o
r

50-40-45 8.76 ‡ ‡ ‡ ‡
02t6 0.02 0.03 0.07 0.20 0.04
04t14 0.84 2820 ‡ 3.23 983
06t22 3.37 ‡ ‡ 23.12 ‡

g
r
i
p
p
e
r

10t38 47 ‡ ‡ 193 ‡
06t6 0.74 1.47 21.55 8.21 0.93
08t6 2.03 4.29 375 31.4 4.21
09t6 8.64 15.67 3835 74 28.9

l
o
g
-
r
o
t
a
t
e

11t6 51 12827 ‡ 324 17968

05t5 0.46 0.38 3.65 25.19 0.65
07t5 1.83 1.87 80 243 3.05
09t5 6.29 6.23 582 1373 14.57

l
o
g
-
p
a
i
r

11t5 15.65 18.05 1807 6070 34.4

010-011 0.04 8.61 ‡ 0.20 0.02
011-020 0.06 135 ‡ 0.28 0.03
020-030 0.05 ‡ ‡ 4.60 0.10c

h
n
l

050-100 1.75 ‡ ‡ 810 1.81

SymChaff uses two symindex sets corresponding to the end-points of the tracks in
the two blocks, and 2n variable classes corresponding to the two end-points for each
net. While March-eq was unable to solve any instance of this problem considered,
zChaff performed as well as SymChaff after symmetry breaking predicates were added.
The generation of symmetry breaking predicates was, however, orders of magnitude
slower.

6.4 Discussion

SymChaff sheds new light into ways that high level symmetry, which is typically obvi-
ous to the problem designer, can be used to solve problems more efficiently. It handles

112

Table 6.2: Experimental results on SAT formulas. ‡ indicates > 6 hours.

Problem zChaff
+ parameters

SymChaff zChaff March-eq Shatter
after Shatter

02t7 0.02 0.03 0.34 0.17 0.03
04t15 2.03 1061 ‡ 0.23 1411
06t23 7.27 ‡ ‡ 19.03 ‡

g
r
i
p
p
e
r

10t39 92 ‡ ‡ 193 ‡
06t7 2.87 2.09 11 16.92 3.03
07t7 7.64 6.85 27 55 47
08t7 9.13 182 14805 62 358

l
o
g
-
r
o
t
a
t
e

09t7 139 1284 814 186 1356

frequently occurring complete multi-class symmetries and is empirically exponentially
faster on several problems from theory and practice, both unsatisfiable and satisfiable.
The time and memory overhead it needs for maintaining data structures related to
symmetry is fairly low and on problems with very few or no symmetries, it works as
well as zChaff.

Our framework for symmetry is, of course, not tied to SymChaff. It can extend any
state of the art DPLL-based CNF or pseudo-Boolean solver. Two key places where we
differ from earlier approaches are in using high level problem description to obtain
symmetry information (instead of trying to recover it from the CNF formula) and
in maintaining this information dynamically without using complicated group theo-
retic machinery. This allows us to overcome many drawbacks of previously proposed
solutions.

We show, in particular, that straightforward tagging in the specification of plan-
ning problems is enough to automatically generate relevant symmetry information
which in turn makes the search for an optimal plan much faster. SymChaff incorpo-
rates several new ideas that allow this to happen. These include simple but effective
symmetry representation, multiway branching based on variable classes and symmetry
sets, and symmetric learning as an extension of clause learning to multiway branches.

One limitation of our approach is that it does not support symmetries that are ini-
tially absent but arise after some literals are set. Our symmetry sets only get refined
from their initial value as decisions are made. Consider, for instance, a planning prob-
lem where two packages P1 and P2 are initially at locations L1 and L2, respectively,

(and hence asymmetric) but are both destined for location Ldest. If at some point
they both reach a common location, they should ideally be treated as equivalent with
respect to the remaining portion of the plan. The airlock domain introduced by Fox
and Long [53] is a creative example where such dynamically created symmetries are
the norm rather than the exception. While they do describe a planner that is able to

113

exploit these symmetries, it is unclear how to incorporate such reasoning in a general
purpose SAT solver besides resorting to on-the-fly computations involving the group
of symmetries which, as observed in the work of Dixon et al. [48], can sometimes be
quite expensive.

