
78

Chapter 5

USING PROBLEM STRUCTURE FOR
EFFICIENT CLAUSE LEARNING

Given the results about the strengths and limitations of clause learning in Chapter
4, it is natural to ask how the understanding we gain through this kind of analysis
may lead to practical improvement in SAT solvers. The theoretical bounds tell us
the potential power of clause learning; they don’t give us a way of finding short solu-
tions when they exist. In order to leverage their strength, clause learning algorithms
must follow the “right” variable order for their branching decisions for the underlying
DPLL procedure. While a good variable order may result in a polynomial time solu-
tion, a bad one can make the process as slow as basic DPLL without learning. The
present chapter addresses this problem of moving from analytical results to practical
improvement. The approach we take is the use of the problem structure for guiding
SAT solvers in their branch decisions.

Both random CNF formulas and those encoding various real-world problems are
quite hard for current SAT solvers. However, while DPLL based algorithms with
lookahead but no learning (such as satz by Li and Anbulagan [80]) and those that try
only one carefully chosen assignment without any backtracks (such as SurveyProp by
Mézard and Zecchina [87]) are our best tools for solving random formula instances,
formulas arising from various real applications seem to require clause learning as a
critical ingredient. The key thing that makes this second class of formulas different
is their inherent structure, such as dependence graphs in scheduling problems, causes
and effects in planning, and algebraic structure in group theory.

Most theoretical and practical problem instances of satisfiability problems orig-
inate, not surprisingly, from a higher level description, such as a Planning Domain
Description Language (PDDL) specification for planning [51], timed automata or
logic description for model checking, task dependency graph for scheduling, circuit
description for VLSI, algebraic structure for group theory, and processor specification
for hardware. Typically, this description contains more structure of the original prob-
lem than is visible in the flat CNF representation in DIMACS format [68] to which
it is converted before being fed into a SAT solver. This structure can potentially be
used to gain efficiency in the solution process.

Several ideas have been brought forward in the last decade for extracting structure
after conversion into a CNF formula. These include the works of Giunchiglia et al. [56]
and Ostrowski et al. [92] on exploiting variable dependency, Ostrowski et al. [92] on
using constraint redundancy, Aloul et al. [6] and others on using symmetry, Brafman

79

[30] on exploiting binary clauses, and Amir and McIlraith [7] on using partitioning.

While all these approaches extract structure after conversion into a CNF formula,
we argue that using the original higher level description itself to generate structural
information is likely to be more effective. The latter approach, despite its intuitive
appeal, remains largely unexplored, except for suggested use in bounded model check-
ing by Shtrichman [101] and the separate consideration of cause variables and effect
variables in planning by Kautz and Selman [71].

We further open this line of research by proposing an effective method for ex-
ploiting problem structure to guide the branching decision process of clause learning
algorithms. Our approach uses the original high level problem description to generate
not only a CNF encoding but also a branching sequence (recall Definition 4.2) that
guides the SAT solver toward an efficient solution. This branching sequence serves as
auxiliary structural information that was possibly lost in the process of encoding the
problem as a CNF formula. It makes clause learning algorithms learn useful clauses
instead of wasting time learning those that may not be reused in future at all.

We consider two families of formulas called the pebbling formulas and the GTn

formulas. The pebbling formulas, more commonly occurring in theoretical proof com-
plexity literature such as in the works of Ben-Sasson et al. [22] and Beame et al. [15],
can be thought of as representing precedence graphs in dependent task systems and
scheduling scenarios. They can also be viewed as restricted planning problems. The
GTn formulas were introduced by Krishnamurthy [76] and have also been used fre-
quently to obtain resolution lower bounds such as by Bonet and Galesi [28] and
Alekhnovich et al. [3]. They represent a straightforward ordering principle on n
elements. Although admitting a polynomial size solution, both pebbling and GTn

formulas are not so easy to solve in practice, as is indicated by our experimental
results for unmodified zChaff.

We give an exact sequence generation algorithm for pebbling formulas, using the
underlying pebbling graph as the high level description. We also give a much simpler
but approximate branching sequence generation algorithm for GTn formulas, utilizing
their underlying ordering structure. Our sequence generators as presented work for
the FirstUIP learning scheme (cf. Section 4.2.5), which is one of the best known. They
can also be extended to other schemes, including FirstNewCut. Our empirical results
are based on our extension of the SAT solver zChaff.

We show that the use of branching sequences produced by our generators leads to
exponential empirical speedups for the class of grid and randomized pebbling formulas.
We also report significant gains obtained for the class of GTn formulas.

