
Floodlight Illumination of Infinite Wedges

Matthew Cary, Atri Rudra

Computer Sci. and Engr., Univ. of Washington, Seattle, WA 98195-2350, U.S.A.

Ashish Sabharwal ∗,1

Dept. of Computer Science, Cornell University, Ithaca, NY 14853-7501, U.S.A.

Erik Vee 1

Yahoo! Research, Santa Clara, CA 95054, U.S.A.

Abstract

The floodlight illumination problem asks whether there exists a one-to-one place-
ment of n floodlights illuminating infinite wedges of angles α1, . . . , αn at n sites
p1, . . . , pn in a plane such that a given infinite wedge W of angle θ located at point
q is completely illuminated by the floodlights. We prove that this problem is NP-
hard, closing an open problem posed by Demaine and O’Rourke (CCCG 2001). In
fact, we show that the problem is NP-complete even when αi = α for all 1 ≤ i ≤ n
(the uniform case) and θ =

∑n
i=1 αi (the tight case).

Key words: illumination, art gallery problem, floodlights, NP-completeness

1 Introduction

Illumination problems generalize the well-known art gallery problem (see, e.g.,
[12, 13]). The task is to mount lights at various sites so that a given region,
typically a non-convex polygon, is completely illuminated. The sites can be
fixed in advance or not. The region may need to be illuminated from outside

∗ Corresponding author.
Email addresses: cary@cs.washington.edu (Matthew Cary),

atri@cs.washington.edu (Atri Rudra), sabhar@cs.cornell.edu (Ashish
Sabharwal), erikvee@yahoo.com (Erik Vee).
1 This work was done while the authors were at the University of Washington.

Preprint submitted to Elsevier 15 June 2008



(like a soccer field) or from inside (like an indoor gallery). The lights may
behave like ideal light bulbs, illuminating all directions equally, or like flood-
lights, illuminating a certain angle in a certain direction. We use this latter
model of floodlights in this paper. This model is quite natural and captures
scenarios involving guards or security cameras with restricted angle of vision.
Illumination algorithms using floodlights have focused in the past on illumi-
nating the interior of orthogonal polygons [8, 1] and general polygons with
restrictions on the floodlights used [2, 9, 7, 17, 14].There has also been work
on the stage illumination problem where one tries to illuminate lines rather
than polygons [5].

The problem of illumination of infinite wedges by floodlights was introduced
by Bose et al. [3]. We refer to Figure 1 for the basic setup and definitions.
An infinite wedge W ⊆ R2 is any one of the four regions into which R2 is
partitioned by two intersecting lines. The boundaries of W are sometimes
referred to as the rays of W . A generalized wedge is any unbounded, convex,
polygonal subset of W (even W itself) whose infinite edges are the infinite
sub-rays of W . For the floodlight illumination problem, given n sites and n
floodlights, the task is to mount these floodlights, one at each site, and orient
them so that a given generalized wedge is completely illuminated. Formally,

Definition 1. The Floodlight Illumination Problem:
Instance: Sites p1, . . . , pn in R2, angles α1, . . . , αn > 0, and a generalized wedge
W of angle θ.
Question: Viewing the angles as spans of floodlights, is there an assignment of
angles to sites along with angle orientations, that completely illuminates W?

p1

Floodlight locations
p2

Location bounding set

Generalized wedge W Reverse wedge W r

Upper boundary wu

Wedge angle

Lower boundary w`

Fig. 1. Basic definitions. W.l.o.g. the axis of W always points along the negative
x-axis in R2.

Let [n] denote the set {1, 2, . . . , n}. A couple of natural restrictions of the
floodlight illumination problem are the uniform case where αi = α for all
i ∈ [n], and the tight case where

∑n
i=1 αi = θ. There is clearly no solution

to the problem when
∑n

i=1 αi < θ. In general, a solution can be described

2



by a mapping of floodlights to sites along with an angle of orientation for
each floodlight. Moreover, in the tight case, every solution can alternatively
be described by two permutations σ and τ of [n], as observed by Steiger and
Streinu [15]. Here σ is an ordering of the floodlights and pτ(i) is the site at which
floodlight of angle ασ(i) is mounted. Floodlight orientations in this solution are
inferred from σ and τ as follows. First ασ(1) is mounted at position pτ(1) and
oriented so that its upper ray is parallel to the upper boundary wu of W , and
then, for 2 ≤ i ≤ n, ασ(i) is mounted at position pτ(i) and oriented so that
its upper ray is parallel to the lower ray of ασ(i−1). The variant of the tight
floodlight illumination problem where σ is fixed in advance will be called the
restricted case. Informally, this says that for algorithmic purposes, the order
in which floodlights are mounted is fixed in advance. When talking about the
restricted case, we will think of σ as the identity permutation. Observe that
a tight and uniform problem is also effectively restricted because all choices
of σ are equivalent. Our results show that in general, for every choice of σ,
computing τ is NP-complete.

Because of hardness of verification issues surrounding non-algebraic numbers,
it is not clear whether the general problem is in the class NP. In fact, it is not
obvious that it even has an exponential time solution. Nonetheless, Steiger
and Streinu [15] proved that it can indeed be solved in exponential time by
formulating it as a bounded quantifier expression in Tarski’s algebra [16] and
using the result of Grigor’ev [11] on the complexity of deciding the truth value
of such expressions. They also proved that the restricted floodlight illumination
problem is the dual of a certain monotone matching problem with lines and
slabs. We will use this latter problem to provide an NP-hardness reduction.

The problem in the tight case does not have complications with non-algebraic
numbers because the solution, as mentioned earlier, can be expressed as two
permutations on [n]. The tight case of the problem is obviously in NP. However,
the exact complexity of this problem has been unknown [6]. We resolve this
open question by showing the following.

Theorem 2. Floodlight Illumination is NP-hard. The tight, restricted,
and uniform versions of the problem are NP-complete.

This is an immediate consequence of the discussion of duality in Section 2.2
and our NP-completeness result for a uniform version of the monotone match-
ing problem (Theorem 15). We will prove NP-hardness by a reduction from the
propositional satisfiability problem 3-Sat to the monotone matching problem.
This reduction, which forms the main technical contribution of this paper,
involves several kinds of gadgets put together somewhat delicately in order to
capture the satisfiability problem.

There are several natural notions of approximation for the floodlight illumina-

3



tion problem. We consider two of these, a finite-region approximation where
one illuminates all but a small finite region of W , and a finite-angle approxi-
mation where one illuminates all but an infinite wedge of a small finite angle
within W . We prove the following as an immediate consequence of Lemmas 7
and 10.

