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Abstract We consider the problem of estimating the model count (number of solutions)
of Boolean formulas, and present two techniques that compute estimates of these counts,
as well as either lower or upper bounds with different trade-offs between efficiency, bound
quality, and correctness guarantee. For lower bounds, we use a recent framework for prob-
abilistic correctness guarantees, and exploit message passing techniques for marginal prob-
ability estimation, namely, variations of the Belief Propagation (BP) algorithm. Our results
suggest that BP provides useful information even on structured, loopy formulas. For upper
bounds, we perform multiple runs of theMiniSat SAT solver with a minor modification, and
obtain statistical bounds on the model count based on the observation that the distribution of
a certain quantity of interest is often very close to the normal distribution. Our experiments
demonstrate that our model counters based on these two ideas,BPCount andMiniCount,
can provide very good bounds in time significantly less than alternative approaches.

Keywords Boolean satisfiability· SAT · number of solutions· model counting· BPCount·
MiniCount · lower bounds· upper bounds

1 Introduction

The model counting problem for Boolean satisfiability or SAT is the problem of comput-
ing the number of solutions or satisfying assignments for a given Boolean formula. Often
written as #SAT, this problem is #P-complete [28] and is widely believed to be significantly
harder than the NP-complete SAT problem, which seeks an answer to whether or not the
formula is satisfiable. With the amazing advances in the effectiveness of SAT solvers since
the early 1990’s, these solvers have come to be commonly used in combinatorial application
areas such as hardware and software verification, planning, and design automation. Efficient
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algorithms for #SAT will further open the doors to a whole new range of applications, most
notably those involving probabilistic inference [1, 4, 15, 18, 22, 25].

A number of different techniques for model counting have been proposed over the last
few years. For example,Relsat [2] extends systematic SAT solvers for model counting
and uses component analysis for efficiency,Cachet [23, 24] adds caching schemes to this
approach,c2d [3] converts formulas to the d-DNNF form which yields the model count
as a by-product,ApproxCount [30] andSampleCount [10] exploit sampling techniques for
estimating the count,MBound [11, 12] relies on the properties of random parity orXOR

constraints to produce estimates with correctness guarantees, and the recently introduced
SampleMinisat [9] uses sampling of the backtrack-free search space of systematic SAT
solvers. While all of these approaches have their own advantages and strengths, there is still
much room for improvement in the overall scalability and effectiveness of model counters.

We propose two new techniques for model counting that leverage the strength of mes-
sage passing and systematic algorithms for SAT. The first of these yields probabilistic lower
bounds on the model count, and for the second we introduce a statistical framework for
obtaining upper bounds with confidence interval style correctness guarantees.

The first method, which we callBPCount, builds upon a successful approach for model
counting using local search, calledApproxCount [30]. The idea is to efficiently obtain a
rough estimate of the “marginals” of each variable: what fraction of solutions have variablex
set toTRUE and what fraction havexset toFALSE? If this information is computed accurately
enough, it is sufficient to recursively count the number of solutions of onlyoneof F |x and
F |¬x, and scale the count up appropriately. This technique is extended inSampleCount [10],
which adds randomization to this process and provides lower bounds on the model count
with high probability correctness guarantees. For bothApproxCount andSampleCount, true
variable marginals are estimated by obtaining several solution samples using local search
techniques such asSampleSat [29] and by computing marginals from the samples. In many
cases, however, obtaining many near-uniform solution samples can be costly, and one natu-
rally asks whether there are more efficient ways of estimating variable marginals.

Interestingly, the problem of computing variable marginals can be formulated as a key
question in Bayesian inference, and the Belief Propagation or BP algorithm [cf.19], at least
in principle, provides us with exactly the tool we need. The BP method for SAT involves
representing the problem as a factor graph and passing “messages” back-and-forth between
variable and factor nodes until a fixed point is reached. This process is cast as a set of mutu-
ally recursive equations which are solved iteratively. From a fixed point of these equations,
one can easily compute, in particular, variable marginals.

While this sounds encouraging, there are two immediate challenges in applying the BP
framework to model counting: (1) quite often the iterative process for solving the BP equa-
tions does not converge to a fixed point, and (2) while BP provably computes exact variable
marginals on formulas whose constraint graph has a tree-like structure (formally defined
later), its marginals can sometimes be substantially off on formulas with a richer interaction
structure. To address the first issue, we use a “message damping” form of BP which has
better convergence properties (inspired by a damped version of BP due to Pretti [21]). For
the second issue, we add “safety checks” to prevent the algorithm from running into a con-
tradiction by accidentally eliminating all assignments.1 Somewhat surprisingly, once these
rare but fatal mistakes are avoided, it turns out that we can obtain very close estimates and
lower bounds for solution counts, suggesting that BP does provide useful information even

1 A tangential approach for handling such fatal mistakes is incorporating BP as a heuristic within back-
track search, which our results suggest has clear potential.
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on highly structured and loopy formulas. To exploit this information even further, we extend
the framework borrowed fromSampleCount with the use of biased random coins during
randomized value selection for variables.

The model count can, in fact, also be estimated directly from just one fixed point run of
the BP equations, by computing the value of so-called partition function [32]. In particular,
this approach computes the exact model count on tree-like formulas, and appeared to work
fairly well on random formulas. However, the count estimated this way is often highly in-
accurate on structured loopy formulas.BPCount, as we will see, makes a much more robust
use of the information provided by BP.

The second method, which we callMiniCount, exploits the power of modern Davis-
Putnam-Logemann-Loveland or DPLL [5, 6] based SAT solvers, which are extremely good
at finding single solutions to Boolean formulas through backtrack search. (Gogate and
Dechter [9] have independently proposed the use of DPLL solvers for model counting.) The
problem of computing upper bounds on the model count has so far eluded an effective solu-
tion strategy in part because of an asymmetry that manifests itself in at least two inter-related
forms: the set of solutions of interestingN variable formulas typically forms a minuscule
fraction of the full space of 2N variable assignments, and the application of Markov’s in-
equality as inSampleCount’s correctness analysis does not yield interesting upper bounds.
Note that systematic model counters likeRelsat andCachet can also be easily extended to
provide an upper bound when they time out (2N minus the number of non-solutions encoun-
tered during the run), but these bounds are uninteresting because of the above asymmetry.
For instance, if a search space of size 21,000 has been explored for a 10,000 variable formula
with as many as 25,000 solutions, the best possible upper bound one could hope to derive with
this reasoning is 210,000−21,000, which is nearly as far away from the true count of 25,000 as
the trivial upper bound of 210,000; the situation only gets worse when the formula has fewer
solutions. To address this issue, we develop a statistical framework which lets us compute
upper bounds under certain statistical assumptions, which are independently validated. To
the best of our knowledge, this is the first effective and scalable method for obtaining good
upper bounds on the model counts of formulas that are beyond the reach of exact model
counters.