From a broader perspective, our results for pebbling and GTn formulas serve as a
proof of concept that analysis of problem structure can be used to achieve dramatic
improvements even in the current best clause learning based SAT solvers.

80

5.1 Two Interesting Families of Formulas

We begin by describing in detail the two families of CNF formulas from the proof
complexity literature mentioned above.

5.1.1 Pebbling Formulas

Pebbling formulas are unsatisfiable CNF formulas whose variations have been used
repeatedly in proof complexity to obtain theoretical separation results between differ-
ent proof systems such as by Ben-Sasson et al. [22] and Beame et al. [15]. The version
we will use in this chapter is known to be easy for regular resolution but hard for
tree-like resolution [22], and hence for DPLL without learning. We use these formulas
to show how one can utilize problem structure to allow clause learning algorithms to
handle much bigger problems than they otherwise can.

Pebbling formulas represent the constraints for sequencing a system of tasks that
need to be completed, where each task can be accomplished in a number of alternative
ways. The associated pebbling graph has a node for each task, labeled by a disjunction
of variables representing the different ways of completing the task. Placing a pebble on
a node in the graph represents accomplishing the corresponding task. Directed edges
between nodes denote task precedence; a node is pebbled when all of its predecessors
in the graph are pebbled. The pebbling process is initialized by placing pebbles on all
indegree zero nodes. This corresponds to completing those tasks that do not depend
on any other.

Formally, a Pebbling formula PblG is an unsatisfiable CNF formula associated with
a directed, acyclic pebbling graph G (see Figure 5.1). Nodes of G are labeled with
disjunctions of variables, i.e. with clauses. A node labeled with clause C is thought of
as pebbled under a (partial) variable assignment σ if C|σ = true. PblG contains three
kinds of clauses – precedence clauses, source clauses and target clauses. For instance,
a node labeled (x1∨x2) with three predecessors labeled (p1∨ p2∨ p3), q1 and (r1∨ r2)
generates six precedence clauses (¬pi∨¬qj∨¬rk∨x1∨x2), where i ∈ {1, 2, 3} , j ∈ {1}
and k ∈ {1, 2}. The precedence clauses imply that if all predecessors of a node are
pebbled, then the node itself must also be pebbled. For every indegree zero source
node s of G, PblG contains the clause labeling s as a source clause. Thus, PblG implies
that all source nodes are pebbled. For every outdegree zero target node of G labeled,
say, (t1 ∨ t2), PblG has target clauses ¬t1 and ¬t2. These imply that target nodes are
not pebbled, and provide a contradiction.

Grid pebbling formulas are based on simple pyramid-shaped layered pebbling
graphs with distinct variable labels, 2 predecessors per node, and disjunctions of size 2
(see Figure 5.1). Randomized pebbling formulas are more complicated and correspond
to random pebbling graphs. We only consider pebbling graphs where no variable
appears more than once in any node label. In general, random pebbling graphs allow
multiple target nodes. However, the more the targets, the easier it is to produce a

81

(a1 ∨ a2) (c1 ∨ c2 ∨ c3)

(d1 ∨ d2 ∨ d3)

l1

(h1 ∨ h2)

(i1 ∨ i2 ∨ i3 ∨ i4)e1

(g1 ∨ g2)

f1

(n1 ∨ n2)

m1
(j1 ∨ j2)

(h1 ∨ h2) (i1 ∨ i2)

(f1 ∨ f2)
(g1 ∨ g2)

(d1 ∨ d2)(c1 ∨ c2)(b1 ∨ b2)(a1 ∨ a2)

(e1 ∨ e2)

(b1 ∨ b2)

Figure 5.1: A general pebbling graph with distinct node labels, and a 4-layer grid
pebbling graph

contradiction because we can focus only on the (relatively smaller) subgraph under
the lowest target. Hence, for our experiments, we add a simple grid structure at the
top of randomly generated pebbling formulas to make them have exactly one target.

All pebbling formulas with a single target are minimally unsatisfiable, i.e. any
strict subset of their clauses admits a satisfying assignment. For each formula PblG
we use for our experiments, we also use a satisfiable version of it, called PblSAT

G ,
obtained by randomly choosing a clause of PblG and deleting it. When G is viewed
as a task graph, PblSAT

G corresponds to a task system with a single fault, and finding
a satisfying assignment for it corresponds to locating the fault.