Theorem 3. For the tight floodlight illumination problem, computing a finite-
region approximation is NP-hard, whereas for any ε > 0, an ε-angle approxi-
mation can be constructed in polynomial time.

The rest of the paper is organized as follows. In Section 2 we describe the
dual monotone matching problem. As a warm-up, in Section 3 we make some
comments on algorithms for illumination and discuss two notions of approxi-
mations. Finally, in Section 4 we discuss in detail our proof of the NP-hardness
of the floodlight illumination problem by reducing 3-Sat to the dual problem
of monotone matching.

2 Monotone Matching: A Recapitulation of the Duality

In this section, we formally define the monotone matching problem and re-
capitulate its duality with respect to the restricted floodlight illumination
problem.

2.1 Monotone Matching

Suppose we are given n non-vertical lines in the plane R2, n + 1 vertical lines
defining n finite width vertical slabs, and two points, one on the leftmost ver-
tical line and one on the rightmost. Call this an n-arrangement of lines, slabs,
and points and denote it by (L, S, λ, ρ) where L ≡ {(m1, c1), . . . , (mn, cn)} is
the set of lines y = mix + ci with mi, ci ∈ R for i ∈ [n], S ≡ {s1, . . . , sn+1}
is the set of vertical lines x = sj with sj ∈ R for j ∈ [n] forming slabs, and
λ and ρ are the two special points in R2 on the vertical lines x = s1 and
x = sn+1, respectively. The intersection of any non-vertical line ` with a slab
s will be referred to as the segment of ` spanning s. We will think of slabs and
segments towards the left-hand-side (i.e., the negative x-axis) as appearing
“before” or “previous” to those towards the right-hand-side. Similarly, points
and objects in R2 with larger y-coordinates will be thought of as “above” those
with smaller y-coordinates.

A monotone matching in (L, S, λ, ρ) is a bijection between the lines and slabs,
inducing a set of n line segments, each of which is a portion of a unique line

4



and spans a unique slab, such that the following holds: (1) the left endpoint
of the first segment is at or above λ, (2) the left endpoint of each subsequent
segment is at or above the right endpoint of the segment in the previous slab,
and (3) ρ is at or above the right endpoint of the last segment.

Definition 4. The Monotone Matching Problem [15]:
Instance: An n-arrangement (L, S, λ, ρ) of lines, slabs, and points in R2.
Question: Does this arrangement contain a monotone matching?

Analogous to the floodlight illumination case, define the specialized uniform
version Uniform Monotone Matching to be the problem where all slabs
have the same width. The key technical contribution of this paper is a proof
that this variant is NP-complete (see Section 4). By the duality argument we
will discuss shortly, this implies the hardness of the floodlight illumination
problem as well, which is our main focus.

2.2 Duality Between Floodlight Illumination and Monotone Matching

The restricted floodlight problem can be related to the monotone matching
problem through duality [15]. The dual of a point p with coordinates (a, b)
is the line Tp with equation y = ax + b; the dual of a line ` with equation
y = mx+ c is the point T` with coordinates (−m, c). It is well known that this
dual transformation preserves incidence and height ordering; i.e., if a point p
intersects a line ` then their duals Tp and T` also intersect, and if p is above `
then Tp is above T`.

We now describe how any restricted floodlight illumination problem can be
converted to its dual monotone matching problem (L, S, λ, ρ). Let us first fix
some notation (see Figure 1 for an illustration). We will use W to denote
the wedge under consideration. The lower and upper boundaries of W will
be denoted by wl and wu, respectively. We will assume w.l.o.g. that the axis
of W points towards the negative x-axis in the plane. Note that this implies
that the lines corresponding to wl and wu have positive and negative slopes,
respectively. Finally, the angle subtended at the apex of W will be called the
wedge angle, and the reverse wedge will be denoted by W r.

The duals of the wedge boundaries wl and wu are the points λ and ρ; as wl has
larger slope in the orientation of the figure, its dual λ has smaller x coordinate.
The points that form the vertical line containing λ are the duals of the lines
that are parallel to wl. The vertical strip between λ and ρ corresponds to
the wedge angle; the larger the wedge angle, the wider the strip. The line q
that connects λ and ρ is the dual of the point at which wl and wu intersect,
forming the apex of the wedge. The segment of q between λ and ρ corresponds
to the lines with slope less than wl and greater than wu that have common

5



intersection with wl and wu; this is exactly the set of lines that lie within
W ∪W r.

Each site pi for i ∈ [n] corresponds to a line hi which together make up the
set of lines L. As we are in the restricted version of the problem, the angle of
the first floodlight can be assumed w.l.o.g. to be α1. From our discussion in
Section 1, the tightness of the problem implies that the first floodlight must
be oriented so that its upper ray is parallel to wu. This floodlight corresponds
in the dual to a vertical slab S1 beginning at ρ and extending to the left a
width proportional to α1 (if S1 extends from x = s1 to x = s2, then α =
tan−1 s2 − tan−1 s1). The next floodlight corresponds to a slab vertical S2

extending to the left of S1, continuing to the final floodlight which is a vertical
slab Sn ending at λ.

A solution to the restricted problem is an assignment of sites to floodlights.
In the dual this is a 1-1 assignment of lines hi to slabs Sj for i, j ∈ [n]. The
illumination wedge of the first floodlight must overlap wu, which corresponds
to the right endpoint of the segment of the line h1

i assigned to s1 being at
or above ρ. Continuing, the right endpoint of the segment associated with S2

must start at or above the left endpoint of the segment of S1, and so on, until
the left endpoint of the segment at Sn is below λ.

If we flip the dual problem from left to right, in deference to those of us
who read from left to right, we see that we have a solution-preserving dual-
ity between the restricted floodlight illumination problem and the monotone
matching problem with lines. In Section 4, we will restrict our attention to
proving that the monotone matching problem is difficult to solve.

Note that the unrestricted tight illumination problem corresponds to an ex-
tended matching problem where the widths of slabs are given and must be
arranged in a partition of the slab between λ and ρ before a matching of seg-
ments to slabs is found. The uniform illumination problem corresponds to the
uniform matching problem, where the slabs are all of the same width, making,
in particular, their order immaterial.

3 Comments on Illumination Algorithms

We begin this section by describing some relatively simple properties of the
floodlight illumination problem, and then discuss finite-angle approximations.
The reader interested mostly in the NP-hardness reduction may choose to skip
this section and jump directly to Section 4.

