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Abstract

Despite the abundance of frequently changing informa-
tion, the Web lacks a publish-subscribe interface for de-
livering updates to clients. The use of naive polling for
detecting updates leads to poor performance and lim-
ited scalability as clients do not detect updates quickly
and servers face high loads imposed by active polling.
This paper describes a novel publish-subscribe system
for the Web called Corona, which provides high perfor-
mance and scalability through optimal resource alloca-
tion. Users register interest in Web pages through exist-
ing instant messaging services. Corona monitors the sub-
scribed Web pages, detects updates efficiently by allocat-
ing polling load among cooperating peers, and dissemi-
nates updates quickly to users. Allocation of resources
for polling is driven by a distributed optimization engine
that achieves the best update performance without ex-
ceeding load limits on content servers. Large-scale sim-
ulations and measurements from PlanetLab deployment
demonstrate that Corona achieves orders of magnitude
improvement in update performance at a modest cost.

1 Introduction

Even though Web content changes rapidly, existing Web
protocols do not provide a mechanism for automatically
notifying users of updates. The growing popularity of
frequently updated content, such as Weblogs, collabora-
tively authored Web pages (wikis), and news sites, mo-
tivates a publish-subscribe mechanism that can deliver
updates to users quickly and efficiently. This need for
asynchronous update notification has led to the emer-
gence of micronews syndication tools based on naive, re-
peated polling. The wide acceptance of such micronews
syndication tools indicates that backwards compatibility
with existing Web tools and protocols is critical for rapid
adoption.

However, publish-subscribe through uncoordinated
polling, similar to the current micronews syndication,
suffers from poor performance and scalability. Sub-
scribers do not receive updates quickly due to the funda-
mental limit posed by the polling period, and are tempted
to poll at faster rates in order to detect updates quickly.

Consequently, content providers have to handle the high
bandwidth load imposed by subscribers, each polling in-
dependently and repeatedly for the same content. More-
over, such a workload tends to be “sticky;” that is, users
subscribed to popular content tend not to unsubscribe af-
ter their interest diminishes, causing a large amount of
wasted bandwidth. Existing micronews syndication sys-
tems provide ad hoc, stop-gap measures to alleviate these
problems. Content providers currently impose hard rate-
limits based on IP addresses, which render the system
inoperable for users sharing an IP address, or they pro-
vide hints for when not to poll, which are discretionary
and imprecise. The fundamental problem is that an ar-
chitecture based on naive, uncoordinated polling leads to
ineffective use of server bandwidth.

This paper describes a novel, decentralized system for
detecting and disseminating Web page updates. Our sys-
tem, called Corona, provides a high-performance up-
date notification service for the Web without requiring
any changes to the existing infrastructure, such as Web
servers. Corona enables users to subscribe for updates to
any existing Web page or micronews feed, and delivers
updates asynchronously. The key contribution that en-
ables such a general and backwards-compatible system
is a distributed, peer-to-peer, cooperative resource man-
agement framework that can determine the optimal re-
sources to devote to polling data sources in order to meet
system-wide goals.

The central resource-performance tradeoff in a
publish-subscribe system in which publishers serve con-
tent only when polled involves bandwidth versus update
latency. Clearly, polling data sources more frequently
will enable the system to detect and disseminate updates
earlier. Yet polling every data source constantly would
place a large burden on publishers, congest the network,
and potentially run afoul of server-imposed polling lim-
its that would ban the system from monitoring the mi-
cronews feed or Web page. The goal of Corona, then, is
to maximize the effective benefit of the aggregate band-
width available to the system while remaining within
server-imposed bandwidth limits.

Corona resolves the fundamental tradeoff between
bandwidth and update latency by expressing it formally



as a mathematical optimization problem. The system
then computes the optimal way to allocate bandwidth to
monitored Web objects using a decentralized algorithm
that works on top of a distributed peer-to-peer overlay.
This allocation takes object popularity, update rate, con-
tent size, and internal system overhead stemming from
accounting and dissemination of meta-information into
account, and yields a polling schedule for different ob-
jects that will achieve global performance goals, subject
to resource constraints. Corona can optimize the sys-
tem for different performance goals and resource limits.
In this paper, we examine two relevant goals: how to
minimize update latency while ensuring that the average
load on publishers is no more than what it would have
been without Corona, and how to achieve a targeted up-
date latency while minimizing bandwidth consumption.
We also examine variants of these two main approaches
where the load is more fairly balanced across objects.

The front-end client interface to Corona is through
existing instant messaging (IM) services. Users sub-
scribe for content by sending instant messages to a reg-
istered Corona IM handle, and receive update notifica-
tions asynchronously. Internally, Corona consists of a
cloud of nodes that monitor the set of active feeds or
Web pages called channels. The Corona resource allo-
cation algorithm determines the number of nodes desig-
nated to monitor each channel. Cooperative polling en-
sures that the system can detect updates quickly while no
single node exceeds server-designated limits on polling
frequency. Each node dedicated to monitoring a channel
has a copy of the latest version of the channel contents.
A feed-specific difference engine determines whether de-
tected changes are germane by filtering out superficial
differences such as timestamps and advertisements, ex-
tracts the relevant portions that have changed, and dis-
tributes the delta-encoded changes to all internal nodes
assigned to monitor the channel, which in turn distribute
them to subscribed clients via IM.

We have implemented a prototype of Corona and de-
ployed it on PlanetLab. Evaluation of this deployment
shows that Corona achieves more than an order of mag-
nitude improvement in update performance. In experi-
ments parameterized by real RSS workload collected at
Cornell [19] and spanning 60 PlanetLab nodes and in-
volving 150,000 subscriptions for 7500 different chan-
nels, Corona clients see fresh updates in intervals of
45 seconds on average compared to legacy RSS clients,
which see a mean update interval of 15 minutes. At
all times during the experiment, Corona limits the total
polling load on the content servers within the load im-
posed by the legacy RSS clients.

Overall, Corona is a new overlay-based publish-
subscribe system for the Web that provides asynchronous
notifications, fast update detection, and optimal band-

width utilization. This paper makes three contributions:
(i) it outlines the general design of a publish-subscribe
system that does not require any changes to content
sources, (ii) formalizes the tradeoffs as an optimization
problem and presents a novel distributed numerical so-
lution technique for determining the allocation of band-
width that will achieve globally targeted goals while re-
specting resource limits, and (iii) presents results from
extensive simulations and a live deployment that demon-
strate that the system is practical.

