
Short XORs for Model Counting:

From Theory to Practice

Carla P. Gomes1, Joerg Hoffmann2, Ashish Sabharwal1, and Bart Selman1

1 Dept. of Computer Science, Cornell University, Ithaca NY 14853-7501, U.S.A.
{gomes,sabhar,selman}@cs.cornell.edu ?

2 University of Innsbruck, Technikerstraße 21a, 6020 Innsbruck, Austria
joerg.hoffmann@deri.org

Abstract. A promising approach for model counting was recently in-
troduced, which in theory requires the use of large random xor or parity
constraints to obtain near-exact counts of solutions to Boolean formu-
las. In practice, however, short xor constraints are preferred as they
allow better constraint propagation in SAT solvers. We narrow this gap
between theory and practice by presenting experimental evidence that
for structured problem domains, very short xor constraints can lead to
probabilistic variance as low as large xor constraints, and thus provide
the same correctness guarantees. We initiate an understanding of this
phenomenon by relating it to structural properties of synthetic instances.

1 Introduction

The dramatic advances in Boolean satisfiability or SAT technology have led
to the exploration of new possible applications of SAT solvers. Some of the
most exciting such applications go beyond pure satisfiability testing. For exam-
ple, they involve random sampling from the set of satisfying truth assignments
and counting the total number of satisfying assignments. These techniques are
particularly promising in the context of applications to probabilistic reasoning.
Computationally speaking, counting and sampling are considerably harder than
satisfiability testing per se. We recently introduced an approach to counting [1]
and sampling [2] that relied on adding xor or parity constraints [3] (converted
to the usual CNF form) to the original problem instance. We showed how one
can then use standard state-of-the-art SAT solvers running on the augmented
problem instance to compute bounds on the model count of the original problem
instance, and to sample near-uniformly from the solution space.

This xor framework provides probabilistic correctness guarantees for xor

constraints of any length. However, the best results are obtained by using “full-
length” xors, i.e., xors containing half of the variables of the formula. In our
experiments with available SAT solvers, we consistently observed that reason-
ing with long xors is computationally much more expensive than reasoning
with short xors. This appears to be because long xor constraints hamper unit
propagation on which SAT solvers rely heavily. Therefore, for the practical ap-
plicability of our xor techniques, a key question is whether relatively short xor

? Supported by IISI, Cornell University, AFOSR grant F49620-01-1-0076.

constraints can already provide much of the power of full-length xors, when
considering purely the quality of model count bounds and solution samples.

Fortunately, this is the case, as we demonstrate in this paper. In particular,
we show that while random 1-xors (single literals) or random 2-xors (2 variable
xors) may lead to rather weak bounds on solution counts or sample quality due
to large variance, the situation improves dramatically when one considers only
slightly longer xors. In fact, good quality bounds and samples can often be
obtained with xors of 5 to 10 variables, even when the original formula has
several hundred variables. To demonstrate this, we systematically consider the
variance — which directly determines the bound quality — of solution counts
obtained in repeated runs with xors of different lengths. We show that the
variance decreases drastically beyond length 1 or 2 xors. We first demonstrate
this phenomenon on a range of practical problem instances, and then provide
further insights into the trade-offs between solution space structure and the
required length of xors by considering a class of synthetic problem instances.

2 Background

An xor constraint D over a set of Boolean variables V is the logical “xor” or
parity of a subset of V ∪ {1}; a truth assignment for V satisfies D iff it sets an
odd number of elements in D to true. The value 1 allows us to express even
parity. For instance, D = {a, b, c, 1} is true as an xor constraint when an even
number of a, b, c are true. Our focus will be on formulas which are a logical
conjunction of a formula in Conjunctive Normal Form (CNF) and some xor

constraints. The latter are translated into CNF using additional variables.
xor-based model counting and sampling methods [1, 2] work as follows.

Given a formula F , one adds (i.e., conjoins) an appropriate number s of ran-
domly chosen xor constraints to F to create a new formula F ′. F ′, which in
expectation can be shown to have a factor 2s fewer satisfying assignments than
F , is then fed to either an off-the-shelf complete SAT solver or to an exact model
counter. When large xors are used, one can use certain probabilistic indepen-
dence conditions and transform the result into (a bound on) the model count of
F or a random solution sample for F , with guarantees. The length of xors influ-
ences the independence assumption and thus affects the quality of the process;
formally, with “short” xors, only a lower bound model count can be guaranteed.