More specifically, we describe how the DPLL-based SAT solverMiniSat [7], with two
minor modifications, can be used to estimate the total number of solutions. The numberd of
branching decisions (not counting unit propagations and failed branches) made byMiniSat

before reaching a solution, is the main quantity of interest: when the choice between setting
a variable toTRUE or to FALSE is randomized,2 the numberd is provably not any lower, in
expectation, than log2(model count). This provides a strategy for obtaining upper bounds
on the model count, only if one could efficiently estimate the expected value,E [d], of the
number of such branching decisions. A natural way to estimateE [d] is to perform multiple
runs of the randomized solver, and compute the average ofd over these runs. However,
if the formula has many “easy” solutions (found with a low value ofd) and many “hard”
solutions, the limited number of runs one can perform in a reasonable amount of time may
be insufficient to hit many of the “hard” solutions, yielding too low of an estimate forE [d]
and thus an incorrect upper bound on the model count.

We show that for many families of formulas,d has a distribution that is very close to
the normal distribution. Under the assumption thatd is normally distributed, when sampling
various values ofd through multiple runs of the solver, one need not necessarily encounter
high values ofd in order to correctly estimateE [d] for an upper bound. Instead, one can rely

2 MiniSat by default always branches by setting variables first toFALSE.
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on statistical tests and conservative computations [e.g.27, 34] to obtain a statistical upper
bound onE [d] within any specified confidence interval. This is the approach we take in this
work for our upper bounds.

We evaluated our two approaches on challenging formulas from several domains. Our
experiments withBPCount demonstrate a clear gain in efficiency, while providing much
higher lower bound counts than exact counters (which often run out of time or memory or
both) and a competitive lower bound quality compared toSampleCount. For example, the
runtime on several difficult instances from the FPGA routing family with over 10100 so-
lutions is reduced from hours or more for both exact counters andSampleCount to just a
few minutes withBPCount. Similarly, for random 3CNF instances with around 1020 solu-
tions, we see a reduction in computation time from hours and minutes to seconds. In some
cases, the lower bound provided byMiniCount is somewhat worse than that provided by
SampleCount, but still quite competitive. WithMiniCount, we are able to provide good up-
per bounds on the solution counts, often within seconds and within a reasonable distance
from the true counts (if known) or lower bounds computed independently. These experi-
mental results attest to the effectiveness of the two proposed approaches in significantly
extending the reach of solution counters for hard combinatorial problems.

The article is organized as follows. We start in Section2 with preliminaries and notation.
Section3 then describes our probabilistic lower bounding approach based on the proposed
convergent form of belief propagation. It first discusses how marginal estimates produced
by BP can be used to obtain lower bounds on the model count of a formula by modifying a
previous sampling-based framework, and then suggests two new features to be added to the
framework for robustness. Section4 discusses how a backtrack search solver, with appropri-
ate randomization and a careful restriction on restarts, can be used to obtain a process that
provides an upper bound in expectation. It then proposes a statistical technique to estimate
this expected value in a robust manner with statistical confidence guarantees. We present
experimental results for both of these techniques in Section5 and conclude in Section6.
The appendix gives technical details of the convergent form of BP that we propose, as well
as experimental results on the performance of our upper bounding technique when “restarts”
are disabled in the underlying backtrack search solver.

2 Notation

A Boolean variablexi is one that assumes a value of either 1 or 0 (TRUE or FALSE, re-
spectively). A truth assignment for a set of Boolean variables is a map that assigns each
variable a value. A Boolean formulaF over a set ofn such variables is a logical expres-
sion over these variables, which represents a functionf : {0,1}n → {0,1} determined by
whether or notF evaluates toTRUE under various truth assignments to then variables. A
special class of such formulas consists of those in the Conjunctive Normal Form or CNF:
F ≡ (l1,1∨ . . .∨ l1,k1)∧ . . .∧ (lm,1∨ . . .∨ lm,km), where each literall l ,k is one of the variables
xi or its negation¬xi . Each conjunct of such a formula is called a clause. We will be working
with CNF formulas throughout this article.

The constraint graphof a CNF formulaF has variables ofF as vertices and an edge
between two vertices if both of the corresponding variables appear together in some clause
of F . When this constraint graph has no cycles (i.e., it is a collection of disjoint trees),F is
called atree-likeor poly-treeformula. Otherwise,F is said to have aloopystructure.

The problem of finding a truth assignment for whichF evaluates toTRUE is known as
thepropositional satisfiabilityproblem, or SAT, and is the canonical NP-complete problem.
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Such an assignment is called asatisfying assignmentor asolutionfor F . A SAT solverrefers
to an algorithm, and often an accompanying implementation, for the satisfiability problem.
In this work we are concerned with the problem of counting the number of satisfying as-
signments for a given formula, known as thepropositional model countingproblem. We
will also refer to it as thesolution countingproblem. In terms of worst case complexity, this
problem is #P-complete [28] and is widely believed to be much harder than SAT itself. A
model counterrefers to an algorithm, and often an accompanying implementation, for the
model counting problem. The model counter is said to beexactif it is guaranteed to output
precisely the true model count of the input formula when it terminates. The model counters
we propose in this work are randomized and provide either a lower bound or an upper bound
on the true model count, with certain correctness guarantees.

3 Lower Bounds Using BP Marginal Estimates: BPCount

In this section, we develop a method for obtaining a lower bound on the solution
count of a given formula, using the framework recently used in the SAT model counter
SampleCount [10]. The key difference between our approach andSampleCount is that in-
stead of relying on solution samples, we use a variant of belief propagation to obtain es-
timates of the fraction of solutions in which a variable appears positively. We call this al-
gorithm BPCount. After describing the basic method, we will discuss two techniques that
improve the tightness ofBPCount bounds in practice, namely,biased variable assignments
andsafety checks. Finally, we will describe our variation of the belief propagation algorithm
which is key to the performance ofBPCount: a set ofparameterizedbelief update equa-
tions which are guaranteed to converge for a small enough value of the parameter. Since
the precise details of these parameterized iterative equations are somewhat tangential to the
main focus of this work (namely, model counting techniques), we will defer many of the BP
parameterization details to AppendixA.

We begin by recapitulating the framework ofSampleCount for obtaining lower bound
model counts with probabilistic correctness guarantees. A variableu will be calledbalanced
if it occurs equally often positively and negatively in all solutions of the given formula.
In general, themarginal probabilityof u being TRUE in the set of satisfying assignments
of a formula is the fraction of such assignments whereu = TRUE. Note that computing the
marginals of each variable, and in particular identifying balanced or near-balanced variables,
is quite non-trivial. The model counting approaches we describe attempt to estimate such
marginals using indirect techniques such as solution sampling or iterative message passing.

