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Abstract

Planning as satisfiability, as implemented in, for instance, the SATPLAN tool, is a
highly competitive method for finding parallel step-optimal plans. A bottleneck in this
approach is to prove the absence of plans of a certain length. Specifically, if the optimal plan
has n steps, then it is typically very costly to prove that there is no plan of length n−1. We
pursue the idea of leading this proof within solution length preserving abstractions (over-
approximations) of the original planning task. This is promising because the abstraction
may have a much smaller state space; related methods are highly successful in model
checking. In particular, we design a novel abstraction technique based on which one can, in
several widely used planning benchmarks, construct abstractions that have exponentially
smaller state spaces while preserving the length of an optimal plan.

Surprisingly, the idea turns out to appear quite hopeless in the context of planning as
satisfiability. Evaluating our idea empirically, we run experiments on almost all benchmarks
of the international planning competitions up to IPC 2004, and find that even hand-made
abstractions do not tend to improve the performance of SATPLAN. Exploring these findings
from a theoretical point of view, we identify an interesting phenomenon that may cause
this behavior. We compare various planning-graph based CNF encodings φ of the original
planning task with the CNF encodings φσ of the abstracted planning task. We prove that,
in many cases, the shortest resolution refutation for φσ can never be shorter than that for φ.
This suggests a fundamental weakness of the approach, and motivates further investigation
of the interplay between declarative transition-systems, over-approximating abstractions,
and SAT encodings.

1. Introduction

The areas of model checking and AI planning are well-known to be closely related as
they both develop tools for automatic behavior analysis of large-scale, declaratively spec-
ified transition systems. In particular, both in planning and in model checking of “safety
properties”—checking reachability of non-temporal formulas—problems are given by a de-
scription of a transition system, by an initial system state, and by a target condition. A
solution for such a problem corresponds to a legal path of transitions bringing the system
from the initial state to a state satisfying the target condition.
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For a model checking problem, a solution corresponds to an “error path” in the system,
that is, to an unwanted system behavior. Proving absence of such error paths is the ultimate
goal of system verification, and thus the traditional focus of the field is exactly on that.
Besides clever symbolic representations of the state space, the key technique to accomplish
this ambitious task is abstraction. System abstraction corresponds to an over-approximation
of the considered transition system, and thus abstraction preserves all the transitions of the
original system. Hence, if the abstract transition system does not contain a solution, then
neither does the original system. The key to success in model checking is that, in many cases,
one can prove the absence of solutions in rather coarse abstractions with a comparatively
small state space. Techniques of this kind have been explored in depth for a long time.
Arguably its most wide-spread instance in model checking is predicate abstraction (Graf
& Säıdi, 1997), where system states form equivalence classes defined in terms of the truth
values of a number of expressions (the “predicates”), such as linear expressions over integer
system variables. Predicates can be learned by analyzing spurious error paths in too-coarse
abstractions (Clarke, Grumberg, Jha, Lu, & Veith, 2003). Methods of this kind have been
extremely successful in the verification of temporal safety properties (e.g., Ball, Majumdar,
Millstein, & Rajamani, 2001; Chaki, Clarke, Groce, Jha, & Veith, 2003; Henzinger, Jhala,
Majumdar, & McMillan, 2004).

In contrast to system verification, the focus in AI planning is on finding solutions in
instances that are assumed to be solvable. In particular, in optimizing planning, the task
is to find a solution that optimizes a certain criterion such as (the focus of our analysis
here) the sequential/parallel length of the solution path. Unlike in general planning where
any solution is good enough, the main bottleneck in length-optimizing planning is always
to prove the absence of solutions of a certain length. In particular, if the optimal plan has
n steps, then the hardest bit is typically to prove that there is no plan of length n − 1.
Note that this is where the plan is actually proved to be optimal, and no length-optimizing
planner can avoid constructing this proof, no matter what computational techniques it is
based on.

Our agenda in this research is to apply the above idea from model checking to length-
optimizing planning. We lead the optimality proof—non-existence of a plan of length n−1—
within an abstraction. In particular, our focus is on the interplay between abstraction and
proving optimality in parallel step-optimal planning as satisfiability. This approach was
originally proposed by Kautz and Selman (1992), who later developed the SATPLAN tool
(Kautz & Selman, 1999; Kautz, 2004; Kautz, Selman, & Hoffmann, 2006). SATPLAN
performs an iteration of satisfiability tests on CNF formulas φb encoding the existence of a
parallel plan of length at most b, where b starts from 0 and is increased incrementally. If
φn is the first satisfiable formula, then n equals the length of an optimal parallel plan, and
hence SATPLAN is a parallel optimal, or step-optimal, planner. In that class of planners,
SATPLAN is highly competitive. In particular, SATPLAN won 1st prizes for optimal
planners in the International Planning Competition (IPC), namely in IPC 2004 (Kautz,
2004; Hoffmann & Edelkamp, 2005) and in IPC 2006 (Kautz et al., 2006). One property of
the CNF encodings employed by SATPLAN that plays a key role in our analysis later on
is that these are based on the planning graph structure (Blum & Furst, 1995, 1997).

Of course, our objective closely relates to the many approaches developed in planning
for computing lower bounds based on over-approximations, (e.g., Haslum & Geffner, 2000;
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Edelkamp, 2001; Haslum, Botea, Helmert, Bonet, & Koenig, 2007; Helmert, Haslum, &
Hoffmann, 2007; Katz & Domshlak, 2008; Bonet & Geffner, 2008). The key difference,
however, is our focus on exact lower bounds, that is, the attempt to actually prove optimality
within the abstraction. If we want to be able to prove optimality within the abstraction,
then the abstraction must be what we term solution length preserving : the abstraction must
not introduce any solutions shorter than the optimal solution for the original problem. If
the lower bound for step-optimal planning is not exact, then there will be no support for
SATPLAN’s iteration n− 1, which constitutes the main bottleneck.

In what follows, we briefly explain our initial motivation behind this work, and we
summarize our empirical and theoretical results.

1.1 Initial Motivation

It would of course be interesting to explore whether predicate abstraction can be applied
to planning. Indeed, that had been our initial idea. However, while our discussions of
this idea lead to nowhere,1 we instead made a different discovery. Planning state spaces
can often be dramatically reduced, without introducing any shorter solutions, based on an
abstraction technique that we call variable domain abstraction. That technique essentially
adapts the work by Hernadvölgyi and Holte (1999) to the propositional STRIPS formalism.
We abstract the STRIPS task by not distinguishing between certain values of the multiple-
valued variables underlying the STRIPS encoding. That is, if p and q are propositions
corresponding to non-distinguished values, the abstracted STRIPS task acts as if p and q
were the same. Note that this generalizes the abstraction used by Edelkamp (2001) which,
for each multi-valued variable, either abstracts it away completely or does not abstract it
at all; see the details in Section 2.

The first example where we noticed the “compression power” of variable domain abstrac-
tion is the classical Logistics domain. In this domain, packages must be transported within
cities using trucks and between cities using airplanes. Actions load/unload packages, and
move vehicles. Importantly, there are no constraints on (either of) vehicle capacities, fuel,
or travel links. As a consequence, if a package p starts off in city A and has its destination in
city B, then all other cities C 6= A,B are completely irrelevant to p. That is, one can choose
an arbitrary location x in such a city C, and replace all facts of the form at(p,l), where l is
a location outside A and B, with at(p,x). Also, in(p,t), where t is a truck outside A and B,
can be replaced with at(p,x). One can completely abstract away the positions of packages
that have no destination, and some other minor optimizations are possible. This way we
lose many distinctions between different positions of objects—without introducing a shorter
solution! An optimal plan will not rely on storing a package p in a city other than p’s origin
or destination. The state space reduction is dramatic: the abstracted state space contains
at least (((C − 2) ∗ S) − 1)P states less, where C, S, and P respectively are the number of
cities, the city size (number of locations in each city), and the number of packages. Similar

1. We are still skeptical about the prospects. Software artifacts (rigid control structure, numeric expressions
essential for the flow of control) have a rather different nature than planning problems (loose control
structure, numeric expressions non-existent or mostly used to encode resource consumption). For exam-
ple, a major advantage of predicate abstraction is that it can capture loop invariants—a great feature,
but seemingly rather irrelevant to plan generation.

417



Domshlak, Hoffmann, & Sabharwal

abstractions can be made, and similar state space reductions can be obtained, in other IPC
domains such as Zenotravel, Blocksworld, Depots, Satellite, and Rovers (see Section 3).

1.2 Summary of Empirical Results

In our first experiment, we have implemented our Logistics-specific abstraction by abstract-
ing a set of planning tasks at the level of their description, modifying their actions and
their initial state. All these planning tasks feature 2 airplanes, 2 locations in each city,
and 6 packages. The number of cities scales from 1 to 14. To account for the variance
in the hardness of individual instances, we took average values over 5 random instances
for each problem size. The increasing number of cities introduces an increasing amount of
irrelevance, which we measure by the percentage RelFrac of facts considered relevant (not
abstracted). Note here that the additional cities are irrelevant only for some of the indi-
vidual packages—they can’t be removed completely from the task like standard irrelevance
detection mechanisms, e.g. RIFO (Nebel, Dimopoulos, & Koehler, 1997), would try to do.

We provided all the abstracted tasks to three optimizing planners, namely Mips.BDD
(Edelkamp & Helmert, 1999), IPP (Hoffmann & Nebel, 2001), and SATPLAN’04,2 in or-
der to examine how the abstraction affects different approaches to optimizing planning.
Mips.BDD searches blindly while exploiting a sophisticated symbolic representation of the
state space. IPP is equivalent to a parallel state-space heuristic search with the widely
used h2 heuristic—the parallel version of h2 as originally introduced in Graphplan (Blum &
Furst, 1997; Haslum & Geffner, 2000). Thus, Mips.BDD, IPP, and SATPLAN’04 represent
orthogonal approaches to optimizing planning.3 For each abstract task and planner, we
measured runtime, and compared the latter to the time taken by the same planner on the
original task. Time-out was set to 1800 seconds, which was also used as the value for the
average computation if a time-out occurred. We stopped evaluating a planner if it had 2
time-outs within the 5 instances of one size.

Figure 1(a), (b), and (c) respectively show our results for Mips.BDD, IPP, and SAT-
PLAN’04. Comparing the performance on the original and abstracted tasks, it is apparent
from Figure 1 that proving optimality within the abstraction dramatically improved the
performance of Mips.BDD, and significantly improved the performance of IPP. At the right
end of the scale (with 14 cities), Mips.BDD using the abstraction can find optimal sequential
plans almost as fast as SATPLAN’04 can find step-optimal plans. Given that it is usually
much harder to find optimal sequential plans than optimal parallel plans, especially in highly
parallel domains such as Logistics, this performance improvement is quite remarkable. (In
addition to the reduced state space size, Mips.BDD benefits from the small state encoding,
which stops growing at some point because the maximal number of locations relevant to
each package is constant.)

The above findings for Mips.BDD and IPP were in line with our original intuition and,
for SATPLAN’04 as well, we expected to see much improved runtime behavior within the
abstraction. To our surprise, we did not. As appears in Figure 1(c), the improvement
obtained for SATPLAN’04 by proving optimality within the abstraction was hardly dis-

2. SATPLAN’04 is the version of SATPLAN that competed in the 2004 International Planning Competition.
3. Importantly, Mips.BDD is sequentially optimal while SATPLAN’04 and IPP are step-optimal. Hence

one should not compare the performance of those planners directly, and in particular this is not our
purpose here. We focus on how each of the planners reacts to the abstraction.
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Figure 1: Runtime performance of (a) MIPS, (b) IPP, and (c) SATPLAN’04, with (“ab-
stract”) and without (“real”) our hand-made variable domain abstraction, in
Logistics instances explicitly scaled to increase the amount of irrelevance. Hor-
izontal axis scales the number of cities, left vertical axis shows total runtime in
seconds, right vertical axis shows the percentage RelFrac of relevant facts.

cernible. At the right end of the scale, abstraction yields a humble speed-up factor of 2.8.
That is particularly insignificant since this speed-up is obtained at the drastically small
RelFrac value of 24%—in the IPC 2000 Logistics benchmarks, RelFrac is 42% on average.
The latter corresponds to 6 cities in Figure 1, where SATPLAN’04 has a slight advantage
on the original tasks.

To investigate the above more broadly, we conducted experiments in almost all STRIPS
domains used in all international planning competitions (IPC) up to IPC 2004. In many
cases, we tailored the abstraction of the domain by hand. The results of this exhaustive
evaluation (discussed in detail in Section 3) do not significantly depart from those for
the Logistics-specific abstraction above. For Mips.BDD we almost consistently obtained a
significant improvement. For IPP the improvements happened only rarely, and typically
these were not substantial. (While IPP is improved in Figure 1, note that, at the IPC-

419



Domshlak, Hoffmann, & Sabharwal

average RelFrac of 42%, the improvement is not yet strong.) Finally, for SATPLAN’04, we
hardly ever obtained an improvement.

What causes the difference in “profiting from abstraction” between these three different
planning techniques? An intuitive interpretation of our results is that the informedness of
the abstraction must compete with the informedness of the search itself. In other words, the
better the planner is at exploiting the structure of a particular example, the more difficult it
is for the abstraction to exploit structure that is not already being exploited. This intuition
is in good correspondence with the Logistics results in Figure 1: while optimizing exactly the
same measure, on the original examples, SATPLAN’04 is faster than IPP, while the inverse
relation holds regarding which planner profits more from the abstraction. That said, such
intuitive interpretations of our results are, at this point, mere speculation. It is left open for
future research to determine more accurately what precisely causes the difference. Herein,
we concentrate only on planning as satisfiability, and identify a fundamental weakness of
this approach with respect to “profiting from abstraction”.

1.3 Summary of Theoretical Results

Intrigued by our results for SATPLAN’04,4 we wondered what kind of effect an abstraction
actually has on a “CNF encoding” of the planning task formulated as a Boolean satisfiability
problem instance. Recall here that our abstractions are over-approximations, that is, any
action sequence applicable in the original task is applicable in the abstract task, and any
plan in the original task is a plan in the abstract task. So, intuitively, the abstract task
is “more generous” than the original task. With this in mind, consider the CNF formula
φn−1 encoding the existence of a plan one step shorter than the optimal plan, and consider
the same formula, φσn−1, generated for the abstract task. We need to prove that φσn−1 is
unsatisfiable. (Note that φσn−1 is, in fact, unsatisfiable when σ is a solution length preserving
abstraction.) Intuitively, the more constrained a formula is, the easier it is to lead such a
proof. But φσn−1 is “more generous”, and hence less constrained, than φn−1. Does this mean
that it is actually harder to refute φσn−1 than to refute φn−1?

For some abstraction methods, it is in fact trivial to see that the answer to that question
is “yes”. Say we abstract φn−1 by ignoring some of its clauses. φσn−1 is then a sub-formula
of φn−1, immediately implying that any resolution refutation for φσn−1 is also a resolution
refutation for φn−1. In particular, the shortest possible refutation cannot be shorter for
φσn−1. A similar situation sometimes occurs in the interplay between abstractions and CNF
encodings of planning problems. For instance, suppose we abstract by ignoring a subset
of the goals. In most CNF encodings of planning, and in particular in the planning-graph
based CNF encodings (Kautz & Selman, 1999) underlying SATPLAN, each goal fact yields
one clause in the CNF. Hence, with a “goal ignoring” abstraction, φσn−1 is a sub-formula of
φn−1, just as above.

A more complex example would correspond to abstraction by ignoring preconditions or
delete effects. In the encodings used by SATPLAN, one or several clauses related to the
ignored precondition/delete effect disappear. However, the CNF changes also in other ways
because, with one precondition/delete effect less, more actions and facts become possible
at later time steps. Intuitively, those additional actions and facts do not help proving

4. Translation: “Deeply frustrated by our results for SATPLAN’04, . . . ”
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unsatisfiability of φσn−1. The formal proof of this intuitive statement, however, is less obvious
than the one for the “goal ignoring” abstraction above. Matters are most complicated, and
much less intuitive, for Edelkamp’s (2001) abstraction and for variable domain abstraction,
where the changes made to the abstract task also affect the add effects of actions. Recall
that variable domain abstraction is of special interest here because it is most likely to satisfy
the constraint of solution length preservation.

To investigate these issues in detail, one has to consider various possible combinations of
CNF encodings and abstraction methods. Many different encodings of planning into SAT
have been proposed. We focus on planning-graph based encodings because those were used
in the SATPLAN system, in all of its appearances in the international planning compe-
titions (Kautz & Selman, 1999; Long, Kautz, Selman, Bonet, Geffner, Koehler, Brenner,
Hoffmann, Rittinger, Anderson, Weld, Smith, & Fox, 2000; Kautz, 2004; Kautz et al., 2006).
Indeed, according to Kautz and Selman (Kautz & Selman, 1999; Long et al., 2000), such
CNF encodings—in particular the mutex relations computed by Graphplan—are vital to
SATPLAN’s performance. While recent results on more effective encodings may challenge
this assessment (Rintanen, Heljanko, & Niemelä, 2006; Chen, Huang, Xing, & Zhang, 2009;
Robinson, Gretton, Pham, & Sattar, 2008), even so the graphplan-based encodings are of
interest simply because they have been widely used during almost a decade. It remains of
course an important question whether and to what extent our results carry over to alter-
native CNF encodings. We discuss this issue in some depth when concluding the paper in
Section 5.

We consider four different encodings, three of which have been used in some edition of
the IPC; the fourth encoding is considered for the sake of completeness. The encodings
differ in two parameters: whether they use only action variables, or action as well as fact
variables; and whether they include all planning graph mutexes between actions or only the
direct interferences. (The latter is motivated by the fact that there is often an enormous
amount of action mutexes, seriously blowing up the size of the formula.)

On the abstractions side, we focus on abstraction methods that can be formulated as
manipulating planning tasks at the language level, i.e., modifying the task’s actions and/or
initial/goal states. Many commonly used abstractions for propositional STRIPS can be
formulated this way. We consider six such abstractions, namely (1) removing goals, (2)
adding initial facts, (3) removing preconditions, (4) removing delete effects, (5) Edelkamp’s
(2001) abstraction (removing entire facts), and (6) variable domain abstraction.

For all 24 combinations of CNF encoding and abstraction method, we prove that the
shortest possible resolution refutation can be exponentially longer for φσn−1 than for φn−1.
For all 20 combinations involving abstractions other than variable domain abstraction, we
prove that the shortest possible resolution refutation cannot be shorter for φσn−1 than for
φn−1. For abstraction (1), this is trivial as outlined above. For abstractions (2)–(4), the
proof exploits the fact that these abstractions lead to “larger” planning graphs containing
more actions and facts. For abstraction (5), this reasoning does not work because some
facts disappear from the planning graph. However, one can start by removing a fact from
the goal and all action preconditions; afterwards the fact is irrelevant and one can remove
it also from the initial state and action effects.

