
Handbook of Satisfiability

Armin Biere, Marijn Heule, Hans van Maaren and Toby Walsch

IOS Press, 2008

c© 2008 Carla P. Gomes, Ashish Sabharwal, and Bart Selman. All rights reserved.

1

Chapter 20

Model Counting

Carla P. Gomes, Ashish Sabharwal, and Bart Selman

Propositional model counting or #SAT is the problem of computing the number
of models for a given propositional formula, i.e., the number of distinct truth
assignments to variables for which the formula evaluates to true. For a proposi-
tional formula F , we will use #F to denote the model count of F . This problem
is also referred to as the solution counting problem for SAT. It generalizes SAT
and is the canonical #P-complete problem. There has been significant theoreti-
cal work trying to characterize the worst-case complexity of counting problems,
with some surprising results such as model counting being hard even for some
polynomial-time solvable problems like 2-SAT.

The model counting problem presents fascinating challenges for practitioners
and poses several new research questions. Efficient algorithms for this prob-
lem will have a significant impact on many application areas that are inherently
beyond SAT (‘beyond’ under standard complexity theoretic assumptions), such
as bounded-length adversarial and contingency planning, and probabilistic rea-
soning. For example, various probabilistic inference problems, such as Bayesian
net reasoning, can be effectively translated into model counting problems [cf.
2, 11, 30, 38, 41, 45]. Another application is in the study of hard combinatorial
problems, such as combinatorial designs, where the number of solutions provides
further insights into the problem. Even finding a single solution can be a chal-
lenge for such problems; counting the number of solutions is much harder. Not
surprisingly, the largest formulas we can solve for the model counting problem
with state-of-the-art model counters are orders of magnitude smaller than the
formulas we can solve with the best SAT solvers. Generally speaking, current
exact counting methods can tackle problems with a couple of hundred variables,
while approximate counting methods push this to around 1,000 variables.

#SAT can be solved, in principle and to an extent in practice, by extending
the two most successful frameworks for SAT algorithms, namely, DPLL and local
search. However, there are some interesting issues and choices that arise when ex-
tending SAT-based techniques to this harder problem. In general, solving #SAT
requires the solver to, in a sense, be cognizant of all solutions in the search space,
thereby reducing the effectiveness and relevance of commonly used SAT heuristics
designed to quickly narrow down the search to a single solution. The resulting

2 Chapter 20. Model Counting

scalability challenge has drawn many satisfiability researchers to this problem,
and to the related problem of sampling solutions uniformly at random.

We will divide practical model counting techniques we consider into two main
categories: exact counting and approximate counting, discussed in Sections 20.2
and 20.3, respectively. Within exact counting, we will distinguish between meth-
ods based on DPLL-style exhaustive search (Section 20.2.1) and those based on
“knowledge compilation” or conversion of the formula into certain normal forms

(Section 20.2.2). Within approximate counting, we will distinguish between meth-
ods that provide fast estimates without any guarantees (Section 20.3.1) and meth-
ods that provide lower or upper bounds with a correctness guarantee, often in a
probabilistic sense and recently also in a statistical sense (Section 20.3.2).

We would like to note that there are several other directions of research related
to model counting that we will not cover here. For example, Nishimura et al. [36]
explore the concept of “backdoors” for #SAT, and show how the vertex cover
problem can be used to identify small such backdoors based on so-called cluster
formulas. Bacchus et al. [2] consider structural restrictions on the formula and
propose an algorithm for #SAT whose complexity is polynomial in n (the number
of variables) and exponential in the “branch-width” of the underlying constraint
graph. Gottlob et al. [23] provide a similar result in terms of “tree-width”. Fischer
et al. [15] extend this to a similar result in terms of “cluster-width” (which is
never more than tree-width, and sometimes smaller). There is also complexity
theoretic work on this problem by the theoretical computer science community.
While we do provide a flavor of this work (Section 20.1), our focus will mostly
be on techniques that are available in the form of implemented and tested model
counters.

20.1. Computational Complexity of Model Counting

We begin with a relatively brief discussion of the theoretical foundations of the
model counting problem. The reader is referred to standard complexity texts [cf.
37] for a more detailed treatment of the subject.

Given any problem in the class NP, say SAT or CLIQUE, one can formulate
the corresponding counting problem, asking how many solutions exist for a given
instance? More formally, given a polynomial-time decidable relation Q,1 the
corresponding counting problem asks: given x as input, how many y’s are there
such that (x, y) ∈ Q? For example, if Q is the relation “y is a truth assignment
that satisfies the propositional expression x” then the counting problem for Q is
the propositional model counting problem, #SAT. Similarly, if Q is the relation
“y is a clique in the graph x” then the counting problem for Q is #CLIQUE.
The complexity class #P (pronounced “number P” or “sharp P”) consists of
all counting problems associated with such polynomial-time decidable relations.
Note that the corresponding problem in NP asks: given x, does there exist a y
such that (x, y) ∈ Q?

The notion of completeness for #P is defined essentially in the usual way,
with a slight difference in the kind of reduction used. A problem A is #P-

1 Technically, Q must also be polynomially balanced, that is, for each x, the only possible
y’s with (x, y) ∈ Q satisfy |y| ≤ |x|k for a constant k.

Chapter 20. Model Counting 3

complete if (1) A is in #P, and (2) for every problem B in #P, there exists a
polynomial-time counting reduction from B to A. A counting reduction is an
extension of the reductions one often encounters between NP-complete decision
problems, and applies to function computation problems. There are two parts
to a counting reduction from B to A: a polynomial-time computable function R
that maps an instance z of B to an instance R(z) of A, and a polynomial-time
computable function S that recovers from the count N of R(z) the count S(N) of
z. In effect, given an algorithm for the counting problem A, the relations R and
S together give us a recipe for converting that algorithm into one for the counting
problem B with only a polynomial overhead.

Conveniently, many of the known reductions between NP-complete problems
are already parsimonious, that is, they preserve the number of solutions during
the translation. Therefore, these reductions can be directly taken to be the R
part of a counting reduction, with the trivial identity function serving as the
S part, thus providing an easy path to proving #P-completeness. In fact, one
can construct a parsimonious version of the Cook-Levin construction, thereby
showing that #SAT is a canonical #P-complete problem. As it turns out, the
solution counting variants of all six basic NP-complete problems listed by Garey
and Johnson [16], and of many more NP-complete problems, are known to be
#P-complete.2

In his seminal paper, Valiant [51] proved that, quite surprisingly, the solution
counting variants of polynomial-time solvable problems can also be #P-complete.
Such problems, in the class P, include 2-SAT, Horn-SAT, DNF-SAT, bipartite
matching, etc. What Valiant showed is that the problem PERM of computing
the permanent of a 0-1 matrix, which is equivalent to counting the number of
perfect matchings in a bipartite graph or #BIP-MATCHING, is #P-complete.
On the other hand, the corresponding search problem of computing a single per-
fect matching in a bipartite graph can be solved in deterministic polynomial time
using, e.g., a network flow algorithm. Therefore, unless P=NP, there does not
exist a parsimonious reduction from SAT to BIP-MATCHING; such a reduction
would allow one to solve any SAT instance in polynomial time by translating it
to a BIP-MATCHING instance and checking for the existence of a perfect match-
ing in the corresponding bipartite graph. Valiant instead argued that there is a
smart way to indirectly recover the answer to a #SAT instance from the answer to
the corresponding PERM (or #BIP-MATCHING) instance, using a non-identity
polynomial-time function S in the above notation of counting reductions.