Given a formulaF and parameterst,z∈ Z+ andα > 0, SampleCount performst itera-
tions, keeping track of the minimum count obtained over these iterations. In each iteration,
it samplesz solutions of (potentially simplified)F , identifies the most balanced variableu,
uniformly randomly setsu to TRUE or FALSE, simplifiesF by performing any possible unit
propagations, and repeats the process. The repetition ends whenF is reduced to a size small
enough to be feasible for exact model counters such asRelsat [2], Cachet [23], or c2d [3];
we will useCachet in the rest of the discussion, as it is the exact model counter we used
in our experiments. At this point, lets denote the number of variables randomly set in this
iteration before handing the formula toCachet, and letM′ be the model count of the resid-
ual formula returned byCachet. The count for this iteration is computed to be 2s−α ×M′

(whereα is a “slack” factor pertaining to our probabilistic confidence in the correctness of
the bound). Here 2s can be seen as scaling up the residual count by a factor of 2 for every
uniform random decision we made when fixing variables. After thet iterations are over, the
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minimum of the counts over all iterations is reported as the lower bound for the model count
of F , and the correctness confidence attached to this lower bound is 1−2−αt . This means
that the reported count is a correct lower bound on the model count ofF with probability at
least 1−2−αt .

The performance ofSampleCount is enhanced by also considering balanced variable
pairs (v,w), where the balance is measured as the difference in the fractions of all solutions
in which v andw appear with the same value vs. with different values. When a pair is more
balanced than any single literal, the pair is used instead for simplifying the formula. In this
case, we replacew with v or¬v uniformly at random. For ease of illustration, we will focus
here only on identifying and randomly setting balanced or near-balanced variables, and not
variable pairs. We note that our implementation of BPCount does support variable pairs.

The key observation inSampleCount is that when the formula is simplified by repeat-
edly assigning a positive or negative polarity (i.e.,TRUE or FALSE values, respectively) to
variables, the expected value of the count in each iteration, 2s×M′ (ignoring the slack fac-
tor α), is exactly the true model count ofF , from which lower bound guarantees follow.
We refer the reader to Gomes et al. [10] for details. Informally, we can think of what hap-
pens when the first such balanced variable, sayu, is set uniformly at random. Letp∈ [0,1].
SupposeF hasM solutions,F |u has pM solutions, andF |¬u has(1− p)M solutions. Of
course, when settingu uniformly at random, we don’t know the actual value ofp. Nonethe-
less, with probability a half, we will recursively count the search space withpM solutions
and scale it up by a factor of 2, giving a net count ofpM×2. Similarly, with probability a
half, we will recursively get a net count of(1− p)M×2 solutions. On average, this gives
(1/2× pM×2)+(1/2× (1− p)M×2) = M solutions.

Observe that the correctness guarantee of this process holds irrespective of how good
or bad the samples are, which determines how successful we are in identifying a balanced
variable, i.e., how close isp to 1/2. That said, if balanced variablesare correctly identified,
we havep≈ 1/2 in the informal analysis above, which means that for both coin flip outcomes
we recursively search a space containing roughlyM/2 solutions. This reduces thevariance
of this randomized procedure tremendously and is crucial to making the process effective
in practice. Note that with high variance, the minimum count overt iterations is likely to be
much smaller than the true count; thus high variance leads to lower bounds of poor quality
(although still with the same correctness guarantee).

Algorithm BPCount: The idea behindBPCount is to “plug-in” belief propagation methods
in place of solution sampling in theSampleCount framework discussed above,in order to
estimate “p” in the intuitive analysis above and, in particular, to help identify balanced
variables. As it turns out, a solution to the BP equations [19] provides exactly what we need:
an estimate of the marginals of each variable. This is an alternative to using sampling for
this purpose, and is often orders of magnitude faster.

The heart of the BP algorithm involves solving a set of iterative equations derived specif-
ically for a given problem instance (the variables in the system are called “messages”). These
equations are designed to provide accurate answers if applied to problems with no circular
dependencies, such as constraint satisfaction problems with no loops in the corresponding
constraint graph.

One bottleneck, however, is that the basic belief propagation process is iterative and
does not even converge on most SAT instances of interest. In order to use BP for estimat-
ing marginal probabilities and identifying balanced variables, one must either cut off the
iterative computation or use a modification that does converge. Unfortunately, some of the
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known improvements of the belief propagation technique that allow it to converge more of-
ten or be used on a wider set of problems, such as Generalized Belief Propagation [31], Loop
Corrected Belief Propagation [17], or Expectation Maximization Belief Propagation [13],
are not scalable enough for our purposes. The problem of very slow convergence on hard
instances seems to plague also approaches based on other methods for solving BP equa-
tions than the simple iteration scheme, such as the convex-concave procedure introduced
by Yuille [33]. Finally, in our context, the speed requirement is accentuated by the need to
use marginal estimation repeatedly essentially every time a variable is chosen and assigned
a value.

We consider a parameterized variant of BP that is guaranteed to converge when this
parameter is small enough, and which imposes no additional computational cost per iteration
over standard BP. (A similar but distinct parameterization was proposed by Pretti [21].) We
found that this “damped” variant of BP provides much more useful information than BP
iterations terminated without convergence. We refer to this particular way of damping the
BP equations asBPκ , whereκ ≥ 0 is a real valued parameter that controls the extent of
damping in the iterative equations. The exact details of the corresponding update equations
are not essential for understanding the rest of this article; for completeness, we include the
update equations for SAT in Figure2 of AppendixA.

The damped equations are analogous to standard BP for SAT,3 differing only in the
addedκ exponent in the iterative update equations. Whenκ = 1, BPκ is identical to regular
belief propagation. On the other hand, whenκ = 0, the equations surely converge in one
step to a unique fixed point and the marginal estimates obtained from this fixed point have
a clear probabilistic interpretation in terms of a local property of the variables (we defer
formal details of this property to AppendixA; see Proposition1 and the related discussion).
Theκ parameter thus allows one to continuously interpolate between two regimes: one with
κ = 1 where the equations are identical to standard BP equations and thus provide global
information about the solution space if the iterations converge, and another withκ = 0
where the iterations surely converge but provide only local information about the solution
space. In practice,κ is chosen to be roughly the highest value in the range[0,1] that allows
convergence of the equations within a few seconds or less.

We use the output of BPκ as an estimate of the marginals of the variables inBPCount

(rather than solution samples as inSampleCount). Given this process of obtaining marginal
estimates from BP,BPCount works almost exactly likeSampleCount andprovides the same
lower bound guarantees.The only difference between the two algorithms is the manner in
which marginal probabilities of variables is estimated. Formally,

Theorem 1 (Adapted from [10]) Let s denote the number of variables randomly set by
an iteration ofBPCount, M′ denote the number of solutions in the final residual formula
given to an exact model counter, andα > 0 be the slack parameter used. IfBPCount is run
with t ≥ 1 iterations on a formula F, then its output—the minimum of2s−α ×M′ over the t
iterations—is a correct lower bound on#F with probability at least1−2−αt .