The rest of the paper is organized as follows. The
next section provides background on publish-subscribe
systems and discusses other related work. Section 3 de-
scribes the architecture of Corona in detail. Implemen-
tation details are presented in Section 4 and experimen-
tal results based on simulations and deployment are de-
scribed in Section 5. Finally, Section 6 summarizes our
contributions and concludes.

2 Background and Related Work

Publish-subscribe systems have raised considerable in-
terest in the research community over the years. In this
section, we provide background on publish-subscribe
based content distribution and summarize the current
state of the art.

Publish-Subscribe Systems: The publish-subscribe
paradigm consists of three components: publishers, who
generate and feed the content into the system, sub-
scribers, who specify content of their interest, and an in-
frastructure for matching subscriber interests with pub-
lished content and delivering matched content to the
subscribers. Based on the expressiveness of subscriber
interests, pub-sub systems can be classified as fopic-
based or content-based. In topic-based systems, pub-
lishers and subscribers are connected together by pre-
defined topics, called channels; content is published on
well-advertised channels to which users subscribe to re-
ceive asynchronous updates. Content-based systems en-
able subscribers to express elaborate queries on the con-
tent and use sophisticated content filtering techniques to
match subscriber interests with published content.

Prior research on pub-sub systems has primarily fo-
cused on the design and implementation of content fil-
tering and event delivery mechanisms. Topic-based
publish-subscribe systems have been built based on sev-
eral decentralized mechanisms, such as group commu-
nication in Isis [13], shared object spaces in Linda [5],
TSpace [36], and Java Spaces [16] and rendezvous points
in TIBCO [35] and Herald [4]. Content-based publish-
subscribe systems that use in-network content filter-
ing and aggregation include SIENA [6], Gryphon [34],
Elvin [32], and Astrolabe [37]. While the above
publish-subscribe systems impose well-defined struc-



tures for the content, few systems have been proposed
for semi-structured and unstructured content. YFilter [8],
Quark [3], XTrie [7], and XTreeNet [11] are recent archi-
tectures for supporting complex content-based queries
on semi-structured XML data. Conquer [21] and We-
bCQ [20] support unstructured Web content.

The fundamental drawback of the preceding publish-
subscribe systems is their non-compatibility with the cur-
rent Web architecture. They require substantial changes
in the way publishers serve content, expect subscribers to
learn sophisticated query languages, or propose to lay-
out middle-boxes in the core of the Internet. On the
other hand, Corona interoperates with the current pull-
based Web architecture, requires no changes to legacy
Web servers, and provides an easy-to-use IM based in-
terface to the users. Optimal resource management in
Corona aimed at bounding network load insulates Web
servers from high load during flash-crowds.

Micronews Systems: Micronews feeds are short
descriptions of frequently updated information, such as
news stories and blog updates, in XML-based formats
such as RSS [30] and Atom [1]. They are accessed via
HTTP through URLSs and supported by client applica-
tions and browser plug-ins called feed readers, which
check the contents of micronews feeds periodically and
automatically on the user’s behalf and display the re-
turned results. The micronews standards envision a
publish-subscribe model of content dissemination and
define XML tags such as cloud that tell clients how to re-
ceive asynchronous updates, as well as TTL, SkipHours,
and SkipDays that inform clients when not to poll. Yet
few content providers currently use the cloud tag to de-
liver asynchronous updates.

Recently, commercial services such as Bloglines,
NewsGator, and Queoo have started disseminating mi-
cronews updates to users. Corona differs fundamentally
from these commercial services, which use fragile cen-
tralized servers and relentless polling to detect updates.
Corona is layered on a self-organizing overlay comprised
of cooperative peers that share updates, judiciously de-
termine the amount of bandwidth consumed by polling,
and can provide strong bandwidth guarantees.

FeedTree [31] is a recently proposed system for dis-
seminating micronews that also uses a structured over-
lay and shares updates between peers. FeedTree nodes
perform cooperative update detection in order to reduce
update dissemination latencies, and Corona shares the in-
sight with FeedTree that cooperative polling can drasti-
cally reduce update latencies. FeedTree decides on the
number of nodes to dedicate to polling each channel
based on heuristics. Corona’s key contribution is the use
of informed tradeoffs to optimal resource management.
This principled approach enables Corona to provide the
best update performance for its users, while ensuring that

content servers are lightly loaded and do not get over-
whelmed due to flash-crowds or sticky traffic.

CAM [26] and WIC [25] are two techniques for al-
locating bandwidth for polling data sources on a single
node. Similar to Corona, they perform resource alloca-
tion using analytical models for the tradeoff and numeri-
cal techniques to find near-optimal allocations. However,
these techniques are limited to a single node. Corona per-
forms resource allocation in a decentralized, cooperative
environment and targets globally optimal update perfor-
mance.

Overlay Networks: Corona is layered on structured
overlays and leverages the underlying structure to facil-
itate optimal resource management. Recent years have
seen a large number of structured overlays that orga-
nize the network based on rings [33, 29, 39, 23], hyper-
dimensional cubes [28], butterfly structures [22], de-
Bruijn graphs [17, 38], or skip-lists [14]. Corona is ag-
nostic about the choice of the overlay and can be easily
layered on any overlay with uniform node degree, includ-
ing the ones listed here.

Corona’s approach to a peer-to-peer resource man-
agement problem has a similar flavor to that of Bee-
hive [27], a structured replication framework that re-
solves space-time tradeoffs optimizations in structured
overlays. Corona differs fundamentally from Beehive in
three ways. First, the Beehive problem domain is lim-
ited to object replication in systems where objects have
homogeneous popularity, size, and update rate proper-
ties, whereas Corona is designed for the Web environ-
ment where such properties can vary by several orders of
magnitude between objects [10, 19]. Thus, Corona takes
object characteristics into account during optimization.
Second, the more complex optimization problem ren-
ders the Beehive solution technique, based on mathemat-
ical derivation, fundamentally unsuitable for the problem
tackled by Corona. Hence, Corona employs a more gen-
eral and sophisticated numerical algorithm to perform its
optimizations. Finally, the resource-performance trade-
offs that arise in Corona are fundamentally different from
the tradeoffs that Beehive addresses.