Putting counting problems in the traditional complexity hierarchy of decision
problems, Toda [49] showed that #SAT being #P-complete implies that it is no
easier than solving a quantified Boolean formula (QBF) with a constant number
(independent of n, the number of variables) of “there exist” and “forall” quan-
tification levels in its variables. For a discussion of the QBF problem, see Part 2,
Chapters 23-24 of this Handbook. Formally, Toda considered the decision prob-

lem class P#P consisting of polynomial-time decision computations with “free”
access to #P queries, and compared this with k-QBF, the subset of QBF in-
stances that have exactly k quantifier alternations, and the infinite polynomial

2 Note that a problem being NP-complete does not automatically make its solution counting
variant #P-complete; one must demonstrate a polynomial time counting reduction.

4 Chapter 20. Model Counting

hierarchy PH =
⋃

∞

k=1
k-QBF.3 Combining his result with the relatively easy fact

that counting problems can be solved in polynomial space, we have #P placed as
follows in the worst-case complexity hierarchy:

P ⊆ NP ⊆ PH ⊆ P#P ⊆ PSPACE

where PSPACE is the class of problems solvable in polynomial space, with QBF
being the canonical PSPACE-complete problem. As a comparison, notice that
SAT can be thought of as a QBF with exactly one level of “there exist” quantifi-
cation for all its variables, and is thus a subset of 1-QBF. While the best known
deterministic algorithms for SAT, #SAT, and QBF all run in worst-case expo-
nential time, it is widely believed—by theoreticians and practitioners alike—that
#SAT and QBF are significantly harder to solve than SAT.

While #P is a class of function problems (rather than decision problems,
for which the usual complexity classes like P and NP are defined), there does
exist a natural variant of it called PP (for “probabilistic polynomial time”) which
is a class of essentially equally hard decision problems. For a polynomial-time
decidable relation Q, the corresponding PP problem asks: given x, is (x, y) ∈ Q
for more than half the y’s? The class PP is known to contain both NP and
co-NP, and is quite powerful. The proof of Toda’s theorem mentioned earlier in

fact relies on the equality PPP = P#P observed by Angluin [1]. One can clearly
answer the PP query for a problem given the answer to the corresponding #P
query. The other direction is a little less obvious, and uses the fact that PP has
the power to provide the “most significant bit” of the answer to the #P query
and it is possible to obtain all bits of this answer by repeatedly querying the PP
oracle on appropriately modified problem instances.

We close this section with a note that Karp and Luby [25] gave a Markov
Chain Monte Carlo (MCMC) search based fully polynomial-time randomized ap-
proximation scheme (FPRAS) for the DNF-SAT model counting problem, and
Karp et al. [26] later improved its running time to yield the following: for any
ε, δ ∈ (0, 1), there exists a randomized algorithm that given F computes an ε-
approximation to #F with correctness probability 1 − δ in time O(|F | · 1/ε2 ·
ln(1/δ)), where |F | denotes the size of F .

20.2. Exact Model Counting

We now move on to a discussion of some of the practical implementations of exact
model counting methods which, upon termination, output the true model count
of the input formula. The “model counters” we consider are CDP by Birnbaum
and Lozinskii [7], Relsat by Bayardo Jr. and Pehoushek [4], Cachet by Sang
et al. [43], sharpSAT by Thurley [48], and c2d by Darwiche [10].

3 For simplicity, we use k-QBF to represent not only a subset of QBF formulas but also
the complexity class of alternating Turing machines with k alternations, for which solving these
formulas forms the canonical complete problem.

Chapter 20. Model Counting 5

20.2.1. DPLL-Based Model Counters

Not surprisingly, the earliest practical approach for counting models is based on
an extension of systematic DPLL-style SAT solvers. The idea, formalized early
by Birnbaum and Lozinskii [7] in their model counter CDP, is to directly explore
the complete search tree for an n-variable formula as in the usual DPLL search,
pruning unsatisfiable branches based on falsified clauses and declaring a branch
to be satisfied when all clauses have at least one true literal. However, unlike the
usual DPLL, when a branch is declared satisfied and the partial truth assignment
at that point has t fixed variables (fixed either through the branching heuristic or
by unit propagation), we associate 2n−t solutions with this branch corresponding
to the partial assignment being extended by all possible settings of the n − t
yet unset variables, backtrack to the last decision variable that can be flipped,
flip that variable, and continue exploring the remaining search space. The model
count for the formula is finally computed as the sum of such 2n−t counts obtained
over all satisfied branches. Although all practical implementations of DPLL have
an iterative form, it is illustrative to consider CDP in a recursive manner, written
here as Algorithm 20.1, where #F is computed as the sum of #F |x and #F |¬x

for a branch variable x, with the discussion above reflected in the two base cases
of this recursion.

Algorithm 20.1: CDP (F, 0)

Input : A CNF formula F over n variables; a parameter t initially set to 0

Output : #F , the model count of F

begin
UnitPropagate(F)

if F has an empty clause then return 0

if all clauses of F are satisfied then return 2n−t

x← SelectBranchVariable(F)

return CDP(F |x, t + 1) + CDP(F |¬x, t + 1)

end

An interesting technical detail is that many of the modern implementations
of DPLL do not maintain data structures that would allow one to easily check
whether or not all clauses have been satisfied by the current partial assignment.
In general, DPLL-style SAT solvers often do not explicitly keep track of the
number of unsatisfied clauses. They only keep track of the number of assigned
variables, and declare success when all variables have been assigned values and no
clause is violated. Keeping track of the number of unsatisfied clauses is considered
unnecessary because once a partial assignment happens to satisfy all clauses, fur-
ther branching immediately sets all remaining variables to arbitrary values and
obtains a complete satisfying assignment; complete satisfying assignments are
indeed what many applications of SAT seek. DPLL-based model counters, on
the other hand, do maintain this added information about how many clauses
are currently satisfied and infer the corresponding 2n−t counts. Having to enu-
merate each of the 2n−t complete satisfying assignments instead would make the
technique impractical.

6 Chapter 20. Model Counting

Obtaining partial counts: As discussed above, a basic DPLL-based model counter
works by using appropriate multiplication factors and continuing the search after
a single solution is found. An advantage of this approach is that the model count
is computed in an incremental fashion: if the algorithm runs out of a pre-specified
time limit, it can still output a correct lower bound on the true model count, based
on the part of the search space it has already explored. This can be useful in many
applications, and has been the motivation for some new randomized techniques
that provide fast lower bounds with probabilistic correctness guarantees (to be
discussed in Section 20.3.2). In fact, a DPLL-based model counter can, in princi-
ple, also output a correct upper bound at any time: 2n minus the sum of the 2n−t

style counts of un-satisfying assignments contained in all unsatisfiable branches
explored till that point. Unfortunately, this is often not very useful in practice
because the number of solutions of problems of interest is typically much smaller
than the size of the search space. As a simple example, in a formula with 1000
variables and 2200 solutions, after having explored, say, a 1/16 fraction of the
search space, it is reasonable to expect the model counter to have seen roughly
2200/16 = 2196 solutions (which would be a fairly good lower bound on the model
count) while one would expect to have seen roughly (21000−2200)/16 un-satisfying
assignments (yielding a poor näıve upper bound of 21000−(21000−2200)/16, which
is at least as large as 2999). We will discuss a more promising, statistical upper
bounding technique towards the end of this chapter.

Component analysis: Consider the constraint graph G of a CNF formula F . The
vertices of G are the variables of F and there is an edge between two vertices if
the corresponding variables appear together in some clause of F . Suppose G
can be partitioned into disjoint components G1, G2, . . . , Gk where there is no
edge connecting a vertex in one component to a vertex in another component,
i.e., the variables of F corresponding to vertices in two different components do
not appear together in any clause. Let F1, F2, . . . , Fk be the sub-formulas of
F corresponding to the k components of G and restricted to the variables that
appear in the corresponding component. Since the components are disjoint, it
follows that every clause of F appears in a unique component, the sub-problems
captured by the components are independent, and, most pertinent to this chapter,
that #F = #F1 × #F2 × . . . × #Fk. Thus, #F can be evaluated by identifying
disjoint components of F , computing the model count of each component, and
multiplying the results together.