5.1.2 The GTn Formulas

The GTn formulas are unsatisfiable CNF formulas based on the ordering principle
that any partial order on the set {1, 2, . . . , n} must have a maximal element. They
were first considered by Krishnamurthy [76] and later used by Bonet and Galesi [28]
to show the optimality of the size-width relationship of resolution proofs. Recently,
Alekhnovich et al. [3] used a variation, called GT ′

n, to show an exponential separation
between RES and regular resolution.

The variables of GTn are xi,j for i, j ∈ [n], i 6= j, which should be thought of as
the binary predicate i � j. Clauses (¬xi,j ∨ ¬xj,i) ensure that � is anti-symmetric
and (¬xi,j ∨ ¬xj,k ∨ xi,k) ensure that � is transitive. This makes � a partial order
on [n]. Successor clauses (∨k 6=jxk,j) provide the contradiction by saying that every
element j has a successor in [n] \ {j}, which is clearly false for the maximal elements

82

of [n] under the ordering �.
These formulas, although capturing a simple mathematical principle, are empir-

ically difficult for many SAT solvers including zChaff. We employ our techniques to
improve the performance of zChaff on these formulas. We use for our experiments
the unsatisfiable version GTn described above as well as a satisfiable version GT SAT

n

obtained by deleting a randomly chosen successor clause. The reason we consider
these ordering formulas in addition to seemingly harder pebbling formulas is that the
latter admit short tree-like proofs in certain extensions of RES whereas the former
seem to critically require reuse of derived or learned clauses for short refutations. We
elaborate on this in Section 5.2.2.

5.2 From Analysis to Practice

The complexity bounds established in the previous chapter indicate that clause learn-
ing is potentially quite powerful, especially when compared to ordinary DPLL. How-
ever, natural choices such as which conflict graph to choose, which cut in it to consider,
in what order to branch on variables, and when to restart, make the process highly
nondeterministic. These choices must be made deterministically (or randomly) when
implementing a clause learning algorithm. To harness its full potential on a given
problem domain, one must, in particular, implement a learning scheme and a branch
decision process suited to that domain.

5.2.1 Solving Pebbling Formulas

As a first step toward our grand goal of translating theoretical understanding into
effective implementations, we show, using pebbling problems as a concrete example,
how one can utilize high level problem descriptions to generate effective branching
strategies for clause learning algorithms. Specifically, we use insights from our the-
oretical analysis to give an efficient algorithm to generate an effective branching se-
quence for unsatisfiable as well as satisfiable pebbling formulas (see Section 5.1.1).
This algorithm takes as input the underlying pebbling graph (which is the high level
description of the pebbling problem), and not the CNF pebbling formula itself. As we
will see in Section 5.2.3, the generated branching sequence gives exponential empirical
speedup over zChaff for both grid and randomized pebbling formulas.

zChaff, despite being one of the current best clause learners, by default does not
perform very well on seemingly simple pebbling formulas, even on the uniform grid
version. Although clause learning should ideally need only polynomial time to solve
these problem instances (in fact, linear time in the size of the formula), choosing a
good branching order is critical for this to happen. Since nodes are intuitively pebbled
in a bottom up fashion, we must also learn the right clauses (i.e. clauses labeling the
nodes) in a bottom up order. However, branching on variables labeling lower nodes
before those labeling higher ones prevents any DPLL based learning algorithm from

83

backtracking the right distance and proceeding further in an effective manner. To
make this clear, consider the general pebbling graph of Figure 5.1. Suppose we branch
on and set d1, d2, d3 and a1 to false. This will lead to a contradiction through unit
propagation by implying a2 is true and b1 and b2 are both false. We will learn
(d1 ∨ d2 ∨ d3 ∨ ¬a2) as the associated 1UIP conflict clause and backtrack. There will
still be a contradiction without any further branches, making us learn (d1 ∨ d2 ∨ d3)
and backtrack. At this stage, we will have learned the correct clause but will be stuck
with two branches on d1 and d2. Unless we had branched on e1 before branching on
the variables of node d, we will not be able to learn e1 as the clause corresponding to
the next higher pebbling node.

Automatic Sequence Generation: PebSeq1UIP

Algorithm 5.1, PebSeq1UIP, describes a way of generating a good branching sequence
for pebbling formulas. It works on any pebbling graph G with distinct label variables
as input and produces a branching sequence linear in the size of the associated peb-
bling formula. In particular, the sequence size is linear in the number of variables as
well when the indegree as well as label size are bounded by a constant.