We start with the following definition of approximation for the floodlight illu-

6



mination problem.

Definition 5. Let F be an illumination of a wedge W . F is a finite-region
approximation if it illuminates W \ S, where S ⊆ R2 is a finite region.

Note that floodlight illumination on a generalized wedge is a special case of
a finite-region approximation. Our proof of Theorem 2 will show that the
floodlight illumination problem on a wedge is NP-hard. We now prove that
at least in the tight case, computing a finite-region approximation is not any
easier than computing an exact illumination of a wedge. Thus, computing a
finite-region approximation to a floodlight illumination in the tight case is also
NP-hard.

The following lemma describes what the shape of an illuminated region might
be in the tight case.

Lemma 6. Suppose the sum of the angles of n floodlights is α. If they illumi-
nate a wedge W of angle α, then the overall illuminated region is of the form
W ′ ∪ S, where W ′ ⊇ W is a wedge of angle α aligned with W and S ⊆ R2 is
a finite region.

Proof. We prove by induction on n the weaker statement that ignores the
requirement W ′ ⊇ W above. This will, however, suffice for the proof because
if W ′ did not include all of W , W ′ ∪ S would also not include all of W since
S is finite. This will contradict the precondition.

region S′ region S′

αn

p

region already
illuminatednew wedge W ′ nth floodlight

αn p

Fig. 2. Two cases for the shape of overall illuminated region in the tight case

For the base case of n = 1, we have W ′ = W and S is the empty region. For
n > 1, note that the floodlight angles are tight relative to W . Hence, the first
n − 1 floodlights must together cover some wedge of angle precisely α − αn,
where αn is the angle of the nth floodlight (see Figure 2). By induction, the
region illuminated by the first n− 1 floodlights is of the form W ′′ ∪ S ′, where
W ′′ is a wedge of angle α − αn and S ′ ⊆ R2 is a finite region. Exploiting
again the fact that the angles are tight, the only way to extend the already
illuminated region in order to cover all of W is to mount the nth floodlight f at
a site p that is on or above the lower boundary wl of W ′′∪S ′ and have its upper

7



boundary fu aligned with wl. Let W ′ be the wedge of angle α defined by the
upper boundary wu of the already illuminated region and the lower boundary
fl of f . As seen from the two cases in Figure 2, the overall illuminated region
is W ′ ∪ S, where S is finite.

We now argue the equivalence of computing an illumination of a wedge and a
finite-region approximation to it in the tight case.

Lemma 7. There is a solution to a tight floodlight illumination problem on a
wedge W if and only if there is a finite-region approximation to it.

Proof. We prove that having a finite-region approximation is sufficient for
having an exact solution; the other direction holds trivially. Suppose there is
a finite-region approximate illumination F for W . Let W be of angle α. By
definition, F must illuminate a wedge W ∗ of angle α that is aligned with W
but is possibly contained strictly within W . Since the floodlight angles are
tight relative to W ∗, by Lemma 6, the overall region illuminated by F is of
the form W ′ ∪S, where W ′ is a wedge of angle α aligned with W ∗ (and hence
with W ) and S is finite. If W 6⊆ W ′, then W ′ \W is an infinite region R. As
S is finite, W ′ ∪ S will not cover an infinite portion of this infinite region R
of W , contradicting the fact that F illuminates all but a finite region of W .
It follows that W ⊆ W ′, implying that W is completely illuminated by F and
providing an exact solution.

This lemma implies that computing a finite-region approximation is NP-hard
because computing the exact solution is. It also implies that there is a solution
to the tight floodlight problem on a generalized wedge W iff there is a solution
to the tight floodlight problem on the underlying normal wedge W ′. In this
sense, generalized wedges don’t make the problem any harder. However, they
provide a convenient tool for analysis, allowing, for instance, stronger inductive
claims.

The fact that computing a finite-region approximation to a wedge illumination
problem is also NP-hard motivates the exploration of other reasonable notions
of approximation that leave unlit relatively small but infinite regions of the
wedge. One such possibility is a finite-angle approximation, defined as:

Definition 8. Let F be an illumination of a wedge W . F is an ε-angle approx-
imation if it illuminates W \Sε, where Sε is a union of wedges whose total angle
is at most ε. When ε is a fixed constant, F is a finite-angle approximation.

We will show that a finite-angle approximation to a wedge illumination in the
tight case can be computed in polynomial time. To prove this claim, we first
need to make some observations.

8



Steiger and Streinu [15] gave a polynomial-time duality-based greedy algo-
rithm Agreedy for the floodlight illumination problem which takes an addi-
tional input: the order in which the floodlight angles are chosen, that is, permu-
tation σ from Section 1. Note that for the uniform case, where each floodlight
angle is the same, the permutation σ does not come into play and Agreedy
is applicable. The following fact will be useful in designing a polynomial-time
algorithm for finite-angle approximations.

Fact 9. If all sites are contained inside the reverse wedge W r, then Agreedy
successfully illuminates W after any assignment of floodlights to positions.

For the following argument, we will use as a (temporary) tool the concept of
“movable sites” which can be placed anywhere in the plane at the discretion
of the solution designer. The idea is that in the presence of two such movable
sites, one can always solve any tight problem instance using Agreedy: assign

the first and last floodlights (the ones parallel to the wedge boundaries; break
ties arbitrarily) to the movable sites, move these sites back and inside the
reverse wedge far enough so that every other site is within the reverse of the
residual wedge not yet illuminated, and now use Fact 9.

Lemma 10. For any ε > 0, an ε-angle approximation to the tight floodlight
problem can be found efficiently.

Proof. An ε-angle approximation can be achieved by temporarily adding two
new movable sites pa and pb, adding two new floodlights fa and fb of angle
ε/2 each, and proceeding as follows. Mount floodlight fa at site pa, orient it so
that its upper boundary is parallel to and illuminates the upper boundary wu

of W , and move it far and low enough in W r so that all other sites are above
its lower boundary. Perform a similar operation on fb and pb starting with the
lower boundary wl of W . The region W ′ of W not illuminated by these two
floodlights is a generalized wedge of angle α − ε, where α is the wedge angle
of W . Further, all remaining sites are contained inside W ′r. By Fact 9, we can
illuminate W ′ completely using the remaining floodlights. Now remove fa and
fb. Note that this removal can affect at most two wedge-shaped regions of W
of angle ε/2. We are therefore left with a valid ε-angle approximation of the
illumination of W using the original floodlights and sites.