This idea is implemented in one of the first effective exact model counters
for SAT, called Relsat [4], which extends a previously introduced DPLL-based
SAT solver by the same name [5]. Components are identified dynamically as
the underlying DPLL procedure attempts to extend a partial assignment. With
each new extension, several clauses may be satisfied so that the constraint graph
simplifies dynamically depending on the actual value assignment to variables.
While such dynamic detection and exploitation of components has often been
observed to be too costly for pure satisfiability testing,4 it certainly pays off
well for the harder task of model counting. Note that for the correctness of the

4 Only recently have SAT solvers begun to efficiently exploit partial component caching
schemes [40].

Chapter 20. Model Counting 7

method, all we need is that the components are disjoint. However, the components
detected by Relsat are, in fact, the connected components of the constraint graph
of F , indicating that the full power of this technique is being utilized. One of the
heuristic optimizations used in Relsat is to attempt the most constrained sub-
problems first. Another trick is to first check the satisfiability of every component,
before attempting to count any. Relsat also solves sub-problems in an interleaved
fashion, dynamically jumping to another sub-problem if the current one turns out
to be less constrained than initially estimated, resulting in a best-first search of
the developing component tree. Finally, the component structure of the formula
is determined lazily while backtracking, instead of eagerly before branch selection.
This does not affect the search space explored but often reduces the component
detection overhead for unsatisfiable branches.

Bayardo Jr. and Schrag [5] demonstrated through Relsat that applying these
ideas significantly improves performance over basic CDP, obtaining exact counts
for several problems from graph coloring, planning, and circuit synthesis/analysis
domains that could not be counted earlier. They also observed, quite interestingly,
that the peak of hardness of model counting for random 3-SAT instances occurs
at a very different clause-to-variable ratio than the peak of hardness of solving
such formulas. These instances were found to be the hardest for model counting
at a ratio of α ≈ 1.5, compared to α ≈ 4.26 which marks the peak of hardness for
SAT solvers as well as the (empirical) point of phase transition in such formulas
from being mostly satisfiable to mostly unsatisfiable. Bailey et al. [3] followed up
on this observation and provided further analytical and empirical results on the
hardness peak and the corresponding phase transition of the decision variants of
random counting problems.

Caching: As one descends the search tree of a DPLL-based model counter, set-
ting variables and simplifying the formula, one may encounter sub-formulas that
have appeared in an earlier branch of the search tree. If this happens, it would
clearly be beneficial to be able to efficiently recognize this fact, and instead of
re-computing the model count of the sub-formula from scratch, somehow “remem-
ber” the count computed for it earlier. This is, in principle, similar to the clause
learning techniques used commonly in today’s SAT solvers, except that for the
purposes of model counting, it is no longer possible to succinctly express the key
knowledge learned from each previous sub-formula as a single “conflict clause”
that, for SAT, quite effectively captures the “reason” for that sub-formula being
unsatisfiable. For model counting, one must also store, in some form, a signature
of the full satisfiable sub-formulas encountered earlier, along with their computed
model counts. This is the essence of formula caching systems [2, 6, 32]. While
formula caching is theoretically appealing even for SAT, being more powerful than
clause learning [6], its overhead is much more likely to be offset when applied to
harder problems like #SAT.

Bacchus et al. [2] considered three variants of caching schemes: simple caching
(a.k.a. formula caching), component caching, and linear-space caching. They
showed that of these, component caching holds the greatest promise, being theo-
retically competitive with (and sometimes substantially better than) some of the
best known methods for Bayesian inference. Putting these ideas into practice,

8 Chapter 20. Model Counting

Sang et al. [43] created the model counter Cachet, which ingeniously combined
component caching with traditional clause learning within the setup of model
counting.5 Cachet is built upon the well-known SAT solver zChaff [34]. It turns
out that combining component caching and clause learning in a näıve way leads to
subtle issues that would normally permit one to only compute a lower bound on
the model count. This problem is taken care of in Cachet using so-called sibling

pruning, which prevents the undesirable interaction between cached components
and clause learning from spreading.

Taking these ideas further, Sang et al. [44] considered the efficiency of var-
ious heuristics used in SAT solvers, but now in the context of model counting
with component caching. They looked at component selection strategies, variable
selection branching heuristics, randomization, backtracking schemes, and cross-
component implications. In particular, they showed that model counting works
better with a variant of the conflict graph based branching heuristic employed by
zChaff, namely VSIDS (variable state independent decaying sum). This variant
is termed VSADS, for variable state aware decaying sum, which linearly interpo-
lates between the original VSIDS score and a more traditional formula-dependent
score based on the number of occurrences of each variable.

Improved caching and more reasoning at each node: An important concern in
implementing formula caching or component caching in practice is the space re-
quirement. While these concerns are already present even for clause learning
techniques employed routinely by SAT solvers and have led to the development
of periodic clause deletion mechanisms, the problem is clearly more severe when
complete sub-formulas are cached. sharpSAT [48] uses several ideas that let com-
ponents be stored more succinctly. For example, all clauses of any component
stored by sharpSAT have at least two unassigned literals (unit propagation takes
care of any active clauses with only one unassigned literal), and it does not explic-
itly store any binary clauses of the original formula in the component signature
(binary clauses belonging to the component have both literals unassigned and can
thus be easily reconstructed from the set of variables associated with the compo-
nent). Further, it only stores (1) the indices of the variables in the component
and (2) the indices of the original clauses that belong to that component, rather
than storing full clauses or the learned conflict clauses. This can, in principle,
prohibit some components from being identified as identical when they would be
identified as identical by Cachet, which stores full clauses. Nonetheless, these
techniques together are shown to reduce the storage requirement by an order of
magnitude or more compared to Cachet, and to often increase efficiency.

sharpSAT also uses a “look ahead” technique known in the SAT community
as the failed literal rule (the author refers to it as implicit BCP). Here every so
often one identifies a set of candidate variables for each of which the failed literal
test is applied: if setting x to true makes the current formula unsatisfiable, then
assert x = false and simplify; otherwise, if setting x to false makes the current
formula unsatisfiable, then assert x = true and simplify. The technique is shown
to pay off well while model counting several difficult instances.

5 Note that clause learning and decomposition into components were already implemented
in the model counter Relsat, but no caching.

Chapter 20. Model Counting 9

Recently, Davies and Bacchus [13] have shown that employing more reason-
ing at each node of the DPLL search tree can significantly speed-up the model
counting process.6 Specifically, they use hyper-binary resolution and equality re-
duction in addition to unit propagation, which simplifies the formula and often
results in more efficient component detection and caching, and sometimes even
stronger component division.

20.2.2. Counting Using Knowledge Compilation

A different approach for exact model counting is to convert or compile the given
CNF formula into another logical form from which the count can be deduced
easily, i.e., in time polynomial in the size of the formula in the new logical form.
For example, in principle, one could convert the formula into a binary decision
diagram or BDD [8] and then “read off” the solution count by traversing the
BDD from the leaf labeled “1” to the root. One advantage of this methodology is
that once resources have been spent on compiling the formula into this new form,
several complex queries can potentially be answered fairly quickly, often with a
linear time traversal with simple book keeping. For instance, with BDDs, one can
easily answer queries about satisfiability, being a tautology, logical equivalence to
another formula, number of solutions, etc.