Matters are most complicated for abstraction (6), that is, variable domain abstraction.
For the encoding with only action variables and full mutexes, we show that, as before,
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the shortest possible resolution refutation cannot be shorter for φσn−1 than for φn−1. For
the encoding with only action variables and only direct action mutexes, we show that the
possible improvement is bounded from above by the effort it takes to recover the indirect
action mutexes. For the two encodings with both action and fact variables, it remains an
open question whether such bounds exist.5

Importantly, all our proofs are valid not only for general resolution, but also for many
of the known restricted variants of resolution, in particular for the tree-like resolution refu-
tations generated by DPLL (Davis & Putnam, 1960; Davis, Logemann, & Loveland, 1962).
Naturally, our proofs are not separate for each of the combinations, but rather exploit and
exhibit some of their common features.

The practical significance of our theoretical results is, to some extent, debatable as
there is no direct connection between best-case resolution refutation size and empirical
SAT solver performance. Even a very large refutation may be easy to find if it mostly
consists of unit resolutions. Vice versa, just because a small refutation exists, that does not
mean the SAT solver will find it. This notwithstanding, it appears unlikely that best-case
resolution refutation size and practical SAT solver performance are completely unrelated
(beyond the obvious lower bound). One example that indicates the opposite are planning
graph mutexes. Mutexes do reduce the best-case refutation size by doing some of the work
before the resolution is even invoked.6 In other words, SAT solvers can exploit the mutexes
to prune their search trees more effectively. We are not aware of explicit empirical proof
that this tends to happen often, but there seems to be little doubt that it does. That is also
suggested explicitly by Kautz and Selman (Kautz & Selman, 1999; Long et al., 2000) by
ways of explaining the improved performacce of their system when run on graphplan-based
encodings.

An interesting situation arises in (all) our experiments. We use variable domain ab-
straction on the encoding with only action variables and only direct action mutexes (as
employed in SATPLAN’s IPC’04 version). In this setting, resolution refutations can get
shorter in principle, although only by the effort it takes to recover the indirect action mu-
texes. Further, we employ some trivial post-abstraction simplification methods (such as
removing action duplicates) which, as we show, also have the potential to shorten resolu-
tion refutations. Still, as reported above, there is no discernible empirical improvement.
The reason might be that the SAT solver does not find the shorter refutations, or that such
shorter refutations do not actually appear on a significant scale. There is some evidence
indicating the latter: mutex recovery becomes necessary only in rather special situations,
where the abstraction turns an indirect mutex into a direct one. This will typically con-
cern only a small fraction of the indirect mutexes. In addition, for both mutex recovery
and simplifications, in a well-designed variable domain abstraction the affected actions will
typically be irrelevant anyway. For example, with our hand-made Logistics abstraction,

5. The reason for complications is that answering this question requires determining, for planning-graph
based encodings in general, whether fact variables are only syntactic sugar or may lead to more succinct
refutations. Such a proof appears quite challenging; we say some more on this in Section 4.

6. General resolution can recover the mutexes effectively, c.f. the related investigations by Brafman (2001)
and Rintanen (2008). It does not seem likely that the same is the case for tree-like resolution, but to the
best of our knowledge this is not yet known.
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the effect of the potential improvements is limited to actions appearing only in redundant
plans. We get back to this in detail in Section 4.

In our view, the theoretical results would be of potential importance even with no
evidence of empirical relevance, simply because they are quite surprising. After a moment
of thought, it is clear that resolution refutation does not become easier by ignoring goals.
However, variable domain abstraction in domains such as Logistics deflates state spaces
immensely, up to a point where they have only a tiny fraction of their original size. Before
performing this work, we would never have expected the best-case refutation size to remain
the same.

The paper is organized as follows. Section 2 discusses preliminaries, covering the em-
ployed notions of planning, planning graphs, propositional encodings, resolution, and ab-
straction methods; in particular, it formally defines variable domain abstraction. Section 3
summarizes our empirical results. Section 4 presents our results regarding resolution refu-
tations in abstract CNF encodings. Related work is discussed during the text where appro-
priate. We conclude in Section 5. Appendix A contains most proofs, which are replaced
with brief proof sketches in the main body of the text. Additional empirical data can be
found in an online appendix (see JAIR web page for this article).

2. Preliminaries

We begin with a discussion of various concepts needed in the rest of the paper: propositional
STRIPS planning, planning graphs, propositional CNF encodings of planning problems,
resolution proofs of unsatisfiability, and abstraction methods used in planning. As a general
rule of notation, we will use variants of: P for planning tasks; F,A, and G for sets of facts,
actions, and goals, respectively; σ for abstractions; PG for planning graphs; and φ for
propositional formulas and encodings.

2.1 STRIPS and Planning Graphs

Classical planning is devoted to goal reachability analysis in state transition models with de-
terministic actions and complete information. Such a model is a tupleM = 〈S, s0, SG, A, δ〉
where S is a finite set of states, s0 ∈ S is the initial state, and SG ⊆ S is a set of alternative
goal states, A is a finite set of actions, and δ : S × A → S is a transition function, with
δ(s, a) specifying the state obtained by applying a in s. A solution, that is a plan, for a
state transition model is a sequence of actions a1, . . . , am from A that generate a sequence
of states s0, . . . , sm such that, for 0 ≤ i < m, δ(si, ai+1) = si+1, and sm ∈ SG.

While AI planning targets large-scale state transition models with huge numbers of
states, these models are assumed to be described in a concise manner via some intuitive
declarative language. Here we use a propositional fragment of the STRIPS language (Fikes
& Nilsson, 1971). For brevity, we will refer to this fragment as STRIPS herein. Informally,
a planning task or planning instance in STRIPS consists of a set of propositional facts, some
of which hold initially and some of which must hold simultaneously at the end of the plan
execution. The state of the system at any time is defined by the set of propositional facts
that hold at that time. The task specifies a set of actions, each of which is defined by a
set of precondition facts, a set of facts that are added to the state, and a set of facts that
are removed from the state, if the action is taken. Formally, a STRIPS planning task is
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given by a quadruple P = (P,A, I,G) with fact set P , initial state description I ⊆ P , goal
description G ⊆ P , and action set A where for every action a ∈ A we have pre(a), add(a),
and del(a), each of which is a subset of P . Such a planning task defines a state transition
model M = 〈S, s0, SG, A, δ〉 with the state space S = 2P , the initial state s0 = I, and for
each s ∈ S, we have s ∈ SG iff G ⊆ s. For each s ∈ S, A(s) = {a ∈ A | pre(a) ⊆ s} are the
actions applicable in s, and for each a ∈ A(s), we have δ(s, a) = (s \ del(a))∪ add(a). Here
we assume that the actions are reasonable in the sense that add(a) ∩ del(a) = ∅. This is
satisfied in most known planning benchmarks; in particular it is satisfied in all benchmarks
used in our experiments.7

Many planning algorithms, including SATPLAN, employ some form of approximate
reachability analysis. One of the primary tools for this purpose is the planning graph, first
introduced in the scope of the Graphplan planner (Blum & Furst, 1997). For a length bound
b, the planning graph PG(P) associated with P is a layered graph with two kinds of nodes:
fact nodes and action nodes. The layers alternate between fact layers F (0), F (1), . . . , F (b),
and action layers A(0), A(1), . . . , A(b − 1), with each pair of layers F (t), A(t) forming a
“time step” t. The first vertex layer F (0) contains the initial state. A(t) and F (t + 1) for
0 ≤ t < b are the action sets and fact sets, respectively, available at time step t and t + 1.
More precisely, each A(t) includes all actions a ∈ A where pre(a) ⊆ F (t) and no pair of
facts p, p′ ∈ pre(a) is mutex in layer t (c.f. below); further, A(t) contains the standard noop
action for every fact in F (t).8 Each F (t + 1) contains the union of the add effects of all
actions in A(t). Obviously, we have A(t) ⊆ A(t+ 1) and F (t) ⊆ F (t+ 1). The goal facts G
label appropriate vertices in F (b). PG(P) has four kinds of edges:

(1) Epre(t) ⊆ F (t)×A(t) connect the actions in A(t) with their preconditions in F (t),

(2) Eadd(t) ⊆ A(t)×F (t+ 1) connect the actions in A(t) with their add effects in F (t+ 1),

(3) Ea-mutex(t) ⊆ A(t) × A(t) capture a pair-wise mutual exclusion relation between ac-
tions in A(t); if (a(t), a′(t)) ∈ Ea-mutex(t), then actions a and a′ cannot be applied
simultaneously at time t,

(4) Ef -mutex(t) ⊆ F (t) × F (t) capture a pair-wise mutual exclusion relation between facts
in F (t); if (f(t), f ′(t)) ∈ Ef -mutex(t), then facts f and f ′ cannot hold together at time
t.

Note that PG(P) does not have explicit edges for the deletion effects of actions; these
effects are captured in the mutual exclusion relation (e.g., if p ∈ add(a1) ∩ del(a2), then
(a1, a2) ∈ Ea-mutex at all times). The mutex edges Emutex = Ea-mutex ∪ Ef -mutex are
computed by an iterative calculation of interfering action and fact pairs (Blum & Furst,
1997). Namely, two actions (directly) interfere if the effects of one contradict the effects
of the other, or if one deletes a precondition of the other. Two actions have competing

7. In the IPC-2002 domain Rovers, some operators add and delete the same artificial fact in order to prevent
their parallel application. We implement this restriction via duplicating the respective operators and
sequentializing original and duplicate via two artificial facts. Similar fixes have been implemented in a
couple of other domains as well.

8. For a fact p ∈ P , the associated noop(p) has no delete effects, and has {p} as both its preconditions and
add “effects”. These are dummy actions that simply propagate facts from one fact layer to the next.
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needs if they have mutex preconditions. Combining these two scenarios together, we say
that two actions are mutex if they either (directly) interfere or have competing needs. In
a similar spirit, two facts are mutex if there is no non-mutex pair of actions (in the graph
layer directly below) together achieving both facts. A variant that will be of interest is the
planning graph in which, after the iterative computation, Ea-mutex is reduced to contain only
the directly interfering actions. We will call this the reduced planning graph, and denote it
with PGred(P). The motivation for considering this is that, often, the reduced planning
graph results in much smaller SAT encodings; we get back to this below.

2.2 Propositional Encodings

We consider three CNF encodings used by (one or the other version of) SATPLAN, as well
as a fourth encoding that fits naturally into the picture. Each of the encodings takes as input
a planning task P with length bound b, and creates a formula in the standard Conjunctive
Normal Form (CNF). The CNF formula is then solved by an off-the-shelf SAT solver. This
process constitutes the basic step in a SAT-based approach to planning as implemented in
SATPLAN (Kautz & Selman, 1992, 1996, 1999), where one starts with b = 0 and iteratively
increments b until the CNF becomes satisfiable for the first time. The plan corresponding
to the satisfying assignment is then a plan with minimal b, and is hence optimal in that
sense.9

A CNF formula φ is logically a conjunction (and) of clauses, where a clause is a dis-
junction (or) of literals, and a literal is a propositional (Boolean) variable or its negation.
CNF formulas are often written as a set of clauses, and each clause written as a set of lit-
erals, the underlying logical conjunction and disjunction, respectively, being implicit. Our
propositional encodings of bounded-length planning tasks are specified in terms of various
kinds of clauses generated by the encoding method.

Encoding (A) is constructed from PG(P) and uses the propositional “action” variables
{a(t) | 0 ≤ t < b, a ∈ A(t)}. For each goal fact g there is a goal clause of the form
{a1(b − 1), . . . , al(b − 1)}, where a1, . . . al are the actions in A(b − 1) that add g.
Similarly, for every a(t) with t > 0 and every p ∈ pre(a) we have a precondition clause
{¬a(t), a1(t− 1), . . . , al(t− 1)}, where a1, . . . al are the actions in A(t− 1) that add p.
Finally, we have a mutex clause {¬a(t),¬a′(t)} for every t and (a, a′) ∈ Ea-mutex(t).
(Note here that the dependence on the initial state is taken into account already in
terms of which actions are contained in the sets A(t), and does not need to be stated
explicitly in the CNF.)

Encoding (B) is similar to (A) except that it uses variables (and appropriate clauses)
also for the facts. More specifically, in addition to the action variables, it has “fact”
variables {f(t) | 0 ≤ t ≤ b, f ∈ F (t)}. For each goal fact g, the goal clause is simply a
unit clause asserting g(b). For t > 0 and each fact f(t), we now have an effect clause
of the form {¬f(t), a1(t− 1), . . . , al(t− 1)}, where a1, . . . al are the actions in A(t− 1)
that add f . For every a(t) and every p ∈ pre(a) we have a precondition clause, which

9. While all versions of SATPLAN use this naive incremental update on b, it has been shown that there are
more clever strategies, exploiting the typical distribution of runtime over different values of b (Rintanen,
2004; Streeter & Smith, 2007).
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takes the form {¬a(t), p(t)}. We have action mutex clauses {¬a(t),¬a′(t)} for every
t and (a, a′) ∈ Ea-mutex(t), and fact mutex clauses {¬f(t),¬f ′(t)} for every t and
(f, f ′) ∈ Ef -mutex(t). Finally, for each fact f ∈ F (0), we have an initial state clause
{f(0)} (these are not strictly necessary but are implemented in SATPLAN which is
why we include them here).

Encoding (C) is like (A) except that it is based on the reduced planning graph PGred(P),
so that mutex clauses are present only for action pairs whose preconditions and effects
interfere directly.

Encoding (D) is like (B) except that, as in (C), it is based on PGred(P), with mutex
clauses only for action pairs whose preconditions and effects interfere directly. Note,
however, that the fact mutexes are those of the full planning graph, PG(P).

All these encodings are reasonable ways of turning a planning graph into a CNF for-
mula. The encodings essentially underly the competition implementations of SATPLAN.
We will detail this below. First, note that the different encodings have different benefits
and drawbacks. First, observe that the encodings are characterized by two decisions: (1)
Should we include all action mutexes from Graphplan, or only the direct interferences? (2)
Should we include only action variables, or both action and fact variables? Regarding (1),
the empirical observation that “mutexes help” was one of the major observations in the
design of SATPLAN (then called Blackbox) (Kautz & Selman, 1999; Long et al., 2000), in
particular in comparison to earlier encoding methods (Kautz, McAllester, & Selman, 1996).
On the other hand, since mutexes talk about pairs of facts and actions, the encodings may
become quite large—there will be one clause for every pair of mutex actions or mutex facts.
This is particularly critical for actions, of which in many planning benchmarks there are
thousands (compared to at most a few hundred facts). Indeed, it turns out that action mu-
texes often consume critically large amounts of memory. It is not uncommon to have CNF
formulas with millions of clauses, most of which are action mutexes (Kautz & Selman, 1999;
Kautz, 2004; Kautz et al., 2006). This motivates encodings (C) and (D). As for question
(2), this does not make as much of a difference, empirically, in most planning benchmarks.
We consider this distinction only because it was used in some versions of SATPLAN.

Let us say a few words to clarify exactly how encodings (A)–(D) relate to the SATPLAN
literature and implementations. Due to the long history of SATPLAN, as well as a few
imprecisions in the literature, this is a little complicated. Our foremost reference is the
actual program code underlying SATPLAN’04 and SATPLAN’06, i.e., the most recent
versions used in the 2004 and 2006 competitions. The encoding methods in these versions
were implemented by one of the authors of this paper. There are four different encoding
methods: action-based, graphplan-based, skinny action-based, and skinny graphplan-based.
The action-based encoding is exactly (A), the graphplan-based encoding is exactly (B), and
the skinny graphplan-based encoding is exactly (D).10 The skinny action-based encoding is
like (C) except that, to save some runtime, the planning graph implementation does not
propagate mutexes (after all, only direct interferences are present in the final encoding),
effectively computing a relaxed planning graph (Hoffmann & Nebel, 2001). We use a normal

10. In the 2004 version, the skinny graphplan-based encoding did not feature fact mutexes. This is of no
consequence because that encoding was not used in the 2004 competition.
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planning graph for (C) only for the sake of readability—the greater similarity to the other
encodings significantly simplifies the write-up, and our theoretical results hold as stated
also for relaxed planning graphs.

How did the SATPLAN encodings develop historically, how is this reflected in the liter-
ature, and which encodings were used in the competitions? We answer these questions to
the extent necessary for explaining encodings (A)–(D). The original paper on SATPLAN
(Kautz & Selman, 1992) introduced rather different encodings. Graphplan-based encodings
with only direct action mutexes were introduced next, and observed to yield performance
comparable to Graphplan itself (Kautz & Selman, 1996). Subsequently, it was observed
that modern SAT solvers profit from full (fact and action) mutex relations and actually
beat other planners, in several domains (Kautz & Selman, 1999).11 Consequently, such
a graphlan-based encoding, i.e., our encoding (B), was used in the 1998 and 2000 com-
petitions (Long et al., 2000). Prior to the 2004 competition, the encoding methods were
re-implemented, yielding the four methods explained above. The IPC’04 booklet paper on
SATPLAN’04 (Kautz, 2004) describes these four encodings.12 The version run in the com-
petition is the skinny action-based encoding that is (for our theoretical results) equivalent
to encoding (C). When running the planner in IPC 2006, it turned out that having full
fact mutexes helped in some domains, and so encoding (D) was used instead (Kautz et al.,
2006). We consider encoding (A) for the sake of completeness.

2.3 Resolution Refutations

Our theoretical results are with respect to the resolution proof system (Robinson, 1965),
which forms the basis of most of the complete SAT solvers around today (cf. Beame, Kautz,
& Sabharwal, 2004). It is a sound and complete proof system, and has been studied ex-
tensively for theoretical and practical reasons. It works on CNF formulas and has only one
simple rule of inference: given clauses {A, x} and {B,¬x}, one can derive the clause {A,B}
by resolving upon the variable x. Here A and B are shorthands for arbitrary lists of literals.
Note that the choice of clauses to resolve is arbitrary, as long as they share a variable, with
opposite signs. A resolution derivation π of a clause C from a formula φ consists of a series
of applications of the resolution rule starting from the clauses in φ such that one eventually
derives C; when C is the (unsatisfiable) empty clause, {}, π is called a resolution proof
(of unsatisfiability) or refutation of φ. The size of π is the number of applications of the
resolution rule in π. When φ is unsatisfiable, RC(φ) denotes the resolution complexity of φ,
i.e., the size of the smallest resolution proof of unsatisfiability of φ. We will be interested in
whether applying an abstraction to a planning task can convert its encoding into one that
has smaller resolution complexity.

