
Connections in Networks:

Hardness of Feasibility versus Optimality?

Jon Conrad, Carla P. Gomes,
Willem-Jan van Hoeve, Ashish Sabharwal, and Jordan Suter

Cornell University, Ithaca, NY 14853, USA
{jmc16,jfs24}@cornell.edu; {gomes,vanhoeve,sabhar}@cs.cornell.edu

Abstract. We study the complexity of combinatorial problems that
consist of competing infeasibility and optimization components. In par-
ticular, we investigate the complexity of the connection subgraph prob-

lem, which occurs, e.g., in resource environment economics and social
networks. We present results on its worst-case hardness and approxima-
bility. We then provide a typical-case analysis by means of a detailed
computational study. First, we identify an easy-hard-easy pattern, coin-
ciding with the feasibility phase transition of the problem. Second, our
experimental results reveal an interesting interplay between feasibility
and optimization. They surprisingly show that proving optimality of the
solution of the feasible instances can be substantially easier than proving
infeasibility of the infeasible instances in a computationally hard region
of the problem space. We also observe an intriguing easy-hard-easy pro-
file for the optimization component itself.

1 Introduction

There is a large body of research studying typical-case complexity of decision
problems. This work has provided us with a deeper understanding of such prob-
lems: we now have a finer characterization of their hardness beyond the standard
worst-case notion underlying NP-completeness results, which in turn has led to
the design of new algorithmic strategies for combinatorial problems. Neverthe-
less, while pure decision problems play a prominent role in computer science,
most practical combinatorial problems, as they arise in fields like economics,
operations research, and engineering, contain a clear optimization objective in
addition to a set of feasibility constraints. In our research agenda we are inter-
ested in understanding the interplay between feasibility and optimality. We note
that there has been some work on the study of the typical-case complexity of
pure optimization problems [6, 10], but not concerning problems that naturally
combine a feasibility and an optimization component.

As a study case we consider the typical-case complexity of a problem mo-
tivated from resource environment economics and social networks, containing

? Research supported by the Intelligent Information Systems Institute (IISI), Cornell
University (AFOSR grant F49620-01-1-0076).

competing feasibility and optimization components. Our experimental results
show that the complexity profile of this problem introduces several intriguing
aspects that do not occur in pure decision problems. A good understanding of
these issues will allow researchers to design better algorithms for a range of
applications in a variety of domains.

In the context of resource environment economics, our problem is an abstrac-
tion of an application that arises in the design of wildlife preserves (see e.g. [1],
[3]). In many parts of the world, land development has resulted in a reduction
and fragmentation of natural habitat. Wildlife populations living in a fragmented
landscape are more vulnerable to local extinction due to stochastic events and
are also prone to inbreeding depression. One method for alleviating the negative
impact of land fragmentation is the creation of conservation corridors (alterna-
tively referred to as wildlife-, habitat-, environmental-, or movement-corridors).
Conservation corridors are continuous areas of protected land that link zones
of biological significance [9] (see Figure 1). In designing conservation corridors,
land use planners generally operate with a limited budget with which to secure
the land to make up the corridor. The most environmentally beneficial conserva-
tion corridor would entail protecting every piece of land that exists between the
areas of biological significance, hereafter referred to as natural areas or reserves.
In most cases, however, purchasing (the development rights to) every piece of
available land would be exceedingly expensive for a land trust or government
that is operating with a limited budget. The objective is therefore to design cor-
ridors that are made up of the land parcels that yield the highest possible level
of environmental benefits (the “utility”) within the limited budget available.

P1

P5

P3

P6P4

P8

P9

P7

P11

P10

P2 water
2 3

5

8

4

10

911

1

7

6

Fig. 1. The “corridor” problem and the corresponding graph representation. The re-
serves (P1, P6, and P7) and their corresponding vertices are shaded.

In the context of social networks, a similar problem has been investigated by
Faloutsos, McCurley, and Tomkins [5]. Here, one is interested, for example, in
identifying the few people most likely to have been infected with a disease, or
individuals with unexpected ties to any members of a list of other individuals.

This relationship is captured through links in an associated social network graph
with people forming the nodes. Faloutsos et al. consider networks containing two
special nodes (the “terminals”) and explore practically useful utility functions
that capture the connection between these two terminal nodes. Our interest,
on the other hand, is in studying this problem with the sum-of-weights utility
function but with several terminals. In either case, the problem has a bounded-
cost aspect that competes with a utility one is trying to maximize.