A knowledge compilation alternative was introduced by Darwiche [10] in a
compiler called c2d, which converts the given CNF formula into deterministic, de-

composable negation normal form or d-DNNF. The DNNF form [9, 12] is a strict
superset of ordered BDDs (in the sense that an ordered BDD can be converted in
linear time into DNNF), and often more succinct. While a BDD is structurally
quite different from a CNF style representation of a Boolean function,7 the nega-
tion normal form or NNF underlying d-DNNF is very much like CNF. Informally,
one can think of a CNF formula as a 4-layer directed acyclic graph, with the root
node labeled with and or ∧, pointing to all nodes in the next layer corresponding
to clauses and labeled with or or ∨, and each clause node pointing either directly
or through a layer-3 node labeled not or ¬ to nodes labeled with variable names,
one for each variable; this represents the conjunction of disjunctions that defines
CNF. In contrast, an NNF formula is defined by a rooted directed acyclic graph
in which there is no restriction on the depth, each non-leaf node is labeled with
either ∧ or ∨, each leaf node is labeled with either a variable or its negation, and
the leaf nodes only have incoming edges (as before). Thus, unlike CNF, one may
have several levels of alternations between ∧ and ∨ nodes, but all negations are
pushed down all the way to the leaf nodes. There are, in general, twice as many
leaf nodes as variables.

In order to exploit NNF for model counting, one must add two features to it,
decomposability and determinism:

i. Decomposability says that for the children A1, A2, . . . , As of a node Aand

labeled ∧, the variables appearing in each pair of the Ai’s must be disjoint,
i.e., the logical expression at an and-node can be decomposed into disjoint

6 In SAT solving, this extra reasoning was earlier observed to not be cost effective.
7 A BDD is more akin to the search space of a DPLL-style process, with nodes corresponding

to branching on a variable by fixing it to true or false.

10 Chapter 20. Model Counting

components corresponding to its children. For model counting, this translates
into #fand = #f1×#f2× . . .×#fs, where fand and fi denote the Boolean
functions captured by Aand and Ai, respectively.

ii. In a similar manner, determinism says that the children B1, B2, . . . , Bt of
a node Bor labeled ∨ do not have any common solutions, i.e., the logical
conjunction of the Boolean functions represented by any two children of an
or-node is inconsistent. For model counting, this translates into #for =
#f1 + #f2 + . . . + #fs, where for and fi denote the Boolean functions
captured by Bor and Bi, respectively.

The above properties suggest a simple model counting algorithm which com-
putes #F from a d-DNNF representation of F , by performing a topological traver-
sal of the underlying acyclic graph starting from the leaf nodes. Specifically, each
leaf node is assigned a count of 1, the count of each ∧ node is computed as the
product of the counts of its children, and the count of each ∨ node is computed
as the sum of the counts of its children. The count associated with the root of
the graph is reported as the model count of F .

In the simplified d-DNNF form generated by c2d, every ∨ node has exactly
two children, and the node has as its secondary label the identifier of a variable
that is guaranteed to appear as true in all solutions captured by one child and
as false in all solutions captured by the other child. c2d can also be asked to
compile the formula into a smoothed form, where each child of an ∨ node has the
same number of variables.

Inside c2d, the compilation of the given CNF formula F into d-DNNF is done
by first constructing a decomposition tree or dtree for F , which is a binary tree
whose leaves are tagged with the clauses of F and each of whose non-leaf vertices
has a set of variables, called the separator, associated with it. The separator is
simply the set of variables that are shared by the left and right branches of the
node, the motivation being that once these variables have been assigned truth
values, the two resulting sub-trees will have disjoint sets of variables. c2d uses
an exhaustive version of the DPLL procedure to construct the dtree and compile
it to d-DNNF, by ensuring that the separator variables for each node are either
instantiated to various possible values (and combined using ∨ nodes) or no longer
shared between the two subtrees (perhaps because of variable instantiations higher
up in the dtree or from the resulting unit-propagation simplifications). Once the
separator variables are instantiated, the resulting components become disjoint
and are therefore combined using ∧ nodes.

c2d has been demonstrated to be quite competitive on several classes of for-
mulas, and sometimes more efficient than DPLL-based exact counters like Cachet
and Relsat even for obtaining a single overall model count. For applications
that make several counting-related queries on a single formula (such as “marginal
probability” computation or identifying “backbone variables” in the solution set),
this knowledge compilation approach has a clear “re-use” advantage over tradi-
tional DPLL-based counters. This approach is currently being explored also for
computing connected clusters in the solution space of a formula.

Chapter 20. Model Counting 11

20.3. Approximate Model Counting

Most exact counting methods, especially those based on DPLL search, essen-
tially attack a #P-complete problem head on—by exhaustively exploring the raw
combinatorial search space. Consequently, these algorithms often have difficulty
scaling up to larger problem sizes. For example, perhaps it is too much to expect
a fast algorithm to be able to precisely distinguish between a formula having 1070

and 1070 + 1 solutions. Many applications of model counting may not even care
about such relatively tiny distinctions; it may suffice to provide rough “ball park”
estimates, as long as the method is quick and the user has some confidence in
its correctness. We should point out that problems with a higher solution count
are not necessarily harder to determine the model count of. In fact, counters like
Relsat can compute the true model count of highly under-constrained problems
with many “don’t care” variables and a lot of models by exploiting big clusters in
the solution space. The model counting problem is instead much harder for more
intricate combinatorial problems in which the solutions are spread much more
finely throughout the combinatorial space.

With an abundance of difficult to count instances, scalability requirements
shifted the focus on efficiency, and several techniques for fairly quickly estimating
the model count have been proposed. With such estimates, one must consider
two aspects: the quality of the estimate and the correctness confidence associated
with the reported estimate. For example, by simply finding one solution of a
formula F with a SAT solver, one can easily proclaim with high (100%) confidence
that F has at least one solution—a correct lower bound on the model count.
However, if F in reality has, say, 1015 solutions, this high confidence estimate is
of very poor quality. On the other extreme, a technique may report an estimate
much closer to the true count of 1015, but may be completely unable to provide
any correctness confidence, making one wonder how good the reported estimate
actually is. We would ideally like to have some control on both the quality of
the reported estimate as well as the correctness confidence associated with it.
The quality may come as an empirical support for a technique in terms of it
often being fairly close to the true count, while the correctness confidence may be
provided in terms of convergence to the true count in the limit or as a probabilistic
(or even statistical) guarantee on the reported estimate being a correct lower or
upper bound. We have already mentioned in Section 20.1 one such randomized
algorithm with strong theoretical guarantees, namely, the FPRAS scheme of Karp
and Luby [25]. We discuss in the remainder of this section some approaches that
have been implemented and evaluated more extensively.

20.3.1. Estimation Without Guarantees

Using sampling for estimates: Wei and Selman [54] introduced a local search
based method that uses Markov Chain Monte Carlo (MCMC) sampling to com-
pute an approximation of the true model count of a given formula. Their model
counter, ApproxCount, is able to solve several instances quite accurately, while
scaling much better than exact model counters as problem size increases.

ApproxCount exploits the fact that if one can sample (near-)uniformly from
the set of solutions of a formula F , then one can compute a good estimate of

12 Chapter 20. Model Counting

the number of solutions of F .8 The basic idea goes back to Jerrum, Valiant,
and Vazirani [24]. Consider a Boolean formula F with M satisfying assignments.
Assuming we could sample these satisfying assignments uniformly at random, we
can estimate the fraction of all models that have a variable x set to true, M+, by
taking the ratio of the number of models in the sample that have x set to true over
the total sample size. This fraction will converge, with increasing sample size, to
the true fraction of models with x set positively, namely, γ = M+/M . (For now,
assume that γ > 0.) It follows immediately that M = (1/γ)M+. We will call 1/γ
the “multiplier” (> 0). We have thus reduced the problem of counting the models
of F to counting the models of a simpler formula, F + = F |x=true; the model count
of F is simply 1/γ times the model count of F +. We can recursively repeat the
process, leading to a series of multipliers, until all variables are assigned truth
values or—more practically—until the residual formula becomes small enough for
us to count its models with an exact model counter. For robustness, one usually
sets the selected variable to the truth value that occurs more often in the sample,
thereby keeping intact a majority of the solutions in the residual formula and
recursively counting them. This also avoids the problem of having γ = 0 and
therefore an infinite multiplier. Note that the more frequently occurring truth
value gives a multiplier 1/γ of at most 2, so that the estimated count grows
relatively slowly as variables are assigned values.