A commonly studied sub-class of (still sound and complete) resolution derivations is
that of tree-like resolution derivations, where each derived clause is used at most once in
the whole derivation; the underlying graph structure of the proof is then a tree. Other

11. Kautz and Selman (1999) cite graphplan-based encodings from their earlier work (which used only action
mutexes). However, the Blackbox program code includes functions that generate full mutexes, and Kautz
and Selman explicitly emphasize the importance of these mutexes.

12. The paper is only an abstract and is a little imprecise in this description: initial state, goal, and fact
mutex clauses are not mentioned; the skinny action-based encoding is stated to be identical to our
encoding (C), i.e., based on a full planning graph rather than a relaxed planning graph.
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interesting sub-classes of resolution include regular resolution, which is provably exponen-
tially more powerful than tree-like resolution and in which each variable is resolved upon
at most once in any path from the root to a leaf in the underlying proof graph, and ordered
resolution, where in addition variables respect a fixed ordering in any root-to-leaf path.
Tree-like resolution captures proofs of unsatisfiability generated by SAT solvers that are
based on the DPLL procedure (Davis & Putnam, 1960; Davis et al., 1962) but don’t em-
ploy so-called “clause learning” techniques; the latter kind of SAT solvers can be provably
exponentially more powerful than even regular resolution although still within the realm of
general resolution (Beame et al., 2004).

We note that the arguments presented in this paper are for general (unrestricted) res-
olution. However, since most of aour constructions do not affect or rely on the structural
properties of the resolution refutations under consideration, the results hold as stated (ex-
cept for a slight weakening in the case of Lemma 4.14) for all known variants of resolution
for which setting variables to True or False or replacing one variable with another preserves
proof structure. These variants include tree-like (DPLL), regular, and ordered resolution.

We state a standard property of resolution proofs which we will use in our arguments,
pointing out that certain modifications (such as “variable restrictions” and “shortening of
clauses”) of a given formula do not cause proofs to become longer with general resolution
or any of its “natural” sub-classes, including those mentioned above. Let x be a variable of
φ and y be True, False, or another (possibly negated) variable of φ. The variable restriction
x ← y on φ is a transformation that replaces x with y throughout φ, and simplifies the
resulting formula by removing all clauses containing True or a variable and its negation, and
by removing False or duplicate literals from clauses. In other words, a variable restriction
involves fixing the value of a variable or identifying it with another literal, and simplifying
the formula. If τ is a sequence of variable restrictions on φ, then by φ|τ we denote the
outcome of applying τ to φ.

The following proposition combines two basic facts together in a form that will be useful
for us: (1) variable restrictions cannot increase the resolution complexity of a formula, and
(2) lengthening clauses and/or removing clauses cannot decrease the resolution complexity
of a formula.

Proposition 2.1. Let φσ and φ be CNF formulas. If there exists a sequence τ of variable
restrictions on φσ such that every clause of φσ|τ contains as a sub-clause a clause of φ, then
RC(φ) ≤ RC(φσ).

Some explanation of this proposition and how we will use it is in order. The notation
used here is chosen to match the way we will eventually utilize this proposition in our
proofs; more on this below. The conditions in the proposition imply that one may obtain
φ from φσ by applying the restriction τ , possibly throwing away some literals from some
clauses, and possibly adding new clauses. Intuitively, each of these three modifications to
φσ can only reduce the number of solutions and cannot make it any harder to prove the
formula unsatisfiable. This property of resolution refutations of propositional formulas has
been previously used (at least indirectly) in various contexts. For completeness, we include
a proof in Appendix A, based on “folklore” ideas from proof complexity literature. An
alternative proof, with a somewhat different notation, may also be found in the appendix
of a recent article by Hoffmann, Gomes, and Selman (2007).
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The way we will use this proposition is the following: φσ will be the CNF encoding of
an abstracted planning task, φ will be the encoding of the original planning task, and τ
will be a carefully chosen restriction of φσ that will bring our focus to variables already
appearing in φ. Proposition 2.1 will then imply that the original encoding is no harder to
refute, using resolution or its natural sub-classes, than the abstracted encoding.

2.4 Abstraction in Planning

Abstraction methods of various kinds have been put to use in planning, often quite success-
fully. One line of work uses abstraction methods for problem decomposition (cf. Sacerdoti,
1973; Knoblock, 1990; Koehler & Hoffmann, 2000). To the best of our knowledge, our
approach—examining the abstract state space in order to prove the absence of solutions—
has not been pursued before. The line of work most relevant to ours is the work on domain-
independent heuristic functions (cf. McDermott, 1999; Bonet & Geffner, 2001; Hoffmann &
Nebel, 2001; Edelkamp, 2001; Haslum et al., 2007; Helmert et al., 2007; Katz & Domshlak,
2008). There, “abstraction” means over-approximation of the state space, as in our work;
what differs is how the abstractions are used. Of course, the kinds of over-approximations
that are useful for either purpose can differ a lot. To use abstraction as we do in this
paper, one has to define over-approximations that preserve, to a very large extent, the real
structure of the problem. In particular, our ideal goal is to find abstractions that pre-
serve the length of an optimal solution—something one definitely wouldn’t expect from the
abstraction underlying a heuristic function, since that has to be solved in every search state.

We briefly review some of the over-approximation methods that have been used in
planning so far; we then formally introduce our novel one, variable domain abstraction. We
use the Logistics domain as an illustrative example.13

One wide-spread over-approximation method in planning is the “2-subset” relaxation
underlying the computation made in a planning graph (Blum & Furst, 1997), which is gener-
alized to an “m-subset” relaxation by Haslum and Geffner (2000). In a nutshell, one assumes
that achieving a set of facts is only as hard as achieving its hardest m-subset. It is known
that, in most domains, including Logistics, the 2-subset solution length (corresponding to
the length of a planning graph constructed up to the first fact layer containing no mutexes
between the goal facts) is typically strictly lower than the length of an optimal plan. For
m > 2, on the other hand, computing m-subset solution length is typically too costly, and
still, for no m = o(|P |) can one typically guarantee solution length preservation (Helmert
& Mattmüller, 2008).

A second wide-spread over-approximation method is “ignoring delete lists” (McDermott,
1999; Bonet & Geffner, 2001). For this approximation, one simply removes (some of)
the negative effects of the actions. If all negative effects are removed, then the problem
becomes solvable in time linear in the instance size. The latter is the basis of the heuristic
functions used in many modern planners (cf. Bonet & Geffner, 2001; Hoffmann & Nebel,
2001; Gerevini, Saetti, & Serina, 2003). Ignoring deletes is very likely to introduce shorter
solutions. For example, in the Towers of Hanoi problem, it leads to plans of length n instead
of 2n − 1 (Hoffmann, 2005). In Logistics, if one ignores the deletes of moving actions then

13. As stated, an open topic is to explore model checking abstractions, in particular predicate abstraction
(Graf & Säıdi, 1997; Clarke et al., 2003), instead of planning abstractions.
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the plans may get shorter because vehicles never have to “move back” in the abstraction.
Interestingly, ignoring the deletes of load/unload does not decrease plan length, since these
actions never have to be undone in an optimal plan. We use this observation in some of our
experiments.

A third abstraction was introduced by Edelkamp (2001) for his “pattern database”
heuristic. For this approximation, one completely removes some facts from the problem
description, notably facts corresponding to all values of some multi-valued variables. If
enough facts are removed, the task becomes sufficiently simple. Obviously, this approxi-
mation will hardly be solution length preserving. In Logistics, if we remove, for example,
a fact at(package1,airport2) then, in particular, package1 can be loaded onto an airplane
at airport2 without actually being there because that precondition is removed. An optimal
plan can now just make the package “pop up” anywhere.

A fourth abstraction, finally, involves removing some preconditions (Sacerdoti, 1973)
and/or goal facts. As with Edelkamp’s abstraction, this cannot be expected to be solution
length preserving in interesting cases.

The above calls for a new abstraction method, which we designed following Hernadvölgyi
and Holte (1999). Considering STRIPS-like state transition systems with multiple-valued
(instead of Boolean) variables, they propose to reduce variable domains by not distinguish-
ing between certain values. For example, if the content of a cell in the 8-puzzle can be in
{blank , 1, 2, 3, 4, 6, 7, 8} then that may be replaced with {blank , 1, 2, 3} where {3, . . . , 8} are
all mapped onto 3. Our observation is that, in many planning benchmarks, this can be done
without introducing shorter plans. For example, in Logistics it is unnecessary to distinguish
the positions of packages in irrelevant cities. Therefore, we can replace the domain of at(p),
{A1, A2, B1, B2, C1, C2, . . . }, where A and B are the initial and goal cities of p and Ai, Bi, . . .
are locations in cities A,B, . . ., with an abstract domain {A1, A2, B1, B2, C1}. In STRIPS,
this amounts to replacing a set of irrelevant facts at(p, l) with the single fact at(p, C1). We
now formalize this idea.

Let persistently mutex denote the standard notion that two facts are mutex in the
fixpoint layer of a planning graph: typically, different values of a multiple-valued variable.

Definition 2.2. Let P = (P,A, I,G) be a STRIPS planning task, p, p′ ∈ P a pair of
persistently mutex facts such that, for all a ∈ A, we have ({p, p′} ∩ del(a)) ⊆ pre(a). Then
(ξ(P ), {ξ(a)|a ∈ A}, ξ(I), ξ(G)) is called a variable domain abstraction of P, where ξ is
defined as follows:

1. For a fact set F , ξ(F ) = F if p′ 6∈ F ; otherwise, ξ(F ) = (F \ {p′}) ∪ {p}.

2. For an action a = (pre, add , del), ξ(a) = (ξ(pre), ξ(add), ξ(del)) if p 6∈ ξ(add)∩ξ(del);
otherwise, ξ(a) = (ξ(pre), ξ(add), ξ(del) \ {p}).

In words, Definition 2.2 simply says that we replace p′ with p. If p now appears both
in the add list and in the delete list of an action, we remove it from the delete list.14 This
situation will arise, for instance, if the action moves a package from one irrelevant position

14. The reader may wonder why p remains in the add list, although by prerequisite p ∈ ξ(pre). The reason
is that we distinguish between “abstractions” and “simplifications”: both change the planning task;
abstractions, but not simplifications, do so in a way that may alter the task’s semantics. However,
simplifications may as well affect resolution complexity. We will get back to this later in the paper.
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to another irrelevant position. After the operation, p is equivalent to what was originally
p ∨ p′: p is True after an abstracted action sequence if and only if p ∨ p′ is True after
the corresponding real action sequence. In particular, Proposition 2.3 states that variable
domain abstraction is an over-approximation in the usual sense.

Proposition 2.3. Let P = (P,A, I,G) be a STRIPS planning task, and let σ(P) =
(ξ(P ), {ξ(a) | a ∈ A}, ξ(I), ξ(G)) be a variable domain abstraction of P. Then, whenever
〈a1, . . . , an〉 is a plan for P, 〈ξ(a1), . . . , ξ(an)〉 is a plan for σ(P).

Proof. Let M and Mσ be the state models induced by P and σ(P). First, let us show
that, for each state s ∈ M, and each action a ∈ M, if a is applicable in s, then (i)
ξ(a) is applicable in ξ(s), and (ii) p ∈ δ(ξ(s), ξ(a)) if and only if {p, p′} ∩ δ(s, a) 6= ∅.
Note that, since the abstraction σ has no effect on facts other than {p, p′}, (ii) implies
δ(ξ(s), ξ(a)) = ξ(δ(s, a)). Thus, together, (i) and (ii) imply that (iii) M is homomorphic
to Mσ. Finally, it is straightforward from Definition 2.2 that (iv) the initial state in Mσ

is ξ(I), and that the goal states in Mσ are exactly {ξ(s) | s ∈ SG}. Together, (iii) and (iv)
imply the claim of Proposition 2.3.

Let a = (pre, add , del). The applicability of ξ(a) in ξ(s) is straightforward; if p′ 6∈ pre,
then we have ξ(pre) = pre and ξ(s)∩ξ(pre) = s∩pre, and otherwise ξ(pre) = (pre\{p′})∪{p}
and ξ(s) = (s \ {p′}) ∪ {p}. In both cases, pre ⊆ s implies ξ(pre) ⊆ ξ(s). Consider now the
sub-claim (ii) on a case-by-case basis.

{p′, p} ∩ add = ∅, {p′, p} ∩ del = ∅ We have p 6∈ add(ξ(a)) and p 6∈ del(ξ(a)), and thus
p ∈ δ(ξ(s), ξ(a)) iff p ∈ ξ(s) iff {p, p′} ∩ s 6= ∅ iff (see assumption on del in the case)
{p, p′} ∩ δ(s, a) 6= ∅.

{p′, p} ∩ add 6= ∅, {p′, p} ∩ del = ∅ We have p ∈ add(ξ(a)) and p 6∈ del(ξ(a)), and thus
p ∈ δ(ξ(s), ξ(a)). On the other hand, {p, p′} ∩ δ(s, a) 6= ∅ also trivially holds here.

{p′, p} ∩ add = ∅, {p′, p} ∩ del 6= ∅ We have p 6∈ add(ξ(a)) and p ∈ del(ξ(a)), and thus
p 6∈ δ(ξ(s), ξ(a)). On the other hand, since p, p′ are persistently mutex facts in P, and
{p′, p} ∩ del = {p′, p} ∩ pre, we also have {p, p′} ∩ δ(s, a) = ∅.

{p′, p} ∩ add 6= ∅, {p′, p} ∩ del 6= ∅ We have p ∈ add(ξ(a)) and p 6∈ del(ξ(a)), and thus
p ∈ δ(ξ(s), ξ(a)). On the other hand, from add ∩ del = ∅ and {p′, p} ∩ add 6= ∅ we
immediately have {p, p′} ∩ δ(s, a) 6= ∅.

This completes the proof of (ii).

Arbitrarily coarse variable domain abstractions may be generated by iterating the appli-
cation of Definition 2.2. Note that variable domain abstraction is a refinement of Edelkamp’s
(2001) abstraction—instead of acting as if the irrelevant positions could be totally ignored,
we do distinguish whether or not the package currently is at such a position. This makes
all the difference between preserving optimal solution length or not.15

As hinted above, after variable domain abstraction we may be able to apply further
simplifications. A simplification, in our terminology, is similar to an abstraction in that it

15. A topic for future work is to explore whether the refined abstraction can lead to better pattern database
heuristics for STRIPS problems.
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manipulates a planning task at the language level. However, while abstractions may alter
the task’s semantics, simplifications do not; i.e., simplifications do not introduce any new
transitions or goal states. Concretely, we consider two simplifications. A planning task
P = (P,A, I,G) has duplicate actions if there exist a, a′ ∈ A so that pre(a) = pre(a′),
add(a) = add(a′), and del(a) = del(a′).16 The simplified planning task is like P except
that a′ is removed. A planning task P = (P,A, I,G) has irrelevant add effects if there
exists a ∈ A so that pre(a)∩ add(a) 6= ∅. The simplified planning task is like P except that
we remove pre(a) from add(a).

Obviously, duplicate actions and irrelevant add effects may arise as an outcome of vari-
able domain abstraction. An example of the latter is an action moving a package from an
irrelevant location into an irrelevant truck. An example of the former are two actions loading
a package onto an airplane from distinct but irrelevant locations.17 In our implementation,
we have a simple post-abstraction processing in which we perform all these simplifications.

As we shall see in Section 4.3, the simplifications can lead to decreased resolution com-
plexity, thereby offsetting our result that abstractions as such, in many cases, cannot. It
may seem a little artificial to distinguish abstractions and simplifications in this way, seeing
as many abstractions are bound to enable us to simplify. However, note that this distinction
only serves to identify the borderline between what can, and what cannot, reduce resolution
complexity. Anyhow, as we shall see in the next section, abstraction does not tend to help
empirically with the performance of SATPLAN even with post-abstraction simplifications.

3. Empirical Results

We have performed a broad empirical evaluation of the effect of abstractions on the efficiency
of optimizing planning algorithms. We mostly focus on variable domain abstraction, as in
Definition 2.2, since it is clearly most promising for obtaining solution length preserving
abstractions.

Section 3.1 explains the specific variable domain abstractions we employ in our experi-
ments. Section 3.2 explains the experimental setting and how we chose to present the huge
data set of the results. Section 3.3 describes our experiments with variable domain ab-
straction in the IPC benchmarks, and Section 3.4 discusses our results with domain-specific
abstractions of hand-made instances in certain benchmark domains where the amount of
irrelevance can be controlled. Section 3.5 briefly summarizes our findings with abstraction
methods other than variable domain abstraction.

3.1 Variable Domain Abstractions

We designed three different methods to automatically generate variable domain abstrac-
tions. The methods as listed below are based on increasingly conservative approximations

16. Note that we define actions not to be triples of pre, add , del , but to have these components; hence
two actions with identical pre, add , del may be contained in the set A. This reflects practical planner
implementations, where actions have names and/or unique IDs, and checks for duplicate actions are not
usually performed.

17. In a similar fashion, duplicate actions may arise as an outcome of Edelkamp’s (2001) pattern database
abstraction.
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of relevance. As is common in relevance approximations (cf. Nebel et al., 1997), the algo-
rithmic basis is, in all cases, a simplified backchaining from the goals.

1Support starts in the first layer of a planning graph that contains all goal facts (possibly
with mutexes between them). For each goal fact in that layer, it selects one achiever in
the preceding action layer and marks the preconditions of that action as new sub-goals;
then the process is iterated for the created sub-goals.

AllSupports proceeds similarly to 1Support except that it selects all achievers for each
(sub-)goal.

AllSupportsNonMutex proceeds similarly to AllSupports except that it starts the back-
chaining at the first plan graph layer that contains the goals without mutexes.

In all three methods, the selected set of “relevant” facts R ⊆ P is taken to be the set
of goals and sub-goals created during the backchaining. This set of facts is turned into
a variable domain abstraction as follows. First, we compute a partition of the problem’s
fact set P into subsets P1, . . . , Pk of pairwise persistently mutex facts. We take these
subsets to correspond to the underlying multiple-valued variables (e.g., the position of a
package). Then we perform abstraction within those Pi where not all values are relevant,
i.e., Pi \R 6= ∅. Within each such subset Pi, we arbitrarily choose one irrelevant fact p, i.e.,
p ∈ Pi \ R. We then replace all other irrelevant facts, i.e., all q ∈ Pi \ R where q 6= p, with
p.

As an example, in Logistics, 1Support abstracts away all in(p, v) facts for each pack-
age p except for those vehicles v that were selected as a support—in particular, a single
airplane. In contrast, AllSupports will mark in(p, v) as relevant for all airplanes v unless
some special case applies (e.g., p must be transported within its origin city only). Finally,
AllSupportsNonMutex is even more conservative and covers some of the special cases in
which AllSupports abstracts an in(p, v) fact away. Note that identifying positions inside
airplanes with positions outside airplanes may well affect the length of an optimal plan.