As the exponentially nature of the quantity 1− 2−αt suggests, the correctness confi-
dence forBPCount can be easily boosted by increasing the number of iterations,t, (thereby
incurring a higher runtime), or by increasing the slack parameter,α, (thereby reporting a
somewhat smaller lower bound and thus being conservative), or by a combination of both.
In our experiments, we will aim for a correctness confidence of over 99%, by using values

3 See, for example, Figure 4 of [16] with ρ = 0 for a full description of standard BP for SAT.
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of t andα satisfyingαt ≥ 7. Specifically, most runs will involve 7 iterations andα = 1,
while some will involve fewer iterations with a slightly higher value ofα.

3.1 Using Biased Coins

We can improve the performance ofBPCount (and also ofSampleCount) by using biased
variable assignments. The idea here is that when fixing variables repeatedly in each iteration,
the values need not be chosen uniformly. The correctness guarantees still hold even if we
use a biased coin and set the chosen variableu to TRUE with probability q and toFALSE

with probability 1−q, for anyq∈ (0,1). Using earlier notation, this leads us to a solution
space of sizepM with probabilityq and to a solution space of size(1− p)M with probability
1−q. Now, instead of scaling up with a factor of 2 in both cases, we scale up based on the
bias of the coin used. Specifically, with probabilityq, we go to one part of the solution space
and scale it up by 1/q, and similarly for 1− q. The net result is that in expectation, we
still get (q× pM/q)+((1−q)× (1− p)M/(1−q)) = M solutions. Further, the variance is
minimized whenq is set to equalp; in BPCount, q is set to equal the estimate ofp obtained
using the BP equations. To see that the resulting variance is minimized this way, note that
with probabilityq, we get a net count ofpM/q, and with probability(1−q), we get a net
count of(1− p)M/(1−q); these counts balance out to exactlyM in either case whenq= p.
Hence, when we have confidence in the correctness of the estimates of variable marginals
(i.e., p here), it provably reduces variance to use a biased coin that matches the marginal
estimates of the variable to be fixed.

3.2 Safety Checks

One issue that arises when using BP techniques to estimate marginals is that the estimates,
in some cases, may be far off from the true marginals. In the worst case, a variableu iden-
tified by BP as the most balanced may in fact be a backbone variable forF , i.e., may only
occur, say, positively in all solutions toF . Settingu to FALSE based on the outcome of the
corresponding coin flip thus leads one to a part of the search space with no solutions at
all, which means that the count for this iteration is zero, making the minimum overt iter-
ations zero as well. To remedy this situation, we use safety checks using an off-the-shelf
SAT solver (MiniSat [7] or Walksat [26] in our implementation) before fixing the value
of any variable. Note that using a SAT solver as a safety check is a powerful but somewhat
expensive mechanism; fortunately, compared to the problem of counting solutions, the time
to run a SAT solver as a safety check is relatively minor and did not result in any significant
slow down in the instances we experimented with. The cost of running a SAT solver to find
a solution is also significantly less than the cost other methods such asApproxCount and
SampleCount incur when collecting several near-uniform solution samples.

The idea behind the safety check is to simply ensure that there exists at least one solution
both withu= TRUE and withu= FALSE, beforeflipping a random coin and fixingu to TRUE

or toFALSE. If, say,MiniSat as the safety check solver finds that forcingu to beTRUE makes
the formula unsatisfiable, we can immediately deduceu= FALSE, simplify the formula, and
look for a different balanced variable to continue with; no random coin is flipped in this
case. If not, we runMiniSat with u forced to beFALSE. If MiniSat finds the formula to be
unsatisfiable, we can immediately deduceu = TRUE, simplify the formula, and look for a
different balanced variable to continue with; again no random coin is flipped in this case. If
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not, i.e.,MiniSat found solutions both withu set toTRUE andu set toFALSE, thenu is said
to pass the safety check—it is safe to flip a coin and fix the value ofu randomly. This safety
check preventsBPCount from reaching the undesirable state where there are no remaining
solutions at all in the residual search space.

A slight variant of such a test can also be performed—albeit in a conservative fashion—
with an incomplete solver such asWalksat. This works as follows. IfWalksat is unable
to find at least one solution both withu beingTRUE andu beingFALSE, we conservatively
assume that it is not safe to flip a coin and fix the value ofu randomly, and instead look
for another variable for whichWalksat canfind solutions both with valueTRUE and value
FALSE. In the rare case that no such safe variable is found after a few tries, we call this a
failed run ofBPCount, and start from the beginning with possibly a higher cutoff forWalksat

or a different safety check solver.
Lastly, we note that withSampleCount, the external safety check can be conservatively

replaced by simply avoiding those variables that appear to be backbone variables from the
obtained solution samples, i.e., ifu takes valueTRUE in all solution samples at a point, we
conservatively assume that it is not safe to assign a random truth value tou.

Remark 1In fact, with the addition of safety checks, we found that the lower bounds on
model counts obtained for some formulas were surprisingly good even when fake marginal
estimates were generated purely at random, i.e., without actually running BP. This can per-
haps be explained by the errors introduced at each step somehow canceling out when the
values of several variables are fixed sequentially. With the use of BP rather than randomly
generated fake marginals, however, the quality of the lower bounds was significantly im-
proved, showing that BP does provide useful information about marginals even for highly
loopy formulas.

4 Upper Bound Estimation Using Backtrack Search: MiniCount

We now describe an approach for estimating an upper bound on the solution count. We use
the reasoning discussed forBPCount, and apply it to a DPLL style backtrack search proce-
dure. There is an important distinction between the nature of the bound guarantees presented
here and earlier: here we will derivestatistical(as opposed to probabilistic) guarantees, and
their quality may depend on the particular family of formulas in question—in contrast, recall
that the correctness confidence expression 1−2−αt for the lower bound in Theorem1 was
independent of the nature of the underlying formula or the marginal estimation process. The
applicability of the method will also be determined by a statistical test, which did succeed
in most of our experiments.

For BPCount, we used a backtrack-less search process with a random outcome that, in
expectation, gives the exact number of solutions. The ability to randomly assign values to
selected variables was crucial in this process. Here we extend the same line of reasoning to
a search processwith backtracking, and argue that the expected value of the outcome is an
upper bound on the true count.

We extend the DPLL-based backtrack search SAT solverMiniSat [7] to compute the
information needed for upper bound estimation.MiniSat is a very efficient SAT solver em-
ploying conflict clause learning and other state-of-the-art techniques, and hasone important
featurehelpful for our purposes: whenever it chooses a variable to branch on, there is no
built-in specialized heuristic to decide which value the variable should assume first. One pos-
sibility is to assign valuesTRUE or FALSE randomly with equal probability. SinceMiniSat
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does not use any information about the variable to determine the most promising polarity,
this random assignment in principle does not lowerMiniSat’s power. Note that there are
other SAT solvers with this feature, e.g.Rsat [20], and similar results can be obtained for
such solvers as well.