We formalize the above problems as the connection subgraph problem. Some-
what informally, given a graph G on a set of vertices with corresponding utilities,
costs, and reserve labels (i.e., whether or not a vertex is a reserve), a set of edges
connecting the vertices, and a cost bound (the “budget”), our problem consists
of finding a connected subgraph of G that includes all the vertices labeled as
reserves and maximizes the total utility, while not exceeding the cost bound.
In terms of worst-case complexity, we show that the optimization task associ-
ated with the connection subgraph problem is NP-hard, by relating it to the
Steiner tree problem. Unlike the original Steiner tree problem, the NP-hardness
result here holds even when the problem contains no reserves. We also show that
the dual cost minimization problem is NP-hard to approximate within a certain
constant factor.

In order to investigate the typical-case complexity of the connection subgraph
problem, we perform a series of experiments on semi-structured graphs with
randomly placed terminals and randomly generated cost and utility functions.
To this end, we introduce a mixed integer linear programming formulation of the
problem, which is applied to solve the instances to optimality using Cplex [7].
Figure 2 shows a preview of our results; we defer the details of the experimental
setup to Section 5.

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Ru
nt

im
e

(s
)

%
 u

ns
at

isa
fia

bl
e

Budget (fraction)

median time
% unsatisfiable

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ru
nt

im
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 2. Aggregated and separated hardness profiles for connection subgraph.

The empirical complexity profile of this problem reveals an interesting in-
terplay between the computational hardness of feasibility testing and optimiza-

tion. In particular, for very low cost bounds (budgets below fraction 0.05 in
Figure 2.a), almost all instances are infeasible, which is relatively easy to deter-
mine. With increasing cost bounds, one reaches the now standard phase tran-
sition point in the feasibility profile, where instances switch from being mostly
infeasible to mostly feasible (at roughly budget fraction 0.13 in the plot). At
this transition, we see a sharp increase in the complexity of determining feasi-
bility. More interestingly, however, at this phase transition boundary, we have
a mixture of feasible and infeasible instances. For the feasible instances, we still
need to solve the optimization problem to find (and prove) the maximum util-
ity given the budget constraints. Quite surprisingly, proving such optimality of
the solution of these feasible instances can be substantially easier than showing
the infeasibility of the other instances in this region (see Figure 2.b). In other
words, we have a region in our problem space where the feasible vs. infeasible
decision is computationally much harder than proving optimality of the feasible
instances. This is surprising because showing optimality also involves a notion
of infeasibility: one has to show that there is no solution with a higher utility
for the given budget. Intuitively, it appears that the purely combinatorial task
of not being able to satisfy the hard constraints of the problem is harder than
optimizing solutions in the feasible region.

The second part of the complexity profile of the connection subgraph prob-
lem, shown as the lower curve in Figure 2.b, concerns what happens in the
feasible region when we further increase the budget beyond the satisfiability
phase transition. Almost all instances are now easily shown to be feasible. How-
ever, the complexity of finding a solution with the maximum utility and proving
its optimality first increases (till budget fraction roughly 0.2 in the plot) and,
subsequently, for larger and larger budgets, decreases. Therefore, we have an
easy-hard-easy profile in the computational cost of showing optimality, whose
peak lies to the right of the feasible to infeasible transition (which, as we saw
earlier, is at budget fraction roughly 0.13). In the combined plot of the me-
dian runtime of all instances (Figure 2.a), we obtain a curve that peaks around
the feasible to infeasible transition because the high cost of proving infeasibility
dominates the median cost in the phase transition area.

We note that such easy-hard-easy patterns have been observed in some pure
optimization problems before, albeit under a-typical circumstances. For instance,
Zhang and Korf [10] identify a similar pattern for the Traveling Salesperson
Problem, using a log-normal distribution of the distance function. In our case,
the pattern appears to emerge naturally from the model.