In ApproxCount, the above strategy is made practical by using an efficient
solution sampling method called SampleSat [53], which is an extension of the
well-known local search SAT solver Walksat [46]. Efficiency and accuracy con-
siderations typically suggest that we obtain 20-100 samples per variable setting
and after all but 100-300 variables have been set, give the residual formula to an
exact model counter like Relsat or Cachet.

Compared to exact model counters, ApproxCount is extremely fast and has
been shown to provide very good estimates for solution counts. Unfortunately,
there are no guarantees on the uniformity of the samples from SampleSat. It
uses Markov Chain Monte Carlo (MCMC) methods [31, 33, 28], which often
have exponential (and thus impractical) mixing times for intricate combinatorial
problems. In fact, the main drawback of Jerrum et al.’s counting strategy is that
for it to work well one needs uniform (or near-uniform) sampling, which is a very
hard problem in itself. Moreover, biased sampling can lead to arbitrarily bad
under- or over-estimates of the true count. Although the counts obtained from
ApproxCount can be surprisingly close to the true model counts, one also observes
cases where the method significantly over-estimates or under-estimates.

Interestingly, the inherent strength of most state-of-the-art SAT solvers comes
actually from the ability to quickly narrow down to a certain portion of the search
space the solver is designed to handle best. Such solvers therefore sample solutions
in a highly non-uniform manner, making them seemingly ill-suited for model
counting, unless one forces the solver to explore the full combinatorial space. An
intriguing question (which will be addressed in Section 20.3.2) is whether there is

8 Note that a different approach, in principle, would be to estimate the density of solutions
in the space of all 2n truth assignments for an n-variable formula, and extrapolate that to
the number of solutions. This would require sampling all truth assignments uniformly and
computing how often a sampled assignment is a solution. This is unlikely to be effective in
formulas of interest, which have very sparse solution spaces, and is not what ApproxCount does.

Chapter 20. Model Counting 13

a way around this apparent limitation of the use of state-of-the-art SAT solvers
for model counting.

Using importance sampling: Gogate and Dechter [18] recently proposed a model
counting technique called SampleMinisat, which is based on sampling from the
so-called backtrack-free search space of a Boolean formula through SampleSearch

[17]. They use an importance re-sampling method at the base. Suppose we wanted
to sample all solutions of F uniformly at random. We can think of these solutions
sitting at the leaves of a DPLL search tree for F . Suppose this search tree has
been made backtrack-free, i.e., all branches that do not lead to any solution
have been pruned away. (Of course, this is likely to be impractical to achieve
perfectly in practice in reasonably large and complex solution spaces without
spending an exponential amount of time constructing the complete tree, but we
will attempt to approximate this property.) In this backtrack-free search space,
define a random process that starts at the root and at every branch chooses to
follow either child with equal probability. This yields a probability distribution on
all satisfying assignments of F (which are the leaves of this backtrack-free search
tree), assigning a probability of 2−d to a solution if there are d branching choices in
the tree from the root to the corresponding leaf. In order to sample not from this
particular “backtrack-free” distribution but from the uniform distribution over
all solutions, one can use the importance sampling technique [42], which works as
follows. First sample k solutions from the backtrack-free distribution, then assign
a new probability to each sampled solution which is proportional to the inverse of
its original probability in the backtrack-free distribution (i.e., proportional to 2d),
and finally sample one solution from this new distribution. As k increases, this
process, if it could be made practical, provably converges to sampling solutions
uniformly at random.

SampleMinisat builds upon this idea, using DPLL-based SAT solvers to con-
struct the backtrack-free search space, either completely or to an approximation.
A simple modification of the above uniform sampling method can be used to in-
stead estimate the number of solutions (i.e., the number of leaves in the backtrack-
free search space) of F . The process is embedded inside a DPLL-based solver,
which keeps track of which branches of the search tree have already been shown
to be unsatisfiable. As more of the search tree is explored to generate samples,
more branches are identified as unsatisfiable, and one gets closer to achieving the
exact backtrack-free distribution. In the limit, as the number of solution sam-
ples increases to infinity, the entire search tree is explored and all unsatisfiable
branches tagged, yielding the true backtrack-free search space. Thus, this process
in the limit converges to purely uniform solutions and an accurate estimate of the
number of solutions. Experiments with SampleMinisat show that it can provide
very good estimates of the solution count when the formula is within the reach
of DPLL-based methods. In contrast, ApproxCount works well when the formula
is more suitable for local search techniques like Walksat.

Gogate and Dechter [18] show how this process, when using the exact
backtrack-free search space (as opposed to its approximation), can also be used
to provide lower bounds on the model count with probabilistic correctness guar-
antees following the framework of SampleCount, which we discuss next.

14 Chapter 20. Model Counting

20.3.2. Lower and Upper Bounds With Guarantees

Using sampling for estimates with guarantees: Building upon ApproxCount,
Gomes et al. [19] showed that, somewhat surprisingly, using sampling with a
modified, randomized strategy, one can get provable lower bounds on the total
model count, with high confidence (probabilistic) correctness guarantees, without

any requirement on the quality of the sampling process. They provide a formal
analysis of the approach, implement it as the model counter SampleCount, and
experimentally demonstrate that it provides very good lower bounds—with high
confidence and within minutes—on the model counts of many problems which
are completely out of reach of the best exact counting methods. The key feature
of SampleCount is that the correctness of the bound reported by it holds even
when the sampling method used is arbitrarily bad; only the quality of the bound
may deteriorate (i.e., the bound may get farther away from the true count on
the lower side). Thus, the strategy remains sound even when a heuristic-based
practical solution sampling method is used instead of a true uniform sampler.

The idea is the following. Instead of using the solution sampler to select the
variable setting and to compute a multiplier, let us use the sampler only as a
heuristic to determine in what order to set the variables. In particular, we will
use the sampler to select a variable whose positive and negative setting occurs
most balanced in our set of samples (ties are broken randomly). Note that such a
variable will have the highest possible multiplier (closest to 2) in the ApproxCount
setting discussed above. Informally, setting the most balanced variable will divide
the solution space most evenly (compared to setting one of the other variables).
Of course, our sampler may be heavily biased and we therefore cannot really
rely on the observed ratio between positive and negative settings of a variable.
Interestingly, we can simply set the variable to a randomly selected truth value
and use the multiplier 2. This strategy will still give—in expectation—the true
model count. A simple example shows why this is so. Consider the formula F
used in the discussion in Section 20.3.1 and assume x occurs most balanced in
our sample. Let the model count of F + be 2M/3 and of F− be M/3. If we decide
with probability 1/2 to set x to true, we obtain a total model count of 2×2M/3,
i.e., too high; but, with probability 1/2, we will set x to false, obtaining a total
count of 2×M/3, i.e., too low. Together, these imply an expected (average) count
of exactly M .

Technically, the expected total model count is correct because of the linear-
ity of expectation. However, we also see that we may have significant variance

between specific counts, especially since we are setting a series of variables in a
row (obtaining a sequence of multipliers of 2), until we have a simplified formula
that can be counted exactly. In fact, in practice, the distribution of the estimated
total count (over different runs) is often heavy-tailed [27]. To mitigate the fluc-
tuations between runs, we use our samples to select the “best” variables to set
next. Clearly, a good heuristic would be to set such “balanced” variables first. We
use SampleSat to get guidance on finding such balanced variables. The random
value setting of the selected variable leads to an expected model count that is
equal to the actual model count of the formula. Gomes et al. [19] show how this
property can be exploited using Markov’s inequality to obtain lower bounds on

Chapter 20. Model Counting 15

the total model count with predefined confidence guarantees. These guarantees
can be made arbitrarily strong by repeated iterations of the process.