PebSeq1UIP starts off by handling the set U of all nodes labeled with unit clauses.
Their outgoing edges are deleted and they are treated as pseudo sources. The proce-
dure first generates a branching sequence for non-target nodes in U in increasing order
of height. The key here is that when zChaff learns a unit clause, it fast-backtracks to
decision level zero, effectively restarting at that point. We make use of this fact to
learn these unit clauses in a bottom up fashion, unlike the rest of the process which
proceeds top down in a depth-first way.

84

Input : Pebbling graph G with no repeated labels
Output : Branching sequence for PblG for the 1UIP learning scheme
begin

foreach v in BottomUpTraversal(G) do
v.height← 1 + maxu∈v.preds {u.height}
Sort(v.preds, increasing order by height)

// first handle unit clause labeled nodes and generate their sequence
U ← {v ∈ G.nodes : |v.labels| = 1}
G.edges← G.edges \ {(u, v) ∈ G.edges : u ∈ U}
Add to G.sources any new nodes with now 0 preds
Sort(U , increasing order by height)
foreach u ∈ U \G.targets do

Output u.label
PebSubseq1UIPWrapper(u)

// now add branching sequence for targets by increasing height
Sort(G.targets, increasing order by height)
foreach t ∈ G.targets do PebSubseq1UIPWrapper(t)

end

PebSubseq1UIPWrapper(node v) begin
if |v.preds| > 0 then PebSubseq1UIP(v, |v.preds|)

end

PebSubseq1UIP(node v, int i) begin
u← v.preds[i]
if i = 1 then

// this is the lowest predecessor
if !u.visited and u /∈ G.sources then

u.visited← true

PebSubseq1UIPWrapper(u)

return

Output u.labels \ {u.lastLabel}
if !u.visitedAsHigh and u /∈ G.sources then

u.visitedAsHigh← true

Output u.lastLabel
if !u.visited then

u.visited← true

PebSubseq1UIPWrapper(u)

PebSubseq1UIP(v, i− 1)
for j ← (|u.labels| − 2) downto 1 do

Output u.labels[1], . . . , u.labels[j]
PebSubseq1UIP(v, i− 1)

PebSubseq1UIP(v, i− 1)
end

Algorithm 5.1: PebSeq1UIP, generating branching sequence for pebbling formulas

PebSeq1UIP now adds branching sequences for the targets. Note that for an unsat-
isfiability proof, we only need the sequence corresponding to the first (lowest) target.
However, we process all targets so that this same sequence can also be used when the

85

formula is made satisfiable by deleting enough clauses. The subroutine PebSubseq1UIP

runs on a node v, looking at its ith predecessor u in increasing order by height. No
labels are output if u is the lowest predecessor; the negations of these variables will be
indirectly implied during clause learning. However, it is recursed upon if not previ-
ously visited. This recursive sequence results in learning something close to the clause
labeling this lowest node, but not quite that exact clause. If u is a higher predecessor
(it will be marked as visitedAsHigh), PebSubseq1UIP outputs all but one variables la-
beling u. If u is not a source and has not previously been visited as high, the last label
is output as well, and u recursed upon if necessary. This recursive sequence results in
learning the clause labeling u. Finally, PebSubseq1UIP generates a recursive pattern,
calling the subroutine with the next lower predecessor of v. The precise structure of
this pattern is dictated by the 1UIP learning scheme and fast backtracking used in
zChaff. Its size is exponential in the degree of v with label size as the base.
The Grid Case. It is insightful to look at the simplified version of the sequence gen-
eration algorithm that works only for grid pebbling formulas. This is described below
as Algorithm 5.2, GridPebSeq1UIP. Note that both predecessors of any node are at the
same level for grid pebbling graphs and need not be sorted by height. There are no
nodes labeled with unit clauses and there is exactly one target node t, simplifying the
whole algorithm to a single call to PebSubseq1UIP(t,2) in the notation of Algorithm
5.1. The last for loop of this procedure and the recursive call that follows it are now
redundant. We combine the original wrapper method and the calls to PebSubseq1UIP

with parameters (v, 2) and (v, 1) into a single method GridPebSubseq1UIP with pa-
rameter v.

The resulting branching sequence can actually be generated by a simple depth
first traversal (DFS) of the grid pebbling graph, printing no labels for the nodes on
the rightmost path (including the target node), both labels for internal nodes, and
one arbitrarily chosen label for source nodes. However, this resemblance to DFS is a
somewhat misleading coincidence. The resulting sequence diverges substantially from
DFS order as soon as label size or indegree of some nodes is changed. For the 10 node
depth 4 grid pebbling graph shown in Figure 5.1, the branching sequence generated
by the algorithm is h1, h2, e1, e2, a1, b1, f1, f2, c1. Here, for instance, b1 is generated
after a1 not because it labels the right (second) predecessor of node e but because
it labels the left (first) predecessor of node f . Similarly, f1 and f2 appear after the
subtree rooted at h as left predecessors of node i rather than as right predecessors of
node h.

