
Taming Wildcards in Java’s Type System ∗

Ross Tate
University of California, San Diego

rtate@cs.ucsd.edu

Alan Leung
University of California, San Diego

aleung@cs.ucsd.edu

Sorin Lerner
University of California, San Diego

lerner@cs.ucsd.edu

Abstract
Wildcards have become an important part of Java’s type system
since their introduction 7 years ago. Yet there are still many open
problems with Java’s wildcards. For example, there are no known
sound and complete algorithms for subtyping (and consequently
type checking) Java wildcards, and in fact subtyping is suspected
to be undecidable because wildcards are a form of bounded exis-
tential types. Furthermore, some Java types with wildcards have no
joins, making inference of type arguments for generic methods par-
ticularly difficult. Although there has been progress on these fronts,
we have identified significant shortcomings of the current state of
the art, along with new problems that have not been addressed.

In this paper, we illustrate how these shortcomings reflect the
subtle complexity of the problem domain, and then present major
improvements to the current algorithms for wildcards by making
slight restrictions on the usage of wildcards. Our survey of existing
Java programs suggests that realistic code should already satisfy
our restrictions without any modifications. We present a simple al-
gorithm for subtyping which is both sound and complete with our
restrictions, an algorithm for lazily joining types with wildcards
which addresses some of the shortcomings of prior work, and tech-
niques for improving the Java type system as a whole. Lastly, we
describe various extensions to wildcards that would be compatible
with our algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.2 [Programming Lan-
guages]: Language Classifications—Java; D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism

General Terms Algorithms, Design, Languages, Theory

Keywords Wildcards, Subtyping, Existential types, Parametric
types, Joins, Type inference, Single-instantiation inheritance

1. Introduction
Java 5, released in 2004, introduced a variety of features to the
Java programming language, most notably a major overhaul of the
type system for the purposes of supporting generics. Although Java
has undergone several revisions since, Java generics have remained
unchanged since they were originally introduced into the language.

∗ This work was supported by NSF grant CCF-0644306 and a Microsoft
Research PhD Fellowship.
†When we refer to javac we mean version 1.6.0 22.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’11, June 4–8, 2011, San Jose, California, USA.
Copyright c© 2011 ACM 978-1-4503-0663-8/11/06. . . $10.00

Java generics were a long-awaited improvement to Java and
have been tremendously useful, leading to a significant reduction
in the amount of unsafe type casts found in Java code. However,
while Java generics improved the language, they also made type
checking extremely complex. In particular, Java generics came
with wildcards, a sophisticated type feature designed to address the
limitations of plain parametric polymorphism [18].

Wildcards are a simple form of existential types. For exam-
ple, List<?> represents a “list of unknowns”, namely a list of ob-
jects, all of which have the same unknown static type. Similarly,
List<? extends Number> is a list of objects of some unknown static
type, but this unknown static type must be a subtype of Number.
Wildcards are a very powerful feature that is used pervasively in
Java. They can be used to encode use-site variance of paramet-
ric types [6, 16–18], and have been used to safely type check
large parts of the standard library without using type casts. Un-
fortunately, the addition of wildcards makes Java’s type system ex-
tremely complex. In this paper we illustrate and address three issues
of wildcards: subtyping, type-argument inference, and inconsisten-
cies in the design of the type system.

Subtyping with wildcards is surprisingly challenging. In fact,
there are no known sound and complete subtyping algorithms for
Java, soundness meaning the algorithm accepts only subtypings
permitted by Java and completeness meaning the algorithm always
terminates and accepts all subtypings permitted by Java. Subtyping
with wildcards is even suspected to be undecidable, being closely
related to the undecidable problem of subtyping with bounded ex-
istential types [20]. In Section 3 we will illustrate this challenge,
including examples of programs which make javac† suffer a stack
overflow. In Section 4 we will present our simple subtyping algo-
rithm which is sound and complete given certain restrictions.

Java also includes type-argument inference for generic meth-
ods, which again is particularly challenging with wildcards. With-
out type-argument inference, a programmer would have to provide
type arguments each time a generic method is used. Thus, to make
generic methods convenient, Java infers type arguments at method-
invocation sites. Furthermore, Java can infer types not expressible
by users, so that explicit annotation is not always an option. Un-
fortunately, there is no known sound and complete type-argument
inference algorithm. Plus, type-argument inference can even affect
the semantics of a program. We illustrate these issues in Section 5
and present our improvements on the state of the art in Section 6.