Note that an ε-angle approximate illumination only requires all but an ε angle
of the wedge to be illuminated “at infinity”. It would be interesting to design,
if possible, an algorithm for the stronger approximation where the resulting
illuminated area is a smaller wedge but located at the same apex as W .

9



4 NP-Completeness of Monotone Matching

In this section we describe our main construction — a polynomial time reduc-
tion from 3-Sat to Uniform Monotone Matching. 3-Sat is well-known to
be NP-complete [10, 4]. For concreteness we define it as follows.

Definition 11. The 3-Sat Problem:
Instance: m clauses, each of which is a set of three distinct elements (“literals”)
chosen from a set of n Boolean variables and assigned a sign, positive or
negative.
Question: Is there a True-False assignment to the variables such that each
clause contains at least one positively occurring True variable or one negatively
occurring False variable?

4.1 Notation and Overview

In the following we will refer to clauses by their index j and will denote the
variables by z1, . . . , zn. If the ith variable appears in the jth clause positively,
we write that zi occurs in clause j. If the variable appears negatively, we write
that zi occurs in clause j.

The Lines. The reduction uses many lines which we group into four cate-
gories.

(a) Lines labeled posij correspond to a positive occurrence of the variable zi in
clause j. (For regularity, we include posij in the construction even when zi

does not appear in clause j.) For convenience, we will use posi∗ to denote
the set of lines posij for j ∈ [m].

(b) Lines labeled negij correspond to the occurrence of zi in clause j. (Again,
we include negij even when zi does not appear in clause j.) For conve-
nience, we will use negi∗ to denote the set of lines negij for j ∈ [m].

(c) Lines labeled auxik are used as auxiliary lines in one of the gadgets which
we refer to as the “variable gadget”. They will help ensure that within the
ith variable gadget, either all lines posi∗ or all lines negi∗ will be used.

(d) Lines labeled upi and downi are used to ensure that on certain slabs, the
monotone matching exits at or below a certain point or enters at or above
a certain point. For example, we could ensure that the left endpoint of the
segment taken in the tenth slab is at or above y = 0. (We will see more
on this later.)

The Slabs. We use several unit width slabs grouped into four categories.

(a) We call the first 2mn + 5n slabs the variable phase. The variable phase

10



actually consists of n variable gadgets, one for each variable. In the ith vari-
able gadget, we will ensure that either all posi∗ will be used by subsequent
“clause” gadgets or all negi∗ will be used. Intuitively, this corresponds to
setting xi to False or to True, respectively.

(b) The next 50m3n2 slabs will be referred to as the buffer phase. Although
nothing interesting happens in the buffer phase, we need it to ensure that
the slopes of the lines posij and negij are not too large.

(c) The next 3m slabs are called the clause phase. The clause phase consists
of m gadgets, which we call “clause gadgets”. As an example, suppose
that the jth clause is z1 ∨ z2 ∨ z3. Then the jth clause gadget will ensure
that the only way to cross one of the slabs is by using a segment from
pos1j, neg2j, or pos3j. More specifically, if z1 and z3 are set to False and
z2 is set to True, then the lines pos1j, pos3j, and neg2j will have been used
already in the variable phase. Otherwise, at least one the those segments
will be available.

(d) The final phase is the cleanup phase which consists of m(n − 1) slabs.
Since the monotone matching may have a choice of what segment to use
in the clause phase, we need to ensure that segments from all lines are
taken at some point between the first and the last slab. The cleanup phase
facilitates this.

4.2 Description of the Gadgets

We utilize three kinds of gadgets: variable gadgets, clause gadgets, and forcing
gadgets. As we described briefly in the previous section, the ith variable gadget
is used to enforce the condition that either all of the posi∗ are used up in the
variable phase (corresponding to zi being set to False), or all of the negi∗ are
used up in the variable phase (corresponding to zi being set to True). In the
jth clause gadget, the monotone matching will be able to cross a particular
slab only if at least one of the lines corresponding to the literals in the jth

clause has not previously been used in the variable phase. (This happens only
if the literal corresponding to that line is True.)

Finally, as part of the problem input, we specify that the monotone matching
must enter at or above a certain point on the first slab and leave at or below
a certain point on the final slab. For the reduction, it will be useful for us
to make similar specifications for several other slabs as well in the monotone
matching instance. For example, we may wish to specify that the monotone
matching must enter at or above y = 0 on the mth slab. The forcing gadget
allows us to do this.

In each of the following gadget descriptions, we will avoid specifying the ex-
act coordinates for the lines and slabs, instead describing only the necessary

11



conditions the gadget must obey. The exact coordinates will be specified in
Section 4.3.

The Variable Gadget. Throughout our description, fix i ∈ [n]. As we stated
before, the ith variable gadget is used to ensure that either all posi∗ are used
or all negi∗ are used. We construct auxik for k = 0, . . . ,m + 2 so that this
is guaranteed in any valid matching. It may be helpful to refer to Figure 3
during the discussion.

For now, let xi be a non-negative integer, and let yi ∈ R. (We will specify
the values of xi, yi in the next section.) The ith variable gadget uses 2m + 3
slabs, each of width 1, stretching from x = xi to x = xi + 2m + 3. We will
use a forcing gadget (described shortly) to ensure that any valid monotone
matching for the xth

i slab starts at or above y = yi + 1 and ends at or below
y = yi.

The lines auxik for k = 0, 1, . . . ,m+2, and posi∗ and negi∗ satisfy the following
conditions. See Figure 3 for a diagram.

auxi0

auxi1

auxik, k > 1

posij

negij

x
i
+

2m
+

2

x
i
+

2m
+

3

x
i
+

1

x
i
+

m
+

1

x
i
+

m
+

2

x
i
+

2m
+

1

yi

yi + 1

yi + 4m2 + 1

x
i

yi + 4m2

Start at

End at
or below

or above

Fig. 3. The variable gadget for zi. Note the figure is not to scale; in particular, the
aux lines have been deformed due to non-uniform shrinking along the y-axis.

(1) The lines posi∗ do not intersect each other in the ith variable gadget (that
is, between x = xi and x = xi + 2m + 3). Further, they all lie between
y = yi and y = yi + 1 in the ith variable gadget.