For one of our analytic computations for the “ideal” case of large xors,
we will use random variables which are the sum of indicator random variables:
Y =

∑

σ
Yσ, Yσ ∈ {0, 1}. Linearity of expectation says that E [Y] =

∑

σ
E [Yσ].

When various Yσ are pairwise independent, i.e., knowing Yσ2
tells us nothing

about Yσ1
, even variance behaves linearly: Var [Y] =

∑

σ
Var [Yσ].

3 The Setup for Empirical Evaluation

In all our experiments, we vary a parameter k, 1 ≤ k ≤ n/2, and study the
standard deviation of the quantity X = 2s×residualSolutionCount after a certain
number s of random xors of length k are added to a formula F . The expected
value of X is known to be the true model count of F . When the probabilistic

variance of X is small (specifically, when Var [X] ≤ E [X]), algorithm MBound [1]
is able to provide much more than lower bounds: it can compute near-exact
model counts by computing both a lower bound and an upper bound. This
condition was formally proved to hold when k = n/2. In this empirical study,
we define k ∈ {1, 2, . . . , n/2} to be (empirically) good or sufficient for F when
Vars [X] ≤ E [X] even for xors of length k, where Vars [X] denotes the sample
standard deviation (s.s.d. for short) of X obtained experimentally.

Since formulas vary in the number of variables and the number of solutions,
one must normalize for this when comparing the behavior of xors on differ-
ent formulas in the same plot. We do so by two means: (1) we plot the s.s.d.
of the normalized solution counts, X ′ = X/trueCount , and (2) the number of
xors we use is fewer than log2 trueCount by a constant amount. The first condi-
tion guarantees consistent expected values, namely, E [X ′] = 1 for all formulas.
The second condition, as we will see shortly, ensures that as k approaches n/2,
s.s.d. [X] approaches the same ideal value for all formulas under consideration.

The ideal curve in all our plots corresponds to the standard deviation of the
normalized obtained solution count, X ′, when full-length xors are used. Note
that this is really a single ideal value to which all s.s.d. plots should converge as
the length k increases. We plot it as a horizontal line to easily visually infer for
what k are xors of length k already good for the formula under consideration.

We compute the ideal curve analytically as follows. For concreteness, let Y
denote the residual model count obtained after adding s random xors of length
n/2 to a formula F with 2s

∗

solutions. In the notation above, X = 2s × Y , so
that Var [X] = 22s×Var [Y]. Following our earlier analysis [1], we can write Y =
∑

σ
Yσ, where the summation is over all solutions σ of F and Yσ is a 0-1 random

variable indicating whether σ is present in the residual solutions. As argued in
that analysis, random variables Yσ are pairwise independent. Also, E [Yσ] = 2−s

and Var [Yσ] = 2−s(1−2−s) ≈ 2−s. Because of pairwise-independence, Var [Y] =
∑

σ
Var [Yσ] = 2s

∗

−s(1 − 2−s) ≈ 2s
∗

−s. It follows that Var [X] ≈ 2s
∗+s. For

the variance of the normalized model count, we get Var [X ′] = Var [X] /22s
∗ ≈

2−(s∗

−s) = 2−remainingXors , where remainingXors is defined as (s∗ − s), i.e.,
the amount by which the number of xors added was fewer than the number
needed to get down to a single solution. The corresponding s.s.d. is s.s.d. [X ′] =√

2−(s∗
−s), ignoring the relatively tiny (1 − 2−s) term.

The ideal curve depicting the behavior of xors of length n/2 is therefore
shown as the horizontal line s.s.d. [X ′] =

√

1/2s∗
−s. We note that when s = s∗,

so that a single solution is expected to survive, s.s.d. [X ′] becomes 1. The quantity
s∗ − s, which plays an important role in our experiments, will be referred to as
the number of remaining xors. As mentioned above, all formulas plotted in a
single figure for comparison will have the same number of remaining xors, and
will therefore converge to the same ideal value as the length of xors increases.3

3 One could alternatively consider plotting various formulas while keeping the number
of xors fixed, rather than keeping the number of remaining xors fixed. As the above
calculation shows, their s.s.d. plots will then eventually converge to different values,
making formula-to-formula comparison not very meaningful.

4 Experimental Results and Discussion

For each formula F on n variables that we consider, we will vary a param-
eter k within a sub-range of {1, 2, . . . , n/2} on the horizontal axis, and plot
on the vertical axis the sample standard deviation of the normalized quantity
X ′ = (2s × residualSolutionCount)/totalSolns after a certain number s of ran-
dom xors of length k are added to F . For each s.s.d. computation (i.e., for each
data point in the plots to follow), we used 1,000 samples in most cases to get
a reasonable estimate of the true standard deviation for that length, and up
to 50,000 samples in some cases for very short xors. The number of residual
solutions was computed using the exact model counter Relsat [4].