Algorithm MiniCount: Given a formulaF , runMiniSat, choosing the truth value assign-
ment for the variable selected at each choice point uniformly at random betweenTRUE and
FALSE (command-line option-polarity-mode=rnd). When a solution is found, output 2d,
whered is the “perceived depth”, i.e., the number of choice points on the path to the solu-
tion (the final decision level), not counting those choice points where the other branch failed
to find a solution (a backtrack point). We rely on the fact that the default implementation of
MiniSat never restarts unless it has backtracked at least once.4

We note that we are implicitly using the fact thatMiniSat, and most SAT solvers avail-
able today, assign truth values toall variables of the formula when they declare that a so-
lution has been found. In case the underlying SAT solver is designed to detect the fact that
all clauses have been satisfied and to then declare that a solution has been found even with,
say,u variables remaining unset, the definition ofd should be modified to include theseu
variables; i.e.,d should beu plus the number of choice points on the path minus the number
of backtrack points on that path.

Note also that for anN variable formula,d can be alternatively defined asN minus
the number of unit propagations on the path to the solution found minus the number of
backtrack points on that path. This makes it clear thatd is after all tightly related toN, in the
sense that if we add a few “don’t care” variables to the formula, the value ofd will increase
appropriately.

We now prove that we can useMiniCount to obtain an upper bound on the true model
count ofF . SinceMiniCount is a probabilistic algorithm, its output, 2d, on a given formula
F is a random variable. We denote this random variable by #FMiniCount, and use #F to denote
the true number of solutions ofF . The following theorem forms the basis of our upper bound
estimation. We note that the theorem provides an essential building block but by itself does
not fully justify the statistical estimation techniques we will introduce later; they rely on
arguments discussed after the theorem.

Theorem 2 For any CNF formula F,E [#FMiniCount]≥ #F.

Proof The expected value is taken across all possible choices made by theMiniCount al-
gorithm when run onF , i.e., all its possible computation histories onF . The proof uses the
fact that the claimed inequality holds even if all computation histories that incurred at least
one backtrack were modified to output 0 instead of 2d once a solution was found. In other
words, we will write the desired expected value, by definition, as a sum over all computation
historiesh and then simply discard a subset of the computation histories—those that involve
at least one backtrack—from the sum to obtain a smaller quantity, which will eventually be
shown to equal #F exactly.

Once we restrict ourselves to only those computation historiesh that do not involve any
backtracking, these histories correspond one-to-one to the pathsp in the search tree under-
lying MiniCount that lead to a solution. Note that there are precisely as many such paths
p as there are satisfying assignments forF . Further, since value choices ofMiniCount at

4 In a preliminary version of this work [14], we did not allow restarts at all. The reasoning given here
extends the earlier argument and permits restarts as long as they happen after at least one backtrack.
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various choice points are made independently at random, the probability that a computation
history follows pathp is precisely 1/2dp, wheredp is the “perceived depth” of the solution
at the leaf ofp, i.e., the number of choice points till the solution is found (recall that there
are no backtracks on this path; of course, there might—and often will—be unit propagations
alongp, due to whichdp may be smaller than the total number of variables inF). The value
output byMiniCount on this path is 2dp.

Mathematically, the above reasoning can be formalized as follows:

E [#FMiniCount] = ∑
computation historiesh

of MiniCount onF

Pr[h] ·output onh

≥ ∑
computation historiesh

not involving any backtrack

Pr[h] ·output onh

= ∑
search pathsp

that lead to a solution

Pr[p] ·output onp

= ∑
search pathsp

that lead to a solution

1

2dp
·2dp

= number of search pathsp that lead to a solution

= #F

This concludes the proof. ut

Remark 2The reasonrestarts without at least one backtrack are not allowedin MiniCount

is hidden in the proof of Theorem2. With such early restarts, only solutions reachable within
the current setting of the restart threshold can be found. For restarts shorter than the num-
ber of variables, only “easier” solutions which require very few decisions are ever found.
MiniCount with early restarts could therefore always undercount the number of solutions
and not provide an upper bound—even in expectation. On the other hand, if restarts happen
only after at least one backtrack point, then the proof of the above theorem shows that it
is safe to even output 0 on such runs and still obtain a correct upper bound in expectation;
restarting and reporting a non-zero number on such runs only helps the upper bound.

With enough random samples of the output, #FMiniCount, obtained fromMiniCount, their
average value will eventually converge toE [#FMiniCount] by the Law of Large Numbers [cf.
8], thereby providing an upper bound on #F because of Theorem2. Unfortunately, provid-
ing a useful correctness guarantee on such an upper bound in a manner similar to the lower
bounds seen earlier turns out to be impractical, because the resulting guarantees, obtained
using a reverse variant of the standard Markov’s inequality, are too weak. Further, relying on
the simple average of the obtained output samples might also be misleading, since the dis-
tribution of #FMiniCount often has significant mass in fairly high values and it might take very
many samples for the sample mean to become as large as the true average of the distribution.

The way we proved Theorem2, in fact, suggests that we could simply report 0 and start
over every time we need to backtrack, which would actually result in a random variable that
is in expectationexact, not only an upper bound. This approach is of course impractical,
as we would almost always see zeros in the output and see a very high non-zero output
with exponentially small probability. Although the expected value of these numbers is, in
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principle, the true model count ofF , estimating the expected value of the underlying extreme
zero-heavy ‘bimodal’ distribution through a few random samples is infeasible in practice.
We therefore choose to trade off tightness of the reported bound for the ability to obtain
values that can be argued about, as discussed next.

4.1 Justification for Using Statistical Techniques

As remarked earlier, the proof of Theorem2 by itself does not provide a good justification
for using statistical estimation techniques to computeE [#FMiniCount]. This is because for the
sake of the proving that what we obtain in expectation is an upper bound, we simplified the
scenario and showed that it is sufficient to even report 0 solutions and start over whenever
we need to backtrack. While these 0 outputs are enough to guarantee that we obtain an upper
bound in expectation, they are by no means helpful in letting us estimate, in practice, the
value of this expectation from a few samples of the output value. A bimodal distribution
concentrated on 0 and with exponentially few very large numbers is difficult to estimate the
expected value of. For the technique to be useful in practice, we need a smoother distribution
for which we can use statistical estimation techniques, to be discussed shortly, in order to
compute the expected value in a reasonable manner.

In order to achieve this, we will rely on an important observation:whenMiniCount does
backtrack, we donot report 0; rather we continue to explore the other side of the “choice”
point under consideration and eventually report a non-zero value.Since our strategy will
be to fit a statistical distribution on the output of several samples fromMiniCount, and
because except for rare occasions all of these samples come after at least one backtrack, it
will be crucial that the non-zero value output byMiniCount when a solution is foundafter a
backtrack does have information about the number of solutions ofF . Fortunately, we argue
that this is indeed the case—the value 2d that MiniCount outputs even after at least one
backtrack does contain valuable information about the number of solutions ofF .