3 Corona

Corona (Cornell Online News Aggregator) is a topic-
based publish-subscribe system for the Web. It pro-
vides asynchronous update notifications to clients while
interoperating with the current pull-based architecture
of the Web. URLs of Web content serve as topics or
channels in Corona; users register their interest in some
Web content by providing its URL and receive updates
asynchronously about changes posted to that URL. Any
Web object identifiable by a URL can be monitored with
Corona. In the background, Corona checks for updates
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Figure 1: Corona Architecture: Corona is a distributed
publish-subscribe system for the Web. It detects Web up-
dates by polling cooperatively and notifies clients through
instant messaging.

on registered channels by cooperatively polling the con-
tent servers from geographically distributed nodes.

We envision Corona as an infrastructure service of-
fered by a set of widely distributed nodes. These nodes
may be all part of the same administrative domain, such
as Akamai, or consist of server-class nodes contributed
by participating institutions. By participating in Corona,
institutions can significantly reduce the network band-
width consumed by frequent redundant polling for con-
tent updates, as well as reduce the peak loads seen at
content providers that they themselves may host. Corona
nodes self-organize to form a structured overlay sys-
tem. We use structured overlays to organize the system,
as they provide decentralization, good failure resilience,
and high scalability [33, 29, 39, 28, 9, 14, 17, 23, 24, 38].
Figure 1 illustrates the overall architecture of Corona.

The key feature that enables Corona to achieve fast
update detection is cooperative polling. Corona assigns
multiple nodes to periodically poll the same channel and
shares updates detected by any polling node. In gen-
eral, n nodes polling with the same polling interval and
randomly distributed polling times can detect updates n
times faster if they share updates with each other. While
it is tempting to take the maximum advantage of coop-
erative polling by having every Corona node poll for ev-
ery feed, such a naive approach is clearly unscalable and
would impose substantial network load on both Corona
and content servers.

Corona makes informed decisions on distributing
polling tasks among nodes. The number of nodes that
poll for each channel is determined based on an analy-
sis of the fundamental tradeoff between update perfor-
mance and network load. Corona poses this tradeoff as
an optimization problem and obtains the optimal solu-
tion using Honeycomb, a light-weight toolkit for com-
puting optimal performance-overhead tradeoffs in struc-
tured distributed systems. This principled approach en-
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Figure 2: Cooperative Polling in Corona: Each channel is
assigned a wedge of nodes to poll the content servers and de-
tect updates. Corona determines the optimal wedge size for
each channel through analysis of the global performance-
overhead tradeoff.

ables Corona to efficiently resolve the tradeoff between
performance and scalability.

In this section, we provide detailed descriptions of the
components of Corona’s architecture, including the an-
alytical models, optimization framework, update detec-
tion and notification mechanisms, and user interface.

3.1 Analytical Modeling

Our analysis-driven approach can be easily applied on
any distributed system organized as a structured overlay
with uniform node degree. In this paper, we describe
Corona using Pastry [29] as the underlying substrate.

Pastry organizes the network into a ring by assigning
identifiers from a circular numeric space to each node.
The identifiers are treated as a sequence of digits of base
b. In addition to neighbors along the ring, each node
maintains contact with nodes that have matching prefix
digits. These long-distance contacts are represented in a
tabular structure called a routing table. The entry in the
i*" row and j*" column of a node’s routing table points to
a node whose identifier shares 7 prefix digits and whose
(i + 1)*" digit is j. Essentially, the routing table defines
a directed acyclic graph (DAG) rooted at each node, en-
abling a node to reach any other node in log;, IV hops.

Corona assigns nodes in well-defined wedges of the
Pastry ring for polling each channel. Each channel is
assigned an identifier from the same circular numeric
space. A wedge is as set of nodes sharing a common
number of prefix digits with a channel’s identifier. A
channel with polling level [ is polled by all nodes with
at least [ matching prefix digits in their identifiers. Thus,
polling level 0 indicates that all the nodes in the system
poll for the channel. Figure 2 illustrates the concept of
polling levels in Corona.

Assigning well-defined portions of the ring to each
channel enables Corona to manage polling efficiently
with little overhead. The set of nodes polling for a
channel can be represented by just a single number, the



polling level, eliminating the expensive O(n) complexity
for managing state about cooperating nodes. Moreover,
this also facilitates efficient update sharing, as a wedge
is a subset of the DAG rooted at each node, and all the
nodes in a wedge can be reached quickly using the con-
tacts in the routing table.

The polling level of a channel quantifies its
performance-overhead tradeoff. A channel at level [ has,
on average, % nodes polling it, which can cooperatively

detect updates in lb— time on average, where 7 is the

polling interval. We estimate the average update detec-
tion time at a single node polling periodically at an inter-
val 7 to be . Simultaneously, the collective load placed
on the content server of the channel is Té\l[ Note that
we do not include the propagation delay for sharing up-
dates in this analysis because updates can be detected by
comparing against any old version of the content. Hence,
even if an update detected at a different node in the sys-
tem is received late, the time to detect the next update at
the current node does not change.

An easy way to set polling levels is to independently
choose a level for each channel based on these esti-
mates. However, such an approach involves investigating
heuristics for determining the appropriate performance
requirement for each channel and for dividing the total
load between different channels. Moreover, it does not
provide fine-grained control over the performance of the
system, often causing it to operate far from optimally.
The rest of this section describes how the tradeoffs can be
posed as mathematical optimization problems to achieve
different performance requirements.

Corona-Lite: The first performance goal we ex-
plore is minimizing the average update detection time
while bounding the total network load placed on content
servers. Corona-Lite improves the update performance
seen by the clients while ensuring that the content servers
handle a light load: no more than they would handle from
the clients if the clients fetched the objects directly from
the servers.

The optimization problem for Corona-Lite is defined
in Table 1. The overall update performance is measured
by taking an average of the update detection time of each
channel weighted by the number of clients subscribed to
the channels. We weigh the average using the number of
subscriptions because update performance is an end user
experience, and each client counts as a separate unit in
the average. The target network load for this optimiza-
tion is simply the total number of subscriptions in the
system.