In addition to the domain-independent, automatic variable domain abstractions, for six
IPC domains we have designed domain-specific solution length preserving variable domain
abstractions by hand. For Logistics, the domain-specific abstraction was explained in the
introduction. For Zenotravel, we use a similar abstraction exploiting irrelevant object po-
sitions. In Blocksworld, on(A,B) is considered irrelevant if B is neither the initial nor the
goal position of A, and B is initially clear.18 For Depots, which is a combination of Logistics
and Blocksworld, our abstraction is a combination of the two individual abstractions. For
Satellite, our abstraction performs a simple analysis of goal relevance to detect directions
that are irrelevant for a satellite to turn to. A direction is relevant only if it is the satel-
lite’s initial direction, its goal direction, or a potential goal or camera calibration target.
Similarly, in Rovers, a waypoint (location) is considered relevant for a rover only if it is
either the initial position, or it is relevant for a needed rock sample/soil sample/image, or
it necessarily lies on a path the rover must traverse to reach some other relevant location.

18. The last of these conditions is necessary to avoid the possibility of “clearing” a block C by moving A
away from C although A is actually placed on some third block.
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3.2 Experiment Setup and Presentation

The presented data were generated on a set of work stations running Linux, each with a Pen-
tium 4 processor running at 3 GHz with 1 GB RAM. We used a time cutoff of 30 minutes.
We experimented with the plan-length optimizing planners SATPLAN’04, IPP (Koehler,
Nebel, Hoffmann, & Dimopoulos, 1997), and Mips-BDD (Edelkamp & Helmert, 1999).19

Our choice of SATPLAN’04 rather than SATPLAN’06 is arbitrary, except that, by using
the naive encoding (C), the resolution best case of SATPLAN’04 can be improved by vari-
able domain abstraction—making our “bad” empirical results below even more significant.
Note also that, although SATPLAN’06 could be considered “more recent”, it contains no
developments beyond SATPLAN’04, other than switching back to an older version of the
encoding method.

As test examples, we took, with few exceptions listed below, all STRIPS domains used
in all international planning competitions until and including IPC-2004. Precisely, we use

(IPC-2004) Airport, Dining Philosophers, Optical Telegraph, Pipesworld NoTankage,
Pipes- world Tankage, and PSR.

(IPC-2002) Depots, Driverlog, Freecell, Rovers, Satellite, and Zenotravel.

(IPC-2000) Blocksworld and Logistics. (Miconic-STRIPS is just a very simple version of
Logistics, Freecell is part of our IPC-2002 set.)

(IPC-1998) Grid, Mprime, and Mystery. (Movie is trivial, in Gripper variable domain
abstraction cannot preserve solution length, Logistics is part of our IPC-2000 set.)

Our measurements are aimed at highlighting the potential that abstraction in principle
has of speeding up the computation of information about a task. Concretely, given a
planning task T , we create an abstract version T σ of T , and run a planner X on it. There
are three possible outcomes:

(1) X finds a plan for T σ, an abstract plan, and it happens to be a real plan (that is, a plan
for T ). We record the time taken to find the plan, along with the time taken by X to
find a plan given the original task T .

(2) X finds a plan for T σ that is not a real plan. Since all our planners optimize plan
length, the information we still gain is the length of the optimal abstract plan, which
is a lower bound on the length of the real plan. We record the time taken to compute
that bound (for example, for SATPLAN’04, the time taken up to the last unsatisfiable
iteration), along with the time taken by X to compute the same lower bound given the
original task T .

(3) X runs out of time or memory. In this case, one could record the time taken up to the
last lower bound proved successfully. For the sake of readability, we omit this here and
consider only cases (1) and (2) above.

19. While SATPLAN’04 and IPP optimize step-length of the plan, Mips-BDD optimizes sequential plan
length. However, again, as the performance of the planners does not stand for a comparative evaluation
here, we refer to all three simply as plan-length optimizing planners.
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Note that, in the spirit of being optimistic about the usefulness of abstraction, we do not
include the time taken to create the abstract task T σ. Note also that we actually obtain
several results for each pair T and X, namely one result for every particular variable domain
abstraction. For the sake of readability, we do not include these distinctions in the results
(the distinctions are mostly inconclusive and uninteresting anyway), and instead present
the results from the following “best abstraction” perspective. We skip abstract tasks that
were either not solved, or that are not “abstract” since all facts are considered relevant.
If no abstract task remains, we skip the instance. Otherwise, we select the abstract task
providing the best information about the instance: the best case is that the abstract plan
is real, else we select the highest lower bound.20 If there are several abstractions providing
the same best information, we choose the one with lowest runtime.

3.3 IPC Benchmarks

Due to the sheer size of our experiments—3 planners multiplied with 17 domains—discussing
the entire result set is neither feasible nor would it be useful. An online Appendix (see JAIR
web page for this article) contains detailed data for the three optimal planners. Herein,
we provide a summary analysis showing the main points, with a particular focus on SAT-
PLAN’04.

Detailed data for SATPLAN’04 on 4 of our 17 IPC domains is given in Table 1:

• Depots and Satellite are selected into the table because they are the only 2 of our 17
domains where the abstraction brings a somewhat significant advantage.

• Logistics is selected because it is our illustrative example.

• PSR is selected due to being an interesting case—unusually, the current optimal plan-
ners do just as well (or badly) on PSR as the current sub-optimal (satisficing) planners.

In each domain, we selected the 13 most challenging instances, where “challenging” is
measured as the runtime taken in the original task. Note that this problem-instance selection
criterion for our presentation is also “optimistic” from the point of view of abstraction. For
each instance, Table 1 first specifies whether the found abstract plan was a real plan or not.
This characterizes the problem instance in terms of cases (1) and (2) explained above, and
the corresponding runtimes of SATPLAN’04 on abstract and real tasks are then given by
the rows ta and tr. The table then specifies the lower bound lg proved for the real task by
its planning graph (that is, t if F (t) is the first fact layer to contain all goal facts with no
mutexes between them), the lower bound la proved by SATPLAN’04 in the abstract task,
and, finally, the actual length lr of the optimal plans for the real task. The last row RelFrac
in the table specifies the percentage of facts considered relevant.

For Depots, the best-case data shown in Table 1 is scattered across all four kinds of
variable domain abstractions, with the automatic abstractions being sometimes more and
sometimes less aggressive than our handmade abstraction. For example, instances numbers
11 and 15 have their best case with the very aggressive 1Support strategy. Most of the time

20. Note here that the quality of the information is essential. If the abstraction only tells us that the plan
must have at least n−1 steps, and the real plan length is n, then we must still prove the bound n, which
typically takes more time than all other bounds together.
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SATPLAN’04

Domain Index ta tr IsReal? lg, la, lr RelFrac

Airport 20 33.9 29.5 Y 25,32,32 73%

Blocksworld 7 118.3 11.2 Y 16,20,20 47%

Depots 19 460.8 – Y 8,10,10 92%

Dining Philosophers 29 6.2 5.5 Y 7,11,11 71%

Driverlog 13 342.0 113.7 N 9,11,12 61%

Freecell 1 0.8 0.8 Y 4,5,5 82%

Grid 2 96.4 3.1 N 19,13,? 10%

Logistics 23 965.5 769.4 N 9,15,15 43%

Mprime 5 6.2 5.2 Y 6,6,6 78%

Mystery 20 180.7 112.4 Y 7,7,7 76%

Optical Telegraph 13 43.6 32.0 N 11,13,13 53%

Pipesworld NoTankage 12 521.7 455.5 Y 8,14,14 86%

Pipesworld Tankage 8 393.8 143.4 N 5,6,? 89%

PSR 48 125.5 131.9 Y 7,26,26 80%

Rovers 8 74.6 97.8 Y 5,9,9 87%

Satellite 12 874.8 – Y 6,14,14 76%

Zenotravel 13 338.4 244.8 N 4,7,7 67%

Table 2: Results for SATPLAN’04 with the best-case variable domain abstraction on the
most challenging successful instances of each domain. Notation as in Table 1.

the runtime is better on the original task, yet there are a few cases where the abstraction
brings a quite significant advantage. Most notably, in instance number 19 SATPLAN’04
runs out of time on the original task, but solves the abstract task, finding a real plan, within
a few minutes. In Logistics, the best-case data is mostly, though not exclusively, due to the
conservative AllSupportsNonMutex and our handmade abstractions. The abstract runtime
is worse in all but three cases (nos. 10, 14, 39), where it is slightly better. In PSR, the best
cases are almost exclusively due to the conservative AllSupportsNonMutex abstraction. As
for runtimes, abstraction is usually faster, but only marginally. Satellite is the only one
of our 17 domains where abstraction brings a significant (and largely consistent) runtime
advantage. The best cases are almost exclusively due to our hand-made abstraction. All
abstract plans are real plans, often found significantly faster than for the original task. It is
unclear to us why the results are good in Satellite, but, for example, not in Logistics, where
the state space reduction is much larger.

Next, Table 2 provides an overview of the results for SATPLAN’04 in our 17 IPC
domains. To make data presentation feasible, we select just one instance per domain—the
“most challenging successful” instance. By successful, we mean that at least one abstract
task of that instance was solved (abstract plan found), and this abstract task was indeed
abstract (not all facts relevant). By challenging, we mean maximum runtime on the original
task.21

21. Another strategy would be to select the task that maximizes tr − ta, the time advantage given by
abstraction. However, in most cases this strategy would select a trivial instance: namely, because tr− ta
is consistently negative, and maximal in the easiest tasks.
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IPP

Domain Index ta tr IsReal? lg, la, lr RelFrac

Airport 8 67.9 0.3 Y 25,26,26 77%

Blocksworld 7 3.1 0.0 Y 16,20,20 47%

Depots 17 254.4 268.4 Y 6,7,7 58%

Dining Philosophers 5 170.4 138.0 Y 7,11,11 71%

Driverlog 9 1.1 0.7 N 7,10,10 84%

Grid 1 0.1 0.2 N 14,7,14 43%

Logistics 8 0.2 1.0 Y 9,11,11 49%

Mprime 2 0.6 1.0 N 5,4,5 62%

Mystery 2 0.4 0.7 N 5,4,5 60%

Optical Telegraph 2 15.7 5.2 N 11,13,13 53%

Pipesworld NoTankage 5 0.0 0.0 Y 4,6,6 88%

PipesworldTankage 7 32.2 0.6 N 4,5,6 82%

PSR 10 0.0 0.0 N 5,4,5 37%

Rovers 6 592.5 375.7 N 7,12,12 90%

Satellite 7 100.3 2010.7 Y 4,6,6 87%

Zenotravel 12 344.3 322.4 Y 4,6,6 67%

Table 3: Similar to Table 2, but for the IPP planner.

It is useful to discuss the 17 domains in groups with similar behavior. Depots, Logistics,
PSR, and Satellite have already been discussed. In each of Airport, Dining Philosophers,
Driverlog, Mystery, Mprime, Optical Telegraph, Pipesworld NoTankage, and Pipesworld
Tankage, SATPLAN’04 runtimes are consistently lower on the original tasks, with few ex-
ceptions mostly among the easiest instances. The picture is less consistent but qualitatively
similar in Zenotravel. The degree of the advantage varies. It is relatively moderate in
Dining Philosophers (up to 7% less runtime on original task), Optical Telegraph (up to
23%), Airport (up to 28%), Pipesworld Tankage (up to 28%), and Mprime (up to 36%); it
is much stronger in Zenotravel (up to 75%), Mystery (up to 80%), Driverlog (up to 89%),
and Pipesworld NoTankage (up to 92%).

In Rovers, the runtime results are inconclusive, with minor advantages for abstract or
real depending on the instance. In Blocksworld, SATPLAN’04 solves abstract tasks with
up to 7 blocks only, independently of the abstraction used; we don’t know what causes this
bad behavior. In Freecell, most of the time AllSupports and AllSupportsNonMutex do not
abstract anything, and in all abstractions generated with 1Support, SATPLAN’04 runs out
of time, leaving instance number 1 as the only “successful” case, shown in Table 2. In Grid,
finally, the IPC 1998 test suite contains only 5 instances, which become huge very quickly.
SATPLAN’04 can solve (abstract or real) only instances numbers 1 and 2, and the latter is
shown in Table 2.

Tables 3 and 4 provide a similar snapshot on the results with IPP and Mips.BDD,
respectively. The picture for IPP is, roughly, similar to that for SATPLAN’04. The main
difference is, in fact, that IPP is a weaker solver than SATPLAN’04 in many domains, to
the effect that some more domains contain no interesting data. Specifically, in Driverlog,
Mprime, Mystery, Pipesworld NoTankage, and PSR, IPP either solves the instances in no
time, or not at all. Like for SATPLAN’04, we see an advantage for abstraction in Depots
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Mips.BDD

Domain Index ta tr IsReal? lg, la, lr RelFrac

Airport – – – – – –

Blocksworld – – – – – –

Depots 2 1.1 – Y 7,15,15 81%

Dining Philosophers

Driverlog 10 503.6 – Y 5,17,17 84%

Freecell – – – – – –

Grid 1 1.8 – N 14,7,? 43%

Logistics 12 7.2 – Y 10,42,42 43%

Mprime – – – – – –

Mystery – – – – – –

Optical Telegraph

Pipesworld NoTankage

Pipesworld Tankage

PSR 25 0.7 13.5 Y 4,9,9 37%

Rovers 7 142.6 340.6 Y 5,18,18 86%

Satellite

Zenotravel 11 271.0 – Y 4,14,14 66%

Table 4: Similar to Tables 2–3, but for the Mips.BDD planner.

and Satellite, and we note that for Satellite this difference is consistently huge. We also
see a vague advantage for abstraction in Logistics. For Mips.BDD, even more domains
gave no meaningful data. In the domains dashed out in Table 4, Mips.BDD runs out of
time on even the smallest instances. In the domains left empty, we either could not run
Mips.BDD for some technical reasons, or it stopped abnormally. In the remaining data
set of 7 domains, however, our abstractions (as expected) bring a consistent advantage for
Mips.BDD. In particular, consider the behavior in Logistics, Rovers, and Zenotravel—in
these domains, Mips.BDD is vastly improved by abstraction while SATPLAN’04 and IPP
are more or less inconclusive.

3.4 Constructed Benchmarks

The above has shown that the use of abstraction—of variable domain abstraction, at least—
to speed up state of the art planning systems varies from quite promising for Mips.BDD
to rather hopeless for SATPLAN’04. We ran a number of focused experiments to examine
the more subtle reasons for this phenomenon. These experiments have been done on three
IPC benchmarks—Logistics, Rovers, and Zenotravel—where the results on the IPC test
suites are relatively bad, although we are in possession of hand-made abstractions. We
wanted to test what happens when we scale the instances on irrelevance. The respective
experiment for Logistics, Figure 1, was discussed in the introduction. For Rovers, we tried
a large number of instance size parameters, and even minor modifications of the operators,
but we could not find a setting that contained a lot of irrelevance and was challenging for
SATPLAN’04 and IPP. In short, it appears that the Rovers domain is not amenable to
abstraction techniques. For Zenotravel, we obtained the picture shown in Figure 2.
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Figure 2: Runtime performance of Mips.BDD (a), IPP (b), and SATPLAN’04 (c), with
(“abstract”) and without (“real”) our hand-made variable domain abstraction,
in Zenotravel instances explicitly scaled to increase the amount of irrelevance.
Horizontal axis scales the number of cities, left vertical axis shows total runtime
in seconds, right vertical axis shows the percentage RelFrac of relevant facts.

The shown Zenotravel instances always feature 2 airplanes and 5 persons. The number
of cities scales from 2 to 13. As in Logistics, we generated 5 random instances per size,
and show average values with a time-out of 1800 seconds, stopping plots when 2 time-
outs occurred at an instance size. All in all, the relative behavior of the abstract and real
curves for each planner is quite similar to what we observed in Figure 1 with Logistics.
For SATPLAN’04 and IPP, abstraction has a slight disadvantage with high RelFrac, and
becomes much more efficient as RelFrac decreases. For Mips.BDD, the advantage brought
by the abstraction is much more pronounced, and decreasing RelFrac consistently widens
the gap between solving abstract and real tasks. The average value of RelFrac in the IPC
2000 Zenotravel benchmarks is 64%, lying in between 5 cities (67%) and 6 cities (63%) in
Figure 2, where there is not yet much gained by the abstraction.
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In summary, it appears that some planning benchmarks (like Rovers) do not have good
abstractions, and most others (like Logistics and Zenotravel) do not have enough irrelevance
in the IPC test suites.

It is important to note that the situation may not be quite as bad for unsolvable exam-
ples. Consider the IPC benchmarks Dining Philosophers and Optical Telegraph (Edelkamp,
2003). Dining Philosophers is an extremely basic benchmark that cannot be abstracted
much further. In contrast, Optical Telegraph is essentially a version of Dining Philosophers
with a complex “inner life” (exchanging data between the two “hands” of each philosopher).
This inner life does not affect the existence of a solution (deadlock situation), which de-
pends exclusively on the outer interfaces of the “philosophers”, that is, taking and releasing
“forks”. However, the inner life does, of course, affect the length of a solution, if one exists.
We constructed an unsolvable version of the domain (without deadlock situation) by giving
the “philosophers” more flexibility in releasing forks. As one would expect, in this setting
abstracting the inner life away gives huge savings, i.e., the tasks can be proved unsolvable
much more efficiently. This suggests that it may be easier to abstract unsolvable tasks,
without invalidating the property of interest. Exploring this is a topic for future work.
While most planning benchmark domains do not naturally contain unsolvable instances, in
over-subscription planning this issue may become relevant (Sanchez & Kambhampati, 2005;
Meuleau, Brafman, & Benazera, 2006).

3.5 Other Abstractions

As discussed earlier, one cannot expect that removing preconditions, goals, or entire facts
preserves plan length in interesting cases. There are, however, certain cases where some
delete effects can safely be ignored. Specifically: in Driverlog, Logistics, Mprime, Mystery,
and Zenotravel, one can ignore those deletes of “load” and “unload” actions which state
that an object is no longer at its origin location (load) respectively that an object is no
longer inside the vehicle (unload); in Rovers one can ignore some deletes of actions taking
rock or soil samples, namely those deletes stating that the sample is no longer at its origin
location. We ran each of our planners on the respective abstracted tasks. The results can
be summarized as follows.

SATPLAN’04 has a clear loss in runtime from using the abstraction in Driverlog (e.g.,
task number 15 is solved abstract vs. real in 693.0 vs. 352.3 sec).

IPP has a vast gain from abstraction in Logistics (e.g., 52.8 vs 5540.1 sec in number 12),
and a vast loss in Zenotravel (e.g., 318.5 vs 2.5 sec in number 12).