(2) The lines negi∗ do not intersect each other in the ith variable gadget (that
is, between x = xi and x = xi + 2m + 3). Further, they all lie between

12



y = yi + 4m2 and y = yi + 4m2 + 1 in the ith variable gadget.
(3) At x = xi, the line auxi0 lies at or above y = yi + 1. From x = xi + 1 to

x = xi + 2m + 3, the line auxi0 lies at or below y = yi.
(4) From x = xi to x = xi + m + 1, the line auxi1 lies at or above y = yi + 1

and above the line auxi0. At x = xi + m + 2, the line auxi1 lies below
auxi0 (and remains below auxi0 throughout the rest of the slabs).

(5) The lines auxik are parallel for all k = 2, 3, . . . ,m + 2 and auxik is below
auxik′ for k < k′. Throughout the ith variable gadget, the line auxi1 lies
below auxik for k > 1. From x = xi to x = xi + m + 1, the lines auxik

for k > 1 lie at or above y = yi + 4m2 + 1. From x = xi + m + 2 to
x = xi + 2m + 1, the lines auxik for k > 1 lie between y = yi + 1 and
y = yi + 4m2. At x = xi + 2m + 2, the lines auxik for k > 1 lie below
auxi0.

Given these conditions, we have the following lemma. Let yi
max denote the

y-coordinate of auxi,m+2 at x = xi and yi
min denote the y-coordinate of auxi1

at x = xi + 2m + 3.

Lemma 12. Suppose that posi∗, negi∗, and auxik for k = 0, . . . ,m + 2 satisfy
the previous conditions. Further, suppose that all other lines in the construc-
tion either lie above y = yi

max or below y = yi
min throughout the ith variable

gadget. For any valid monotone matching that begins at or above y = yi + 1
at x = xi and ends at or below y = yi at x = xi + 2m + 3,

(a) all of the lines auxik for k = 0, 1, . . . ,m + 2 are used in the ith variable
gadget, and

(b) either all of the lines posi∗ or all of the lines negi∗ are used in the ith

variable gadget (but not both).

Proof. First of all, we cannot take any line other than posi∗, negi∗, or auxik

for k = 0, . . . ,m + 2 in the ith variable gadget, since we cannot reach any line
lying below y = yi

min for the entire gadget and taking any line that lies above
y = yi

max makes it impossible to finish below y = yi in the last slab of the
gadget. Hence, throughout this proof, we only need to consider posi∗, negi∗,
and auxik.

We have 2m+3 slabs and 3m+3 active lines in the gadget. Out of these, there
are only 3 slabs in which the monotone matching may start above y = yi and
end below y = yi: the slab from x = xi to x = xi+1, the slab from x = xi+m+1
to x = xi + m + 2, and the slab from x = xi + 2m + 1 to x = xi + 2m + 2.

Case i. Suppose that the monotone matching does not go from above y = yi

to below y = yi in the slab from x = xi to x = xi + 1. Then from x = xi

to x = xi + m + 1, the monotone matching cannot use any of the posi∗.
It follows that the matching cannot use the line auxi1 in the slab from

13



x = xi + m + 1 to x = xi + m + 2 since that line is too low. Hence, the
first time it passes below y = yi is at the slab from x = xi + 2m + 1 to
x = xi + 2m + 2. At this point, it is too late to use any posi∗, since they
all end too high at x = xi + 2m + 3. Hence, the monotone matching cannot
use any of the posij. (Note that the line auxi0 may instead be used.) Since
there are precisely 2m + 3 slabs and precisely 2m + 3 available lines, each
of these must be used. That is, each of the negi∗ must be used.

Case ii. Suppose instead that the monotone matching does go from above
y = yi to below y = yi in the slab from x = xi to x = xi +1. Specifically, the
monotone matching must use auxi0 in this slab. We will prove by contra-
diction that the monotone matching never uses any negij in the ith variable
gadget. To this end, suppose that the monotone matching does use some
negij.

First of all, note that the monotone matching cannot use any negi∗ for
x ≥ xi + m + 1; the reason for this is that from this point on, there is no
way to get lower than y = yi + 4m2 if we do use some negi∗. Therefore,
the monotone matching must have used negi∗ before x = xi + m + 1. This
implies that at x = xi + m + 1, the monotone matching must use auxik for
some k > 1. Furthermore, since the auxik for k > 1 lie above auxi0,auxi1,
and posij from x = xi + m + 1 to x = xi + 2m + 2, the monotone matching
must use only the auxik for k > 1 from x = xi + m + 1 to x = xi + 2m + 2.
But now the monotone matching is out of options. Since there are precisely
m + 1 such lines auxik for k = 2, . . . ,m + 2 and the matching traversed
precisely m + 1 slabs, it must have used every such auxik. It follows that
the only available lines on the slab from x = xi +2m+2 to x = xi +2m+3
are auxi0, posi∗, and negi∗. The lines posi∗, negi∗ all end too high and, unlike
case (i), auxi0 has already been used. Hence, we have a contradiction.

It follows that if the monotone matching uses auxi0 in the slab from
x = xi to x = xi +1, then it never uses negij for any j = 1, . . . ,m. Since the
matching traverses precisely 2m + 3 slabs, and there are precisely 2m + 3
lines available, it must use each of these lines precisely once. In particular,
it must use all of posi∗.

This finishes the proof.

The Clause Gadget. The clause gadget is rather simple. Fix j ∈ [m]. Let
x′

j, y
′
j be positive integers, whose precise values will be specified in the next

section.

If the jth clause is zi1 ∨ zi2 ∨ zi3 , then we construct our lines so that posi1j,
posi2j, and posi3j all lie above y = y′j and at or below y = y′j +1 from x = x′

j to
x = x′

j +1, and no other lines lie between these y values in that slab. Similarly,
if the jth clause is zi1 ∨ zi2 ∨ zi3 , then we construct our lines so that negi1j,
posi2j, and posi3j all lie above y = y′j and at or below y = y′j + 1 from x = x′

j

to x = x′
j + 1, and no other lines lie between these y values in that slab. We

14



define the clause gadget analogously for the remaining 6 cases. See Figure 4
for an example with clause z1 ∨ z2 ∨ z3.

x′
j + 1x′

j

y′
j + 2

y′
j + 1

y′
j

Other pos∗j and neg∗j lines

neg2j

pos3j

pos1j

End at

Start at
or above

or below

Fig. 4. The clause gadget for clause j, (z1 ∨ z2 ∨ z3). For clarity, the lines are shown
to be much steeper than they will be in the final construction. pos and neg lines
from other clauses would appear above or below this figure.

Using a forcing gadget, we ensure that any valid monotone matching starts at
or above y = y′j at x = x′

j, and ends at or below y = y′j + 1 at x = x′
j + 1.