Corona-Lite clients experience the maximum bene-
fits of cooperation. Clients of popular channels gain
greater benefits than clients of less popular channels. Yet,
Corona-Lite does not suffer from “diminishing returns,”
using its surplus polling capacity on less popular chan-

nels where the extra bandwidth yields higher marginal
benefit. Since improvement in update performance is in-
versely proportional to the number of polling nodes, a
naive heuristic-based scheme that assigns polling nodes
in proportion to number of subscribers would clearly suf-
fer from diminishing returns. Corona, on the other hand,
distributes the surplus load to other, less popular chan-
nels, improving their update detection times and achiev-
ing a better global average.

Corona-Lite:
. M pli
min. Zl e S.t. Zl Szbz < 1 QZ

Minimize average update detection time, while
bounding the load placed on content servers.

Corona-Fast:
pli M
min. 21 31# s.L. 21 a% < T,

Achieve a target average update detection time, while
minimizing the load placed on content servers.

Corona-Fair:
b1 M
min. Zl qu s.t. 21 SW < L G

Minimize average ugdate detection time w.r.t. expected
update frequency, bounding load on content servers.

Corona-Fair-Sqrt:

M i M
min. 32 G L b_

s.t. 21 SW < 1 G

Corona-Fair w1th sqrt weight on the latency ratio to
emphasize infrequently changing channels.

Corona-Fair-Log

: log 7 bw M
min. 21 Gitoer N St 21 Slbl < 1 G

Corona-Fair with log wel%ht on the latency ratio to
emphasize infrequently changing channels.

Notation
7  polling interval
M  number of channels
N number of nodes
b base of structured overlay
T  performance target

o~

i polling level of channel ¢

q; number of clients for channel ¢
s;  content size for channel ¢

u; update interval for channel ¢

Table 1: Performance-Overhead Tradeoffs: This table
summarizes the optimization problems for different perfor-
mance goals in Corona.

Corona-Fast: While Corona-Lite bounds the network
load on the content servers and minimizes update latency,
the update performance it provides can vary depending
on the current workload. Corona-Fast provides stable up-
date performance, which can be maintained steadily at a



desired level through changes in the workload. Corona-
Fast solves the converse of the previous optimization
problem; that is, it minimizes the total network load on
the content servers while meeting a target average up-
date detection time. Corona-Fast enables us to tune the
update performance of the system according to applica-
tion needs. For example, a stock-tracker application may
choose a target of 30 seconds to quickly detect changes
to stock prices.

Corona-Fast shields legacy Web servers from sudden
increases in load. A sharp increase in the number of sub-
scribers for a channel does not trigger a corresponding
increase in network load on the Web server since Corona-
Fast does not increase polling after diminishing returns
sets in. In contrast, in legacy RSS, popularity spikes
cause a significant increase in network load on content
providers. Moreover, the increased load typically contin-
ues unabated in legacy RSS as subscribers forget to un-
subscribe, creating “sticky” traffic. Corona-Fast protects
content servers from flash-crowds and sticky traffic.

Corona-Fair: Corona-Fast and Corona-Lite do not
consider the actual rate of change of content in a channel.
While some Web objects are updated every few minutes,
others do not change for days at a time [10, 19]. Corona-
Fair incorporates the update rate of channels into the per-
formance tradeoff in order to achieve a fairer distribution
of update performance between channels. It defines a
modified update performance metric as the ratio of the
update detection time and the update interval of the chan-
nel, which it minimizes to achieve a target load.

While the new metric accounts for the wide difference
in update characteristics, it biases the performance unfa-
vorably against channels with large update interval times.
A channel that does not change for several days experi-
ences long update detection times, even if there are many
subscribers for the channel. We compensate for this bias
by exploring other update performance metrics based on
square root and logarithmic functions, which grow sub-
linearly. A sub-linear metric dampens the tendency of the
optimization algorithm to punish slow-changing yet pop-
ular feeds. Table 1 summarizes the optimization prob-
lems for different versions of Corona.

3.2 Decentralized Optimization

Corona determines the optimal polling levels using the
Honeycomb optimization toolkit. Honeycomb provides
numerical algorithms and decentralized mechanisms for
solving optimization problems that can be expressed as
follows:

M
min. Y fi(l;) st 3 gil) < T
1

Here, f;(I) and g;(l) can define the performance or the
cost for channel ¢ as a function of the polling level .

The preceding optimization problem is NP-Hard, as
the polling levels only take integral values. Hence, in-
stead of using computationally intensive techniques to
find the exact solution, Honeycomb finds an approxi-
mate solution quickly in time comparable to a sorting
algorithm. Honeycomb’s optimization algorithm runs in
O(M log M log N) time.

The solution provided by Honeycomb is accurate and
deviates from the optimal in at most one channel. Honey-
comb achieves this accuracy by finding two solutions that
optimize the problem with slightly altered constraints:
one with a constraint T,; < T and another with con-
straint Ty, > T'. The corresponding solutions L}, and L7
are exactly optimal for the optimization problems with
constraints 7T}, and T} respectively, and differ in at most
one channel. That is, one channel has a different polling
level in L}, than in L};. Note that the optimal solution L*
for the original problem with constraint 7" may actually
decide to allocate channels differently from L7 and L.
Yet, the minimum determined by L* will be bounded by
the minima determined by L, and L, due to monotonic-
ity. Honeycomb then chooses L as the final solution
because it satisfies the constraint 7 strictly.

Honeycomb computes L}; and L}, using a Lagrange
multiplier to transform the optimization problem as fol-
lows:

M

M
arg min. Z fills) = )\[Z g9i(li) = T7.

1

L =

Honeycomb iterates over A and obtains the two solu-
tions L7 and L}, that bracket the minimum using standard
bracketing methods for function optimization in one di-
mension.

Two observations enable Honeycomb to speed up the
optimization algorithm. First, L*()\’) for a single itera-
tion can be computed by finding arg min. f;(1;) — X ¢;(1;)
independently for each channel. This takes O(M log N)
time as the number of levels is bounded by [log N].
Second, for each channel there are only log N val-
ues of A that change arg min.f;(l;) — Ng;(l;). Pre-
computing these A values for each object provides a dis-
crete iteration space of M log N A values. By keep-
ing a sorted list of the A values, Honeycomb computes
the optimal solution in O(log M) iterations. Overall,
the run-time complexity of the optimization algorithm
is O(M log M log N) time, including the time spent in
pre-computation, sorting, and iterations.