Mips.BDD has a vast loss from abstraction in Driverlog, Logistics, and Zenotravel (e.g.,
163.8 vs. 8.3 sec in Zenotravel number 8).

The results are inconclusive for all other planner/domain pairs.

4. Resolution Complexity

As discussed in the introduction, we were surprised to see very little improvement to SAT-
PLAN in our experiments, despite the dramatic state space reductions brought about by
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variable domain abstraction. We now shed some light on this issue, by examining resolution
complexity in the original vs. the abstracted planning tasks. Throughout the section, we
consider the situation where the plan length bound—the number of time steps in the CNF
encoding—is too small, and thus the CNFs are unsatisfiable. Note that this is the case in
all but one of the SAT tests performed by SATPLAN. In particular, it is the case in the
SAT tests where SATPLAN proves optimality of the plan, that is, the non-existence of a
plan with n− 1 steps where n is the length of an optimal plan. This proof is typically very
costly, accounting for a large fraction of the runtime taken by SATPLAN.

We consider all abstraction methods introduced in Section 2.4, plus (for completeness)
a hypothetical abstraction method that adds new initial facts. We show in Section 4.1 that,
in many cases, the resolution complexity cannot be improved by delegating the optimality
proof to within the abstraction. In Section 4.2 we then show that, in all considered cases,
the resolution complexity can become exponentially worse. Section 4.3 briefly examines the
effect of post-abstraction simplifications. For the sake of readability, herein most proofs are
replaced with proof sketches. The full proofs are available in Appendix A.

Recall that resolution complexity is defined as the length of the shortest possible res-
olution refutation. In all proofs, our arguments are for general (unrestricted) resolution.
However, our constructions do not affect the structure of the resolution refutations, and
hence the results hold as stated (except for a slight weakening in the case of Lemma 4.14)
for many known variants of resolution, including tree-like (DPLL), regular, and ordered
resolution. In general, the results hold for any variant of resolution for which setting vari-
ables to True or False or replacing one variable with another preserves proof structure (the
slightly exceptional status of Lemma 4.14 will be explained below when we discuss that
result).

In the remainder of the paper, if P is a planning task and σ is an abstraction, then
by Pσ we denote the respective abstracted planning task, that is, the planning task that
results from applying σ to P.

4.1 Can Resolution Complexity Become Better?

We prove three main results, which are captured by Theorems 4.1–4.3 below. The first
result holds for all four SAT encodings (A)–(D) as listed in Section 2.2; the other two
results apply to encodings (A) and (C), respectively. For the respective encodings and
abstraction methods, the results essentially say that resolution complexity cannot decrease
by applying the abstraction. As outlined in the introduction, a catchy (if imprecise) intuition
behind these results is that over-approximations (abstractions) result in “less constrained”
formulas, which are harder to refute. For encoding (C), the result is offset by the effort
required to recover all Graphplan mutexes; we will get back to this below. For the theorems
that follow, recall from Section 2.3 that RC(φ) denotes the resolution complexity of φ, i.e.,
the size of the smallest resolution proof of unsatisfiability of φ.

Theorem 4.1. Let P be a planning task. Assume we use any of the encoding methods
(A)–(D). Let σ be an abstraction of P that consists of any combination of:

(a) adding initial facts;

(b) ignoring preconditions, goals, or deletes; and
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(c) removing a fact completely.

Let n be the length of a shortest plan for Pσ, and let b < n. Let φ and φσ be the encodings
of b-step plan existence in P and Pσ, respectively. Then RC(φ) ≤ RC(φσ).

Theorem 4.2. Let P be a planning task. Assume we use encoding method (A). Let σ be
an abstraction of P that consists of any combination of:

(a) adding initial facts;

(b) ignoring preconditions, goals, or deletes;

(c) removing a fact completely; and

(d) variable domain abstraction.

Let n be the length of a shortest plan for Pσ, and let b < n. Let φ and φσ be the encodings
of b-step plan existence in P and Pσ, respectively. Then RC(φ) ≤ RC(φσ).

Theorem 4.3. Let P be a planning task. Assume we use encoding method (C). Let σ be
an abstraction of P that consists of any combination of:

(a) adding initial facts;

(b) ignoring preconditions, goals, or deletes;

(c) removing a fact completely; and

(d) variable domain abstraction.

Let n be the length of a shortest plan for Pσ, and let b < n. Let φ and φσ be the encodings
of b-step plan existence in P and Pσ, respectively. Let M be the number of resolution steps
required to infer from φ the additional mutex clauses that appear in φA, where φA is the
encoding of b-step plan existence in P as per encoding (A). Then RC(φ) ≤ RC(φσ) +M .

Note in all these theorems that n, defined to be the length of a shortest plan for Pσ,
necessarily satisfies n ≤ m where m is the length of a shortest plan for P. Hence, for
n ≤ b ≤ m, φσ is satisfiable. Detecting this – finding out that Pσ has a plan of length b –
does not give us any information about the length of a shortest plan for P. For 0 ≤ b < n,
however, φσ is unsatifiable, which tells us that b+ 1 is a lower bound on plan length in P.
Hence, what the theorems say is this: either b ≥ n and σ is too coarse to disprove existence
of a plan of length b; or b < n and σ does not decrease the resolution complexity of that
disproof—at least by no more than the complexity of deriving the additional mutexes, in
the case of Theorem 4.3.

Let us first linger a bit on Theorem 4.3. The general intuition of our results is that
abstractions induce less constrained formulas, and hence resolution complexity cannot de-
crease. So why does this hold for encoding (A) as stated in Theorem 4.2 but not, in a strict
sense (see Proposition 4.13 later in this section), for encoding (C)? Basically, the answer is
that the intuition is imprecise in this general formulation, and the devil is in the details.
In this particular case, the issue is that variable domain abstraction makes use of mutex

443



Domshlak, Hoffmann, & Sabharwal

relations which encoding (C) is not aware of. Sometimes, an indirect mutex in the original
task (omitted in encoding (C)) becomes a direct mutex in the abstraction (included in en-
coding (C)). Refuting φ might then involve recovering that mutex, which a refutation of φσ

need not do. Hence, a potential improvement in resolution complexity may stem from the
power of mutex relations. The upper bound specified in Theorem 4.3 shows that this is the
only thing that an improvement can be due to. Proposition 4.13 below provides an example
where a mutex must be recovered, and hence proves that an analogue of Theorem 4.2 does
not hold for encoding (C).

It is an open question whether an analogue of Theorem 4.2 holds for encoding (B), and
whether an analogue of Theorem 4.3 holds for encoding (D). As we will discuss further
below, these open questions appear to be related to some intricate properties of Graphplan-
based encodings with vs. without fact variables. What we do know is that mutexes may
need to be recovered also in encoding (D): the example provided by Proposition 4.13 works
for both encodings (C) and (D). Further, we establish a connection between the two open
questions: if an analogue of Theorem 4.2 holds for encoding (B), then we immediately get
that an analogue of Theorem 4.3 holds for encoding (D).

We now consider all this in detail. Note that, as far as the removal of goals is concerned,
the theorems are actually trivial: for all four encoding methods, if σ only removes part of
the goals, then φσ is a sub-formula of φ. For all other abstraction methods, the latter is not
the case. We treat removal of goals together with the other methods since that treament
does not cause any overhead, and the goal clauses need to be discussed anyway (the set of
achievers of a goal may change).

For some of the proofs, we need a helper notion that captures over-approximated plan-
ning graphs. Assume a planning task P and its planning graph PG(P), and assume that
σ is an abstraction. Then PG(Pσ) will typically have many more vertices than PG(P).
This captures the fact that Pσ allows no fewer (and often more) facts and actions than P
does. This will, in general, result in many more constraints in a propositional translation
of the planning task. With more constraints, it may seem like the abstraction could, in
principle, make it possible to derive an easier/shorter proof of the fact that no plan exists
within the specified bound. However, a closer inspection restricted to facts and actions
already available in the original planning graph reveals that one often ends up with fewer
and weaker constraints than for the original task. We now introduce some notations to
make this formal.

Definition 4.4. For a planning task P and an abstraction σ of it, PGσ(P) is defined to be
the subgraph of PG(Pσ) induced by the vertices of PG(P). Similarly, PGσred(P) is defined
to be the subgraph of PGred(Pσ) induced by the vertices of PGred(P).

Definition 4.5. Let P be a planning task. An abstraction σ is called a planning graph
abstraction of P if PGσ(P) and PG(P) have identical sets of vertices and the following
conditions hold:

(1) Eadd (PGσ(P)) ⊇ Eadd (PG(P)),

(2) Epre(PGσ(P)) ⊆ Epre(PG(P)),

(3) Emutex(PGσ(P)) ⊆ Emutex(PG(P)), and
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(4) σ(G) ⊆ G,

where G and σ(G) are the goal states of P and Pσ, respectively. An abstraction σ is called a
reduced planning graph abstraction if the above conditions hold for PGσred(P) and PGred(P)
instead.

Lemma 4.6. Let P be a planning task. Assume we use encoding method (A) or (B). Let
σ be a planning graph abstraction of P. Let n be the length of a shortest plan for Pσ, and
let b < n. Let φ and φσ be the encodings of b-step plan existence in P and Pσ, respectively.
Then RC(φ) ≤ RC(φσ).

Proof Sketch. Say we set to False all variables of φσ that do not appear in φ, i.e., we
fix the value of those variables to be 0. Because of the way we defined PGσ(P), this
yields precisely the propositional encoding of PGσ(P). We show that, after this variable
restriction, the clauses surviving in φσ are also present in φ, either as is or in a stronger
form (i.e., with fewer literals). For example, in encoding (A) each precondition clause
Cσ of φσ has a corresponding clause C in φ due to condition (2) of Definition 4.5, which
states that σ does not introduce new preconditions. We have Cσ ⊇ C due to condition
(1) of Definition 4.5, which states that σ preserves all add effects—hence the set of actions
achieving the precondition in Pσ contains the corresponding set in P. A similar observation
holds for the effect clauses in encoding (B), and similar arguments apply to all the other
kinds of clauses. The claim then follows with Proposition 2.1.

Lemma 4.7. Let P be a planning task. Assume we use encoding method (C) or (D). Let
σ be a reduced planning graph abstraction of P. Let n be the length of a shortest plan for
Pσ, and let b < n. Let φ and φσ be the encodings of b-step plan existence in P and Pσ,
respectively. Then RC(φ) ≤ RC(φσ).

Proof. The argument is identical to the proof of Lemma 4.6, except that the underlying
planning graph for encodings (C) and (D) is the reduced planning graph, resulting in po-
tentially fewer mutex clauses than in encodings (A) and (B), respectively. This, however,
does not in any way affect the proof arguments.

Lemma 4.8. Let P be a planning task. Let σ by any modification of P that respects the
following behavior:

(a) σ does not shrink the list of initial facts,

(b) σ does not grow the set of goal facts,

(c) σ preserves the add lists unchanged, and

(d) σ does not grow the pre and del lists.

Then σ is a planning graph abstraction of P as well as a reduced planning graph abstraction
of P.
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Proof Sketch. The proof is straightforward, but a little tedious in the details. Suppose σ is
an abstraction for P satisfying the prerequisites. We must argue that PGσ(P) and PGσred(P)
satisfy the conditions in Definition 4.5. Condition (4) involving goal states easily follows
from property (b) of σ. Once PG(P) and PGσ(P) (as well as their reduced counterparts)
are shown to have the same set of vertices, conditions (1) and (2) involving precondition
and effect relations follow directly from properties (c) and (d). It hence remains to prove
that all facts and actions available in PG(P) are also available in PGσ(P) (showing (1) and
(2) with what we just said), and that no new mutex relations are created between facts and
actions that are not mutex in PG(P) (showing (3)). This proof is a little tedious, proceeding
inductively over the construction of the planning graph. The underlying intuition, however,
is simple: if PGσ(P) up to layer t abstracts PG(P) up to layer t, and properties (a), (c)
and (d) are respected by σ, then necessarily PGσ(P) up to layer t+ 1 abstracts PG(P) up
to layer t+ 1. This concludes the argument.

The following is an immediate consequence of Lemmas 4.6, 4.7, and 4.8.

Corollary 4.9. Let P be a planning task. Assume we use any of the encoding methods
(A)–(D). Let σ be an abstraction of P that consists of any combination of:

(a) adding initial facts; and

(b) ignoring preconditions, goals, or deletes.

Let n be the length of a shortest plan for Pσ, and let b < n. Let φ and φσ be the encodings
of b-step plan existence in P and Pσ, respectively. Then RC(φ) ≤ RC(φσ).

This result essentially states the rather intuitive fact that, if the abstraction does any-
thing that yields a “larger” planning graph, then the resulting Graphplan-based encodings
will be less constrained and hence have a higher resolution complexity (if anything).

Matters become much less intuitive once we consider abstractions that remove entire
facts—clearly, these no longer result in over-approximated planning graphs, since they re-
move some of the vertices. In other words, the condition in Definition 4.5 that PGσ(P) and
PG(P) have identical sets of vertices does not hold, and we need a slightly different line of
reasoning that does not rely strictly on abstracted planning graphs. We first show that it is
harmless to remove a fact if it does not appear in the goal and in any pre or del list. Then
we rely on Corollary 4.9 to reason that this requirement on a fact can be easily achieved.

Lemma 4.10. Let P be a planning task. Assume we use any of the encoding methods
(A)–(D). Let p be a fact that does not appear in the goal and in any of the pre or del lists,
and let σ be the abstraction of P that removes p from the initial facts and the add lists. Let
n be the length of a shortest plan for Pσ, and let b < n. Let φ and φσ be the encodings of
b-step plan existence in P and Pσ, respectively. Then RC(φ) = RC(φσ).

Proof Sketch. The key point is that, if p does not appear in the goal and is never required or
deleted by an action, then p is completely irrelevant to the planning task, and in particular
to the resolution refutations we consider here. Concretely, we first prove that at every layer
of the planning graph, the available facts and the mutex fact pairs remain the same, up
to facts or fact pairs involving p. That is, the only thing that is lost in the fact layers of
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PGσ(P) is p. Since p does not occur in any precondition, the action layers remain exactly
the same; since p does not occur in any preconditions or delete effects, the action mutexes
also remain exactly the same (they were not caused by p).

The above discussion implies that the precondition clauses in all the encodings are
identical. Given that p does not appear in the goal, the same is true of the goal clauses.
Since the action mutexes are unchanged, it follows that φ and φσ are actually identical
for encodings (A) and (C). For encodings (B) and (D), the only difference between φ and
φσ is that φσ does not contain the initial state, effect, and mutex clauses involving p.
However, these clauses can never participate in a resolution refutation of φ: all effect and
mutex clauses contain p in the same polarity (negative); while an initial state clause has
the positive form {p(0)}, the time index is different from those of p in all effect and mutex
clauses. Hence every variable corresponding to p occurs in only one polarity. This concludes
the argument.

Corollary 4.11. Let P be a planning task. Assume we use any of the encoding methods
(A)–(D). Let σ be an abstraction of P that removes a fact completely. Let n be the length of
a shortest plan for Pσ, and let b < n. Let φ and φσ be the encodings of b-step plan existence
in P and Pσ, respectively. Then RC(φ) ≤ RC(φσ).

Proof. σ is equivalent to the following two steps. First, remove p from the goal facts (if
present) and from all pre and del lists. By Corollary 4.9, this step cannot improve resolution
complexity. Second, now that p has been removed from the goal and the pre and del lists,
remove p from the problem completely by removing it from the initial facts and all add lists
as well. By Lemma 4.10, this step as well cannot improve resolution complexity, and we
are done.

Corollaries 4.9 and 4.11 together prove our first main result, Theorem 4.1. We now
move on to variable domain abstraction, where matters are most complicated, and which is
most interesting because that abstraction method enables us to construct solution length
preserving abstractions with exponentially smaller state spaces, in many benchmarks. First
we show that, in its original form, the result holds for encoding (A).

Lemma 4.12. Let P be a planning task. Assume we use encoding method (A). Let σ be
a variable domain abstraction of P. Let n be the length of a shortest plan for Pσ, and let
b < n. Let φ and φσ be the encodings of b-step plan existence in P and Pσ, respectively.
Then RC(φ) ≤ RC(φσ).

Proof Sketch. σ combines two persistently mutex facts p and p′ into a single fact p. We first
show that if an action pair (a, a′) is mutex in Pσ, then it will also be mutex in P. The only
way for (a, a′) to become mutex per σ requires, w.l.o.g., that in P, p ∈ del(a) ⊆ pre(a) and
p′ ∈ pre(a′) ∪ add(a′). Supposing (a, a′) is not mutex in P, we have that p 6∈ del(a′) and p
is not mutex with any fact in pre(a′). But then, (noop(p), a′) is not mutex in P and hence
(p, p′) is not a persistent mutex, in contradiction.

With this in hand, we can derive a property rather similar to that of planning graph
abstractions given in Definition 4.5. By the above, we know that the abstract encoding φσ

does not have any mutexes that do not appear in φ. Further, the set of actions achieving
each fact only grows by applying this abstraction, and the goal can only shrink. The most
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subtle issue regards precondition clauses. If an action a has p′ as its precondition in P, then
this is replaced by p in Pσ, so there is no direct correspondence between the two. However,
that lack of correspondence does not affect the precondition clause of encoding (A), which
takes the form {¬a, a1, . . . , ak}; this omits the actual precondition fact being achieved, so
it does not matter whether that fact is p′ or p.

Next, as in the proof to Lemma 4.6, we set all variables to False which appear in φσ but
not in φ. With the above arguments, it is then not difficult to see that the clauses surviving
in φσ are also present in φ, either as is or in a stronger form (i.e., with fewer literals). For
mutex clauses, this is obvious. For goal clauses, the argument is exactly the same as in the
proof sketch for Lemma 4.6 given above. For precondition clauses, observe that a1, . . . , ak
in the above will contain all achievers of p′ plus all achievers of p. The claim now follows
with Proposition 2.1.

Corollaries 4.9 and 4.11 together with Lemma 4.12 prove our second main result, The-
orem 4.2. For encodings (B)–(D), matters are more complicated.

Consider first encodings (B) and (D), which differ from (A) in that they also have
fact variables. This changes the precondition clauses. If an action a in P has p′ as its
precondition, but p in Pσ, then we no longer get the clause {¬a, a1, . . . , ak} as in the proof
sketch. Instead, we get the clause {¬a, p}. For this clause, there is no correspondence in φ.
In particular, consider the case where we have two actions in P, action a with precondition
p and action a′ with precondition p′. This gives us the clauses {¬a, p}, {¬a′, p′} in φ and
the clauses {¬a, p}, {¬a′, p} in φσ. Now, φσ does not distinguish between the achievers
of p and those of p′, so there is no problem in that regard. But can the fact that the two
clauses now share a literal—which they don’t in φ—be exploited to obtain shorter resolution
refutations? This is an open question; we discuss its implications in a little more detail at
the end of this sub-section.

