A Content Propagation Metric for Efficient Content Distribution

Ryan S. Peterson†*, Bernard Wong‡*, and Emin Gün Sirer†*

† Department of Computer Science, Cornell University
‡ School of Computer Science, University of Waterloo
* United Networks, LLC

August 18, 2011
Content Distribution

- Origin server
- Cache servers
- End users
BW in Client-Server

- Origin server
- Cache servers
- End users
BW in Peer-to-Peer

origin server

cache servers

end users in swarms
BW in **Antfarm**

- **Origin server**
- **Cache servers**
- **End users in swarms**
Goal

Efficiently use all available bandwidth
Problem Definition

- The general multi-swarm content distribution problem
 - **given**: hosts, swarms, and swarm memberships
 - **find**: allocation of each host’s upload bandwidth among its swarms that maximizes system-wide bandwidth
Approach

New metric that steers hosts toward a globally efficient allocation of resources

Enables each host to measure its impact on each swarm and adjust its bandwidth allocations accordingly
Approach

New metric that steers hosts toward a globally efficient allocation of resources

Content Propagation Metric
Outline

The CPM

V-Formation

Evaluation
Benefit of a Block

p's choice: upload the next block to s_1 or s_2?

Which swarm will benefit more?
Determining Benefit

- What block p uploads
- Distribution of blocks in the swarms
- Sizes of the swarms
- Network conditions among peers
- The direct recipient of p's block

Use history to predict the future
Intuition

Measure how “fast” p’s blocks propagate in each swarm

Use the result as an estimate of the benefit that the swarms derive from p’s blocks
Content Propagation Metric

Block propagation bandwidth: rate that an uploaded block propagates in a fixed time interval τ

CPM: rolling average of a peer’s recent block propagation bandwidths for a swarm
Using the CPM

• Each host measures random uploaded blocks to maintain a CPM value for each swarm

• Hosts upload to swarms with the largest CPM values when faced with competing requests

• Hosts proactively probe new swarms and swarms with stale CPM values
CPM Case Study
competition for block propagation
CPM Case Study

- Bandwidth from cache
- Time

Network nodes and bandwidth visualization.
CPM Overview

• Identifies neediest swarms
• Easy to measure
• Can allocate bandwidth from a single server
• Accounts for interference from competing hosts
Outline

The CPM

V-Formation

Evaluation
V-Formation

- Based on our hybrid architecture
- A logically centralized coordinator provides efficient bookkeeping
- A token protocol enables the coordinator to track blocks and monitor peers
Coordinator

- Measures swarm dynamics
 - tracks block transfers based on spent tokens
- Computes peers’ CPM values
 - periodically sends updates to peers
- Provides accountability
 - detects and blocks misbehaving peers
Wire Protocol Goals

• Track block transfers among peers
• Disseminate CPM values and peer lists
• Enforce peer behavior
Wire Protocol

- coordinator
- join s_i
- peerlist

Diagram showing network topology and protocol interactions.
Wire Protocol

cordinator

tokens

get tokens
Wire Protocol

coordinator

want block

block
Wire Protocol

- coordinator
- token
- deposit tokens
Wire Protocol

coordinator

coordinator's state

b1

time
Wire Protocol

coordinator

coordinator’s state

CPM value

announce

b1

time
Coordinator Design

- Stores membership info, propagation data, and CPMs.
- Distributed, shared state.
- Web server handles peer requests, records block propagation data continuously.
- Processors continuously process block propagation data.
Coordinator State

• **Soft state stored in memcached**

 • **Swarm**: peers, number of blocks

 • **Peers**: addr, swarms, block propagation bandwidths, CPMs

 • **Blocks**: swarm, propagation graph with timestamped, peer-identified nodes

• **Updated via atomic CAS operations**
Outline

The CPM

V-Formation

Evaluation
Evaluation

• Built and deployed V-Formation as a video-sharing service called FlixQ
• Uses the CPM to achieve high performance
• Coordinator scales to large deployments
Experimental Setup

• Coordinator on Amazon EC2
• 380 peers on PlanetLab with realistic bandwidth capacities
• 200 swarms based on IMDb movie popularities and sizes
• 20% of peers belong to multiple swarms
• 2 caches with different subsets of content
End-to-End Performance

- BitTorrent
- Antfarm
- V-Formation

aggregate bandwidth (KB/s) vs. time (s)
Performance of Heuristics

- V-Formation
- Largest swarm
- Global rarest
- Random
- Smallest swarm

aggregate bandwidth (KB/s)

time (s)
Scalability

- bandwidth
- state size

Number of peers vs.
Coordinator bandwidth (KB/s)
Coordinator state (MB)
Related Work

• Content Distribution Networks
 - Antfarm, Akamai, CoBlitz, CoDeeN, ECHOS, Coral, Slurpie, YouTube, Hulu, GridCast, Tribler, Joost, Huang et al. 2008, Freedman et al. 2008, ...

• P2P Swarming
 - BitTorrent, BitTyrant, PropShare, BitTornado, BASS, Annapureddy et al. 2007, Guo et al. 2005, Pouwelse et al. 2005, Zhang et al. 2011, OneSwarm, ...

• Incentives and microcurrencies
 - Dandelion, BAR Gossip, Samsara, Karma, SHARP, PPay, Kash et al. 2007, Levin et al. 2009, iOwe, ...
Conclusions

• New hybrid approach for efficient bandwidth allocation

• Decentralized metric enables hosts to measure their global benefit

• Centralized implementation drives hosts toward globally efficient use of resources

http://flixq.com