The preceding algorithm requires the tradeoff func-
tions f;(I) and g¢;() of all channels in the system in
order to compute the global optimum. Solving the op-
timization problem using limited data available locally
can produce highly inaccurate solutions. On the other
hand, collecting the tradeoff factors for all the channels



at each node is clearly expensive and impractical. It is
possible to gather the tradeoff data at a central node, run
the optimization algorithm at a single location, and then
distribute the optimal levels to peers from the central lo-
cation. We avoid using a centralized infrastructure as it
introduces a single point of failure in the system and has
limited scalability.

Instead, Honeycomb internally aggregates coarse
grained information about global tradeoff factors. It
combines channels with similar tradeoff factors into a
tradeoff cluster. Each cluster summarizes the trade-
off factors for multiple channels and provides coarse-
grained tradeoff information. A ratio of performance and
cost factors, f;/g;, is used as a metric to combine chan-
nels. For example, channels with comparable values for
uq—s are combined into a cluster in Corona-Fair.

Honeycomb nodes periodically exchange the clusters
with contacts in the routing table and aggregate the clus-
ters received from the contacts. Honeycomb keeps the
overhead for cluster aggregation low by limiting the
number of clusters for each polling level to a constant
Tradeoff Bins. Each node receives Tradeoff Bins clus-
ters for every polling level from each contact in the rout-
ing table. Combined, these clusters summarize the trade-
off characteristics of all the channels in the system. The
cluster aggregation overhead in terms of memory state as
well as network bandwidth is limited by the size of the
routing table, and scales with the logarithm of the system
size.

3.3 System Management

Corona is a completely decentralized system, in which
nodes act independently, share load, and achieve glob-
ally optimal performance through mutual cooperation.
Corona spreads load uniformly among the nodes through
consistent-hashing [18]. Each channel in Corona has a
unique identifier and one or more owner nodes managing
it. The identifier is a content-hash of the channel’s URL,
and the primary owner of a channel is the Corona node
with the numerically closest identifier to the channel’s
identifier. Corona adds additional owners for a channel
in order to tolerate failures. These owners are the F' clos-
est neighbors of the primary owner along the ring. In the
event an owner fails, a new neighbor automatically re-
places it.

Owners take responsibility for managing subscrip-
tions, polling, and updates for a channel. Owners receive
subscriptions through the underlying overlay, which au-
tomatically routes all subscription requests of a channel
to its owner. The owners keep state about the subscribers
of a channel and send notifications to them when fresh
updates are detected. In addition, owners also keep track
of channel-specific factors that affect the performance
tradeoffs, namely the number of subscribers, the size

of the content, and the interval at which servers update
channel content. The latter is estimated based on the time
between updates detected by Corona.

Corona manages cooperative polling through a pe-
riodic protocol consisting of an optimization phase, a
maintenance phase, and an aggregation phase. In the
optimization phase, Corona nodes apply the optimiza-
tion algorithm on fine-grained tradeoff data for locally
polled channels and coarse-grained tradeoff clusters ob-
tained from overlay contacts. In the maintenance phase,
changes to polling levels are communicated to peer
nodes in the routing table through maintenance mes-
sages. Finally, the aggregation phase enables nodes to
receive new aggregates of tradeoff factors. In practice,
the three phases occur concurrently at a node with aggre-
gation data piggy-backed on maintenance messages.

Corona nodes operate independently and make deci-
sions to increase or decrease polling levels locally. Ini-
tially, only the owner nodes at level K = [log N poll
for the channels. If an owner decides to lower the polling
level to ' — 1 (based on local optimization), it sends a
message to the contacts in its routing table at row K —1 in
the next maintenance phase. As a result, a small wedge
of level K — 1 nodes start polling for that channel. Sub-
sequently, each of these nodes may independently decide
to further lower the polling level of that channel. Simi-
larly, if an owner node decides to raise the level from
K —1to K, it asks its contact in the K — 1 wedge to
stop polling.

In general, when a level ¢ node lowers the level to ¢ — 1
or raises the level from 7 — 1 back to 7, it instructs its
contact in row ¢ — 1 of its routing table to start or stop
polling for that channel. This control path closely fol-
lows the DAG rooted at the owner node. Nodes at level ¢
(depth K — %) in this DAG decide whether their children
at level ¢ — 1 should poll a channel and convey these de-
cisions periodically every maintenance interval. When a
node is instructed to begin polling for a channel, it waits
for a random interval of time between 0 and the polling
interval before the first poll. This ensures that polls for a
channel at different nodes are randomly distributed over
time.

Corona nodes gather current estimates of tradeoff fac-
tors in the aggregation phase. Owners monitor the num-
ber of subscribers and send out fresh estimates along
with the maintenance message. Subsequent maintenance
messages sent out by descendant nodes in the DAG prop-
agate these estimates to all the nodes in the wedge. The
update interval and size of a feed only change during up-
dates and are therefore sent along with updates. Tradeoff
clusters are also sent by contacts in the routing table in
response to maintenance messages.

Corona inherits robustness and failure-resilience from
the underlying structured overlay. If the current contact



in the routing table fails, the underlying overlay automat-
ically replaces it with another contact. When new nodes
join the system or nodes fail, Corona ensures the transfer
of subscription state to new owners. A node that is no
longer an owner simply erases its subscription state, and
a node that becomes a new owner receives the state from
other owners of the channel. Simultaneous failure of
more than ' adjacent nodes poses a problem for Corona,
as well as to many other peer-to-peer systems; we as-
sume that F' is chosen to make such an occurrence rare.
Note that clients can easily renew subscriptions should a
catastrophic failure lose some subscription state.

Overall, Corona manages polling using light-weight
mechanisms that impose a small, predictable overhead
on the nodes and network. Its algorithms do not rely on
expensive constructs such as consensus, leader election,
or clock synchronization. Networking activity is limited
to contacts in the nodes’ routing tables.

3.4 Update Dissemination

Updates are central to the operation of Corona; hence,
we ensure that they are detected and disseminated effi-
ciently. Corona uses monotonically increasing numbers
to identify versions of content. The version numbers are
based on content modification times whenever the con-
tent carries such a timestamp. For other channels, the
primary owner node assigns version numbers in increas-
ing order based on the updates it receives.

Corona nodes share updates only as delras, the differ-
ences between old and new content, rather than the en-
tire content. A measurement study on micronews feeds
conducted at Cornell shows that the amount of change in
content during an update is typically tiny. The study re-
ports that the average update consists of 17 lines of XML,
or 6.8% of the content size [19], which implies that a
significant amount of bandwidth can be saved through
delta-encoding.