Consider now encoding (C), which differs from (A) in that it includes only direct action
mutexes. This invalidates a different argument in the proof of Lemma 4.12. It is still true
that, if an action pair (a, a′) is marked mutex in Pσ, then it will also be mutex in P.
However, it can happen that (a, a′) is mutex in Pσ due to a direct interference between
a and a′, while (a, a′) is mutex in P due to mutex preconditions, rather than a direct
interference. Since encoding (C) accounts only for direct interferences, we then have a
mutex in φσ that does not appear in φ. This can result in improved resolution complexity
for φσ. The following proposition proves this formally.

Proposition 4.13. Assume we use encoding method (C). There exist a planning task P, a
variable domain abstraction σ of P, and b < n such that RC(φ) > RC(φσ), where n is the
length of a shortest plan for Pσ, and φ and φσ are the encodings of b-step plan existence in
P and Pσ, respectively.

Proof Sketch. We construct P, σ, and b as specified. The key property of the construction
is that there are two actions, getg1 and getg2, that are both needed to achieve the goal facts
g1 and g2, respectively. More precisely, getg1 = ({x}, {g1, p

′}, {x}) and getg2 = ({p, y},
{g2}, {p}). The task is constructed, along with the help of a few other actions, in a way so
that x, p, and p′ are pairwise persistently mutex. The variable domain abstraction replaces
p′ with p, and b is set to 2. In the action layer directly beneath the goal layer, i.e., in action
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layer A(1), the planning graph marks getg1 and getg2 as mutex because their preconditions
are mutex. Encoding (C), however, does not include this mutex clause because there is no
direct conflict. This situation changes after the abstraction. Now getg1 adds p instead of p′,
and hence there is a direct conflict with the delete effect of getg2. As a consequence, in the
abstraction two resolution steps suffice: applying both getg1 and getg2 in A(1) is the only
option to achieve the goals, and the new mutex clause immediately excludes that option.
This is not so in the encoding of the original task, where the required mutex must first be
derived by reasoning over the preconditions x and p.

Note that the only reason why we get a shorter refutation for φσ is that variable do-
main abstraction turns an indirect action mutex (due to competing preconditions) into a
direct interference. In doing so, the abstraction exploits the knowledge that p and p′ are
persistently mutex—a fact that is ignored in encoding (C). Hence the positive result stated
by Proposition 4.13 is less related to the power of abstraction than to the power of planning
graph mutexes. We now capture this formally. In what follows, note that using the same
plan length bound, the CNF formula as per encoding (C) is a sub-formula of the CNF
formula as per encoding (A), and all the additional clauses of (A) can be inferred from it.

Lemma 4.14. Let P be a planning task. Let σ be a variable domain abstraction of P.
Let n be the length of a shortest plan for Pσ, and let b < n. Let φA and φC be the
encodings of b-step plan existence in P as per encoding (A) and (C), respectively. Let φσC
be the encoding of b-step plan existence in Pσ as per encoding (C). Let M be the number of
resolution steps required to infer from φC the additional mutex clauses that appear in φA.
Then RC(φC) ≤ RC(φσC) +M .

Proof. Denote by φσA the encoding of b-step plan existence in Pσ as per encoding (A). We
have:

(1) By the preconditions of the lemma, RC(φC) ≤ RC(φA)+M : with M resolution steps,
φC can be turned into φA, and hence from the shortest resolution refutation for φA
we can construct one for φC that is M steps longer.

(2) From Lemma 4.12, RC(φA) ≤ RC(φσA).

(3) φσC is a sub-formula of φσA, and hence RC(φσA) ≤ RC(φσC).

Combining these observations, we have:

RC(φC) ≤ RC(φA) +M from observation (1)
≤ RC(φσA) +M from observation (2)
≤ RC(φσC) +M from observation (3)

This finishes the proof.

Clearly, this proof argument applies also when σ is a combination of variable domain
abstraction with all the other abstractions. Hence Corollaries 4.9 and 4.11 together with
Lemmas 4.12 and 4.14 prove our third main result, Theorem 4.3. Note that this latter
result does not hold for all variants of resolution. In the claim of Lemma 4.14, M is the
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number of resolution steps it takes to derive the action mutexes not present in the original
encoding. These are then used in the resolution refutation. If the variant of resolution
under consideration is, say, DPLL or tree-like resolution, deriving a mutex clause once is
not enough—it must be re-derived as many times as it is used in the tree-like resolution
refutation. Hence the effective value of M for such variants of resolution would be larger.
Note that this is not the case if the DPLL solver learns the mutex clauses by virtue of the
wide-spread clause learning technique.

Lemma 4.14 is particularly relevant for our empirical results, because SATPLAN’04 uses
encoding (C) and our experiments mostly focus on variable domain abstraction. While we
have no explicit empirical proof (and such a proof would be difficult to come by, requiring
a deep analysis of the SAT solver’s search spaces), it seems reasonable to assume that, at
least to some extent, the disappointing results for SATPLAN’04 are due to what’s proved
in Lemma 4.14. The abstraction cannot improve resolution complexity beyond the effort
required to recover the indirect action mutexes. Note here that the bound M given in
the lemma is rather pessimistic. A mutex (a, a′) needs to be recovered only in the case
where a and a′ have competing needs in P, and replacing p′ with p results in a direct
interference but does not incur simplifications. In the Logistics domain, for example, with
our abstraction this happens only for actions loading a package onto an airplane in two
different but irrelevant cities. Since these load actions are involved only in redundant
solutions anyway, it seems doubtful that such mutexes play a role for resolution complexity.

More generally, it is interesting to consider upper bounds on M in Lemma 4.14. How
many resolution steps does it take to recover the indirect action mutexes? For general reso-
lution, the number of steps is polynomially bounded, since the inference process conducted
by the planning graph can be simulated (for a related investigation, see Brafman, 2001).
For restricted variants of resolution, matters are more complicated. Of particular interest
is the behavior of DPLL+clause learning, c.f. the above. There is so far no known for-
mula for which DPLL+clause learning proofs are provably substantially worse than general
resolution proofs; it would be rather surprising if planning graph mutexes were to be the
first. Also, Rintanen (2008) provides a related investigation, showing that mutexes can be
recovered in polynomial time by a particular 2-step lookahead procedure, which is related
(but not identical) to clause learning.

Concluding this sub-section, let us again turn our attention to encodings (B) and (D).
As mentioned before, it is an open question whether an analogue of Theorem 4.2 holds for
encoding (B), and whether an analogue of Theorem 4.3 holds for encoding (D). We are
facing two problematic issues:

(I) Fact variables. In both encoding (B) and (D), there are fact variables in addition
to the action variables used in encodings (A) and (C).

(II) Mutexes. Like for encoding (C), it may happen that variable domain abstraction
converts an implicit mutex in encoding (D) of the original task into an explicit one in
the abstraction.

We consider first issue (II). The situation is exactly as for encoding (C), in this regard.
Proposition 4.13 holds as stated for encoding (D) as well; indeed it can be proved using
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exactly the same example and only very minor adaptations of the proof arguments.22 Simi-
larly, Lemma 4.14 holds for encoding (D), with exactly the same proof arguments—provided
an analogue of Lemma 4.12 (and hence an analogue of Theorem 4.2) holds for encoding (B).
Namely, the proof arguments of Lemma 4.14 all remain valid, except that we need to refer
to encoding (B) rather than (A), and that accordingly we need a corresponding version of
Lemma 4.12. This brings us to issue (I).

Variable domain abstraction can be perceived as “gluing sets of facts together”. Recall
here the example with clauses {¬a, p}, {¬a′, p′} in φ not sharing any literals, and clauses
{¬a, p}, {¬a′, p} in φσ sharing the literal p; this was discussed above to explain why the
proof of Lemma 4.12 does not work for encodings (B) and (D). If k + 1 facts are glued
together, then groups of k clauses can become linked together in this fashion. The question
is:

(*) Can resolution fruitfully exploit this increased linkage?

This issue appears to be related to some quite intricate properties of Graphplan-based
encodings with vs. without fact variables. For encoding (A), which differs from encoding
(B) only in that it does not use fact variables, Lemma 4.12 tells us that resolution cannot
exploit variable domain abstraction. Now, it appears reasonable to think that adding fact
variables does not help a lot, the intuition being:

(**) Whatever one can do with encoding (B), one can easily simulate with encoding (A).

If statement (**) is true, then the answer to question (*) has to be “no”, because a “yes”
answer would contradict Lemma 4.12. Hence, in an initial attempt to prove the “no” answer,
we tried to prove statement (**). However, our initial investigation has indicated that by
explicitly keeping fact variables (and non-trivial constraints on them) around, encoding (B)
might facilitate significantly shorter resolution derivations in general, and hence statement
(**) might be false. Namely, there appear to be families of formulas that can be suitably
encoded into planning tasks to yield an exponential separation between encodings (A) and
(B). If this is true, then it suggests that reasoning in the presence of fact variables might
be more powerful and hence might indeed be able to exploit the linkage gain yielded by
variable domain abstraction.

Since the purpose of this paper is not to compare the relative power of various
Graphplan-based encodings (such as that of (A) and (B)), we do not detail our progress
towards disproving statement (**). Besides, note that, if statement (**) is indeed false, then
that does not have any immediate implications on the answer to question (*). A definite
answer to (*) is left open for future research.

4.2 Can Resolution Complexity Become Worse?

The answer to the title of this sub-section is a definite “yes”. With all four encodings,
any of the abstractions we consider may exponentially deteriorate resolution complexity.
Formally, we have the following theorem.

22. We include the full proof for both (C) and (D) in Appendix A.
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Theorem 4.15. Assume we use any of the encoding methods (A)–(D). There exist an
infinite sequence of planning tasks P(i), abstractions σ(i) of P(i), and b(i) < n(i) such that
RC(φσ(i)) is exponential in i while RC(φ(i)) is a constant independent of i, where n(i) is
the length of a shortest plan for Pσ(i), φ(i) and φσ(i) are the encodings of b(i)-step plan
existence in P(i) and Pσ(i) respectively, and σ(i) consists of any one of:

(a) adding initial facts;

(b) ignoring preconditions, goals, or deletes;

(c) removing a fact completely; or

(d) variable domain abstraction.

Proof Sketch. The idea is to construct P(i) as a planning task that consists of two separate
sub-tasks, and whose overall goal is to achieve the goals of both of these sub-tasks. Each
of the sub-tasks themselves is infeasible within the given plan length bound b(i). (The
tasks and bounds are constructed such that their size grows polynomially with i.) However,
while the first sub-task is constructed to require exponential size resolution refutations, the
second allows constant size refutations. If an abstraction over-approximates the easy-to-
refute sub-task in a way so that it becomes feasible within b(i) steps, then the resolution
refutation of the overall task must rely on the hard-to-refute sub-task. This leads to an
exponential growth, over i, in resolution complexity for φσ(i), as opposed to constant reso-
lution complexity for φ(i). With any single one of the listed abstractions, feasibility of the
easy-to-refute sub-task can be accomplished in a simple manner, hence proving the theorem.

In order to construct planning tasks whose CNF encodings require exponential size
resolution refutations, we resort to the “pigeon hole problem” formula PHP(i). It is well
known that any resolution proof of PHP(i) must be of size exponential in i (Haken, 1985).
We construct a simple pigeon hole planning task PPHP (i) to capture this problem. We
show that, for any of the four encoding methods (A)–(D), the CNF encoding for b(i) = 1
is either identical to PHP(i), or transforms into PHP(i) by variable restrictions. Hence,
by Proposition 2.1, any resolution refutation must have size exponential in i. The final
construction uses a combination of two such tasks: PPHP (i) serves as the hard-to-refute
sub-task, and PPHP (1) on disjoint sets of pigeon and hole objects serves as the easy-to-refute
sub-task.

Essentially, Theorem 4.15 states the intuitive fact that abstractions can make bad
choices, approximating away the most concise reason for why a planning task cannot be
solved in a particular number of steps. To illustrate the significance of this, consider once
more the comparison to mutex relations. An analogue of Theorem 4.15 does not hold for
them: adding a mutex clause to a CNF encoding can only improve resolution complexity. In
that sense, mutex relations are considerably less “risky” than the abstractions we consider
here.

While the pigeon hole problem used in the proof of Theorem 4.15 may seem artificial, it is
indeed contained as a sub-problem in wide-spread domains such as some of those concerned
with transportation. For example, in Gripper, the available time steps serve as “holes”
and the actions picking/dropping balls are the “pigeons” (for a related investigation, see
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Hoffmann et al., 2007). It also seems quite natural that a planning task may consist of two
disconnected parts, one of which is complex while the other one is easy to prove unsolvable
in the given number of steps. Just think of transporting two packages, one of which is
close to many vehicles and requires just one more step than the bound allows, while the
other one is already inside a vehicle and needs to be transported along a single path of road
connections that is much longer than the bound (a concrete example for the latter situation
is formalized by Hoffmann et al., 2007).

4.3 A Note on Simplifications

As pointed out in Section 2.4, there may be actions that after abstraction can obviously be
simplified without altering the semantics of the planning task. In particular, an abstraction
might create duplicate actions (that is, actions having identical preconditions and effects),
as well as redundant add effects (that are contained in the respective action’s precondition).
It turns out that such a natural post-abstraction simplification of the planning task can lead
to lower resolution complexity.

Proposition 4.16. Assume we use any of the encoding methods (A)–(D). There exist a
planning task P, a planning task P ′ that is identical to P except that either an irrelevant
add affect or a duplicate action have been removed, and b < n so that RC(φ) > RC(φ′),
where n is the length of a shortest plan in P, and φ and φ′ are the encodings of b-step plan
existence in P and P ′, respectively.

Proof Sketch. To show the claim for duplicate actions, we consider a task P ′ encoding the
pigeon hole problem for 3 pigeons and 2 holes, with actions that put pigeon p into hole h.
The plan length bound is 1. To point out that the proof works for solvable tasks P, an
extra action a, whose preconditions are two of the goals and which achieves the third goal,
ensures solvability in two steps. There are three goals, one for each pigeon, and there are
no mutex clauses other than direct action interference, because each pair of goals can be
achieved – but not the three of them. In particular, every resolution refutation must resolve
on all three goal clauses. We obtain P by adding a duplicate action for one of the pigeons
and one of the holes. The respective goal clause then becomes one literal longer. Any
refutation must get rid of that literal, hence necessitating one more step. The construction
works for all four encodings.

To show the claim for removal of redundant add effects, we slightly modify P ′, replacing
a’s effect with a new fact x and including another action that achieves the third goal given
the precondition x. The optimal plan length now is 3, and the length bound is 2. Any
refutation must resolve on all three goal clauses. If, for P, we give a one of its preconditions
as an additional add effect, then the refutations become longer because the respective goal
clause does. Again, the construction works for all four encodings.

It is easy to modify the constructions used in the proof of Proposition 4.16 in a way
so that the duplicate action, respectively the redundancy of the add effect, arise as an
outcome of variable domain abstraction. Hence, via enabling such simplifications, variable
domain abstraction may improve the resolution best-case behavior. For duplicate actions,
this is also true for Edelkamp’s (2001) pattern database abstraction. It is an open question
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whether the improvement may be exponential, or whether it is bounded polynomially. We
conjecture that the latter is the case, at least for unrestricted resolution.

It is also notable that the examples in the proof to Proposition 4.16 are specifically
constructed to include duplicate actions/redundant add effects for actions that are relevant
to solving the problem – they form part of an optimal solution. In a well-constructed variable
domain abstraction this is not likely to happen since abstraction should target only the facts
that are irrelevant to solution length. Consider the Logistics domain as an example. The
only actions on which simplifications apply are loads/unloads of packages to/from locations
in cities other than the package’s origin and destination. These actions are involved only
in redundant solutions, and it seems doubtful that their simplification affects resolution
complexity. Of course, these simplifications might help SAT solvers anyway. This, however,
is not observed, at least not significantly, in our experiments.

5. Conclusion

Abstractions, as used here, have the power to allow proving certain properties within much
smaller state spaces. In particular, if an abstraction preserves the length of an optimal
solution, then optimality can be proved within the abstraction. We designed a novel ab-
straction method for STRIPS planning that is suitable for this purpose. Surprisingly, the
approach yields little or no benefits for the planning-as-satisfiability approach as repre-
sented by SATPLAN, even in domains featuring hand-made abstractions with exponen-
tially smaller state spaces. Towards explaining this, we have shown that, in many cases,
our abstraction method (as well as some other commonly used abstractions) lacks the abil-
ity to introduce shorter resolution refutations—other than through exploiting mutexes, or
enabling certain post-abstraction simplifications. In contrast, we have shown that these
abstractions may exponentially increase the size of the shortest resolution refutations.

Several questions are left open by our theoretical results. We do not know whether vari-
able domain abstraction can improve resolution complexity in combination with encoding
(B), whether there is a polynomial upper bound on the improvement that variable domain
abstraction can bring for encoding (D), and whether there is a polynomial upper bound on
the improvement that can result from simplifications. Apart from answering these ques-
tions, most importantly it remains to be seen to what extent the results generalize. Bluntly
stated, the intuition behind the results is that “over-approximations usually result in less
constrained formulas which are harder to refute”. However, the actual technicalities of
the results depend quite a lot on the details—of both encoding method and abstraction—
and hence it is largely unclear to what extent this intuitive statement captures reality. In
particular: does it hold for other encodings of planning into SAT?

It would be interesting, e.g., to look at the alternative encodings described by Kautz
and Selman (1992), Kautz et al. (1996), Kautz and Selman (1996), Ernst, Millstein, and
Weld (1997). Many of these encodings are based on unit clauses for initial and goal state,
and action clauses stating that an action implies each of its effects and preconditions. With
such a structure—and the lack of a mechanism such as a planning graph that propagates
changes—some of the properties proved herein are obvious. Removing goals or initial state
facts corresponds directly to removing clauses; the same is true for preconditions. Removing
a fact completely may in some cases simply correspond to removing all clauses that mention
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the fact. Hence, for these encodings, it seems that proving our results might indeed be
comparatively easy. A more challenging subject may be some more recent developments,
such as the encodings by Rintanen et al. (2006) which often give substantial speed-ups
through novel notions of parallelity, the encodings by Chen et al. (2009) which introduce
long-distance mutex relations, or the encodings by Robinson et al. (2008) which make use
of effective operator splitting and factoring methods.