These aspects are quite intriguing and require further study. Of course, we
do not claim that these observations will hold for all optimization problems that
involve a feasibility component. In fact, quite often the feasibility part of opti-
mization tasks is relatively easy provided one has sufficient resources (including
budget). However, our study suggests that there may be classes of models or even
problems where the feasibility component in and of itself is surprisingly hard,
even compared to the optimization aspect. One issue that requires further re-
search is the extent to which the mixed integer programming (MIP) formulation

and the Cplex algorithm are well suited to capture the combinatorial nature of
the feasibility problem. In Section 6, we mention two alternative problem formu-
lation/solution methods that might initially appear to be more promising than
using Cplex on a pure MIP formulation, but are unlikely to change the overall
picture. Lastly, we note that from a practical point of view, this interplay be-
tween feasibility and optimization can be quite important. For example, under
tight budget constraints, one may want to spend significant computational re-
sources to ensure that no feasible solution exists, before deciding on an increased
budget or another relaxation of the problem constraints.

The rest of the paper is organized as follows. In Section 2 we present the con-
nection subgraph problem. We discuss the theoretical complexity of this problem
in Section 3. Section 4 describes our Mixed Integer Linear Programming model
of the connection subgraph problem. The empirical results are presented in Sec-
tion 5. Finally, we conclude with a discussion in Section 6.

2 Connection Subgraph Problem

Let Z
+ denote the set {0, 1, 2, . . .} of non-negative integers. The decision version

of the connection subgraph problem is defined on an undirected graph as follows:

Definition 1 (Connection Subgraph Problem). Given an undirected graph

G = (V,E) with terminal vertices T ⊆ V , vertex costs c : V → Z
+, vertex

utilities u : V → Z
+, a cost bound C ∈ Z

+, and a desired utility U ∈ Z
+, does

there exist a vertex-induced subgraph H of G such that

1. H is connected,

2. T ⊆ V (H), i.e., H contains all terminal vertices,

3.
∑

v∈V (H) c(v) ≤ C, i.e., H has cost at most C, and

4.
∑

v∈V (H) u(v) ≥ U , i.e., H has utility at least U?

In this decision problem, we can relax one of the last two conditions to obtain
two natural optimization problems:

– Utility Optimization: given a cost bound C, maximize the utility of H,

– Cost Optimization: given a desired utility U , minimize the cost of H.

3 NP-Completeness and Hardness of Approximation

The connection subgraph problem is a generalized variant of the Steiner tree
problem on graphs, with costs on vertices rather than on edges and with utilities
in addition to costs. The utilities add a new dimension of hardness to the prob-
lem. In fact, while the Steiner tree problem is polynomial time solvable when |T |
is any fixed constant [cf. 8], we will show that the connection subgraph problems
remains NP-complete even when |T | = 0. We prove this by a reduction from the
Steiner tree problem. This reduction also applies to planar graphs, for which the
Steiner tree problem is still NP-complete [cf. 8].

Theorem 1 (NP-Completeness). The decision version of the connection

subgraph problem, even on planar graphs and without any terminals, is NP-

complete.

Proof. The problem is clearly in NP, because a certificate subgraph H can be
easily verified to have the desired properties, namely, connectedness, low enough
cost, and high enough utility. For NP-hardness, consider the Steiner tree problem
on a graph Ĝ = (V̂ , Ê) with terminal set T̂ ⊆ V̂ , edge cost function ĉ : Ê → Z

+,

and cost bound Ĉ.
An instance of the connection subgraph problem can be constructed from

this as follows. Construct a graph G = (V,E) with V = V̂ ∪ Ê and edges defined

as follows. For every edge e = {v, w} ∈ Ê, create edges {v, e} , {w, e} ∈ E. The

terminal set remains the same: T = T̂ . Overall, |V | = |V̂ | + |Ê|, |E| = 2|Ê|,

and |T | = |T̂ |. For costs, set c(v) = 0 for v ∈ V̂ and c(e) = ĉ(e). For utilities,
set u(v) = 1 for v ∈ T and u(v) = 0 for v 6∈ T . Finally, the cost bound for the

connection subgraph is C = Ĉ and the utility bound is U = |E|.

It is easy to verify that the Steiner tree problem on Ĝ and T̂ has a solution
with cost at most C iff the connection subgraph problem on G and T has a
solution with cost at most C and utility at least U . This completes the reduction.