A difference engine enables Corona to identify when
a channel carries new information that needs to be dis-
seminated to subscribed clients. The difference engine
parses the HTML or XML content to discover the core
content in the channel, ignoring frequently changing ele-
ments such as timestamps, counters, and advertisements.
The difference engine generates a delta if it detects an
update after isolating the core content. The data in a
delta resembles the typical output of the POSIX ‘dift’
command: it carries the line numbers where the change
occurs, the changed content, an indication of whether it
is an addition, omission, or replacement, and a version
number of the old content to compare against.

When a delta is generated by a node, it shares the up-
date with all other nodes in the channel’s polling wedge.
To achieve this, the node simply disseminates the delta
along the DAG rooted at it up to a depth equal to the

polling level of the channel. The dissemination along the
DAG takes place using contacts in the routing table of the
underlying overlay. For channels that cannot obtain a re-
liable modification timestamp from the server, the node
detecting the update sends the delta to the primary owner,
which assigns a new version number and initiates the dis-
semination to other nodes polling that channel. Two dif-
ferent nodes may detect a change “simultaneously” and
send deltas to the primary owner. The primary owner
always checks the current delta with the latest updated
version of the content and ignores redundant deltas.

3.5 User Interface

Corona employs instant messaging (IM) as its user in-
terface. Users add Corona as a “buddy” in their favorite
instant messaging system; both subscriptions and update
notifications are then communicated as instant messages
between the users and Corona. Users send request mes-
sages of the form “subscribe url” and “unsubscribe url”
to subscribe and unsubscribe for a channel. A subscribe
or unsubscribe message delivered by the IM system to
Corona is routed to all the owner nodes of the channel,
which update their subscription state. When a new up-
date is detected by Corona, the current primary owner
sends an instant message with the delta to all the sub-
scribers through the IM system. If a subscriber is off-
line at the time an update is generated, the IM system
buffers the update and delivers it when the subscriber
subsequently joins the network.

Delivering updates through instant messaging systems
incurs additional latency since messages are sent through
a centralized service. However, the additional latency is
modest as IM systems are designed to reduce such la-
tencies during two-way communication. Moreover, IM
systems that allow peer-to-peer communication between
their users, such as Skype, deliver messages in quick
time.

Instant messaging enables Corona to be easily accessi-
ble to a large user population, as no computer skills other
than an ability to “chat” are required, and ubiquitous IM
deployment ensures that hosts behind NAT's and firewalls
are supported. Moreover, instant messages also guaran-
tee the authenticity of the source of update messages to
the clients, as instant messaging systems pre-authenticate
Corona as the source through password verification.

4 Implementation

We have implemented a prototype of Corona as an ap-
plication layered on Pastry [29], a prefix-matching struc-
tured overlay system. The implementation uses a 160-bit
SHA-1 hash function to generate identifiers for both the
nodes (based on their IP addresses) and channels (based
on their URLs). Both the base of Pastry and the number
of tradeoff clusters per polling level are set to 16.



Prefix matching overlays occasionally create orphans,
that is, channels with no owners having enough match-
ing prefix digits. Orphans are created when the re-
quired wedge of the identifier space, corresponding to
level [log N — 1, is empty. Corona cannot assign ad-
ditional nodes to poll an orphan channel to improve its
update performance. Moreover, orphans adversely affect
the computation of globally optimal allocation. Corona
handles orphan channels by adjusting the tradeoffs ap-
propriately. The tradeoff factors of orphan channels are
aggregated into a slack cluster, which is used to adjust
the performance target prior to optimization.

Corona’s reliance on IM as an asynchronous commu-
nication mechanism poses some operational challenges.
Corona interacts with IM systems using GAIM [12],
an open source instant messaging client for Unix-based
platforms that supports multiple IM systems including
Yahoo Instant Messenger, AOL Instant Messenger, and
MSN Messenger. Several IM systems have a limitation
that only one instance of a user can be logged on at a
time, preventing all Corona nodes from being logged on
simultaneously. While we hope that IM systems will sup-
port simultaneous logins from automated users such as
Corona in the near future, as they have for several chat
robots, our implementation uses a centralized server to
talk to IM systems as a stop-gap measure. This server
acts as an intermediary for all updates sent to clients as
well as subscription messages sent by clients. Also, IM
systems such as Yahoo rate-limit instant messages sent
by unprivileged clients. Corona’s implementation limits
the rate of updates sent to clients to avoid sending up-
dates in bursts.

Corona trusts the nodes in the system to behave cor-
rectly and generate authentic updates. However, it is
possible that in a collaborative deployment, where nodes
under different administrative domains are part of the
Corona network, some nodes may be malicious and gen-
erate spurious updates. This problem can be easily
solved if content providers are willing to publish digi-
tally signed certificates along with their content. An al-
ternative solution that does not require changes to servers
is to use threshold-cryptography to generate a certificate
for content [40, 15]. The responsibility for generating
partial signatures can be shared among the owners of a
node ensuring that rogue nodes below the threshold level
cannot corrupt the system. Designing and implementing
such a threshold-cryptographic scheme is, however, be-
yond the scope of this paper.

5 [Evaluation

We evaluate the performance of Corona through large-
scale simulations and wide-area experiments on Planet-
Lab [2]. In all our evaluations, we compare the perfor-

mance of Corona to the performance of legacy RSS, a
widely-used micronews syndication system. The simula-
tions and experiments are driven by real-life RSS traces.

We collected characteristics of micronews workloads
and content by passively logging user activity and ac-
tively polling RSS feeds [19]. User activity recorded
between March 22 and May 3 of 2005 at the gate-
way of the Cornell University Computer Science De-
partment provided a workload of 158 clients making
approximately 62,000 requests for 667 different feeds.
The channel popularity closely follows a Zipf distribu-
tion with exponent 0.5. The survey analyzes the update
rate of micronews content by actively polling approxi-
mately 100,000 RSS feeds obtained from syndic8.com.
We poll these feeds at one hour intervals for 84 hours,
and subsequently select a subset of 1000 feeds and poll
them at a finer granularity of 10 minutes for five days.
Comparing periodic snapshots of the feeds shows that
the update interval of micronews content is widely dis-
tributed: about 10% of channels changed within an hour,
while 50% of channels did not change at all during the
five days of polling.