From this, the following result follows immediately.

Lemma 13. Let `1, `2, `3 be the lines corresponding to the literals in the jth

clause, as specified above. Then there can be a valid monotone matching only
if at least one of `1, `2, `3 has not already been used in the variable phase.

The Forcing Gadget. Let s = (2m+5)n+50m3n2 +3m+m(n−1) denote
the total number of slabs. Let h > 0 be such that the lines posi∗, negi∗, and
auxik all remain strictly between y = −h and y = h throughout the s slabs.
Such an h exists as there are no vertical lines in the construction; with the
choice of parameters used in the next section, h = 240m4n2 is sufficient.

Let e1, . . . , e` and s1, . . . , s` be sequences of numbers so that −h < ei < h and
−h < si < h for all i ∈ [`]. Further, let x′′

1, x
′′
2, . . . , x

′′
` be a sequence of positive

integers such that x′′
i+1 ≥ x′′

i + 2 for all i ∈ [`− 1].

We can force any valid matching to end at or below y = ei at x = x′′
i and

start at or above y = si at x = x′′
i + 2, in the following way. The construction

is shown in Figure 5.

For each i ∈ [`], construct line downi so that it passes through the point
(x′′

i , ei) and has slope −6h, and construct line upi so that it passes through
the point (x′′

i + 2, si) and has slope 4h. The pairs (downi, upi) will be referred
to as the forcing gadgets.

Lemma 14. For all i ∈ [`], let lines downi and upi be constructed as described

15



downi

upi

+h

si

ei

−h

x′′
i x′′

i + 2

Fig. 5. The forcing gadget. It is not drawn to scale; the lines upi and downi should
be much steeper.

above. Then any valid monotone matching will use downi on the slab from x′′
i

to x′′
i + 1, and will use upi on the slab from x′′

i + 1 to x′′
i + 2.

Proof. By the construction of the up and down lines, it is enough to show
that no such line is used in a slab where it is either completely below −h, or
has any point above h.

We first show that no line is used completely below −h. Suppose for contra-
diction sake that this first occurs in a slab s. Clearly, s cannot be the left-most
slab. Let t be the slab previous to s. The line used in t must be a down line
as it does not lie completely below −h in t. Moreover, if y1 is the y-coordinate
of its intersection with the right side of t, y1 > −h− 6h = −7h. Suppose the
line used in s were an up line. Let y2 < −h be the y-coordinate of the up
line used in s with the right side of s, and let y3 be the y-coordinate of that
same line with the right side of the slab following s. Then y1 > −7h implies
y2 > −7h + 4h = −3h. Hence y3 > −3h + 4h > h. However, by construction,
no up line begins below −h and ends above h across a single slab.

Now suppose the line used in s were a down line, say downi. Let downj be
the down line used in t, so that j < i. As downj straddles −h in t, then downi

straddles −h in a slab at or after s, contradicting our assumption that downi

lies completely below −h in s.

We now show no up or down line is used in a slab where it has any point
above h. Suppose for contradiction s is the last slab where this happens. If the
line used in s is ends above h, then the line used in the following slab must
start above h as well, which cannot happen as only up or down lines reach
that high and we have assumed s is the last slab where an up or down line is
used above h. Therefore the line used in s is a down line, say downi, which
straddles h. Then s must be the slab preceding x′′

i . Consider upi. By previous
arguments, upi must be used in its correct slab r, two slabs from s. But by
construction, upi starts below −h in r, and there are no down lines available
in the correct place in the slab between s and r.

16



4.3 Putting it Together

We now describe, as part of the proof of the following theorem, how these gad-
gets are put together in order to construct a reduction from the propositional
satisfiability problem. Refer to Figure 6 for a pictorial overview.

down and up lines

down, up, and aux lines

pos and neg lines

B
u
ff
er

P
h
as

e

Clause Phase

Variable Phase

Cleanup
Phase

Fig. 6. The overall picture, not to scale. The smaller boxes in the variable and clause
phases depict the arrangement of the variable and clause gadgets, respectively.

Theorem 15. Uniform Monotone Matching is NP-complete

Proof. Membership in NP follows from the fact that a potential matching can
be validated in polynomial time. We now specify the exact coordinates of the
construction of Section 4.2 and show that the construction in Section 4.2 has
a monotone matching if and only if the corresponding formula has a satisfying
assignment.

Following the notation of the previous section, set xi = (i − 1)(2m + 5) and
yi = −10m2n + 10m2(i − 1). The ith variable gadget in the variable phase
is arranged from x = xi to x = xi + 2m + 3, and will lie between y = yi and
y = yi + 10m2. After each variable gadget, we add a forcing gadget, taking 2
slabs, to ensure that any valid monotone matching ends at or below y = yi

at x = xi + 2m + 3 and starts at or above y = yi + 10m2 + 1 = yi+1 + 1 at
x = xi + 2m + 5 = xi+1.

Following again the notation of the previous section, set x′
j = 50m3n2 +(2m+

5)n + 3(j − 1) and y′j = 2m− 2j. The jth clause gadget in the clause phase
spans the space from x = x′

j to x = x′
j + 1. After each clause gadget, we add

a forcing gadget, taking 2 slabs, to ensure that any valid monotone matching
ends at or below y = y′j+1 at x = x′

j+1 and starts at or above y = y′j−2 = y′j+1

at x = x′
j + 3 = x′

j+1.

The region between the last variable gadget and the first clause gadget forms
the buffer phase.

Assume that m ≥ 5. We specify the lines as follows:

17



• The pos lines. Let i ∈ [n] and j ∈ [m]. If zi appears in the jth clause as a
positive literal, define posij as the unique line that goes through the points
(−1, yi) and (x′

j + 1, y′j + 1). If zi does not appear in the jth clause as a
positive literal, define posij as the unique line that goes through the points
(−1, yi) and (x′

j + 1, y′j + 2). Notice that in either case, the size 50m3n2 of
the buffer phase is large enough so that for m ≥ 5 the slope of posij is less
than 1/(3mn). This implies that at the end of the variable phase, posij is
below yi + 1. Hence, posij satisfies the first condition for the ith variable
gadget. Furthermore, posij lies between y = y′j and y = y′j + 1 for x = x′

j to
x = x′

j + 1 if and only if zi appears in the jth clause as a positive literal.
• The neg lines. Let i ∈ [n] and j ∈ [m]. If zi appears in the jth clause as a

negative literal, define negij as the unique line that goes through the points
(−1, yi + 4m2) and (x′

j + 1, y′j + 1). If zi does not appear in the jth clause
as a negative literal, define negij as the unique line that goes through the
points (−1, yi + 4m2) and (x′

j + 1, y′j + 2). Notice again that in either case,
the slope of negij is less than 1/(3mn) which implies that at the end of
the variable phase, negij lies below yi + 4m2 + 1. Hence, negij satisfies the
second condition for the ith variable gadget. Furthermore, negij lies between
y = y′j and y = y′j + 1 for x = x′

j to x = x′
j + 1 if and only if zi appears in

the jth clause as a negative literal.
• The aux lines. For each i ∈ [n], define auxi0 to be the unique line of slope
−1 passing through the points (xi, yi+1), (xi+1, yi), (xi+m+2, yi−m−1),
and (xi +2m+2, yi−2m−1). Notice that auxi0 satisfies the third condition
for the ith variable gadget.