Example 5.1. To clarify the algorithm for the general case, we describe its execution
on a small example. Let G be the pebbling graph in Figure 5.2. Denote by t the node
labeled (t1 ∨ t2), and likewise for other nodes. Nodes c, d, f and g are at height 1,
nodes a and e at height 2, node b at height 3, and node t at height 4. U = {a, b}. The
edges (a, t) and (b, t) originating from these unit clause labeled nodes are removed,
and t, with no predecessors anymore, is added to the list of sources. We output the

86

Input : Grid pebbling graph G with target node t
Output : Branching sequence for PblG for the 1UIP learning scheme
begin

GridPebSubseq1UIP(t)
end

GridPebSubseq1UIP(node v) begin
if v ∈ G.sources then return

u← v.preds.left
Output u.firstLabel
if !u.visitedAsLeft and u /∈ G.sources then

u.visitedAsLeft← true

Output u.secondLabel
if !u.visited then

u.visited← true

GridPebSubseq1UIP(u)

u← v.preds.right
if !u.visited and u /∈ G.sources then

u.visited← true

GridPebSubseq1UIP(u)

end

Algorithm 5.2: GridPebSeq1UIP, generating branching sequence for grid pebbling
formulas

label of the non-target unit nodes in U in increasing order of height, and recurse on
each of them in order, i.e. we output a1, setting B = (a1), call PebSubseq1UIPWrapper
on a, and then repeat this process for b. This is followed by a recursive call to
PebSubseq1UIPWrapper on the target node t.

The call PebSubseq1UIPWrapper on a in turn invokes PebSubseq1UIP with parame-
ters (a, 2). This sorts the predecessors of a in increasing order of height to, say, d, c,
with d being the lowest predecessor. v is set to a and u is set to the second predeces-
sor c. We output all but the last label of u, i.e. of c, making the current branching
sequence B = (a1, c1). Since u is a source, nothing more needs to be done for it and
we make a recursive call to PebSubseq1UIP with parameters (a, 1). This sets u to d,
which is the lowest predecessor and requires nothing to be done because it is also a
source. This finishes the sequence generation for a, ending at B = (a1, c1). After
processing this part of the sequence, zChaff will have a as a learned clause.

We now output b1, the label of the unit clause b. The call, PebSubseq1UIPWrapper
on b, proceeds similarly, setting predecessor order as (d, f, e), with d as the lowest
predecessor. Procedure PebSubseq1UIP is called first with parameters (b, 3), setting
u to e. This adds all but the last label of e to the branching sequence, making
it B = (a1, c1, b1, e1, e2). Since this is the first time e is being visited as high,

87

a1

b1

(t1 ∨ t2)

(c1 ∨ c2) (d1 ∨ d2) (f1 ∨ f2) (g1 ∨ g2)

(e1 ∨ e2 ∨ e3)

Figure 5.2: A simple pebbling graph to illustrate branch sequence generation

its last label is also added, making B = (a1, c1, b1, e1, e2, e3), and it is recursed
upon with PebSubseq1UIPWrapper(e). This recursion extends the sequence to B =
(a1, c1, b1, e1, e2, e3, f1). After processing this part of B, zChaff will have both a and
(e1 ∨ e2 ∨ e3) as learned clauses. Getting to the second highest predecessor f of b,
which happens to be a source, we simply add another f1 to B. Finally, we get to the
third highest predecessor d of b, which happens to be the lowest as well as a source,
thus requiring nothing to be done. Coming out of the recursion, back to u = f , we
generate the pattern given by the last for loop, which is empty because the label
size of f is only 2. Coming out once more of the recursion to u = e, the for loop
pattern generates e1, f1 and is followed by a call to PebSubseq1UIP with the next lower
predecessor f as the second parameter, which generates f1. This makes the current
sequence B = (a1, c1, b1, e1, e2, e3, f1, f1, e1, f1, f1). After processing this, zChaff will
also have b as a learned clause.

The final call to PebSubseq1UIPWrapper with parameter t doesn’t do anything
because both predecessors of t were removed in the beginning. Since both a and b have
been learned, zChaff will have an immediate contradiction at decision level zero. This
gives us the complete branching sequence B = (a1, c1, b1, e1, e2, e3, f1, f1, e1, f1, f1) for
the pebbling formula PblG.