To see this, consider a stage in the algorithm that is perceived as a choice point but is in
fact not a true choice point. Specifically, suppose at this stage, the formula hasM solutions
whenx = TRUE and no solutions whenx = FALSE. With probability 1/2 , MiniCount will
setx to TRUE and in fact estimate an upper bound on 2M from the resulting sub-formula,
because it did not discover that it wasn’t really at a “choice” point. This will, of course, still
be a legal upper bound onM. More importantly, with probability1/2 , MiniCount will set
x to FALSE, discover that there are no solutions in this sub-tree, backtrack, setx to TRUE,
realize that this is not actually a “choice” point, and recursively estimate an upper bound on
M. Thus, even with backtracks, the output ofMiniCount is very closely related to the actual
number of solutions in the sub-tree at the current stage (unlike in the proof of Theorem2,
where it is thought of as being 0), and it is justifiable to deduce an upper bound on #F
by fitting sample outputs ofMiniCount to a statistical distribution. We also note that the
number of solutions reported after a restart is just like taking another sample of the process
with backtracks, and thus is also closely related to #F.

4.2 Estimating the Upper Bound Using Statistical Methods

In this section, we develop an approach based on statistical analysis of sample outputs that
allows one to estimate the expected value of #FMiniCount, and thus an upper bound with
statistical guarantees, using relatively few samples.
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Assuming the distribution of #FMiniCount is known, the samples can be used to provide an
unbiased estimate of the mean, along with confidence intervals on this estimate. This distri-
bution is of course not known and will vary from formula to formula, but it can again be in-
ferred from the samples. We observed that for many formulas, the distribution of #FMiniCount

is well approximated by a log-normal distribution. Thus we develop the method under the
assumption of log-normality, and include techniques to independently test this assumption.
The method has three steps:

1. Generatem independent samples from #FMiniCount by runningMiniCount m times on the
same formula.

2. Test whether the samples come from a log-normal distribution (or a distribution suffi-
ciently similar).

3. Estimate the true expected value of #FMiniCount from them samples, and calculate the
(1−α) confidence interval for it using the assumption that the underlying distribution
is log-normal. We set the confidence levelα to 0.01 (equivalent to a 99% correctness
confidence as before for the lower bounds), and denote the upper bound of the resulting
confidence interval bycmax.

This process, some of whose details will be discussed shortly, yields an upper bound
cmax along with thestatistical guaranteethatcmax≥ E [#FMiniCount], and thuscmax≥ #F by
Theorem2:

Pr[cmax≥ #F ] ≥ 1−α (1)

The caveat in this statement (and, in fact, the main difference from the similar statement
for the lower bounds forBPCount given earlier) is that this statement is true only if our
assumption of log-normality of the outputs of single runs of MiniCount on the given formula
holds.

4.2.1 Testing for Log-Normality

By definition, a random variableX has a log-normal distribution if the random variableY =
logX has a normal distribution. Thus a test for whetherY is normally distributed can be used,
and we use the Shapiro-Wilk test [cf.27] for this purpose. In our case,Y = log(#FMiniCount)
and if the computed p-value of the test is below the confidence levelα = 0.05, we conclude
that our samples donotcome from a log-normal distribution; otherwise we assume that they
do. If the test fails, then there is sufficient evidence that the underlying distribution is not
log-normal, and the confidence interval analysis to be described shortly will not provide any
statistical guarantees. Note that non-failure of the test does not mean that the samplesareac-
tually log-normally distributed, but inspecting the Quantile-Quantile plots (QQ-plots) often
supports the hypothesis that they are. QQ-plots compare sampled quantiles with theoretical
quantiles of the desired distribution: the more the sample points align on the diagonal line,
the more likely it is that the data came from the desired distribution. See Figure1 for some
examples of QQ-plots.

We found that a surprising number of formulas had log2(#FMiniCount) very close to being
normally distributed. Figure1 shows normalized QQ-plots fordMiniCount = log2(#FMiniCount)
obtained from 100 to 1000 runs ofMiniCount on various families of formulas (discussed in
the experimental section). The top-left QQ-plot shows the best fit of normalizeddMiniCount

(obtained by subtracting the average and dividing by the standard deviation) to the normal
distribution:(normalizeddMiniCount = d)∼ 1√

2π
e−d2/2. The ‘supernormal’ and ‘subnormal’

lines show that the fit is much worse when the exponent ofd in the expressione−d2/2 above
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Fig. 1 Sampled and theoretical quantiles for formulas described in the experimental section (top:
alu2 gr rcs w8 andlang19; middle:2bitmax 6 andwff-3-150-525; bottom:ls11-norm).

is, for example, taken to be 2.5 or 1.5. The top-right plot shows that #FMiniCount on the cor-
responding domain (Langford problems) is somewhat on the border of being log-normally
distributed, which is reflected in our experimental results to be described later.

Note that the nature of statistical tests is such that if the distribution ofE [#FMiniCount] is
not exactlylog-normal, obtaining more and more samples will eventually lead to rejecting
the log-normality hypothesis. For most practical purposes, being “close” to log-normally
distributed suffices.
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4.2.2 Confidence Interval Bound

Assuming the output samples fromMiniCount {o1, . . . ,om} come from a log-normal distri-
bution, we use them to compute the upper boundcmax of the confidence interval for the mean
of #FMiniCount. The exact method for computingcmax for a log-normal distribution is com-
plicated, and seldom used in practice. We use a conservative bound computation [34] which
yieldsc̃max, a quantity that is no smaller thancmax. Let yi = log(oi), ȳ= 1

m ∑m
i=1 yi denote the

sample mean, ands2 = 1
m−1 ∑m

i=1(yi − ȳ)2 the sample variance. Then the conservative upper
bound is constructed as

c̃max = exp

(
ȳ+

s2

2
+
(

m−1
χ2

α(m−1)
−1

)√
s2

2

(
1+

s2

2

) )

whereχ2
α(m− 1) is theα-percentile of the chi-square distribution withm− 1 degrees of

freedom. Since ˜cmax≥ cmax, it follows from Equation (1) that

Pr[c̃max≥ #F ] ≥ 1−α (2)

This is the inequality that we will use when reporting our experimental results.

4.3 Limitations ofMiniCount and Worst-Case Behavior

The main assumption of the upper bounding method described in this section is that the dis-
tribution of #FMiniCount can be well approximated by a log-normal. This, of course, depends
on the nature of the search process ofMiniCount on the particular SAT instance under con-
sideration. In particular, the resulting distribution could, in principle, vary significantly if the
parameters of the underlyingMiniSat solver are altered or if a different DPLL-based SAT
solver is used as the basis of this model counting strategy. For some scenarios (i.e., for some
solver-instance combinations), we might be able to have high confidence in log-normality,
and for other scenarios, we might not and thus not claim an upper bound with this method.
We found that usingMiniSat with default parameters and with the random polarity mode
as the basis forMiniCount worked well on several families of formulas.