5.1 Simulations

We use tradeoff parameters based on the RSS survey in
our simulations. In order to scale the workload to the
larger scale of our simulations, we extrapolate the distri-
bution of feed popularity from the workload traces and
set the popularity to follow a Zipf distribution with ex-
ponent 0.5. We use a distribution for the update rates of
channels obtained through active polling, setting the up-
date interval of the channels that do not see any updates
to one week.

We perform simulations for a system of 1024 nodes,
100,000 channels, and 5,000,000 subscriptions. We start
each simulation with an empty state and issue all sub-
scriptions at once before collecting performance data.
We run the simulations for six hours with a polling inter-
val of 30 minutes and maintenance interval of one hour.
We study the performance of the three schemes, Corona-
Lite, Corona-Fast, and Corona-Fair, and compare the
performance with that of legacy RSS clients polling at
the same rate of 30 minutes.

Corona-Lite

Figures 3 and 4 show the network load and update perfor-
mance, respectively, for Corona-Lite, which minimizes
average update detection time while bounding the to-
tal load on content servers. The figures plot the net-
work load, in terms of the average bandwidth load placed
on content servers, and update performance, in terms of
the average update detection time. Figure 3 shows that
Corona-Lite stabilizes at the load imposed by legacy RSS
clients. Starting from a clean slate where only owner
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Figure 3: Network Load on Content Servers: Corona-Lite
converges quickly to match the network load imposed by
legacy RSS clients.
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Figure 4: Average Update Detection Time: Corona-Lite
provides 15-fold improvement in update detection time
compared to legacy RSS clients for the same network load.

nodes poll for each channel, Corona-Lite quickly con-
verges to its target in two maintenance phases. The av-
erage load exceeds the target for a brief period before
stabilization. This slight delay is due to nodes not hav-
ing complete information about tradeoff factors of other
channels in the system. However, the discrepancy is
corrected automatically when aggregated global tradeoff
factors are available to each node.

At the same time, Figure 4 shows that Corona-Lite
achieves an average update detection time of about one
minute. The update performance of Corona-Lite repre-
sents an order of magnitude improvement over the av-
erage update detection time of 15 minutes provided by
legacy RSS clients. This substantial difference in per-
formance is achieved through judicious distribution of
polling load between cooperating nodes, while imposing
no more load on the servers than the legacy clients.

Figures 5 and 6 show the number of polling nodes as-
signed by Corona-Lite to different channels and the re-
sulting distribution of update detection times. The x-
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Figure 5: Number of Pollers per Channel: Corona trades
off network load from popular channels to decrease update
detection time of less popular channels and achieve a lower
system-wide average.
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Figure 6: Update Detection Time per Channel: Popular
channels gain greater decrease in update detection time
than less popular channels.

axis shows channels in reverse order of popularity. We
only plot 20,000 channels for clarity. The load imposed
by legacy RSS is equal to the number of clients. For
Corona-Lite, three levels of polling can be identified in
Figure 5: channels clustered around 100 at level 1, chan-
nels with fewer than 10 clients at level 2, and orphan
channels close to the X-axis with just one owner node
polling them. The sharp change in the distribution after
75,000 channels indicates the point where the optimal
solution changes polling levels.

Figure 5 shows that Corona-Lite favors popular chan-
nels over unpopular ones when assigning polling levels.
Yet, it significantly reduces the load on servers of pop-
ular content compared to legacy clients, which impose
a highly skewed load on content servers and overload
servers of popular content. Corona-Lite reduces the load
of the over-loaded servers and transfers the extra load to
servers of less popular content to improve update perfor-
mance.



Average Update | Average Load
Scheme Detection Time | (polls per 30 min
(sec) per channel)
Legacy-RSS 900 50.00
Corona-Lite 53 48.97
Corona-Fair 142 50.14
Corona-Fair-Sqrt 55 49.46
Corona-Fair-Log 53 49.43
Corona-Fast 32 58.75

Table 2: Performance Summary: This table provides a
summary of average update detection time and network
load for different versions of Corona. Overall, Corona
provides significant improvement in update detection time
compared to Legacy RSS, while placing the same load on
servers.

The favorable behavior of Corona-Lite is due to dimin-
ishing returns caused by the inverse relation between the
update detection time and the number of polling nodes.
It is more beneficial to distribute the polling across many
channels than to devote a large percentage of the band-
width to polling the most popular channels. Neverthe-
less, load distribution in Corona-Lite respects the pop-
ularity distribution of channels: popular channels are
polled by more nodes than less popular channels (see
Figure 5). The upshot is that popular channels gain an
order of magnitude improvement in update performance
over less popular ones (see Figure 6).

Corona-Fast

Unlike Corona-Lite, Corona-Fast minimizes the total
load on servers while aiming to achieve a target update
detection latency. Figures 3 and 4 show the network load
and update performance, respectively, for Corona-Fast.
Figure 4 confirms that Corona-Fast closely meets the
desired target of 30 seconds. This improvement in up-
date detection time entails an increase in server load over
Corona-Lite. Unlike Corona-Lite, whose update perfor-
mance may vary depending on the workload seen by the
system, Corona-Fast provides a stable average update
performance. Moreover, it enables us to set the perfor-
mance depending on the requirements of the application
and ensures that the targeted performance is achieved
with minimal load on content servers.

Corona-Fair

Finally, we examine the performance of Corona-Fair,
which uses the update rates of channels to fine-tune the
distribution of load. It takes advantage of the wide dis-
tribution of update intervals among channels and aims
to poll frequently updated channels at a higher rate
than channels with long update intervals. Figure 7
shows the distribution of update detection times achieved
by Corona-Lite and Corona-Fair for different channels
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Figure 7: Update Detection Time per Channel: Corona-
Fair provides better update detection time for channels that
change rapidly than for channels that change rarely.
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Figure 8: Update Detection Time per Channel: Corona-
Fair-Sqrt and Corona-Fair-Log fix the bias against chan-
nels that change rarely and provide better update detection
time for them than Corona-Fair does.

ranked by their update intervals. Channels with the same
update intervals are further ranked by popularity. For
clarity of presentation, we plot the distribution for 200
uniformly chosen channels.