Complexity of Sequence Generation

Let graph G have n nodes, indegree of non-source nodes between dmin and dmax,
and label size between lmin and lmax. For simplicity of analysis, we will assume that
lmin = lmax = l and dmin = dmax = d (l = d = 2 for a grid graph).

Let us first compute the size of the pebbling formula associated with G. The
running time of PebSeq1UIP and the size of the branching sequence generated will
be given in terms of this size. The number of clauses in the pebbling formula PblG

88

is roughly nld. Taking clause sizes into account, the size of the formula, |PblG|, is
roughly n(l + d)ld. Note that the size of the CNF formula itself grows exponentially
with the indegree and gets worse as label size increases. The best case is when G is
the grid graph, where |PblG| = Θ(n). This explains the degradation in performance of
zChaff, both original and modified, as we move from grid graphs to random graphs (see
section 5.2.3). Since we construct PblSAT

G by deleting exactly one randomly chosen
clause from PblG (see Section 5.1.1), the size |PblSAT

G | of the satisfiable version is also
essentially the same.

Let us now compute the running time of PebSeq1UIP. Initial computation of heights
and predecessor sorting takes time Θ(nd log d). Assuming nu unit clause labeled nodes
and nt target nodes, the remaining node sorting time is Θ(nu log nu +nt log nt). Since
PebSubseq1UIPWrapper is called at most once for each node, the total running time of
PebSeq1UIP is Θ(nd log d+nu log nu +nt log nt +nTwrapper), where Twrapper denotes the
running time of PebSubseq1UIP-Wrapper without taking into account recursive calls
to itself. When nu and nt are much smaller than n, which we will assume as the
typical case, this simplifies to Θ(nd log d + nTwrapper). If T (v, i) denotes the running
time of PebSubseq1UIP(v,i), again without including recursive calls to the wrapper
method, then Twrapper = T (v, d). However, T (v, d) = lT (v, d− 1) + Θ(l), which gives
Twrapper = T (v, d) = Θ(ld+1). Substituting this back, we get that the running time of
PebSeq1UIP is Θ(nld+1), which is about the same as |PblG|.

Finally, we consider the size of the branching sequence generated. Note that
for each node, most of its contribution to the sequence is from the recursive pat-
tern generated near the end of PebSubseq1UIP. Let Q(v, i) denote this contribution.
Q(v, i) = (l− 2)(Q(v, i− 1) + Θ(l)), which gives Q(v, i) = Θ(ld+2). Hence, the size of
the sequence generated is Θ(nld+2), which again is about the same as |PblG|.
Theorem 5.1. Given a pebbling graph G with label size at most l and indegree of non-
source nodes at most d, Algorithm 5.1, PebSeq1UIP, produces a branching sequence σ of
size at most S in time Θ(dS), where S = |PblG| ≈ |PblSAT

G |. Moreover, the sequence
σ is complete for PblG as well as for PblSAT

G under any clause learning algorithm
using fast backtracking and 1UIP learning scheme (such as zChaff).

Proof. The size and running time bounds follow from the previous discussion in this
section. That this sequence is complete can be verified by a simple hand calculation
simulating clause learning with fast backtracking and 1UIP learning scheme.

5.2.2 Solving GTn Formulas

We now consider automatic sequence generation for the ordering formulas introduced
in Section 5.1.2. Since these formulas, like pebbling formulas, also originate in the
proof complexity literature and in fact represent a problem that is structurally simpler
to state and reason about than the pebbling problem, one may wonder what this
section adds to the chapter. The answer lies in two key motivations. First, as we

89

will see, the automatically generated sequence for these formulas, unlike pebbling
formulas, is extremely simple in nature and incomplete as a branching sequence.
Nonetheless, it provides dramatic improvement in performance. Second, there is
reason to believe that pebbling formulas may be easier than the GTn formulas for
resolution type proof systems. We formalize the intuition behind this in the next few
paragraphs.

While pebbling formulas are not so easy to solve by popular SAT solvers, they may
not inherently be too difficult for clause learning algorithms. In fact, even without
any learning, they admit tree-like proofs under a somewhat stronger related proof
system called RES(k) for large enough k as shown by Esteban et al. [50]:

Proposition 5.1 ([50]). PblG has a tree-like RES(k) refutation of size O(|G|), where
k is the maximum width of a clause labeling a node of G. In particular, when G is a
grid graph with n nodes, PblG has a tree-like RES(2) refutation of size O(n).