What if all variable are found to be not so balanced? E.g., suppose the most
balanced variable x is true in 70% of the sampled solutions and false in the
remaining 30%. While one could still set x to true or false with probability 1/2
each as discussed above and still maintain a correct count in expectation, Kroc
et al. [29] discuss how one might reduce the resulting variance by instead using a
biased coin with probability p = 0.7 of Heads, setting x to true with probability
0.7, and scaling up the resulting count by 1/0.7 if x was set to true and by 1/0.3
if x was set to false. If the samples are uniform, this process provably reduces
the variance, compared to using an unbiased coin with p = 0.5.

The effectiveness of SampleCount is further boosted by using variable “equiv-
alence” when no single variable appears sufficiently balanced in the sampled so-
lutions. For instance, if variables x1 and x2 occur with the same polarity (either
both true or both false) in nearly half the sampled solutions and with a differ-
ent polarity in the remaining, we randomly replace x2 with either x1 or ¬x1, and
simplify. This turns out to have the same simplification effect as setting a single
variable, but is more advantageous when no single variable is well balanced.

Using xor-streamlining: MBound [21] is a very different method for model count-
ing, which interestingly uses any complete SAT solver “as is” in order to compute
an estimate of the model count of the given formula. It follows immediately
that the more efficient the SAT solver used, the more powerful this counting
strategy becomes. MBound is inspired by recent work on so-called “streamlining
constraints” [22], in which additional, non-redundant constraints are added to
the original problem to increase constraint propagation and to focus the search
on a small part of the subspace, (hopefully) still containing solutions. This tech-
nique was earlier shown to be successful in solving very hard combinatorial de-
sign problems, with carefully created, domain-specific streamlining constraints.
In contrast, MBound uses a domain-independent streamlining process, where the
streamlining constraints are constructed purely at random.

The central idea of the approach is to use a special type of randomly chosen
constrains, namely xor or parity constraints on the original variables of the
problem. Such constraints require that an odd number of the involved variables
be set to true. (This requirement can be translated into the usual CNF form by
using additional variables [50], and can also be modified into requiring that an
even number of variables be true by adding the constant 1 to the set of involved
variables.)

MBound works in a very simple fashion: repeatedly add a number s of purely
random xor constraints to the formula as additional CNF clauses, feed the re-
sulting streamlined formula to a state-of-the-art complete SAT solver without any
modification, and record whether or not the streamlined formula is still satisfiable.
At a very high level, each random xor constraint will cut the solution space of
satisfying assignments approximately in half. As a result, intuitively speaking, if
after the addition of s xor constraints the formula is still satisfiable, the original
formula must have at least of the order of 2s models. More rigorously, it can
be shown that if we perform t experiments of adding s random xor constraints

16 Chapter 20. Model Counting

and our formula remains satisfiable in each case, then with probability at least
1 − 2−αt, our original formula will have at least 2s−α satisfying assignments for
any α > 0, thereby obtaining a lower bound on the model count with a proba-
bilistic correctness guarantee. The confidence expression 1 − 2−αt says that by
repeatedly doing more experiments (by increasing t) or by weakening the claimed
bound of 2s−α (by increasing α), one can arbitrarily boost the confidence in the
lower bound count reported by this method.

The method generalizes to the case where some streamlined formulas are
found to be satisfiable and some are not. Similar results can also be derived
for obtaining an upper bound on the model count, although the variance-based
analysis in this case requires that the added xor constraints involve as many as
n/2 variables on average, which often decreases the efficiency of SAT solvers on
the streamlined formula.9 The efficiency of the method can be further boosted
by employing a hybrid strategy: instead of feeding the streamlined formula to a
SAT solver, feed it to an exact model counter. If the exact model counter finds
M solutions to the streamlined formula, the estimate of the total model count
of the original formula is taken to be 2s−α × M , again with a formal correctness
probability attached to statistics over this estimate over several iterations; the
minimum, maximum, and average values over several iterations result in different
associated correctness confidence.

A surprising feature of this approach is that it does not depend at all on how
the solutions are distributed throughout the search space. It relies on the very
special properties of random parity constraints, which in effect provide a good
hash function, randomly dividing the solutions into two near-equal sets. Such
constraints were earlier used by Valiant and Vazirani [52] in a randomized reduc-
tion from SAT to the related problem UniqueSAT (a “promise problem” where
the input is guaranteed to have either 0 or 1 solution, never 2 or more), showing
that UniqueSAT is essentially as hard as SAT. Stockmeyer [47] had also used sim-
ilar ideas under a theoretical setting. The key to converting this approach into
a state-of-the-art model counter was the relatively recent observation that very
short xor constraints—the only ones that are practically feasible with modern
constraint solvers—can provide a fairly accurate estimate of the model count on
a variety of domains of interest [21, 20].

Exploiting Belief Propagation methods: In recent work, Kroc et al. [29] showed
how one can use probabilistic reasoning methods for model counting. Their
algorithm, called BPCount, builds upon the lower bounding framework of
SampleCount. However, instead of using several solution samples for heuristic
guidance—which can often be time consuming—they use a probabilistic reason-
ing approach called Belief Propagation or BP. A description of BP methods in
any reasonable detail is beyond the scope of this chapter; we refer the reader
to standard texts on this subject [e.g. 39] as well as to Part 2, Chapter 18 of
this Handbook. In essence, BP is a general “message passing” procedure for

9 It was later demonstrated empirically [20] that for several problem domains, significantly
shorter xor constraints are effectively as good as xor constraints of length n/2 (“full length”) in
terms of the key property needed for the accuracy of this method: low variance in the solution
count estimate over several runs of MBound.

Chapter 20. Model Counting 17

probabilistic reasoning, and is often described in terms of a set of mutually re-
cursive equations which are solved in an iterative manner. On SAT instances,
BP works by passing likelihood information between variables and clauses in an
iterative fashion until a fixed point is reached. From this fixed point, statistical
information about the solution space of the formula can be easily computed. This
statistical information is provably exact when the constraint graph underlying the
formula has a tree-like structure, and is often reasonably accurate (empirically)
even when the constraint graph has cycles [cf. 35].

For our purposes, BP, in principle, provides precisely the information deduced
from solution samples in SampleCount, namely, an estimate of the marginal prob-

ability of each variable being true or false when all solutions are sampled uni-
formly at random. Thus, BPCount works exactly like SampleCount and provides
the same probabilistic correctness guarantees, but is often orders of magnitude
faster on several problem domains because running BP on the formula is of-
ten much faster than obtaining several solution samples through SampleSat. A
challenge in this approach is that the standard mutually recursive BP equations
don’t even converge to any fixed point on many practical formulas of interest.
To address this issue, Kroc et al. [29] employ a message-damping variant of BP
whose convergence behavior can be controlled by a continuously varying param-
eter. They also use safety checks in order to avoid fatal mistakes when setting
variables (i.e., to avoid inadvertently making the formula unsatisfiable).

We note that the model count of a formula can, in fact, also be estimated
directly from just one fixed point run of the BP equations, by computing the
value of so-called partition function [55]. However, the count estimated this way
is often highly inaccurate on structured loopy formulas. BPCount, on the other
hand, makes a much more robust use of the information provided by BP.

Statistical upper bounds: In a different direction, Kroc et al. [29] propose a second
method, called MiniCount, for providing upper bounds on the model counts of
formulas. This method exploits the power of modern DPLL-based SAT solvers,
which are extremely good at finding single solutions to Boolean formulas through
backtrack search. The problem of computing upper bounds on the model count
had so far eluded solution because of the asymmetry (discussed earlier in the
partial counts sub-section of Section 20.2.1) which manifests itself in at least two
inter-related forms: the set of solutions of interesting n variable formulas typically
forms a minuscule fraction of the full space of 2n truth assignments, and the
application of Markov’s inequality as in the lower bound analysis of SampleCount
does not yield interesting upper bounds. As noted earlier, this asymmetry also
makes upper bounds provided by partial runs of exact model counters often not
very useful. To address this issue, Kroc et al. [29] develop a statistical framework

which lets one compute upper bounds under certain statistical assumptions, which
are independently validated.