Note that if Ĝ is planar, then so is G. Further, the reduction is oblivious
to the number of terminals in G. Hence, NP-completeness holds even on planar
graphs and without any terminals. ut

This immediately implies the following:

Corollary 1 (NP-Hardness of Optimization). The cost and utility opti-

mization versions of the connection subgraph problem, even on planar graphs

and without any terminals, are both NP-hard.

Observe that in the reduction used in the proof of Theorem 1, Ĝ has a Steiner
tree with cost C ′ iff G has a connection subgraph with cost C ′. Consequently,
if the cost optimization version of the connection subgraph instance (i.e., cost
minimization) can be approximated within some factor α ≥ 1 (i.e., if one can
find a solution of cost at most α times the optimal), then the original Steiner tree
problem can also be approximated within factor α. It is, however, known that
there exists a factor α0 such that the Steiner tree problem cannot be approxi-
mated within factor α0, unless P=NP. This immediately gives us a hardness of
approximation result for the utility optimization version of the connection sub-
graph problem. Unfortunately, the best known value of α0 is roughly 1+10−7 [cf.
8].

We now describe a different reduction — from the NP-complete Vertex Cover
problem — which will enable us to derive as a corollary a much stronger approx-
imation hardness result.

Lemma 1. There is a polynomial time reduction from Vertex Cover to the con-

nection subgraph problem, even without any terminals, such that the size of the

vertex cover in a solution to the former equals the cost of the subgraph in a

solution to the latter.

Proof. We give a reduction along the lines of the one given by Bern and Plass-
mann [2] for the Steiner tree problem. The reduction is oblivious to the number
of terminals, and holds in particular even when there are no terminals.

Recall that a vertex cover of a graph Ĝ = (V̂ , Ê) is a set of vertices V ′ ⊆ V̂

such that for every edge {v, w} ∈ Ê, at least one of v and w is in V ′. The vertex

cover problem is to determine whether, given Ĝ and C ≥ 0, there exists a vertex
cover V ′ of Ĝ with |V ′| ≤ C. We convert this into an instance of the connection
subgraph problem. An example of such a graph is depicted in Fig. 3.

v1 v2 v3 . . . vn

e2 e3 eme1

e1 = (v1, v3), e2 = (v1, vn), e3 = (v2, v3), . . . , em = (vn−2, vn)

Edges in the original graph Ĝ :

cost = 1, utility = 0

cost = 0, utility = 1

. . .

Full clique

Fig. 3. Reduction from Vertex Cover

Create a graph G = (V,E) with V = V̂ ∪ Ê and edges defined as follows. For

every v, w ∈ V̂ , v 6= w, create edge {v, w} ∈ E; for every e = {v, w} ∈ Ê, create

edges {v, e} , {w, e} ∈ E. Overall, G has |V̂ | + |Ê| vertices and
(bV

2

)
+ 2Ê edges.

For costs, set c(v) to be 1 if v ∈ V̂ , and 0 otherwise. For utilities, set u(e) to be

1 if e ∈ Ê, and 0 otherwise. Finally, fix the set of terminals to be an arbitrary
subset of Ê.

We prove that solutions to the connection subgraph problem on G with costs
and utilities as above, cost bound C, and desired utility U = |Ê| are in one-to-one

correspondence with vertex covers of Ĝ of size at most C.
First, let vertex-induced subgraph H of G be a solution to the connection

subgraph instance. Let V ′ = V (H) ∩ V̂ . We claim that V ′ is a vertex cover of

Ĝ of size at most C. Clearly, |V ′| ≤ C because of the cost constraint on H. To

see that V ′ is indeed a vertex cover of Ĝ, note that (A) because of the utility

constraint, V ′ must contain all of the vertices from Ê, and (B) because of the
connectedness constraint, every such vertex must have at least one edge in E(H),

i.e., for each e = {v, w} ∈ Ê, V ′ must include at least one of v and w.

Conversely, let V ′ be a vertex cover of Ĝ with at most C vertices. This
directly yields a solution H of the connection subgraph problem: let H be the

subgraph of G induced by vertices V ′∪ Ê. By construction, H has the same cost
as V ′ (in particular, at most C) and has utility exactly U . Since V ′ is a vertex

cover, for every edge e = {v, w} ∈ Ê, at least one of v and w must be in V ′,
which implies that H must have at least one edge involving e and a vertex in
V ′. From this, and the fact that all vertices of V ′ already form a clique in H, it
follows that H itself is connected.