More generally: do our results hold for methods employed in other fields? In particular,
do they hold in model-checking, where both abstraction (e.g., Graf & Säıdi, 1997; Clarke
et al., 2003) and SAT encodings (e.g., Clarke, Biere, Raimi, & Zhu, 2001; Prasad, Biere,
& Gupta, 2005) are highly successful? There is one example where it is actually obvious
that our results hold. Gupta and Strichman (2005) abstract by ignoring clauses in a CNF
encoding of the original transition system (the motivation is that the much smaller CNF
formula causes less overhead in the SAT solver).

Most ambitiously: can we define a generic framework with formal notions of “declarative
transition systems”, “CNF encodings”, and “abstractions” that are suitable to capture our
results, and prove more generic statements? All these questions appear to be worthwhile
research challenges. Indeed, we think that a key contribution of our work may lie in asking
the question about resolution complexity with vs. without an abstraction.

From a more practical perspective, we see mainly four lines of further research. First, an
important question is whether our observations carry over to modified/extended planning-
as-SAT systems, such as as the one by Ray and Ginsberg (2008) which guarantees plan
optimality through branching restrictions within a single SAT call, rather than through
calling the SAT solver iteratively. Second, it remains open to explore whether very different
abstraction techniques—based e.g. on predicate abstraction—can be suitably adapted to
planning. Third, it is important to note that our empirical results are not entirely negative.
Mips.BDD is often substantially improved, even up to the point where, as in Figure 1, this
optimal sequential planner is highly competitive with a strong optimal parallel planner such
as SATPLAN, and this in a highly parallel domain such as Logistics. This is a direction that
may well be worth exploring in more depth. Finally, more effective abstraction methods may
exist for unsolvable examples, and could potentially play a crucial role in over-subscription
planning (Sanchez & Kambhampati, 2005; Meuleau et al., 2006).
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Appendix A. Proof Details

Proof of Proposition 2.1. Suppose the sequence τ of transformations consists of ` restric-
tions, τ1, τ2, . . . , τ`. Further, let τ ′ be the “strengthening” transformation that replaces each
clause of φσ|τ with a (not necessarily strict) sub-clause that is also a clause of φ; such a
transformation exists because of the assumptions in the proposition. Observe that these
`+ 1 transformation steps together convert φσ into a (not necessarily strict) sub-formula of
φ. We will show that each of these `+ 1 transformation steps individually does not increase
the resolution complexity of the underlying formula. Without loss of generality, we will
prove this fact for a single restriction transformation and then for a generic strengthening
transformation. Since each of these will individually be shown to not increase the resolution
complexity of the formula, they can be applied in any sequence or combination, any number
of times, without increasing the resolution complexity. This would prove, in particular, that
the resolution complexity of a sub-formula of φ is no more than that of φσ, implying that
the resolution complexity of φ itself is no more than that of φσ (as additional initial clauses
cannot hurt a resolution refutation), as desired.

We start with a single restriction transformation x ← y. For ease of notation, we
will assume that the initial formula is F = {C1, C2, . . . , Cm} and the resulting simplified
formula after the transformation is F ′ = {C ′1, C ′2, . . . , C ′m′}, with m′ ≤ m. Without loss of
generality, we will assume that no C ′i equals the empty clause {} and there are no duplicate
clauses in F ′. Let π = (C1, C2, . . . , Cm, Cm+1, . . . , CM = {}) be a resolution refutation of
F of the smallest possible size; note that π involves m initial clauses and M −m resolution
steps. From π, we construct a resolution refutation π′ of F ′ which will be of size no larger
than that of π. We do this in the following three steps.

Step 1. Transform π into π̂ = (Ĉ1, . . . , Ĉm, Ĉm+1, . . . , ĈM = {}), where Ĉi is defined as
follows. If the application of the transformation x← y results in Ci containing True
or a variable and its negation, then Ĉi equals True; if it results in Ci containing
False or duplicate literals, Ĉi consists of Ci with False or a duplicate literal removed;
otherwise Ĉi = Ci. Note that Ĉi does not contain x and is either True, the empty
clause, or a non-empty (not necessarily strict) sub-clause of C. The key property
here is that Ĉi is still a logical implicant of Ĉj and Ĉk if Ci was derived by resolving
Cj and Ck in the original proof π. Ĉi may not necessarily be a usual resolution
resolvent of Ĉj and Ĉk, which is what the next two steps will fix.

Step 2. Transform π̄ into π̄ = (C̄1, . . . , C̄m, C̄m+1, . . . , C̄M = {}), where C̄i equals Ĉi for
i ≤ m and for i > m is defined sequentially, for increasing i, as follows. Suppose
Ci was derived in π by resolving clauses Cj and Ck, where j < k < i. Assume
without loss of generality that we have already defined C̄j and C̄k. If Ĉi equals
True, then C̄i equals True as well; otherwise, if one of the two clauses C̄j and C̄k
equals True, then C̄i equals the other clause; otherwise, C̄j and C̄k can be resolved
together on some variable and C̄i is the resolvent of these two clauses. The key
property here, which can be seen easily by considering the sequential nature of the
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transformation, is that each C̄i is either True or a (not necessarily proper) sub-
clause of Ĉi; in particular, C̄M = {}. Further, each C̄i that does not equal True is
either the resolution resolvent of C̄j and C̄k, or equals {} with one of C̄j and C̄k
also being {}.

Step 3. Finally, transform π̄ into π′ by simply removing any “clauses” that equal True or
occur previously in the clause sequence, and stopping the sequence as soon as the
first empty clause is encountered. By construction, π, π̂, and π̄ have exactly M
clauses each and π′ has no more than M clauses. Further, the first m′ clauses of
π′ are exactly the clauses of F ′ and π′ is a resolution refutation starting from these
initial clauses, as desired.

We now consider the strengthening transformation τ ′, which essentially replaces each
clause of the formula with a sub-clause (thereby “strengthening” this clause). We will show
that applying τ ′ does not increase the resolution complexity of the underlying formula.
Again, for ease of notation, let the initial formula be F = {C1, C2, . . . , Cm} with a resolution
refutation π = (C1, C2, . . . , Cm, Cm+1, . . . , CM = {}) of the smallest possible size. The
argument here is along the same lines as but simpler than for restriction transformations.

Transform π into π̄ = (C̄1, . . . , C̄m, C̄m+1, . . . , C̄M = {}), where for i ≤ m, C̄i equals the
sub-clause of Ci that τ ′ maps Ci to, and for i > m, C̄i is defined sequentially, for increasing
i, as follows. Suppose Ci was derived in π by resolving clauses Cj and Ck on variable x,
where j < k < i. Assume without loss of generality that we have already defined C̄j and
C̄k. If x is present in both C̄j and C̄k, then C̄i is simply the resolution resolvent of these
two clauses; otherwise, if x is not present in C̄j , then C̄i equals C̄j ; otherwise x must not be
present in C̄k and we set C̄i to equal C̄k. The key property here, which can again be seen
easily by considering the sequential nature of the transformation, is that each C̄i is a (not
necessarily proper) sub-clause of Ci; in particular, C̄M = {}. Further, each C̄i is either C̄j
or C̄k or the resolution resolvent of the two. Now transform π̄ into π′ by simply removing
any clauses that occur previously in the clause sequence. By construction, π and π̄ have
exactly M clauses each and π′ has no more than M clauses. Further, the first m′ clauses of
π′ are exactly the clauses of F ′ and π′ is a resolution refutation starting from these initial
clauses, as desired.

Proof of Lemma 4.6. Let P be a planning task to which an abstraction σ that abstracts
PG(P) is applied. Let φ, φσ denote propositional encodings of P and Pσ, respectively,
where we use either the action-only encoding (A) or the action-fact encoding (B) for both
φ and φσ. Let U denote the set of variables in φσ that are not variables of φ. Finally,
let τ be the variable restriction that sets every variable in U to False. In this setting, the
propositional formula φσ|τ is nothing but the CNF encoding of the planning graph PGσ(P)
(using the same encoding method, (A) or (B), as used for φ and φσ). In particular, all
clauses of φσ that correspond to actions and facts not in PG(P) are trivially satisfied by
τ , because they all contain the negation of a variable in U , which is set to False by τ . Call
the remaining, yet unsatisfied clauses in φσ|τ the surviving clauses. We will argue that
each surviving clause is already present, perhaps in a stronger but not a weaker form, in φ
itself, showing that it can be no easier to prove φσ|τ unsatisfiable than it is to prove φ itself
unsatisfiable.
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First consider encoding (A). By conditions (2) and (4) of Definition 4.5, every surviving
precondition and goal clause in φσ|τ has a corresponding clause in φ itself. Further, by
condition (1) concerning which facts are added by which action, each such precondition or
goal clause in φσ|τ contains as a sub-clause the corresponding clause in φ. Finally, each
surviving mutex clauses in φσ|τ , by condition (3), is also present as a mutex clause in φ.
From these observations, it follows that every surviving clause in φσ|τ contains as a (possibly
non-strict) sub-clause the corresponding clause in φ. Applying Proposition 2.1, we obtain
RC(φ) ≤ RC(φσ), finishing the proof for encoding (A).

Now consider encoding (B). First, because by Definition 4.5 PGσ(P) and PG(P) have
identical sets of vertices, in particular the fact vertices F (0) are the same, and hence each
surviving initial state clause in φσ|τ is also present as an initial state clause in φ. Fur-
ther, precondition clauses are binary and, by condition (2) of Definition 4.5, each surviving
precondition clause in φσ|τ is also present as a precondition clause in φ. Similarly, each
goal clause is a unit clause and, by condition (4), each surviving goal clause in φσ|τ is also
present as a goal clause in φ. In a similar vein, each surviving mutex clause in φσ|τ is also
present as a mutex clause in φ. Finally, each surviving effect clause in φσ|τ , by condition
(1), contains as a sub-clause the corresponding effect clause in φσ|τ . Hence we again see
that every surviving clause in φσ|τ contains as a (possibly non-strict) sub-clause the cor-
responding clause in φ. Applying Proposition 2.1 as before, we obtain RC(φ) ≤ RC(φσ),
finishing the proof for encoding (B).

Proof of Lemma 4.8. Let P be a planning task to which an abstraction σ that respects
the behavior specified in the lemma is applied. We will show that the four conditions
in Definition 4.5 hold for both PGσ(P) and PGσred(P). Observe that condition (4) in
Definition 4.5 trivially holds because of property (b) of σ. We therefore focus on showing
that V (PG(P)) = V (PGσ(P)), V (PGred(P)) = V (PGσred(P)), and that conditions (1)–(3)
in Definition 4.5 hold. In fact, once we show that PGσ(P) and PGσred(P) have the same set
of vertices as the original (reduced) planning graph, conditions (1) and (2) of Definition 4.5
would be immediately satisfied due to properties (c)23 and (d) of σ, and all that would
remain would be condition (3), saying that no new mutex clauses are added by applying σ.

Hence, our task is reduced to proving that the following four new properties hold at
each step t ∈ 0, 1, . . . , b of the planning task:

(i) F σ(t) ⊇ F (t),

(ii) Aσ(t) ⊇ A(t),

(iii) Eσf -mutex(t)|F (t) ⊆ Ef -mutex(t), and

(iv) Eσa-mutex(t)|A(t) ⊆ Ea-mutex(t).

where F (t), A(t), Ef -mutex(t), and Ea-mutex(t) denote the sets of facts, actions (including
noops), fact mutexes, and action mutexes generated for P at step t, and the σ-versions of
these denote the corresponding sets for Pσ. For Γ ⊆ F σ(t), Eσf -mutex(t)|Γ denotes {(f1, f2) ∈

23. What one needs here is only that add lists do not shrink by applying σ. However, another argument will
shortly require that add lists do not grow either, justifying the strict requirement of property (c).
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Eσf -mutex(t) | f1, f2 ∈ Γ}, the subset of Eσf -mutex(t) restricted to the facts in Γ. Eσa-mutex(t)|Γ
is defined similarly for Γ ⊆ Aσ(t).

In order to prove that these four properties hold, we give an inductive argument on t,
alternating between F (t) and Ef -mutex(t) on one hand, and A(t) and Ea-mutex(t) on the
other. For the base case of t = 0, note that F σ(0) ⊇ F (0) by property (a) of σ and
Eσf -mutex(0)|F (0) ⊆ Ef -mutex(0) because both of these sets are empty.

In words, our goal is to prove that if certain facts and actions are available in P at a
certain step, they remain available in Pσ. Similarly, if two facts or actions are mutually
compatible in P, they remain mutually compatible in Pσ. This seems intuitively justifiable
given the properties of σ. The following argument formalizes this intuition. In terms of
notation, we will use pre, del , and add to specify actions in P and preσ, delσ, and addσ to
specify actions in Pσ.

For the first part of the inductive step, suppose F σ(t) ⊇ F (t) and Eσf -mutex(t)|F (t) ⊆
Ef -mutex(t). We will show that Aσ(t) ⊇ A(t) and Eσa-mutex(t)|A(t) ⊆ Ea-mutex(t), inductively
proving conditions (ii) and (iv).

Let a ∈ A(t). Then preσ(a) ⊆ F (t) ⊆ F σ(t). Further, ∀f, f ′ ∈ preσ(a) ⊆ pre(a) ⊆
F (t), we have that (f, f ′) 6∈ Ef -mutex(t) ⊇ Eσf -mutex(t)|F (t) and hence (f, f ′) 6∈ Eσf -mutex(t).
Therefore a ∈ Aσ(t), proving that Aσ(t) ⊇ A(t).

Now let a, a′ ∈ A(t) be such that (a, a′) 6∈ Ea-mutex(t). For the reduced planning graph
with only direct mutexes, we immediately have that (a, a′) 6∈ Eσa-mutex(t) due to properties
(c) and (d) of σ, and we are done proving that Eσa-mutex(t)|A(t) ⊆ Ea-mutex(t). Otherwise, for
more general mutexes, several things hold. First, we have preσ(a) ⊆ pre(a) ⊆ F (t) ⊆ F σ(t),
and the same for a′. Likewise, we have delσ(a) ⊆ del(a) and delσ(a′) ⊆ del(a′). Finally,
by property (c), we have addσ(a) ⊆ add(a). Hence (c.1) (preσ(a) ∪ addσ(a)) ∩ delσ(a′) ⊆
(pre(a)∪add(a))∩del(a′) = ∅; the last equality holds because (a, a′) 6∈ Ea-mutex(t). Similarly,
(c.2) (preσ(a′)∪addσ(a′))∩delσ(a) = ∅. Finally, for all f ∈ preσ(a) ⊆ pre(a) ⊆ F (t) ⊆ F σ(t)
and for all f ′ ∈ preσ(a′) ⊆ pre(a′) ⊆ F (t) ⊆ F σ(t), we have that (f, f ′) 6∈ Ef -mutex(t) ⊇
Eσf -mutex(t)|F (t), which implies (c.3) (f, f ′) 6∈ Eσf -mutex(t). From (c.1), (c.2), and (c.3), we
have (a, a′) 6∈ Eσa-mutex(t), proving that Eσa-mutex(t)|A(t) ⊆ Ea-mutex(t).

For the second part of the inductive step, suppose Aσ(t) ⊇ A(t) and Eσa-mutex(t)|A(t) ⊆
Ea-mutex(t). We will show that F σ(t+1) ⊇ F (t+1) and Eσf -mutex(t+1)|F (t+1) ⊆ Ef -mutex(t+
1), proving conditions (i) and (iii).

Let f ∈ F (t + 1). Then f ∈
⋃
a∈A(t) add(a) ⊆

⋃
a∈Aσ(t) addσ(a). (Recall that noop

actions are included in A(t), so that we need not explicitly include F (t) in F (t + 1).) It
follows that f ∈ F σ(t+ 1), proving that F σ(t+ 1) ⊇ F (t+ 1).

Now let f, f ′ ∈ F (t + 1) be such that (f, f ′) 6∈ Ef -mutex(t + 1). Then there must exist
a, a′ ∈ A(t) ⊆ Aσ(t) such that (c.1) f ∈ add(a) ⊆ addσ(a), (c.2) f ′ ∈ add(a′) ⊆ addσ(a),
and (a, a′) 6∈ Ea-mutex(t) ⊇ Eσa-mutex(t)|A(t), which implies that (c.3) (a, a′) 6∈ Eσa-mutex(t).
From (c.1), (c.2), and (c.3), we have (f, f ′) 6∈ Eσf -mutex(t + 1), proving that Eσf -mutex(t +
1)|F (t+1) ⊆ Ef -mutex(t+ 1).

This finishes the inductive argument, showing that conditions (i)–(iv) outlined above
hold. By our earlier reasoning, this proves both that the vertices of PG(P) and PGσ(P),
as well as their reduced counterparts, are the same (so that conditions (1) and (2) of
Definition 4.5 follow directly from properties (c) and (d) of σ) and the mutex relations of
Pσ and σred(P), restricted to the facts and actions of P, are a subset of the mutex relations
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and the reduced mutex relations, respectively, of P (so that condition (3) of Definition 4.5
holds). Hence σ abstracts the planning graph as well as the reduced planning graph of
P.

Proof of Lemma 4.10. Let σ be the abstraction that removes p from the initial facts and
the add lists of a given planning task P in which p does not appear in the goal facts and
any of the pre or del lists. As in the proof of Lemma 4.6, let φ, φσ denote propositional
encodings of P and Pσ, respectively, where we use one of the encodings (A), (B), (C), and
(D) for both φ and φσ. We will show that for encodings (A) and (C), φσ and φ are in fact
identical, and for encodings (B) and (D), differ only in clauses that cannot be part of any
resolution proof.

To this end, we use the planning graph notation from the proof of Lemma 4.8 and
begin by arguing by induction that F σ(t) = F (t) \ {p}, Eσf -mutex(t) = Ef -mutex(t) \ {(p, p′) |
p′ ∈ F (t)}, Aσ(t) = A(t), and Eσa-mutex(t) = Ea-mutex(t). For the base case of t = 0,
F σ(0) = F (0)\{p} by the definition of σ, and Eσf -mutex(t) = Ef -mutex(0)\{(p, p′) | p′ ∈ F (0)}
because both these sets are empty. For the first part of the induction, suppose that the
inductive conditions on F and Ef -mutex hold at time step t. Since p is not in any pre list,
this implies that Aσ(t) = A(t) as well. Further, since p is not in any del list, we also
have Eσa-mutex(t) = Ea-mutex(t). Hence the conditions on A and Ea-mutex hold at time step
t. For the second part of the induction, suppose that the inductive conditions on A and
Ea-mutex hold at time step t. This implies that F (t+ 1) consists of F σ(t+ 1) and possibly
p. Further, Ef -mutex(t+ 1) and Eσf -mutex(t+ 1) are the same as far as mutexes not involving
p are concerned. It follows that the conditions on F and Ef -mutex hold at time step t + 1,
finishing the induction.