Here RES(k) denotes the extension of RES defined by Kraj́ıček [75] that allows
resolving, instead of clauses, disjunctions of conjunctions of up to k literals. Recall
that clauses are disjunctions of literals, i.e., RES(1) is simply RES. Atserias and Bonet
[10] discuss how a tree-like RES(k) proof of a formula F can be converted into a not-
too-large tree-like RES proof of a related formula F (k) over a few extra variables.
More precisely, their result and Proposition 5.1 together imply that the addition of
natural extension variables corresponding to k-conjunctions of variables of PblG leads
to a tree-like RES proof of size O(|G| · k) of a related pebbling formulas PblG(k).

For GTn formulas, however, no such short tree-like proofs are known in RES(k)

for any k. Reusing derived clauses (equivalently, learning clauses with DPLL) seems
to be the key to finding short proofs of GTn. This makes them a good candidate
for testing clause learning based SAT solvers. Our experiments indicate that GTn

formulas, despite their simplicity, are quite hard for zChaff with its default parameter
settings. Using a good branching sequence based on the ordering structure underlying
these formulas leads to significant performance gains.

Automatic Sequence Generation: GTnSeq1UIP

Since there is exactly one, well defined, unsatisfiable GT formula for a fixed parameter
n, it is not surprising that the approximate branching sequence given in Figure 5.3 that
we use for it is straightforward. However, the fact that the same branching sequence
works well for the satisfiable version of the GTn formulas, obtained by deleting a
randomly chosen successor clause, is worth noting.

Recall that PebSeq1UIP was a fairly complex algorithm that generated a perfect
branching sequence for randomized pebbling graphs. In contrast, Algorithm 5.3,
GTnSeq1UIP, for generating the branching sequence in Figure 5.3 is nearly trivial.
As remarked earlier, it produces an incomplete sequence (see Definition 4.3) that
nonetheless boosts performance in practice.

90

− x2,1 x3,1 x4,1 . . . xn−1,1

x1,2 − x3,2 x4,2 . . . xn−1,2

x1,3 x2,3 − x4,3 . . . xn−1,3

x1,4 x2,4 x3,4 − . . . xn−1,4
...
x1,n x2,n x3,n x4,n . . . −
x1,n x2,n x3,n x4,n . . . xn−1,n

Figure 5.3: Approximate branching sequence for GTn formulas. The sequence goes
top-down, and left to right within each row. ‘−’ corresponds to a non-existent variable
xi,i.

Input : A natural number n
Output : Branching sequence for GTn for the 1UIP learning scheme
begin

for i = 1 to n do

for j = 1 to (n− 1) do
if i 6= j then Output xj,i

end

Algorithm 5.3: GTnSeq1UIP, generating branching sequence for GTn formulas

5.2.3 Experimental Results

We conducted experiments on a Linux machine with a 1600 MHz AMD Athelon
processor, 256 KB cache and 1024 MB RAM. Time limit was set to 6 hours and
memory limit to 512 MB; the program was set to abort as soon as either of these
was exceeded. We took the base code of zChaff [88], version 2001.6.15, and modified
it to incorporate a branching sequence given as part of the input, along with a CNF
formula. When an incomplete branching sequence is specified that gets exhausted
before a satisfying assignment is found or the formula is proved to be unsatisfiable,
the code reverts to the default variable selection scheme VSIDS of zChaff (cf. Section
2.3.2).

For consistency, we analyzed the performance with random restarts turned off. For
all other parameters, we used the default values of zChaff. For all formulas, results are
reported for DPLL (zChaff with clause learning disabled), for CL (unmodified zChaff),
and for CL with a specified branching sequence (modified zChaff).

Tables 5.1 and 5.2 show the performance on grid pebbling and randomized peb-
bling formulas, respectively, using the branching sequence generated by Algorithm
5.1, PebSeq1UIP. Table 5.3 shows the performance on the GTn formulas using the
branching sequence generated by Algorithm 5.3, GTnSeq1UIP.

91

Table 5.1: zChaff on grid pebbling formulas. ‡ denotes out of memory.

Grid formula Runtime in seconds

Solver Layers Variables Unsatisfiable Satisfiable

5 30 0.24 0.12
DPLL 6 42 110 0.02

7 56 > 6 hrs 0.07
8 72 > 6 hrs > 6 hrs

CL 20 420 0.12 0.05
(unmodified 40 1,640 59 36
zChaff) 65 4,290 ‡ 47

70 4,970 ‡ ‡
CL + 100 10,100 0.59 0.62

branching 500 250,500 254 288
sequence 1,000 1,001,000 4,251 5,335

1,500 2,551,500 21,097 ‡

Table 5.2: zChaff on randomized pebbling formulas with distinct labels, indegree ≤ 5,
and disjunction label size ≤ 6. ‡ denotes out of memory.