This settles our claim that solutions to the two problem instances are in one-
to-one correspondence, and finishes the proof. ut

Combining Lemma 1 with the fact that the vertex cover problem is NP-hard
to approximate within a factor of 1.36 [4] immediately gives us the following:

Theorem 2 (APX-Hardness of Cost Optimization). The cost optimiza-

tion version of the connection subgraph problem, even without any terminals, is

NP-hard to approximate within a factor of 1.36.

4 Mixed Integer Linear Programming Model

Next we present the Mixed Integer Linear Programming Model (MIP model)
for the connection subgraph problem, that we used in our experiments. Let
G = (V,E) be the graph under consideration, with V = {1, . . . , n}.

For each vertex i ∈ V , we introduce a binary variable xi, representing whether
or not i is in the connected subgraph. Then, the objective function and budget
constraint are stated as:

maximize
∑

i∈V uixi, (1)

s.t.
∑

i∈V cixi ≤ C, (2)

xi ∈ {0, 1}, ∀i ∈ V. (3)

To ensure the connectivity of the subgraph, we apply a particular network
flow model, where the network is obtained by replacing all undirected edges
{i, j} ∈ E by two directed edge {i, j} and {j, i}. First, we introduce a source
vertex 0, with maximum total outgoing flow n. We arbitrarily choose one ter-
minal vertex t ∈ T , and define a directed edge {0, t} to insert the flow into the
network, assuming that there exists at least one such vertex.1 Then, by demand-
ing that the flow reaches all terminal vertices, the edges carrying flow (together
with the corresponding vertices) represent a connected subgraph. To this end,
each of the vertices with a positive incoming flow will act as a ‘sink’, by ‘con-
suming’ one unit of flow. In addition, flow conservation holds: for every vertex
the amount of incoming flow equals the amount of outgoing flow.

More formally, for each edge {i, j} ∈ E, we introduce a nonnegative variable
yij to indicate the amount of flow from i to j. For the source, we introduce a

1 If there are no terminal vertices specified, we add edges from the source to all vertices
in the graph, and demand that at most one of these edges is used to carry flow.

2 3

65

7 8

4

2 3

65

7 8

4

1

9

01

9

9 8 7

6

54

3

2 1

a. Original graph b. Feasible flow

Fig. 4. Flow representation of the connection subgraph problem on a graph with 9
vertices. The terminal vertices 1 and 9 are shaded.

variable x0 ∈ [0, n], representing the eventual residual flow. The insertion of the
flow into the network is then stated as:

x0 + y0t = n, (4)

where t ∈ T is arbitrarily chosen. Each of the vertices with positive incoming
flow retains one unit of flow, i.e., (yij > 0) ⇒ (xj = 1),∀ {i, j} ∈ E. We convert
this relation into a linear constraint:

yij < nxj , ∀ {i, j} ∈ E. (5)

The flow conservation is modeled as:
∑

i:{i,j}∈E

yij = xj +
∑

i:{j,i}∈E

yij , ∀j ∈ V. (6)

Finally, terminal vertices retain one unit of flow:

xt = 1, ∀t ∈ T. (7)

In Figure 4 we give an example of our flow representation, where we omit the
costs for clarity. Figure 4.a presents a graph on 9 vertices with terminal vertices
1 and 9. In Figure 4.b, a feasible flow for this graph is depicted, originating
from the source 0, with value 9. It visits all vertices, while each visited vertex
consumes one unit of flow. The thus connected subgraph contains all vertices in
this case, including all terminal vertices.

5 Computational Hardness Profiles

We next perform a detailed empirical study of the connection subgraph problem.
In this study, our parameter is the feasibility component of the problem, i.e., the
cost bound (or budget). For a varying budget, we investigate the satisfiability
of the problem, as well as its computational hardness with respect to proving
infeasibility or optimality.