As noted earlier, the assumption that the distribution is log-normal may sometimes be
incorrect. In particular, one can construct a pathological search space where the reported
upper bound will be lower than the actual number of solutions for nearly all DPLL-based
underlying SAT solvers. Consider a problemP that consists of two non-interacting (i.e., on
disjoint sets of variables) subproblemsP1 andP2, where it is sufficient to solve either one of
them to solveP. SupposeP1 is very easy to solve (e.g., requires only a few choice points and
they are easy to find) compared toP2, andP1 has very few solutions compared toP2. In such a
case,MiniCount will almost always solve onlyP1 (and thus estimate the number of solutions
of P1), which would leave an arbitrarily large number of solutions ofP2 unaccounted for.
This situation violates the assumption that #FMiniCount is log-normally distributed, but this
fact may be left unnoticed by the log-normality tests we perform, potentially resulting in a
false upper bound. This possibility of a false upper bound is a consequence of the inability
to statistically prove from samples that a random variableis log-normally distributed (one
may only disprove this assertion). Fortunately, as our experiments suggest, this situation is
rare and does not arise in many real-world problems.
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5 Experimental Results

We conducted experiments withBPCount as well asMiniCount,5 with the primary focus
on comparing the results to exact counters and the recentSampleCount algorithm providing
probabilistically guaranteed lower bounds. We used a cluster of 3.8 GHz Intel Xeon com-
puters running Linux 2.6.9-22.ELsmp. The time limit was set to 12 hours and the memory
limit to 2 GB.

We consider problems from five different domains, many of which have previously been
used as benchmarks for evaluating model counting techniques: circuit synthesis, random k-
CNF, Latin square construction, Langford problems, and FPGA routing instances from the
SAT 2002 competition. The results are summarized in Tables1 and2.

The columns show the performance ofBPCount (version 1.2LES, based on
SampleCount version 1.2L but adding external BP-based marginals and safety checks, us-
ing Cachet version 1.2 once the instance under consideration is sufficiently simplified) and
MiniCount (based onMiniSat version 2.0), compared against the exact solution counters
Relsat (version 2.00),Cachet (version 1.2), andc2d (version 2.20)6, and the lower bound-
ing solution counterSampleCount (version 1.2L, usingCachet version 1.2 once the instance
is sufficiently simplified). The tables show the reported bounds on the model counts and the
corresponding runtime in seconds.

For BPCount, the damping parameter setting (i.e., theκ value) we use for the damped
BP marginal estimator is 0.8, 0.9, 0.9, 0.5, and either 0.1 or 0.2, for the five domains, re-
spectively. This parameter is chosen (with a quick manual search) as high as possible while
still allowing BPκ iterations to converge to a fixed point in a few seconds or less. The exact
counterCachet is called when the formula is sufficiently simplified, which is when 50 to
500 variables remain, depending on the domain. The lower bounds on the model count are
reported with 99% correctness confidence.

Tables1 and 2 show that a significant improvement in efficiency is achieved when
the BP marginal estimation is used throughBPCount, rather than solution sampling as in
SampleCount (also run with 99% correctness confidence). For the smaller formulas consid-
ered, the lower bounds reported byBPCount border the true model counts. For the larger
ones that could only be counted partially by exact counters in 12 hours,BPCount gave lower
bound counts that are very competitive with those reported bySampleCount, while the run-
ning time ofBPCount is, in general, an order of magnitude lower than that ofSampleCount,
often just a few seconds.

For MiniCount, we obtainm = 100 samples of the estimated count for each formula,
and use these to estimate the upper bound statistically using the steps described earlier.
The test for log-normality of the sample counts is done with a rejection level of 0.05, that
is, if the Shapiro-Wilk test reports a p-value below 0.05, we conclude the samples donot
come from a log-normal distribution, in which case no upper bound guarantees are provided
(MiniCount is “unsuccessful”). When the test passed, the upper bound itself was computed
with a confidence level of 99% using the computation discussion in Section4.2.2. The re-
sults are summarized in the last set of columns in Tables1 and2. We report whether the

5 As stated earlier, we allow restarts inMiniCount after at least one backtrack has occurred, unlike the
preliminary version of this work [14] where we reported results without restarts. Although the results in the
two scenarios are sometimes fairly close, we believe allowing restarts will be effective and even indispensable
on harder problem instances. We thus report here numbers only with restarts. For completeness, the numbers
for MiniCount without restarts are reported in Table3 of AppendixB.

6 We report counts obtained from the best of the three exact model counters for each instance; for all but
the first instance,c2d exceeded the memory limit.
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log-normality test passed, the average of the counts obtained over the 100 runs, the value of
the statistical upper boundcmax, and the total time for the 100 runs.

Tables1 and2 show that the upper bounds are often obtained within seconds or minutes,
and are correct for all instances where the estimation method was successful (i.e., the log-
normality test passed) and true counts or lower bounds are known. In fact, the upper bounds
for these formulas (exceptlang-2-23) are correct w.r.t. the best known lower bounds and
true counts even for those instances where the log-normality test failed and a statistical
guarantee cannot be provided. The Langford problem family seems to be at the boundary
of applicability of theMiniCount approach, as indicated by the alternating successes and
failures of the test in this case. The approach is particularly successful on industrial problems
(circuit synthesis, FPGA routing), where upper bounds are computed within seconds.

Our results also demonstrate that a simple average of the 100 runs can provide a very
good approximation to the number of solutions. However, simple averaging can sometimes
lead to an incorrect upper bound, as seen inwff-3-1.5, ls13-norm, alu2 gr rcs w8, and
vda gr rcs w9, where the simple average is below the true count or a lower bound obtained
independently. This justifies our statistical framework as an effective strategy for obtaining
more robust upper bounds.

We end this section with the observation that while the lower and upper bounds provided
by BPCount andMiniCount, respectively, are in general of very good quality, there is still
a gap in the exponent. From the results for the cases where the true solution count for the
instance is known, we can see that either of these bounds can be closer to the true count than
the other. For example, the lower bound reported byBPCount is tigher than the upper bound
reported byMiniCount in the case of the Latin Square construction problem, the opposite
holds for the Langford problem, and the true count lies roughly in the middle (in log-scale)
for the randomly generated problem. This attests to the hardness of the model counting
problem and leaves open room for further improvement in techniques for obtaining both
lower bounds and upper bounds on the true count.