For each i ∈ [n], define auxi1 to be the unique line of slope −2m passing
through the points (xi, yi + 2m2 + 2m + 1), (xi + m + 1, yi + 1), (xi + m +
2, yi−2m+1), and (xi +2m+3, yi−2m2−4m+1). Notice that for m ≥ 3,
auxi1 satisfies the fourth condition for the ith variable gadget. This choice
of parameters has yi

min = yi − 2m2 − 4m + 1.
For each i ∈ [n] and k = 2, . . . ,m + 2, define auxik to be the unique

line of slope −4m passing through the points (xi, yi + 8m2 + 4m + k − 1),
(xi + m + 1, yi + 4m2 + k − 1), (xi + m + 2, yi + 4m2 − 4m + k − 1), (xi +
2m + 1, yi + k − 1), and (xi + 2m + 2, yi − 4m + k − 1). It is not hard to
verify that for m ≥ 5, the auxik for k > 1 satisfy the fifth condition for the
ith variable gadget. With these parameters, yi

max = yi + 8m2 + 5m + 1.
• The up and down lines. Let h = 240m4n2 and s = (2m+5)n+50m3n2 +

3m + m(n − 1) as defined earlier be the total number of slabs in the con-
struction. We now describe the parameters for the forcing gadgets. First, in
the variable phase, for i ∈ [n], let downi be the unique line with slope −6h
that passes through the point (xi+2m+3, yi), and let upi be the unique line
with slope 4h that passes through the point (xi + 2m + 5, yi + 10m2 + 1).
In the notation of the previous section, x′′

i = xi + 2m + 3, ei = yi, and
si = yi + 10m2 + 1. In the buffer phase, for i = n + 1, . . . , n + 25m3n2,
let downi be the unique line with slope −6h that passes through the point
(xn +2m− 2n+2i+3, 0), and let upi be the unique line with slope 4h that

18



passes through the point (xn +2m−2n+2i+5, y′1). That is, in the notation
of the previous section, x′′

i = xn + 2m − 2n + 2i + 3, ei = 0, and si = y′1.
Finally, in the clause phase, for j = 1, . . . ,m, let downn+25m3n2+j be the
unique line with slope −6h that passes through the point (x′

j + 1, y′j + 1),
and let upn+25m3n2+j be the unique line with slope 4h that passes through
the point (x′

j + 3, y′j − 2). That is, x′′
n+25m3n2+j = x′

j + 1, ei = y′j + 1, and
si = y′j − 2.

To finish the description of the monotone matching problem, we set the
starting point START to be y = y1 + 1 and the ending point END to be
y = 240m4n2.

We see from the descriptions of the lines that each of them operates within
the relevant gadgets in the appropriate ways. However, we also need to check
that lines interact only with the correct gadgets and not elsewhere.

To this end, first notice that both posij and negij have positive slopes less
than 1/(3mn). Hence, throughout the entire variable phase, each of these lines
rises less than 1. Hence, each posij remains between y = yi and y = yi + 1
throughout the variable phase, and likewise, each negij remains between y =
y1 + 4m2 and y = yi + 4m2 + 1 throughout the variable phase. Therefore,
the posij and negij only interact with their corresponding variable gadget.
Furthermore, by our construction, if ̂ < j then posi̂ and negi̂ are both
strictly above y = y′j + 2 from x = x′

j to x′
j + 1. Likewise, if ̂ > j, then posi̂

and negi̂ are both strictly below y = y′j from x = x′
j to x′

j + 1. Hence, the
posij and negij do not violate the conditions of the clause gadget.

Second, notice that each of the auxik for k = 0, 1, . . . ,m + 2 have negative
slopes. Thus at xi+1, auxi0 lies below yi < yi+1

min = yi+1 − 2m2 − 4m + 1 =
yi + 8m2 − 4m + 1. Since all other auxiliary lines for the ith gadget are below
auxi0, the auxiliary lines at variable gadget i do not interact with variable
gadget i′ for i′ > i. Similarly, because of our assumption that m ≥ 5, for
x < xi, auxi0 (and hence all auxiliary lines for the ith gadget) are above
yi > yi−1

max = yi−1 + 8m2 + 5m + 1 = yi − 2m2 − 5m − 1. Hence, auxik only
interacts with the ith variable gadget.

Third, notice that the lines posij, negij, and auxik all lie between y =
−240m4n2 and y = 240m4n2 for all slabs, since (a) they all pass through
the region between y = yi and y = yi + 4n2 + 1 (which is relatively close to
y = 0) in their respective variable gadgets, (b) the maximum positive slope for
all of these lines is less than 1, (c) the most negative slope for all of these lines
is −4m, and (d) the total number of slabs s is less than 60m3n2 for m ≥ 5.
Hence our choice of h = 240m4n2 suffices.

Hence, the conditions for Lemmas 12, 13, and 14 hold for our construction.
We now prove that there is a valid monotone matching in this construction iff

19



the original formula is satisfiable.

Part i. Suppose that there is a valid monotone matching. For each i ∈ [n], set
zi to False if all of the posij are used in the ith variable gadget, and set zi to True
if all of the negij are used in the ith variable gadget. By Lemma 12, exactly one
of the two conditions must occur. Let `1, `2, `3 be the lines corresponding to the
literals appearing in the jth clause. By Lemma 13, at least one of `1, `2, `3 was
not used in the variable phase. But this means that the corresponding literal
is True. Hence, each clause is satisfied and we have a satisfying assignment.