In our experiments, we make use of semi-structured graphs, with uniform
random utility and cost functions. The graphs are composed of an m × m rect-
angular lattice or grid, where the order m is either 6, 8, or 10. This lattice graph
is motivated by the structure of the original conservation corridors problem. In
this lattice, we place k terminal vertices, where k is 0, 3, 10, or 20. When k ≥ 2,
we place two terminal vertices in the ‘upper left’ and ‘lower right’ corners of
the lattice, so as to maximize the distance between them and “cover” most of
the graph. This is done to avoid the occurrence of too many pathological cases,
where most of the graph does not play any role in constructing an optimal con-
nection subgraph. The remaining k − 2 terminal vertices are placed uniformly
at random in the graph. To define the utility and cost functions, we assign uni-
formly at random a utility and a cost from the set {1, 2, . . . , 10} to each vertex
in the graph. The cost and utility functions are uncorrelated.

In the figures below, each data point is based on 100 random instances or
more, at a given budget. For the figures comparing infeasible and feasible in-
stances, this means that the sum of the feasible and infeasible instances at each
budget is at least 100. The hardness curves are represented by median running
times over all instances per data point, while for the feasibility curves we take
the average. As the scale for the budget (on the x-axis), we use the following
procedure. For every instance, we compute the total cost of all vertices. The
budget is calculated as a fraction of this total cost. We plot this fraction on the
x-axis. All our experiments were conducted on a 3.8 GHz Intel Xeon machine
with 2 GB memory running Linux 2.6.9-22.ELsmp. We used Cplex 10.1 [7] to
solve the MIP problems.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ru
nt

im
e

(s
) i

n
lo

g-
sc

al
e

Budget (fraction)

median time, order 6
median time, order 8

median time, order 10

Fig. 5. Hardness profile for lattices of order 6, 8, and 10, without terminal vertices.

First, we present computational results on graphs without terminal vertices.
These problems are always satisfiable, and can thus be seen as pure optimization
problems. Figure 5 shows the hardness profile (i.e., the running time) on lattices

 0

 200

 400

 600

 800

 1000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Ru
nt

im
e

(s
)

%
 u

ns
at

isa
fia

bl
e

Budget (fraction)

median time
% unsatisfiable

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Ru
nt

im
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 6. Hardness and satisfiability profiles for lattices of order 10 with 3 terminals.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 0.1 0.2 0.3 0.4 0.5
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Ru
nt

im
e

(s
)

%
 u

ns
at

isa
fia

bl
e

Budget (fraction)

median time
% unsatisfiable

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.1 0.2 0.3 0.4 0.5

Ru
nt

im
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 7. Hardness and satisfiability profiles for lattices of order 10 with 10 terminals.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

Ru
nt

im
e

(s
)

%
 u

ns
at

isa
fia

bl
e

Budget (fraction)

median time
% unsatisfiable

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Ru
nt

im
e

(s
)

Budget (fraction)

median time satisfiable
median time unsatisfiable

a. Hardness and SAT/UNSAT profile b. Infeasibility vs. optimization

Fig. 8. Hardness and satisfiability profiles for lattices of order 10 with 20 terminals.

of order 6, 8, and 10. Notice that the median time is plotted in log-scale in this
figure. The plots clearly indicate an easy-hard-easy pattern for these instances,
even though they are all feasible with respect to the budget. As remarked earlier,
such patterns have been observed earlier in some pure optimization problems,
but only under specific random distributions.

Second, we turn our attention to graphs with terminal vertices. In Figure 6.a,
we show the hardness profile of lattices of order 10, with 3 terminals. In addition,
the satisfiability profile is shown in this figure: we plot the percentage of unsat-
isfiable instances with respect to a varying budget. Figures 7.a and 8.a present
similar graphs for lattices of order 10, with 10 and 20 terminals, respectively. In
all figures, we see a sharp phase transition from a region in which almost all in-
stances are unsatisfiable, to a region in which almost all instances are satisfiable
(when the budget fraction is around 0.15). Furthermore, again these problems
exhibit an easy-hard-easy pattern, the peak of which coincides with the satis-
fiability phase transition with respect to the budget. Similar relations between
the peak of computational hardness and feasibility phase transitions have been
demonstrated often before for pure satisfiability problems. However, we are un-
aware of such results for problems combining both a feasibility and an optimality
aspect.

Our experiments also indicate an easy-hard-easy pattern for the hardness of
the problem, depending number of terminals in the graph. For 10 terminals, the
problems are considerably more difficult than for 3 or 20 terminals. Intuitively,
this can be explained by two rivaling aspects: the difficulty of connecting k

terminals, and the complexity on n− k free variables. As k increases, it is more
difficult to connect the terminals. However, when k is large, the resulting problem
on n − k variables becomes easy.