Wildcards also introduce a variety of complications to Java’s
type system as a whole. While Java attempts to address these com-
plications, there are yet many to be resolved. In some cases Java is
overly restrictive, while in others Java is overly relaxed. In fact, the
type-checking algorithm used by javac is non-deterministic from
the user’s perspective due to wildcards. In Section 7 we will illus-
trate these issues, and in Section 8 we will present our solutions.

A few of our solutions involve imposing restrictions on the
Java language. Naturally one wonders whether these restrictions
are practical. As such, we have analyzed 9.2 million lines of open-

source Java code and determined that none of our restrictions are
violated. We present our findings in Section 9, along with a number
of interesting statistics on how wildcards are used in practice.

Java is an evolving language, and ideally our algorithms can
evolve with it. In Section 10 we present a variety of extensions to
Java which preliminary investigations indicate would be compat-
ible with our algorithms. These extensions also suggest that our
algorithms could apply to other languages such as C# and Scala.

Many of the above difficulties of wildcards are by no means new
and have been discussed in a variety of papers [2, 8, 13, 20]. In re-
sponse to these challenges, researchers have explored several ways
of fixing wildcards. The work by Smith and Cartwright [13] in par-
ticular made significant progress on improving algorithms for type
checking Java. Throughout this paper we will identify the many
contributions of these works. However, we will also identify their
shortcomings, motivating the need for our improvements. Although
this paper does not solve all the problems with type checking Java,
it does significantly improve the state of the art, providing concrete
solutions to many of the open issues with wildcards.

2. Background
In early proposals for adding parametric polymorphism to Java,
namely GJ [1], one could operate on List<String> or on List<Number>,
yet operating on arbitrary lists was inconvenient because there
was no form of variance. One had to define a method with a
polymorphic variable P and a parameter of type List<P>, which
seems natural except that this had to be done even when the type of
the list contents did not matter. That is, there was no way no refer to
all lists regardless of their elements. This can be especially limiting
for parametric classes such as Class<P> for which the type parameter
is not central to its usage. Thus, Java wanted a type system beyond
standard parametric polymorphism to address these limitations.

2.1 Wildcards
Wildcards were introduced as a solution to the above problem
among others [18]. List<?> stands for a list whose elements have
an arbitrary unknown static type. Types such as List<String>,
List<Number>, and List<List<String>> can all be used as a List<?>.
The ? is called a wildcard since it can stand for any type and the
user has to handle it regardless of what type it stands for. One can
operate on a List<?> as they would any list so long as they make no
assumptions about the type of its elements. One can get its length,
clear its contents, and even get Objects from it since in Java all in-
stances belong to Object. As such, one might mistake a List<?> for a
List<Object>; however, unlike List<Object>, one cannot add arbitrary
Objects to a List<?> since it might represent a List<String> which
only accepts Strings or a List<Number> which only accepts Numbers.

Wildcards can also be constrained in order to convey restricted
use of the type. For example, the type List<? extends Number> is
often used to indicate read-only lists of Numbers. This is because one
can get elements of the list and statically know they are Numbers,
but one cannot add Numbers to the list since the list may actually
represent a List<Integer> which does not accept arbitrary Numbers.
Similarly, List<? super Number> is often used to indicate write-only
lists. This time, one cannot get Numbers from the list since it may
actually be a List<Object>, but one can add Numbers to the list. Note,
though, that this read-only/write-only usage is only convention
and not actually enforced by the type system. One can mutate
a List<? extends Number> via the clear method and one can read a
List<? super Number> via the length method since neither method
uses the type parameter for List.

Java’s subtyping for types with wildcards is very flexible. Not
only can a List<Error> be used as a List<? extends Error>, but a
List<? extends Error> can even be used as a List<? extends Throwable>
since Error is a subclass of Throwable. Similarly, a List<Throwable>

can be used as a List<? super Throwable> which can be used as a
List<? super Error>. Thus by constraining wildcards above one gets
covariant subtyping, and by constraining wildcards below one gets
contravariant subtyping. This is known as use-site variance [16] and
is one of the basic challenges of subtyping with wildcards. How-
ever, it is only the beginning of the difficulties for subtyping, as we
will demonstrate in Section 3. Before that, we discuss the connec-
tion between wildcards and existential types as it is useful for un-
derstanding and formalizing the many subtleties within wildcards.