6 Conclusion

This work brings together techniques from message passing, DPLL-based SAT solvers, and
statistical estimation in an attempt to solve the challenging model counting problem. We
show how (a damped form of) BP can help significantly boost solution counters that pro-
duce lower bounds with probabilistic correctness guarantees.BPCount is able to provide
good quality, competitive lower bounds in a fraction of the time compared to previous,
sampling-based methods. We also describe the first effective approach for obtaining good
upper bounds on the solution count. Our framework is general and enables one to turn any
state-of-the-art complete SAT solver into an upper bound counter, with very minimal mod-
ifications to the code. OurMiniCount algorithm provably converges to an upper bound on
the solution count as more and more samples are drawn, and a statistical estimate of this
upper bound can be efficiently derived from just a few samples assuming an independently
verified log-normality condition.MiniCount is shown to be remarkably fast at providing
good upper bounds in practice.
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Appendix

A Update Equations for BPκ , a Convergent Variant of BP

The iterative update equations for the convergent form of belief propagation,BPκ , are given in Figure2. The
only difference from the normal BP equations is the exponentκ in the updates.

Notation Used.V(a): all variables in clausea. Cu
a(i), i ∈ V(a): clauses where variablei appears

with theoppositesign than it does ina. Cs
a(i), i ∈V(a): clauses wherei appears with thesamesign

as it does ina (not includinga itself).

ηa→i = ∏
j∈V(a)\i

[ (
∏b∈Cs

a(i)(1−ηb→i)
)κ(

∏b∈Cs
a(i)(1−ηb→i)

)κ +
(
∏b∈Cu

a(i)(1−ηb→i)
)κ

]

Computing marginals from a fixed pointη∗ of the message equations:

µi(1) ∝ ∏
b∈C−(i)

(1−η
∗
b→i)

µi(0) ∝ ∏
b∈C+(i)

(1−η
∗
b→i)

µi(1) is the probability that variablei is positive in a satisfying assignment chosen uniformly at
random, andµi(0) is the probability that it is negative.µi(0)+ µi(1) = 1.

Fig. 2 Modified belief propagation update equations.

The role of the parameterκ is to damp oscillations of the message values by pushing the variable-to-
clause messages,Π , closer to 1. Intuitively speaking, the damping is realized by the functiony = xκ for
κ < 1. For inputsx that are positive and less than one, the function increases their value, or sets them to 1 in
the case ofκ = 0. As a result, after normalization, theΠ values are less extreme. Forκ = 0, we can obtain a
probabilistic interpretation of the algorithm reminiscent of a local heuristic for SAT solving:

Proposition 1 The system of BPκ equations forκ = 0 converges in one iteration for any starting point, and
the following holds for the resulting valuesµi (see Figure2 for notation):

µi(1) ∝ ∏
b∈C−(i)

(
1−2−(|V(b)|−1)

)
µi(0) ∝ ∏

b∈C+(i)

(
1−2−(|V(b)|−1)

)
Proof For any initial starting pointη0 (with values in[0,1]), the first iteration sets allΠu = 1 andΠs = 1.
This meansηa→i = ( 1

2)|V(a)|−1 for all clausesa containing variablei. This is the fixed pointη∗, because
applying the updates again yields the same values. The rest follows directly from the form of theµi equations
in Figure2. ut

The intuitive interpretation of the values ofµi in Proposition1 is the following: assuming independence
of variable occurrences in clauses, the value 2−(|V(b)|−1) can be interpreted as the probability that clause
b∈C(i) is unsatisfied by a random truth assignment if variablei is not considered.µi(1) is thus the probability
that all clausesb in which variablei appears negated are satisfied, and analogously forµi(0). Since clauses
not considered in the expressions forµi are satisfied byi itself, the resulting values ofµi are proportional to
the probability that all clauses where i appears are satisfied with the particular setting of variable i, when
all other variables are set randomly.This is very local information, and depends only on what clauses the
variable appears negatively or positively in. The parameterκ can thus be used to tune the tradeoff between
the ability of the iterative system to converge and the locality of the information obtained from the resulting
fixed point.
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B Performance of MiniCount Without Restarts

For completeness, we report here the upper bound results obtained usingMiniCount with restarts turned
off—the setup that was used in a preliminary version of this article [14]. In most cases, this is somewhat
slower than runningMiniCount with restarts. However, there are cases where this is somewhat faster or
where the resulting numbers appear to fit a log-normal distribution better than with restarts.

Table 3 Performance ofMiniCount without restarts.

MiniCount without restarts
num. of True Count S-W (99% confidence)

Instance vars (if known) Test Average UPR-bound Time

CIRCUIT SYNTH.

2bitmax6 252 2.1×1029 √
3.5×1030 ≤ 4.3×1032 2 sec

RANDOM k-CNF

wff-3-3.5 150 1.4×1014 √
4.3×1014 ≤ 6.7×1015 2 sec

wff-3-1.5 100 1.8×1021 √
1.2×1021 ≤ 4.8×1022 2 sec

wff-4-5.0 100 —
√

2.8×1016 ≤ 5.7×1028 2 sec

LATIN SQUARE

ls8-norm 301 5.4×1011 √
6.4×1012 ≤ 1.8×1014 2 sec

ls9-norm 456 3.8×1017 √
6.9×1018 ≤ 2.1×1021 3 sec

ls10-norm 657 7.6×1024 √
4.3×1026 ≤ 7.0×1030 7 sec

ls11-norm 910 5.4×1033 √
1.7×1034 ≤ 5.6×1040 35 sec

ls12-norm 1221 —
√

9.1×1044 ≤ 3.6×1052 4 min
ls13-norm 1596 —

√
1.0×1054 ≤ 8.6×1069 42 min

ls14-norm 2041 —
√

3.2×1063 ≤ 1.3×1086 7.5 hrs

LANGFORD PROBS.

lang-2-12 576 1.0×105 × 5.2×106 ≤ 1.0×107 2.5 sec
lang-2-15 1024 3.0×107 √

1.0×108 ≤ 9.0×108 8 sec
lang-2-16 1024 3.2×108 × 1.1×1010 ≤ 1.1×1010 7.3 sec
lang-2-19 1444 2.1×1011 × 1.4×1010 ≤ 6.7×1012 37 sec
lang-2-20 1600 2.6×1012 √

1.4×1012 ≤ 9.4×1012 3 min
lang-2-23 2116 3.7×1015 × 3.5×1012 ≤ 1.4×1013 23 min
lang-2-24 2304 — × 2.7×1013 ≤ 1.9×1016 25 min

FPGA routing (SAT2002)

apex7* w5 1983 —
√

7.3×1095 ≤ 5.9×10105 2 min
9symml * w6 2604 —

√
3.3×1058 ≤ 5.8×1064 24 sec

c880* w7 4592 —
√

1.0×10264 ≤ 6.3×10326 26 sec
alu2 * w8 4080 —

√
1.4×10220 ≤ 7.2×10258 16 sec

vda * w9 6498 —
√

1.6×10305 ≤ 2.5×10399 42 sec
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