Figure 7 shows that Corona-Lite achieves an unfair
distribution of update detection times by ignoring update
interval information. Many channels with large update
intervals have short update detection times (shown in the
lower-right of the graph), while some rapidly changing
channels have long update detection times (shown in the
upper-left of the graph). Corona-Fair fixes this unfair dis-
tribution of update detection time by using update inter-
vals of channels to influence the choice of polling levels.
Figure 7 shows that Corona-Fair has a fairer distribution
of update detection times with update intervals; that is,
channels with shorter update intervals have faster update
detection times and vice-versa.

Corona-Fair optimizes for update performance mea-
sured as the ratio of update detection time and update in-



terval. Thus, channels with long update intervals may
also have proportionally long update detection times,
leading to long wait times for clients. Section 3.1 pro-
posed to compensate for this bias using two metrics with
sub-linear growth based on the square root and logarithm
of the update interval. Figure 8 shows that Corona-Fair-
Sqrt and Corona-Fair-Log achieve update detection times
that are fairer and lower than Corona-Fair. Between the
two metrics, Corona-Fair-Sqrtis better than Corona-Fair-
Log, which has a few channels with small update inter-
vals but long update detection times.

Overall, the Corona-Fair schemes provide fair dis-
tributions of polling between channels with low aver-
age update detection times without exceeding bandwidth
load on the servers. The average update detection time
and load for different Corona-Fair schemes is shown in
Table 2. The average update detection time suffers a
little in Corona-Fair compared to Corona-Lite, but the
modified Corona-Fair schemes provide an average per-
formance close to that of Corona-Lite.

5.2 Deployment

We deployed Corona on a set of 60 PlanetLab nodes and
measured its performance. The deployment is based on
the Corona-Lite scheme, which minimizes update detec-
tion time while bounding network load. For this exper-
iment, we use 7500 real channels providing RSS feeds
obtained from www.syndic8.com. We issue 150,000 sub-
scriptions for them based on a Zipf popularity distribu-
tion with exponent 0.5. Subscriptions are issued at a uni-
form rate during the first hour and a half of the experi-
ment. The maintenance interval and the polling interval
are both set to 30 minutes. We collected data for a period
of six hours.

Figure 9 shows the average update detection time for
Corona deployment compared to legacy RSS. Corona de-
creases the average update time to about 45 seconds com-
pared to 15 minutes for legacy RSS. Figure 10 shows
the corresponding polling load imposed by Corona on
content servers. Corona gradually increases the num-
ber of nodes polling each channel and reaches a load
limit of around 4500 polls per minute. Corona’s total
network load is bounded by the load imposed by legacy
RSS, which averages to just above 5000 polls per minute.
These graphs highlight that while imposing comparable
load as legacy RSS, Corona achieves a substantial im-
provement in update detection time.

5.3 Summary

The results from simulations and wide-area experiments
confirm that Corona achieves a balance between update
latency and network load. It dynamically learns the pa-
rameters of the system such as number of nodes, number
of subscriptions, and tradeoff factors of all channels, and
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Figure 9: Average Update Detection Time: Corona pro-
vides an order of magnitude lower update detection time
compared to legacy RSS.
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Figure 10: Total Polling Load on Servers: The total load
generated by Corona is well below the load generated by
clients using legacy RSS

uses the new parameters to periodically adjust the opti-
mal polling levels of channels and meet performance and
load targets. Corona offers considerable flexibility in the
kind of performance goals it can achieve. In this section,
we showed three specific schemes targeting update de-
tection time, network load, and fair distribution of load
under different metrics of fairness. Measurements from
the deployment showed that achieving globally optimal
performance in a distributed wide-area system is practi-
cal and efficient. Overall, Corona proves to be a high
performance, scalable publish-subscribe system.

6 Conclusions

This paper proposes a novel publish-subscribe architec-
ture that is compatible with the existing pull-based archi-
tecture of the Web. Motivated by the growing demand for
micronews feeds and the paucity of infrastructure to pro-
vide asynchronous notifications, we develop a unique so-
lution that addresses the shortcomings of pull based con-



tent dissemination and delivers a real, deployable, easy-
to-use publish-subscribe system.

Many real-world applications require quick and effi-
cient dissemination of information from data sources to
clients. It is quite common for legacy data sources, such
as Web pages, sensors, stock feeds, event trackers and so
forth, to be deployed piecemeal, and thus to force clients
to poll them manually and explicitly to receive the latest
updates. As the numbers of data sources increase, the
task of monitoring so many event sources quickly be-
comes overwhelming for humans. At sufficiently large
scales, the task of allocating bandwidth is difficult even
for computers. We can see examples of such applications
in large scale sensor networks, in investment manage-
ment systems that track commodity prices, and in many
adaptive distributed systems for detecting events. All of
these applications pose a fundamental tension between
the polling bandwidth required to achieve fast event de-
tection and the corresponding load imposed by periodic
polling.

Our unique contribution is the optimal resolution of
performance-overhead tradeoffs in such event detection
systems. This paper provides a general approach based
on analytical modeling of the cost-performance tradeoff
and mathematical optimization that enables applications
to make informed, near-optimal decisions on which data
sources to monitor, and with what frequency. We develop
techniques to solve typical resource allocation problems
that arise in distributed systems through decentralized,
low-overhead mechanisms.

The techniques at the core of this system are easily
applicable to any domain where a set of nodes monitor
exogenous events. The Corona approach to monitoring
oblivious, pull-based data sources makes it unnecessary
to change the data publishing workflow, agree on new
dissemination protocols, or deploy new software on data
sources. This is particularly relevant when the sources
to be monitored are large in number, and deploying new
software is logistically difficult. For instance, large scale
Web spiders that monitor changes to Websites to incre-
mentally update a Web index could benefit from the prin-
cipled approach developed here.

Corona applies this general approach to disseminat-
ing updates to the Web, where the resource-performance
tradeoff is affected by the popularity, size, and up-
date rate of Web content and the network capacities of
clients and content servers. Performance measurements
based on simulations and real-life deployment show that
Corona clients can achieve several orders of magnitude
improvement in update latency without an increase in
average load. Corona acts as a buffer between clients
and servers, shielding servers from the impact of flash-
crowds and sticky traffic. Our implementation is cur-
rently deployed on PlanetLab and available for pub-

lic use. We hope that a backwards-compatible, high-
performance, efficient publish-subscribe system will
make it possible for people to easily track frequently
changing content on the Web.
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