Part ii. Suppose that there is a satisfying assignment. We will argue that
there is a valid monotone matching. If zi is False in the satisfying assignment,
then for the ith variable gadget, take auxi0, followed by posij for j = 1, . . . ,m
in order. (By construction, we see that the posi∗ do not intersect in the ith

variable gadget, and in fact posij lies below posi̂ for j < ̂.) Then take the
line auxi1, followed by auxik for k > 1 in order. We thus arrive below y = yi

when x = xi + 2m + 3.

If zi is True in the satisfying assignment, then for the ith variable gadget, take
auxi1, followed by negij for j = 1, . . . ,m in order. (We use the fact that negij

lies below negi̂ for j < ̂ in the ith variable gadget.) Then take the lines auxik

for k > 1 in order. We thus arrive below the line auxi0 when x = xi + 2n + 2.
Therefore, in the final slab of the gadget, we may take line auxi0, arriving
below y = yi.

For each i = 1, . . . , n + 25m3n2 + m, for the slab from x = x′′
i to x = x′′

i + 1,
take downi, and for the slab from x = x′′

i + 1 to x = x′′ + 2, take upi.

For each j ∈ [m], at least one literal in clause j is set to True in the satisfying
assignment. Hence, if `1, `2, `3 are the lines corresponding to the literals in
the jth clause, at least one of `1, `2, `3 will not have been used in the variable
phase. Take such a line in the slab from x = x′

j to x = x′
j + 1; if there is more

than one line available, take the one that is first lexicographically.

Finally, the cleanup phase lasts for m(n − 1) slabs, and there are exactly
m(n − 1) unused lines. Further, at the start of the cleanup phase, we are
forced to start at or above y = y′m − 2 < 0, and all the unused lines (which
consist of lines from posij and negij) lie strictly above y = 0. We can greedily
traverse the entire cleanup phase starting with the unused line that ends the
lowest at the end of the current slab, and continuing until we reach the end of
the last slab. Since all of the posij,negij lie below y = 240m4n2 and the END
is at y = 240m4n2, we have a valid monotone matching.

Hence we have reduced 3-Sat to Uniform Monotone Matching, proving the
theorem.

20



A (trivial) reduction from Uniform Monotone Matching to Monotone

Matching implies the following:

Corollary 16. Monotone Matching is NP-complete.

By the discussion in Section 2.2, the above also proves Theorem 2.

5 Conclusion

In this paper, we provided an affirmative answer to the question posed by De-
maine and O’Rourke [6], by proving that floodlight illumination is NP-
hard. The proof was based on a reduction from 3-SAT to the equivalent prob-
lem of monotone matching. The key building block for the reduction was the
forcing gadget, which was used to simulate the behavior of individual variables
and clauses of a 3-CNF formula using several variable and clause gadgets. Our
proof also shows that floodlight illumination is NP-complete in the uni-
form and tight case. (It remains open whether floodlight illumination, in
its generality, is in NP or not.) Finally, we showed that computing finite-region
approximations for the problem is NP-hard, while finite-angle approximations
can be computed in polynomial time.

Acknowledgements

The authors would like thank Neva Cherniavsky for introducing the problem,
Gidon Shavit and William Pentney for helpful discussions, and the anonymous
reviewers for helpful comments.

References

[1] J. Abello, V. Estivill-Castro, T. C. Shermer, and J. Urrutia. Illumination
of orthogonal polygons with orthogonal floodlights. International Journal
of Computational Geometry and Applications, 8(1):25–38, 1998.

[2] J. Bagga, L. Gewali, and D. Glasser. The complexity of illumination
polygons by α-flood-lights. In Proceedings of the 8th Canadian Conference
on Computational Geometry, pages 337–342, Ottawa, Canada, Aug. 1996.

[3] P. Bose, L. Guibas, A. Lubiw, M. Overmars, D. Souvaine, and J. Ur-
rutia. The floodlight problem. International Journal of Computational
Geometry and Applications, 7(1/2):153–163, 1997.

[4] S. A. Cook. The complexity of theorem proving procedures. Annual ACM
Symposium on Theory of Computing, pages 151–158, 1971.

21



[5] J. Czyzowicz, E. Rivera-Campo, and J. Urrutia. Optimal floodlight il-
lumination of stages. In Proceedings of the 5th Canadian Conference on
Computational Geometry, pages 393–398, Waterloo, Canada, Aug. 1993.

[6] E. Demaine and J. O’Rourke. Open problems from CCCG 2001. In Pro-
ceedings of the 13th Canadian Conference on Computational Geometry,
Waterloo, Canada, Aug. 2001.

[7] V. Estivill-Castro, J. O’Rourke, J. Urrutia, and D. Xu. Illumination of
polygons with vertex lights. Information Processing Letters, 56(1):9–13,
1995.

[8] V. Estivill-Castro and J. Urrutia. Optimal floodlight illumination of or-
thogonal art galleries. In Proceedings of the 6th Canadian Conference
on Computational Geometry, pages 81–86, Saskatchewan, Canada, Aug.
1994.

[9] V. Estivill-Castro and J. Urrutia. Two-floodlight illumination of convex
polygons. In Proceedings of the 4th International Workshop on Algo-
rithms and Data Structures, volume 955 of LNCS, pages 62–73, Kingston,
Canada, Aug. 1995. Springer Verlag.

[10] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[11] D. Y. Grigor’ev. Complexity of deciding Tarski algebra. Journal of
Symbolic Computation, 5:65–108, 1998.

[12] J. O’Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, 1987.

[13] T. C. Shermer. Recent results in art galleries. Proceedings of the IEEE,
80(9):1384–1399, 1992.

[14] B. Speckmann and C. D. Tóth. Allocating vertex π-guards in simple
polygons via pseudo-triangulations. Discrete & Computational Geometry,
33(2):345–364, 2005.

[15] W. L. Steiger and I. Streinu. Illumination by floodlights. Computational
Geometry, 10:57–70, 1998.

[16] A. Tarski. A Decision Method for Elementary Algebra and Geometry.
University of California Press, 1948.

[17] C. D. Tóth. Illuminating polygons with vertex π-floodlights. In Proceed-
ings, Part I, of the International Conference on Computational Science
(ICCS), volume 2073 of LNCS, pages 772–784, San Francisco, CA, May
2001. Springer Verlag.

22


	Introduction
	Monotone Matching: A Recapitulation of the Duality
	Monotone Matching
	Duality Between Floodlight Illumination and Monotone Matching

	Comments on Illumination Algorithms
	NP-Completeness of Monotone Matching
	Notation and Overview
	Description of the Gadgets
	Putting it Together

	Conclusion
	Acknowledgements