We present results on formulas from four domains: Latin squares, logistics
planning, circuit synthesis, and random formulas (Figs. 1-4). In each case, there
is a dramatic drop in the s.s.d. as the length of xors is increased even slightly.

The Latin square formulas considered have 100 to 150 variables each.
The most constrained formula, ls7R30, has less than 25 solutions, while the
least constrained one, ls7R36, has 214 solutions. These formulas theoretically
require xors of length 50-75 for near-exact model counting with MBound. We
performed experiments with 3 remaining xors. Interestingly, we see from Fig. 1
that at lengths 6 to 8, the s.s.d. already drops to the ideal value. The logistics

planning problem here has 352 variables and roughly 219 solutions. We again
see from Fig. 2 that the variance drops sharply till xor length 25. At lengths 40
to 50, we are already very close to the ideal behavior. The circuit synthesis

formulas are for finding minimal size circuits for a given Boolean function. We
consider the instance 2bitmax 6 with 252 variables and ideal xor length 126.
This formulas has roughly 297 solutions and we used 87 xors. Fig. 3 shows that
while the s.s.d. is fairly high for very short xors, it drops dramatically as the
length increases to 7, and gets very close to the ideal value at around length 10.

Our random 3-CNF formulas are selected from the under-constrained re-
gion where model counting is known to be computationally hard [4], i.e., with
clause-to-variable ratios significantly below the satisfiability threshold of ≈ 4.26.
We consider four 100 variable formulas at ratios 3.3, 3.8, 3.96, and 4.2, respec-
tively. The number of solutions ranges from 232 to 214. The plots in Fig. 4
indicate that random formulas in general show much higher variance than more
structured, real-world formulas considered earlier. In particular, the ratio 4.2
formula achieves ideal behavior at xor length more than 40. On the positive
side, as these formulas become less and less constrained, shorter and shorter
xors surprisingly begin to be sufficient. E.g., the ratio 3.3 formula works well
even at length 15. This trend suggests that random formulas interestingly be-
come more suitable for shorter xors as we go into the highly under-constrained
region, which is traditionally seen as the harder region for model counting.

In order to better understand the behavior of xor constraints of various
lengths, we explore hand-crafted families of formulas which will help us relate
xors to an intrinsic structural feature of formulas, namely their backbone: the
set of variables each of which takes the same value in every solution to the
formula. We first consider very simple fixed-backbone formulas string-n-t,

 0

 1

 2

 3

 4

 5

 0 5 10 15 20

St
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
ize

d
m

od
el

 c
ou

nt
)

Length of XOR constraints

ls7R30 to ls7R36: num_xors = log(num_solns) - 3

"ls7R30med-ssd2n.data"
"ls7R31med-ssd3n.data"
"ls7R32med-ssd4n.data"
"ls7R33med-ssd6n.data"
"ls7R34med-ssd7n.data"
"ls7R35med-ssd9n.data"

"ls7R36med-ssd11n.data"
Ideal case: sqrt(1 / 2^3)

Fig. 1. Latin square formulas of order 7
(100-150 variables)

 0

 5

 10

 15

 20

 0 20 40 60 80 100

St
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
ize

d
m

od
el

 c
ou

nt
)

Length of XOR constraints

Logistics formula: num_xors = log(num_solns) - 9

"log.c.reduced.upd-ssd10n-both.data"
Ideal case: sqrt(1 / 2^9)

Fig. 2. A logistics planning problem (352
variables after simplification)

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10

St
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
ize

d
m

od
el

 c
ou

nt
)

Length of XOR constraints

2bitmax_6 formula: num_xors = log(num_solns) - 10

"2bitmax_6-ssd87n-both.data"
Ideal case: sqrt(1 / 2^10)

Fig. 3. A circuit synthesis problem (252
variables)

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25 30 35 40 45 50

St
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
ize

d
m

od
el

 c
ou

nt
)

Length of XOR constraints

Random formulas with 100 vars: num_xors = log(num_solns) - 7

"wff-3-100-330-ssd25n.data"
"wff-3-100-380-ssd15n.data"
"wff-3-100-396-ssd11n.data"
"wff-3-100-420-ssd7n.data"

Ideal case: sqrt(1 / 2^7)

Fig. 4. Random formulas at ratios 3.3,
3.8, 3.96, and 4.2 (100 variables)

with n variables and backbone size n − t. The first t variables of the formula
are completely unconstrained, while the last n − t variables are fixed to 1. This
formula has exactly 2t solutions, which we will denote by: 1n−t ∗t.