Specifically, they describe how the SAT solver MiniSat [14], with two mi-
nor modifications—randomizing whether the chosen variable is set to true or
to false, and disabling restarts—can be used to estimate the total number of
solutions. The number d of branching decisions (not counting unit propagations
and failed branches) made by MiniSat before reaching a solution, is the main

18 Chapter 20. Model Counting

quantity of interest: when the choice between setting a variable to true or to
false is randomized,10 the number d is provably not any lower, in expectation,
than log2 of the true model count. This provides a strategy for obtaining upper
bounds on the model count, only if one could efficiently estimate the expected
value, E [d], of the number of such branching decisions. A natural way to esti-
mate E [d] is to perform multiple runs of the randomized solver, and compute the
average of d over these runs. However, if the formula has many “easy” solutions
(found with a low value of d) and many “hard” solutions (requiring large d), the
limited number of runs one can perform in a reasonable amount of time may be
insufficient to hit many of the “hard” solutions, yielding too low of an estimate
for E [d] and thus an incorrect upper bound on the model count.

Interestingly, they show that for many families of formulas, d has a distribu-
tion that is very close to the normal distribution; in other words, the estimate 2d

of the upper bound on the number of solutions is log-normally distributed. Now,
under the assumption that d is indeed normally distributed, estimating E [d] for
an upper bound on the model count becomes easier: when sampling various val-
ues of d through multiple runs of the solver, one need not necessarily encounter
both low and high values of d in order to correctly estimate E [d]. Instead, even
with only below-average samples of d, the assumption of normality lets one rely
on standard statistical tests and conservative computations to obtain a statisti-
cal upper bound on E [d] within any specified confidence interval. We refer the
reader to the full paper for details. Experimentally, MiniCount is shown to pro-
vide good upper bounds on the solution counts of formulas from many domains,
often within seconds and fairly close to the true counts (if known) or separately
computed lower bounds.

20.4. Conclusion

With SAT solving establishing its mark as one of the most successful automated
reasoning technologies, the model counting problem for SAT has begun to see a
surge of activity in the last few years. One thing that has been clear from the
outset is that model counting is a much harder problem. Nonetheless, thanks
to its broader scope and applicability than SAT solving, it has led to a range of
new ideas and approaches—from DPLL-based methods to local search sampling
estimates to knowledge compilation to novel randomized streamlining methods.
Practitioners working on model counting have discovered that many interesting
techniques that were too costly for SAT solving are not only cost effective for
model counting but crucial for scaling practical model counters to reasonably
large instances. The variety of tools for model counting is already rich, and
growing. While we have made significant progress, at least two key challenges
remain open: how do we push the limits of scalability of model counters even
further, and how do we extend techniques to do model counting for weighted

satisfiability problems?11 While exact model counters are often able to also solve

10 MiniSat by default always sets variables to false.
11 In weighted model counting, each variable x has a weight p(x) ∈ [0, 1] when set to true

and a weight 1 − p(x) when set to false. The weight of a truth assignment is the product of
the weights of its literals. The weighted model count of a formula is the sum of the weights of

Chapter 20. Model Counting 19

the weighted version of the problem at no extra cost, much work needs to be
done to adapt the more scalable approximate methods to handle weighted model
counting.

References

[1] D. Angluin. On counting problems and the polynomial-time hierarchy. The-

oretical Computer Science, 12:161–173, 1980.
[2] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results

for #SAT and Bayesian inference. In Proceedings of FOCS-03: 44th Annual

Symposium on Foundations of Computer Science, pages 340–351, Cambridge,
MA, Oct. 2003.

[3] D. D. Bailey, V. Dalmau, and P. G. Kolaitis. Phase transitions of PP-
complete satisfiability problems. Discrete Applied Mathematics, 155(12):
1627–1639, 2007.

[4] R. J. Bayardo Jr. and J. D. Pehoushek. Counting models using connected
components. In Proceedings of AAAI-00: 17th National Conference on Ar-

tificial Intelligence, pages 157–162, Austin, TX, July 2000.
[5] R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to

solve real-world SAT instances. In Proceedings of AAAI-97: 14th National

Conference on Artificial Intelligence, pages 203–208, Providence, RI, July
1997.

[6] P. Beame, R. Impagliazzo, T. Pitassi, and N. Segerlind. Memoization and
DPLL: Formula caching proof systems. In Proceedings 18th Annual IEEE

Conference on Computational Complexity, pages 225–236, Aarhus, Denmark,
July 2003.

[7] E. Birnbaum and E. L. Lozinskii. The good old Davis-Putnam procedure
helps counting models. Journal of Artificial Intelligence Research, 10:457–
477, 1999.

[8] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, 35(8):677–691, 1986.

[9] A. Darwiche. Decomposable negation normal form. Journal of the ACM, 48
(4):608–647, 2001.

[10] A. Darwiche. New advances in compiling CNF into decomposable negation
normal form. In Proceedings of ECAI-04: 16th European Conference on

Artificial Intelligence, pages 328–332, Valencia, Spain, Aug. 2004.
[11] A. Darwiche. The quest for efficient probabilistic inference, July 2005. Invited

Talk, IJCAI-05.
[12] A. Darwiche and P. Marquis. A knowledge compilation map. Journal of

Artificial Intelligence Research, 17:229–264, 2002.
[13] J. Davies and F. Bacchus. Using more reasoning to improve #SAT solving. In

Proceedings of AAAI-07: 22nd National Conference on Artificial Intelligence,
pages 185–190, Vancouver, BC, July 2007.

[14] N. Eén and N. Sörensson. MiniSat: A SAT solver with conflict-clause mini-
mization. In Proceedings of SAT-05: 8th International Conference on Theory

and Applications of Satisfiability Testing, St. Andrews, U.K., June 2005.

its satisfying assignments.

20 Chapter 20. Model Counting

[15] E. Fischer, J. A. Makowsky, and E. V. Ravve. Counting truth assignments
of formulas of bounded tree-width or clique-width. Discrete Applied Mathe-

matics, 156(4):511–529, 2008.
[16] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to

the Theory of NP-Completeness. W. H. Freeman and Company, 1979.
[17] V. Gogate and R. Dechter. A new algorithm for sampling CSP solutions

uniformly at random. In CP-06: 12th International Conference on Principles

and Practice of Constraint Programming, volume 4204 of Lecture Notes in

Computer Science, pages 711–715, Nantes, France, Sept. 2006.
[18] V. Gogate and R. Dechter. Approximate counting by sampling the backtrack-

free search space. In Proceedings of AAAI-07: 22nd National Conference on

Artificial Intelligence, pages 198–203, Vancouver, BC, July 2007.
[19] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. From sampling

to model counting. In Proceedings of IJCAI-07: 20th International Joint

Conference on Artificial Intelligence, pages 2293–2299, Hyderabad, India,
Jan. 2007.

[20] C. P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. Short XORs
for model counting; from theory to practice. In Proceedings of SAT-07:

10th International Conference on Theory and Applications of Satisfiability

Testing, volume 4501 of Lecture Notes in Computer Science, pages 100–106,
Lisbon, Portugal, May 2007.

[21] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strat-
egy for obtaining good bounds. In Proceedings of AAAI-06: 21st National

Conference on Artificial Intelligence, pages 54–61, Boston, MA, July 2006.
[22] C. P. Gomes and M. Sellmann. Streamlined constraint reasoning. In CP-

04: 10th International Conference on Principles and Practice of Constraint

Programming, volume 3258 of Lecture Notes in Computer Science, pages
274–289, Toronto, Canada, Oct. 2004.

[23] G. Gottlob, F. Scarcello, and M. Sideri. Fixed-parameter complexity in AI
and nonmonotonic reasoning. Artificial Intelligence, 138(1-2):55–86, 2002.