2.2 Existential Types
Since their inception, wildcards have been recognized as a form
of existential types [2, 3, 6, 8, 17, 18, 20]. The wildcard ? rep-
resents an existentially quantified type variable, so that List<?> is
shorthand for the existentially quantified type ∃X. List<X>. Existen-
tial quantification is dual to universal quantification; a ∀X. List<X>
can be used as a List<String> by instantiating X to String, and du-
ally a List<String> can be used as an ∃X. List<X> by instantiating X
to String. In particular, any list can be used as an ∃X. List<X>, just
like List<?>. The conversion from concrete instantiation to existen-
tial quantification is often done with an explicit pack operation, but
in this setting all packs are implicit in the subtype system.

Bounded wildcards are represented using bounded quantifica-
tion. The wildcard type List<? extends Number> is represented by
∃X extends Number. List<X>. A list belongs to this existential type if
its element type is a subtype of Number. Examples are List<Integer>
and List<Double>, which also belong to List<? extends Number> as ex-
pected. Once again this is dual to bounded universal quantification.

Even subtyping of wildcards can be formalized by existential
subsumption (dual to universal subsumption [7, 9, 10]). For exam-
ple, ∃X extends Error. List<X> subsumes ∃Y extends Throwable. List<Y>
because the type variable Y can be instantiated to the type X which
is a subtype of Throwable because X is constrained to be a subtype
of Error which is a subclass of Throwable. Often this subsumption
relation is accomplished by explicit open and pack operations. The
left side is opened, moving its variables and their constraints into
the general context, and then the types in the opened left side are
packed into the variables bound in the right side and the constraints
are checked to hold for those packed types. In the context of wild-
cards, the opening process is called wildcard capture [5, 18] and is
actually part of the specification for subtyping [5: Chapter 4.10.2].

2.3 Implicit Constraints
While users can explicitly constrain wildcards via the extends and
super clauses, Java also imposes implicit constraints on wildcards to
make them more convenient. For example, consider the following
interfaces specializing List via F-bounded polymorphism [4]:

interface Numbers<P extends Number> extends List<P> {}
interface Errors<P extends Error> extends List<P> {}

If a user uses the type Numbers<?>, Java implicitly constrains the
wildcard to be a subtype of Number [5: Chapter 5.1.10], saving
the user the effort of expressing a constraint that always holds.
The same is done for Errors<?>, so that Errors<?> is a subtype of
List<? extends Error> [5: Chapter 4.10.2]. (Note that we will reuse
these interfaces throughout this paper.)

Implicit constraints on wildcards are more than just a syntactic
convenience though; they can express constraints that users cannot
express explicitly. Consider the following interface declaration:

interface SortedList<P extends Comparable<P>> extends List<P> {}

If one uses the type SortedList<?>, Java implicitly constrains the
wildcard, call it X, so that X is a subtype of Comparable<X> [5: Chap-
ter 5.1.10]. However, it is impossible to state this constraint ex-
plicitly on the wildcard argument to SortedList. This is because the

class C implements List<List<? super C>> {}

Is C a subtype of List<? super C>?

Step 0) C <?: List<? super C>
Step 1) List<List<? super C>> <?: List<? super C> (inheritance)
Step 2) C <?: List<? super C> (checking wildcard ? super C)
Step . . . (cycle forever)

Figure 1. Example of cyclic dependency in subtyping [8]

explicit constraint would need to make a recursive reference to the
wildcard, but wildcards are unnamed so there is no way to reference
a wildcard in its own constraint. One might be tempted to encode
the constraint explicitly as SortedList<? extends Comparable<?>>, but
this does not have the intended semantics because Java will not cor-
relate the wildcard for Comparable with the one for SortedList.

This means that implicit constraints offer more than just conve-
nience; they actually increase the expressiveness of wildcards, pro-
ducing a compromise between the friendly syntax of wildcards and
the expressive power of bounded existential types. However, this
expressiveness comes at the cost of complexity and is the source of
many of the subtleties behind wildcards.