To summarize, we have shown that at every step, the sets A,Aσ and Ea-mutex, E
σ
a-mutex

are exactly the same, and the sets F, F σ and Ef -mutex, E
σ
f -mutex are the same up to facts or

pairs of facts involving p. In other words, no new actions or facts become available or are mu-
tually excluded in the planning graph because of σ, and everything not involving p remains
unchanged. Given this, observe that with any of the four encodings, the goal and precondi-
tion clauses of Pσ are exactly the same as those of P because p does not appear in the goal
or the pre lists at all. Similarly, Eσa-mutex(t) = Ea-mutex(t) and Eσf -mutex(t) = Ef -mutex(t)
implies that the action mutexes of Pσ, and fact mutexes if present in the encoding, are the
same as those of P as well. Therefore, for encodings (A) and (C), φσ = φ.

Finally, for encodings (B) and (D), we have initial state, effect, and mutex clauses in
φ which do get removed by applying σ, i.e., which are not present in φσ. However, these
are the only clauses that mention propositional variables corresponding to p, and each of
these variables appears only with one polarity throughout φ. Namely, an initial state clause
{p(0)} is the only clause that may contain p in positive polarity; all effect and mutex clauses
that contain p do so with a time index t > 0. Because of that, these clauses cannot be part
of any resolution refutation of φ—every variable appearing in a resolution refutation must
eventually be resolved away in order to derive the empty clause. It follows that φσ and φ
are the same with respect to resolution refutations.

Proof of Lemma 4.12. Let P be a planning task to which σ, a variable domain abstraction,
is applied. σ combines two persistently mutex facts p and p′ into a single fact p. For
brevity, let G denote PG(P). Define G′ to be the graph obtained by unifying any p and
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p′ fact vertices in each fact layer of G into a single vertex p in that layer, and similarly
any noop(p) and noop(p′) vertices in action layers. Finally, let Gσ denote the subgraph
of PG(Pσ) induced by the vertices of G′. We will show that Gσ is an abstracted planning
graph in a sense very similar to Definition 4.5.

We begin by arguing that if an action pair (a, a′) is mutex in Pσ, then it is also mutex
in P. To see this, observe that the only way for (a, a′) to become mutex per σ requires,
w.l.o.g., that in P, p ∈ del(a) ⊆ pre(a) and p′ ∈ pre(a′) ∪ add(a′). Suppose for the sake
of contradiction that (a, a′) is not already mutex in P. In particular, this means that
p 6∈ del(a′) and p is not mutex with any fact in pre(a′). This, however, implies that
(noop(p), a′) is not mutex in P so that the fact pair (p, p′) is not mutex in the next layer
of PG(P), a contradiction because p and p′ are persistently mutex. It follows that edges
Ea-mutex in Gσ are a subset of those in G.

Since G′ and Pσ have the same initial facts, the above argument implies that all actions
and facts available at any layer of G′ are also available at that layer of PG(Pσ). In particular,
Gσ, by construction, has exactly the same set of vertices as G′. Further, since σ is a variable
domain abstraction, edges Eadd and Epre in G′ and Gσ are exactly the same.

Define φ, φσ, U, and τ as in the proof of Lemma 4.6. φσ|τ is the CNF encoding (A)
of the planning graph Gσ, and all clauses of φσ corresponding to actions and facts not in
Gσ are trivially satisfied by τ . Call the remaining clauses in φσ|τ the surviving clauses as
before.

By our observation about edges Ea-mutex in Gσ and G, the surviving mutex clauses of
φσ|τ are also mutex clauses of φ. The surviving precondition and goal clauses not involving
p appear unchanged in φ. Since we are considering a variable domain abstraction, the
actions achieving p in Gσ are precisely the actions achieving either of p and p′ in G. Hence,
the surviving precondition and goal clauses of φσ|τ involving p contain as a sub-clause
a precondition or goal clause of φ itself. It follows from Proposition 2.1 that RC(φ) ≤
RC(φσ).

Proof of Proposition 4.13. The same example planning task, denoted P, works for both
encoding (C) and encoding (D). Let σ denote the variable domain abstraction to be applied.
The example uses the following six facts: facts p and p′, which will be glued together by σ;
goal facts g1 and g2; and helper facts x, y. Based on these facts, the task P is defined as
follows:

• Initial state {p}; Goal {g1, g2}

• Action set A containing five actions:
getx = ({p}, {x}, {p}),
gety = (∅, {y}, ∅),
getg1 = ({x}, {g1, p

′}, {x}),
getg2 = ({p, y}, {g2}, {p}),
getp = ({p′}, {p}, {p′}).

The plan length bound is 2, which makes the problem infeasible: the shortest (parallel)
plan requires 4 steps: 〈{getx, gety}, {getg1}, {getp}, {getg2}〉. Observe that all pairs of
actions—except (getg1, getg2) and any pair that involves gety—directly interfere with each
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other and are therefore mutex. In PG(P), we get the following fact and action sets up to
step 2:

• F (0) = {p}, A(0) = {noop(p), getx, gety}

• F (1) = {p, x, y}, A(1) = {noop(p),noop(x),noop(y), getx, gety, getg1, getg2}

• F (2) = {p, x, y, g2, g1, p
′}

It is easy to verify, iteratively, that, in PG(P): p and x are mutex in F (1); p and x are
mutex in F (2); p and p′ are mutex in F (2); x and p′ are mutex in F (2); all these mutexes
we get also in F (3), where the planning graph reaches its fixpoint. In particular, we have
that getg1 and getg2 are always (indirectly) mutex because their preconditions x and p
are persistently mutex. The variable domain abstraction σ will glue p and p′, converting
the conflict between getg1 and getg2 into a direct interference, thereby allowing a shorter
resolution refutation.

Consider encoding (C) of PG(P). It contains two goal clauses: {getg1(1)} and
{getg2(1)}. These clauses clearly must be used in any resolution refutation of the for-
mula, because it is possible to achieve each goal individually within the given time bound,
but not both together. Hence, a shortest refutation must involve at least two steps. We
argue that such a shortest refutation can be achieved in the abstracted task Pσ but not in
P itself.

In Pσ, we get the same fact and action sets in the planning graph, except that F (2) =
{p, x, y, g1, g2}, i.e., p′ is of course not present, and both A(0) and A(1) contain also getp
that acts here similarly to noop(p). The corresponding encoding (C) consists of exactly
the same clauses as before (plus clauses with noop(p) being mirrored with getp), except
that we get the additional clause {¬getg1(1),¬getg2(1)}. This mutex clauses arises because
getg1 interferes directly with getg2 (rather than only indirectly through incompatible pre-
conditions), because now getg1 adds p instead of p′, and p is deleted by getg2. This yields a
trivial two-step (tree-like) resolution proof for Pσ, using the two goal clauses and the mutex
clause (namely, resolve the second goal clause and the mutex clause deriving {¬getg1(1)},
and then resolve this clause with the first goal clause). On the other hand, in the original
task P, getg1 and getg2 are not marked mutex in layer A(1), because they don’t directly
interfere. Therefore, the corresponding mutex clause is not immediately available, and any
resolution proof takes more than two steps because it must reason about and involve x.

Encoding (D) works similarly, and σ lets us derive the new mutex clause discussed
above. The goal clauses in this case are simply {g1(2)} and {g2(2)}. From these, using the
two corresponding effect clauses, we can derive the two goal clauses of encoding (C) in two
steps. From here, the two-step refutation discussed above derives the empty clause. Thus,
we have a four-step resolution refutation for Pσ in encoding (D). There is no similarly small
resolution refutation in P itself, because any such refutation must, as mentioned earlier,
reason on x to figure out that getg1(1) and getg2(1) cannot both be True.

Proof of Theorem 4.15. We construct a family of STRIPS tasks whose CNF encodings are
very similar to the “pigeon hole problem” formula PHP(i). It is well known that any
resolution proof of PHP(i) must be of size exponential in i (Haken, 1985). Concretely,
PHP(i) is an unsatisfiable formula encoding the fact that there is no way to assign i + 1
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pigeons to i holes such that each pigeon is assigned to at least one hole and no hole gets
more than one pigeon. The formula has i(i+ 1) variables xp,h where p ∈ {1, . . . , i+ 1}, h ∈
{1, . . . , i}. For each pigeon p, there is a pigeon clause (xp,1, xp,2, . . . , xp,n), and for each pair
of pigeons {p, q} and hole h, there is a hole clause {¬xp,h,¬xq,h}.

The pigeon hole planning task PPHP (i) is defined as follows. For each pigeon p, there is
a fact assigned(p). For each hole h, there is a fact free(h). The initial state contains all i free
facts but no assigned facts. The goal state contains all i+1 assigned facts. The only available
actions (other than noops) are put(p, h), which puts pigeon p into a free hole h, after which
h no longer remains free. Formally, put(p, h) = ({free(h)}, {assigned(p)}, {free(h)}). The
plan length bound b(i) is set to 1.

Consider any one of the four encoding methods (A)–(D), and let φ(i) be the encoding of
PPHP (i). Restrict φ(i) by setting all noop variables to False; this has no real “restrictive”
implication in terms of planning since the plan length bound is 1 and none of the goal facts
are available at time step 0. For the action-only encodings (A) and (C), identifying the
action variables put(p, h) with the PHP(i) variables xp,h immediately yields precisely the
clauses of PHP(i): the goal clauses of φ(i) become the pigeon clauses of PHP(i) and the
action mutex clauses become the hole clauses. For the action-fact encodings (B) and (D),
fix all free fact variables at time step 0 as well as all assigned fact variables at time step 1 to
True, and identify put(p, h) action variables as above with xp,h. This again yields precisely
the clauses of PHP(i). It follows from the resolution hardness of PHP(i) and Proposition 2.1
that any resolution proof of the fact that the planning task PPHP (i) does not have a plan
of length 1 must require size exponential in i.

The claim now follows from a planning task P ′(i) which consists of a combination of two
disconnected pigeon hole planning sub-tasks, PPHP (i) and PPHP (1), over two separate sets
of pigeon and hole objects. The goal for P ′(i) is naturally defined as follows: put the first
set of i + 1 pigeons into the first set of i holes and put the second set of two pigeons into
the second set of holes (which consists of only a single hole). The overall CNF encoding
φ′(i) of P ′(i) is the logical conjunction of the encodings φ(i) and φ(1) (on disjoint sets
of variables) of PPHP (i) and PPHP (1). Observe that φ′(i) can be proved unsatisfiable by
proving unsatisfiability of either of the two pigeon hole problems. In particular, there is a
constant size resolution refutation of φ′(i) which involves refuting the φ(1) component.

On the other hand, we argue that all of the listed abstractions can make the one-hole
component of P ′(i) trivially satisfiable, so that a resolution refutation of the abstracted
task must resort to a proof of unsatisfiability of the i-hole component φ(i) of P ′(i), which
we have shown requires exponential size. Hence the single example P ′(i) serves to show the
claim for all combinations of abstraction method and CNF encoding.

It is easily verified that PPHP (1) becomes solvable when ignoring the precondition
free(1) of both put(1, 1) and put(2, 1): we can then put both pigeons into the single hole. The
same happens when ignoring the delete effect free(1) of both put(1, 1) and put(2, 1).When
ignoring the goal assigned(2), or when inserting assigned(2) into the initial state, or when
completely removing assigned(2), the one-hole component of P ′(i) requires to assign only
one pigeon, which is of course possible. Finally, for variable domain abstraction, note that
assigned(1) and assigned(2) are persistently mutex in PPHP (1) because the only actions
achieving them are put(1, 1) and put(2, 1), respectively. According to Definition 2.2, we
can hence replace assigned(2) with assigned(1). In the resulting planning task, we have the
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single goal assigned(1) which can be achieved in 1 step by, for example, the put(1, 1) action.
This concludes the argument.

Proof of Proposition 4.16. We first consider removal of duplicate actions. The same exam-
ple planning task, denoted P ′, works for all four encodings; P ′ is defined as follows:

• Fact set {r1, r2, g1, g2, g3}

• Initial state {r1, r2}; Goal {g1, g2, g3}

• Action set A containing seven actions:
1 1 = ({r1}, {g1}, {r1}),
1 2 = ({r1}, {g2}, {r1}),
1 3 = ({r1}, {g3}, {r1}),
2 1 = ({r2}, {g1}, {r2}),
2 2 = ({r2}, {g2}, {r2}),
2 3 = ({r2}, {g3}, {r2}),
help = ({g1, g2}, {g3}, ∅).

In this planning task, all actions that are applicable in the initial state “consume” one of
the two resources r1 or r2. Each of the actions achieves just one of the goals, so each pair of
goals can be reached, but not all three of them. The only solution is to perform two steps,
in the second of which the help action serves to accomplish g3. We set the plan length
bound to 1.

The planning graph PG(P ′) up to step 1 has no mutex relations other than the direct
mutexes between actions competing for the same resource. Hence, encoding (A) is identical
to encoding (C), and encoding (B) is identical to encoding (D). The same properties clearly
hold also for the planning task P that is like P ′ except that it has an additional action 1 1′

identical to 1 1.
Consider encoding (A) of P ′. The goal clauses are {1 1(0), 2 1(0)}, {1 2(0), 2 2(0)},

and {1 3(0), 2 3(0)}. The only other clauses are mutex clauses of the form {¬i j,¬i k}.
It is not difficult to verify that a shortest resolution refutation involves 12 steps. One
such derivation proceeds via deriving {2 2(0), 2 1(0)}, {2 3(0), 2 1(0)}, {2 1(0)}, {1 2(0)},
{1 3(0)}, {}; each of these can be derived, in this sequence, with 2 steps involving resolution
against one mutex clause. For P, the only thing that changes is that we now have the clause
{1 1(0), 1 1′(0), 2 1(0)} instead of {1 1(0), 2 1(0)}, plus the additional mutex clauses. Now,
obviously every resolution refutation must resolve on all three goal clauses. To end up with
an empty clause, we hence additionally need to get rid of the literal 1 1′(0). Clearly, there
is no way to do this other than to resolve that literal away with an additional step involving
one of the new mutex clauses. Hence the shortest possible resolution refutation now has
≥ 13 steps.

For encoding (B), the resolution proofs first need to make three steps resolving the goal
clauses {g1(1)}, {g2(1)}, {g3(1)} with the respective effect clauses {¬g1(1), 1 1(0), 2 1(0)},
{¬g2(1), 1 2(0), 2 2(0)}, and {¬g3(1), 1 3(0), 2 3(0)}; thereafter, matters are the same as
before.

To show the claim for removal of redundant add effects, we slightly modify the example,
and define P ′ as follows:
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• Fact set {r1, r2, g1, g2, g3, x}

• Initial state {r1, r2}; Goal {g1, g2, g3}

• Action set A containing eight actions:
1 1 = ({r1}, {g1}, {r1}),
1 2 = ({r1}, {g2}, {r1}),
1 3 = ({r1}, {g3}, {r1}),
2 1 = ({r2}, {g1}, {r2}),
2 2 = ({r2}, {g2}, {r2}),
2 3 = ({r2}, {g3}, {r2}),
help1 = ({g1, g2}, {x}, ∅),
help2 = ({x}, {g3}, ∅).

In this task, the single help action from before is replaced with two help actions that need to
be applied consecutively. We set the plan length bound to 2. As before, the planning graph
PG(P ′) has no mutex relations other than the direct mutexes between actions competing
for the same resource; encodings (A)/(C) and (B)/(D) respectively are identical. The same
properties clearly hold also for the planning task P that is like P ′ except that help1 has the
additional add effect g1.

Consider encoding (A) of P ′. The goal clauses are {1 1(1), 2 1(1),noop(g1)(1)}, {1 2(1),
2 2(1), noop(g2)(1)}, and {1 3(1), 2 3(1),noop(g3)(1)}. Refuting this now involves showing
that the three goals cannot all be achieved in step 1, nor in step 0, nor in a combination
of the two. Any refutation needs to resolve on all three clauses. As before, for P we get
an additional literal in the first clause, which is now {1 1(1), 2 1(1), help1,noop(g1)(1)}.
Clearly, getting rid of that additional literal involves at least one more resolution step. For
encoding (B), matters are essentially the same except that we first need to resolve the goal
fact clauses against the respective effect clauses.
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Boddy, M., Fox, M., & Thiébaux, S. (Eds.). (2007). Proceedings of the 17th International
Conference on Automated Planning and Scheduling (ICAPS-07). AAAI Press.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129 (1–
2), 5–33.

Bonet, B., & Geffner, H. (2008). Heuristics for planning with penalties and rewards for-
mulated in logic and computed through circuits. Artificial Intelligence, 172 (12-13),
1579–1604.

Brafman, R. (2001). On reachability, relevance, and resolution in the planning as satisfia-
bility approach. Journal of Artificial Intelligence Research, 14, 1–28.

Chaki, S., Clarke, E., Groce, A., Jha, S., & Veith, H. (2003). Modular verification of software
components in C. In ICSE’2003: Int. Conf. on Software Engineering, pp. 385–395.

Chen, Y., Huang, R., Xing, Z., & Zhang, W. (2009). Long-distance mutual exclusion for
planning. Artificial Intelligence, 173 (2), 365–391.

Clarke, E. M., Biere, A., Raimi, R., & Zhu, Y. (2001). Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19 (1), 7–34.

Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., & Veith, H. (2003). Counterexample-guided
abstraction refinement for symbolic model checking. Journal of the Association for
Computing Machinery, 50 (5), 752–794.

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem proving.
Communications of the ACM, 5 (7), 394–397.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal
of the Association for Computing Machinery, 7 (3), 201–215.

Edelkamp, S. (2001). Planning with pattern databases. In Cesta, A., & Borrajo, D. (Eds.),
Recent Advances in AI Planning. 6th European Conference on Planning (ECP’01),
pp. 13–24, Toledo, Spain. Springer-Verlag.

Edelkamp, S. (2003). Promela planning. In Ball, T., & Rajamani, S. (Eds.), Proceedings
of the 10th International SPIN Workshop on Model Checking of Software (SPIN-03),
pp. 197–212, Portland, OR. Springer-Verlag.

Edelkamp, S., & Helmert, M. (1999). Exhibiting knowledge in planning problems to mini-
mize state encoding length. In Biundo, S., & Fox, M. (Eds.), Recent Advances in AI
Planning. 5th European Conference on Planning (ECP’99), Lecture Notes in Artificial
Intelligence, pp. 135–147, Durham, UK. Springer-Verlag.

Ernst, M., Millstein, T., & Weld, D. (1997). Automatic sat-compilation of planning prob-
lems. In Pollack, M. (Ed.), Proceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), pp. 1169–1176, Nagoya, Japan. Morgan Kaufmann.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2 (3–4), 198–208.

Gerevini, A., Saetti, A., & Serina, I. (2003). Planning through stochastic local search and
temporal action graphs. Journal of Artificial Intelligence Research, 20, 239–290.

466



Friends or Foes? On Planning as Satisfiability and Abstract CNF Encodings
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