[24] M. R. Jerrum, L. G. Valiant, and V. V. Vazirani. Random generation of
combinatorial structures from a uniform distribution. Theoretical Computer

Science, 43:169–188, 1986.
[25] R. M. Karp and M. Luby. Monte-Carlo algorithms for the planar multiter-

minal network reliability problem. Journal of Complexity, 1(1):45–64, 1985.
[26] R. M. Karp, M. Luby, and N. Madras. Monte-Carlo approximation algo-

rithms for enumeration problems. Journal of Algorithms, 10(3):429–448,
1989.

[27] P. Kilby, J. Slaney, S. Thiébaux, and T. Walsh. Estimating search tree size. In
Proceedings of AAAI-06: 21st National Conference on Artificial Intelligence,
pages 1014–1019, Boston, MA, July 2006.

[28] S. Kirkpatrick, D. Gelatt Jr., and M. P. Vecchi. Optimization by simuleated
annealing. Science, 220(4598):671–680, 1983.

[29] L. Kroc, A. Sabharwal, and B. Selman. Leveraging belief propagation, back-
track search, and statistics for model counting. In CPAIOR-08: 5th Inter-

national Conference on Integration of AI and OR Techniques in Constraint

Programming, volume 5015 of Lecture Notes in Computer Science, pages

Chapter 20. Model Counting 21

127–141, Paris, France, May 2008.
[30] M. L. Littman, S. M. Majercik, and T. Pitassi. Stochastic Boolean satisfia-

bility. Journal of Automated Reasoning, 27(3):251–296, 2001.
[31] N. Madras. Lectures on Monte Carlo methods. In Field Institute Monographs,

volume 16. American Mathematical Society, 2002.
[32] S. M. Majercik and M. L. Littman. Using caching to solve larger probabilistic

planning problems. In Proceedings of AAAI-98: 15th National Conference

on Artificial Intelligence, pages 954–959, Madison, WI, July 1998.
[33] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and

E. Teller. Equations of state calculations by fast computing machines. Jour-

nal of Chemical Physics, 21:1087–1092, 1953.
[34] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:

Engineering an efficient SAT solver. In Proceedings of DAC-01: 38th Design

Automation Conference, pages 530–535, Las Vegas, NV, June 2001.
[35] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for ap-

proximate inference: An empirical study. In Proceedings of UAI-99: 15th

Conference on Uncertainty in Artificial Intelligence, pages 467–475, Sweden,
July 1999.

[36] N. Nishimura, P. Ragde, and S. Szeider. Solving #SAT using vertex covers.
In Proceedings of SAT-06: 9th International Conference on Theory and Ap-

plications of Satisfiability Testing, volume 4121 of Lecture Notes in Computer

Science, pages 396–409, Seattle, WA, Aug. 2006.
[37] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[38] J. D. Park. MAP complexity results and approximation methods. In Proceed-

ings of UAI-02: 18th Conference on Uncertainty in Artificial Intelligence,
pages 388–396, Edmonton, Canada, Aug. 2002.

[39] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-

sible Inference. Morgan Kaufmann, 1988.
[40] K. Pipatsrisawat and A. Darwiche. A lightweight component caching scheme

for satisfiability solvers. In Proceedings of SAT-07: 10th International Con-

ference on Theory and Applications of Satisfiability Testing, volume 4501 of
Lecture Notes in Computer Science, pages 294–299, Lisbon, Portugal, May
2007.

[41] D. Roth. On the hardness of approximate reasoning. Artificial Intelligence,
82(1-2):273–302, 1996.

[42] R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley &
Sons, 1981.

[43] T. Sang, F. Bacchus, P. Beame, H. A. Kautz, and T. Pitassi. Combin-
ing component caching and clause learning for effective model counting. In
Proceedings of SAT-04: 7th International Conference on Theory and Appli-

cations of Satisfiability Testing, Vancouver, BC, May 2004.
[44] T. Sang, P. Beame, and H. A. Kautz. Heuristics for fast exact model count-

ing. In Proceedings of SAT-05: 8th International Conference on Theory and

Applications of Satisfiability Testing, volume 3569 of Lecture Notes in Com-

puter Science, pages 226–240, St. Andrews, U.K., June 2005.
[45] T. Sang, P. Beame, and H. A. Kautz. Performing Bayesian inference by

weighted model counting. In Proceedings of AAAI-05: 20th National Con-

22 Chapter 20. Model Counting

ference on Artificial Intelligence, pages 475–482, Pittsburgh, PA, July 2005.
[46] B. Selman, H. Kautz, and B. Cohen. Local search strategies for satisfiability

testing. In D. S. Johnson and M. A. Trick, editors, Cliques, Coloring and

Satisfiability: the Second DIMACS Implementation Challenge, volume 26 of
DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
pages 521–532. American Mathematical Society, 1996.

[47] L. J. Stockmeyer. On approximation algorithms for #P. SIAM Journal on

Computing, 14(4):849–861, 1985.
[48] M. Thurley. sharpSAT - counting models with advanced component caching

and implicit BCP. In Proceedings of SAT-06: 9th International Conference

on Theory and Applications of Satisfiability Testing, volume 4121 of Lecture

Notes in Computer Science, pages 424–429, Seattle, WA, Aug. 2006.
[49] S. Toda. On the computational power of PP and ⊕P. In FOCS-89: 30th

Annual Symposium on Foundations of Computer Science, pages 514–519,
1989.

[50] G. S. Tseitin. On the complexity of derivation in the propositional calculus.
In A. O. Slisenko, editor, Studies in Constructive Mathematics and Mathe-

matical Logic, Part II. 1968.
[51] L. G. Valiant. The complexity of computing the permanent. Theoretical

Computer Science, 8:189–201, 1979.
[52] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions.

Theoretical Computer Science, 47(3):85–93, 1986.
[53] W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting

random walk strategies. In Proceedings of AAAI-04: 19th National Confer-

ence on Artificial Intelligence, pages 670–676, San Jose, CA, July 2004.
[54] W. Wei and B. Selman. A new approach to model counting. In Proceedings

of SAT-05: 8th International Conference on Theory and Applications of Sat-

isfiability Testing, volume 3569 of Lecture Notes in Computer Science, pages
324–339, St. Andrews, U.K., June 2005.

[55] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Constructing free-energy ap-
proximations and generalized belief propagation algorithms. IEEE Transac-

tions on Information Theory, 51(7):2282–2312, 2005.

Index

#P, 2

backtrack-free search space, 13
belief propagation, 16
binary decision diagram, 9
BP, see belief propagation

caching, 7
compilation, see knowledge compila-

tion
component caching, see caching
components, 6

d-DNNF, 9
decomposable negation normal form,

9
DPLL, 5

equality reduction, 9

failed literal, 8
formula caching, see caching
FPRAS, 4

hyper-binary resolution, 9

implicit BCP, 8
importance sampling, 13

knowledge compilation, 9

look ahead, 8

Markov Chain Monte Carlo (MCMC),
4, 11

model counter
ApproxCount, 12
BPCount, 17
c2d, 9

Cachet, 8
CDP, 5
MBound, 15
MiniCount, 17
Relsat, 6
SampleCount, 14
SampleMinisat, 13
sharpSAT, 8
XOR streamlining, 15

model counting, 1
approximate, 11
exact, 4
FPRAS, 4

number P, see #P

parity constraint, 15
partition function, 17
permanent, 3
phase transition, 7
PP, 4
PSPACE, 4

quantified Boolean formula, 3

random problems
3-SAT, 7

reduction
counting, 3
parsimonious, 3

sharp P, see #P
solution counting, see model count-

ing
solution sampling, 11, 13

XOR constraint, 15

23

	Model Counting
	Computational Complexity of Model Counting
	Exact Model Counting
	Approximate Model Counting
	Conclusion
	References