2.4 Notation
For traditional existential types in which all constraints are explicit,
we will use the syntax ∃Γ : ∆. τ . The set Γ is the set of bound
variables, and the set ∆ is all constraints on those variables. Con-
straints in ∆ have the form v <:: τ ′ analogous to extends and
v ::> τ ′ analogous to super. Thus we denote the traditional ex-
istential type for the wildcard type SortedList<? super Integer> as
∃X :X ::> Integer, X <:: Comparable<X>. SortedList<X>.

For an example with multiple bound variables, consider the
following class declaration that we will use throughout this paper:

class Super<P, Q extends P> {}

We denote the traditional existential type for the wildcard type
Super<?,?> as ∃X, Y :Y <:: X. Super<X,Y>.

3. Non-Termination in Subtyping
The major challenge of subtyping wildcards is non-termination. In
particular, with wildcards it is possible for a subtyping algorithm to
always be making progress and yet still run forever. This is because
there are many sources of infinity in Java’s type system, none of
which are apparent at first glance. These sources arise from the
fact that wildcards are, in terms of existential types, impredicative.
That is, List<?> is itself a type and can be used in nearly every
location a type without wildcards could be used. For example, the
type List<List<?>> stands for List<∃X. List<X>>, whereas it would
represent simply ∃X. List<List<X>> in a predicative system.

We have identified three sources of infinity due to impredica-
tivity of wildcards, in particular due to wildcards in the inheritance
hierarchy and in type-parameter constraints. The first source is in-
finite proofs of subtyping. The second source is wildcard types that
represent infinite traditional existential types. The third source is
proofs that are finite when expressed using wildcards but infinite
using traditional existential types. Here we illustrate each of these
challenges for creating a terminating subtyping algorithm.

3.1 Infinite Proofs
Kennedy and Pierce provide excellent simple examples illustrating
some basic difficulties with wildcards [8] caused by the fact that
wildcards can be used in the inheritance hierarchy. In particular,
their examples demonstrate that with wildcards it is quite possible

class C<P> implements List<List<? super C<C<P>>>> {}

Is C<Byte> a subtype of List<? super C<Byte>>?

Step 0) C<Byte> <?: List<? super C<Byte>>
Step 1) List<List<? super C<C<Byte>>>> <?: List<? super C<Byte>>
Step 2) C<Byte> <?: List<? super C<C<Byte>>>
Step 3) List<List<? super C<C<Byte>>>> <?: List<? super C<C<Byte>>>
Step 4) C<C<Byte>> <?: List<? super C<C<Byte>>>
Step . . . (expand forever)

Figure 2. Example of acyclic proofs in subtyping [8]

for the question of whether τ is a subtype of τ ′ to recursively
depend on whether τ is a subtype of τ ′ in a non-trivial way.
Consider the program in Figure 1 and the question “Is C is subtype
of List<? super C>?”. The bottom part of the figure contains the
steps in a potential proof for answering this question. We start with
the goal of showing that C is a subtype of List<? super C>. For this
goal to hold, C’s superclass List<List<? super C>> must be a subtype
of List<? super C> (Step 1). For this to hold, List<List<? super C>>
must be List of some supertype of C, so C must be a subtype of
List<? super C> (Step 2). This was our original question, though, so
whether C is a subtype of List<? super C> actually depends on itself
non-trivially. This means that we can actually prove C is a subtype
of List<? super C> provided we use an infinite proof.

The proof for Figure 1 repeats itself, but there are even subtyp-
ing proofs that expand forever without ever repeating themselves.
For example, consider the program in Figure 2, which is a simple
modification of the program in Figure 1. The major difference is
that C now has a type parameter P and in the superclass the type
argument to C is C<P> (which could just as easily be List<P> or Set<P>
without affecting the structure of the proof). This is known as ex-
pansive inheritance [8, 19] since the type parameter P expands to
the type argument C<P> corresponding to that same type parame-
ter P. Because of this expansion, the proof repeats itself every four
steps except with an extra C<-> layer so that the proof is acyclic.