Randomized pebbling formula Runtime in seconds

Solver Nodes Variables Clauses Unsatisfiable Satisfiable

9 33 300 0.00 0.00
DPLL 10 29 228 0.58 0.00

10 48 604 > 6 hrs > 6 hrs

CL 50 154 3,266 0.91 0.03
(unmodified 87 296 9,850 ‡ 65
zChaff) 109 354 11,106 584 0.78

110 354 18,467 ‡ ‡
CL + 110 354 18,467 0.28 0.29

branching 4,427 14,374 530,224 48 49
sequence 7,792 25,105 944,846 181 > 6 hrs

13,324 43,254 1,730,952 669 249

For both grid and randomized pebbling formulas, the size of problems that can
be solved increases substantially as we move down the respective tables. Note that
randomized pebbling graphs typically have a more complex structure than grid peb-
bling graphs. In addition, higher indegree and larger disjunction labels make both
the CNF formula size as well as the required branching sequence larger. This explains

92

Table 5.3: zChaff on GTn formulas. ‡ denotes out of memory.

GTn formula Runtime in seconds

Solver n Variables Clauses Unsatisfiable Satisfiable

8 62 372 1.05 0.34
DPLL 9 79 549 48.2 0.82

10 98 775 3395 248
11 119 1,056 > 6 hrs 743

CL 10 98 775 0.20 0.00
(unmodified 13 167 1,807 93.7 7.14
zChaff) 15 223 2,850 1492 0.01

18 322 5,067 ‡ ‡
CL + 18 322 5,067 0.52 0.13

branching 27 727 17,928 701 0.17
sequence 35 1,223 39,900 3.6 0.15

45 2,023 86,175 ‡ 0.81

the difference between the performance of zChaff, both original and modified, on grid
and randomized pebbling instances. For all instances considered, the time taken to
generate the branching sequence from the input graph was significantly less than that
for generating the pebbling formula itself.

For the GTn formulas, since the branching used was incomplete, the solver had to
revert back to zChaff’s VSIDS heuristic to choose variables to branch on after using
the given branching sequence as a guide for the first few decisions. Nevertheless,
the sizes of problems that could be handled increased significantly. The satisfiable
versions proved to be relatively easier, with or without a specified branching sequence.

5.3 Discussion

This chapter has developed the idea of using a high level description of a satisfiability
problem for generating auxiliary information that can guide a SAT algorithm trying
to solve it. Our experimental results show a clear exponential improvement in per-
formance when such information is used to solve both grid and randomized pebbling
problems, as well as the GTn ordering problems.

Although somewhat artificial, these problems are interesting in their own right
and provide hard instances for some of the best existing SAT solvers like zChaff.
Pebbling graphs are structurally similar to the layered graphs induced naturally by
problems involving unwinding of state space over time, such as CNF formulations of
planning by Kautz and Selman [70] and bounded model checking by Biere et al. [25].
This bolsters our belief that high level structure can be recovered and exploited to

93

make clause learning more efficient.
In practice, a solver must employ good branching heuristics as well as implement

a powerful proof system. Our result that pebbling formulas have short CL proofs
depends critically upon the solver choosing a branching sequence that solves the
formula in a “bottom-up” fashion, so that the learned clauses have maximal reuse.
Nevertheless, we were able to automatically generate such sequences for grid and
randomized pebbling formulas. For the GTn formulas, we used a different approach
and instead provided a very simple but imperfect automatically generated branching
sequence that boosted performance significantly in practice.

Our approach of exploiting high level problem description to generate auxiliary
information for SAT solvers, of course, requires the knowledge of this high level de-
scription to begin with. The standard CNF benchmarks such as those in the online
collection at SATLIB [63], unfortunately, do not come with such a description and
thus do not allow an extended evaluation of our technique on several interesting
formulas routinely used by researchers. We regard this not as a drawback of our
approach but instead as an easily avoidable limitation of the currently prevalent no-
tion of SAT solvers as blackboxes taking only a pure CNF formula as input. There
is no good reason for the high level problem description to be unavailable to gener-
ate auxiliary structural information since CNF formulas for practically all interesting
problems, from theory and practice, are created from a more abstract specification.
We continue to build upon this philosophy in the next chapter.