Finally, we compare the hardness of optimization to the hardness of proving
infeasibility. To this end, we separate the hardness profiles for satisfiable and
unsatisfiable problem instances. The resulting plots for lattices of order 10 with
3, 10, and 20 terminals are depicted in Figure 6.b, Figure 7.b, and Figure 8.b,
respectively. In these figures, the curve for unsatisfiable instances represents the
hardness of proving infeasibility, while the curve for satisfiable instances repre-
sents the hardness of proving optimality. Clearly, proving infeasibility becomes
increasingly more difficult when the budget increases, especially inside the phase
transition region. At the same time, the difficulty of proving optimality does not
exhibit this extreme behavior. In fact, when the budget fraction is around 0.15,
we observe that proving infeasibility takes up to 150 times longer than proving
optimality.

6 Summary and Discussion

In this work, we investigated the interplay between the computational tasks of
feasibility testing and optimization. We studied in detail the connection subgraph
problem, for which we presented theoretical worst-case complexity results, as well
as empirical typical-case results. Our experiments reveal interesting trade-offs

between feasibility testing and optimization. One of our main observations is that
proving infeasibility can be considerably more difficult than proving optimality
in a computationally hard region of the problem space. In addition to this, we
identified a satisfiability phase transition coinciding with the complexity peak of
the problem. Somewhat more surprisingly, for the optimization component itself,
we discovered an easy-hard-easy pattern based on the feasibility parameter, even
when the underlying problems are always satisfiable.

In our experimental results, we have applied a mixed integer linear program-
ming model in conjunction with the solver Cplex. Naturally, one could argue
that a different solver or even a different model could have produced different
results. For example, one might propose to check separately the feasibility of the
cost constraint before applying a complete solver. Indeed, checking feasibility of
the cost constraint is equivalent to the metric Steiner tree problem. Although
this latter problem is solvable in polynomial time for a constant number of ter-
minals, it is likely not to be fixed parameter tractable [8]. Hence, it appears
unrealistic to apply such a separate feasibility check as a pre-processor before
using a complete solution technique.

Another direction is to apply a constraint programming (CP) model, which
could perhaps better tackle the feasibility aspect of the problem. However, a good
CP model should ideally capture the cost constraint as a whole, for example as
a global constraint. For the same reason as above, it is unlikely that an efficient
and effective filtering algorithm exists for such a constraint. Moreover, a CP
model by itself is not particularly suitable for the optimization component. More
specifically, for the connection subgraph problem the objective is a weighted sum,
which is known to be difficult to handle by constraint solvers. Nevertheless, a
hybrid constraint programming and mixed integer programming approach might
be effective for this problem, which we leave open as future work.

References

[1] A. Ando, J. Camm, S. Polasky, and A. Solow. Special distributions, land values,
and efficient conservation. Science, 279(5359):2126–2128, 1998.

[2] M. W. Bern and P. E. Plassmann. The Steiner tree problem with edge lengths 1
and 2. Information Processing Letters, 32(4):171–176, 1989.

[3] J. D. Camm, S. K. Norman, S. Polasky, and A. R. Solow. Nature reserve site
selection to maximize expected species covered. Operations Research, 50(6):946–
955, 2002.

[4] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–486, 2005.

[5] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery of connection sub-
graphs. In Proceedings of the 2004 ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 118–127. ACM Press, 2004.
[6] I. Gent and T. Walsh. The TSP Phase Transition. Artificial Intelligence, 88(1–2):

349–358, 1996.
[7] ILOG, SA. CPLEX 10.1 Reference Manual, 2006.
[8] H. J. Prömel and A. Steger. The Steiner Tree Problem: A Tour Through Graphs,

Algorithms, and Complexity. Vieweg, 2002.

[9] D. Simberloff, J. Farr, J. Cox, and D. Mehlman. Movement corridors: Conservation
bargains or poor invesments? Conservation Biology, 6:493–504, 1997.

[10] W. Zhang and R. Korf. A Study of Complexity Transitions on the Asymmetric
Traveling Salesman Problem. Artificial Intelligence, 81:223–239, 1996.