Fig. 5 plots the s.s.d. for these formulas with n = 50 variables, t = 20, 30, 40,
or 49 unconstrained variables, and the corresponding backbone size 30, 20, 10, or
1. We see that formulas with larger backbone size clearly require larger xors.
This is explained qualitatively by the fact that randomly chosen xors become
more likely to only involve backbone variables as the backbone size increases.
When an xor constraint only involves backbone variables, we encounter un-
wanted behavior: the constraint is either satisfied by all solutions or falsified by
all solutions. While this still cuts down the solution space in half on average,
there is high variance in the residual count. On the other hand, with small back-
bones, randomly chosen xors are very likely to involve at least one non-backbone
variable (in this case, one unconstrained variable). When this happens, some of
the solutions satisfy the constraint and others don’t. This still cuts down the
solution space in half on average, but now with lower variance.

The interleaved-backbones formulas we consider next attempt to replace
a large global backbone for all solutions into many overlapping (and conflicting)
local backbones for solution clusters. These local backbones are interleaved to-

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12 14

St
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
ize

d
m

od
el

 c
ou

nt
)

Length of XOR constraints

String formulas: num_xors = log(num_solns) - 10

"string-50-20-ssd10n-both.data"
"string-50-30-ssd20n-both.data"
"string-50-40-ssd30n-both.data"
"string-50-49-ssd39n-both.data"

Ideal case: sqrt(1 / 2^10)

Fig. 5. Fixed-backbones formulas (50
variables)

 0

 2

 4

 6

 8

 10

 0 5 10 15 20

St
an

da
rd

 d
ev

ia
tio

n
(n

or
m

al
ize

d
m

od
el

 c
ou

nt
)

Length of XOR constraints

Block formulas: num_xors = log(num_solns) - 10

"string-50-20-ssd10n.data"
"block-50-3-10-20-ssd13n.data"
"block-50-6-5-20-ssd16n.data"

"block-50-10-3-20-ssd20n.data"
Ideal case: sqrt(1 / 2^10)

Fig. 6. Interleaved-backbones formulas
(50 variables)

gether, allowing all possible combinations of their constituent “blocks,” thereby
giving the xors more freedom. These formulas are block-n-m-k-t, constructed
as follows. There are n variables divided up into m blocks of size k each, and t
unconstrained variables (n = mk + t). Each block is constrained to have all its
variables take the same value. The blocks themselves are, however, independent
of each other. We can represent this formula by its solution space: ak

1 ak
2 . . . ak

m
∗t,

where each ai ∈ {0, 1}. Recall that the formula, string-n-t, has exactly 2t solu-
tions. The number of solutions of block-n-m-k-t is 2t+m, which increases as the
number of blocks in the backbone split is increased, allowing more freedom.

Fig. 6 gives the results for 50 variable block formulas with 30 unconstrained
variables and the rest split into 3, 6, and 10 blocks. We see that as the backbone
is split into more and more blocks, the variance decreases. In particular, the
variance is the highest when there are no blocks (the string formula at the top)
and the lowest when the backbone is split into 10 blocks.

5 Concluding Remarks
xor-streamlining is a promising approach for model counting and sampling. We
provided evidence that relatively short xors can be surprisingly powerful on
practical problem instances. While large global backbones are bad for xors, our
synthetic formulas based on interleaved backbones provide intuitive explanation
that solution spaces consisting of many clusters with large local backbones are
still fine. We believe that this latter structure is more likely to be present in real-
world formulas than large global backbones or uniformly distributed solutions.

References

1. Gomes, C.P., Sabharwal, A., Selman, B.: Model counting: A new strategy for ob-
taining good bounds. In: 21th AAAI, Boston, MA (2006) 54–61

2. Gomes, C.P., Sabharwal, A., Selman, B.: Near-uniform sampling of combinatorial
spaces using XOR constraints. In: 20th NIPS, Vancouver, B.C. (2006)

3. Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theo-
retical Comput. Sci. 47(3) (1986) 85–93

4. Bayardo Jr., R.J., Pehoushek, J.D.: Counting models using connected components.
In: 17th AAAI, Austin, TX (2000) 157–162