Java rejects all infinite proofs [5: Chapter 4.10], and javac at-
tempts to enforce this decision, rejecting the program in Figure 1
but suffering a stack overflow on the program in Figure 2. Thus,
neither of the subtypings in Figures 1 and 2 hold according to Java.
Although this seems natural, as induction is generally preferred
over coinduction, it seems that for Java this is actually an inconsis-
tent choice for reasons we will illustrate in Section 3.3. In our type
system, infinite proofs are not even possible, avoiding the need to
choose whether to accept or reject infinite proofs. Our simple re-
cursive subtyping algorithm terminates because of this.

3.2 Implicitly Infinite Types
Wehr and Thiemann proved that subtyping of bounded impredica-
tive existential types is undecidable [20]. Wildcards are a restricted
form of existential types though, so their proof does not imply that
subtyping of wildcards is undecidable. However, we have deter-
mined that there are wildcard types that actually cannot be ex-
pressed by Wehr and Thiemann’s type system. In particular, Wehr
and Thiemann use finite existential types in which all constraints
are explicit, but making all implicit constraints on wildcards ex-
plicit can actually result in an infinite traditional existential type.

Consider the following class declaration:

class Infinite<P extends Infinite<?>> {}

The wildcard type Infinite<?> translates to an infinite traditional ex-
istential type because its implicit constraints must be made explicit.
In one step it translates to ∃X : X <:: Infinite<?>. Infinite<X>, but
then the nested Infinite<?> needs to be recursively translated which

Java Wildcards
class C extends Super<Super<?,?>,C> {}

Is C a subtype of Super<?,?>?

Steps of Proof
C <?: Super<?,?>
Super<Super<?,?>,C> <?: Super<?,?> (inheritance)
(completes)

Traditional Existential Types
class C extends Super<∃X, Y :Y <:: X. Super<X,Y>,C> {}

Is C a subtype of ∃X′, Y′ :Y′ <:: X′. Super<X′,Y′>?

Steps of Proof
C <?: ∃X′, Y′ :Y′ <:: X′. Super<X′,Y′>
Super<∃X, Y :Y <:: X. Super<X,Y>,C> <?: ∃X′, Y′ :Y′ <:: X′. Super<X′,Y′>
C <?: ∃X, Y :Y <:: X. Super<X,Y>
(repeats forever)

Figure 3. Example of an implicitly infinite subtyping proof

repeats ad infinitum. Thus Infinite<?> is implicitly infinite. Inter-
estingly, this type is actually inhabitable by the following class:

class Omega extends Infinite<Omega> {}

This means that wildcards are even more challenging than had
been believed so far. In fact, a modification like the one for Figure 2
can be applied to get a wildcard type which implicitly represents
an acyclically infinite type. Because of implicitly infinite types,
one cannot expect structural recursion using implicit constraints to
terminate, severely limiting techniques for a terminating subtyping
algorithm. Our example illustrating this problem is complex, so we
leave it until Section 4.4. Nonetheless, we were able to surmount
this challenge by extracting implicit constraints lazily and relying
only on finiteness of the explicit type.

3.3 Implicitly Infinite Proofs
Possibly the most interesting aspect of Java’s wildcards is that finite
proofs of subtyping wildcards can actually express infinite proofs
of subtyping traditional existential types. This means that subtyping
with wildcards is actually more powerful than traditional systems
for subtyping with existential types because traditional systems
only permit finite proofs. Like before, implicitly infinite proofs can
exist because of implicit constraints on wildcards.

To witness how implicitly infinite proofs arise, consider the pro-
grams and proofs in Figure 3. On the left, we provide the program
and proof in terms of wildcards. On the right, we provide the trans-
lation of that program and proof to traditional existential types. The
left proof is finite, whereas the right proof is infinite. The key dif-
ference stems from the fact that Java does not check implicit con-
straints on wildcards when they are instantiated, whereas these con-
straints are made explicit in the translation to traditional existential
types and so need to be checked, leading to an infinite proof.

To understand why this happens, we need to discuss implicit
constraints more. Unlike explicit constraints, implicit constraints
on wildcards do not need to be checked after instantiation in order
to ensure soundness because those implicit constraints must already
hold provided the subtype is a valid type (meaning its type argu-
ments satisfy the criteria for the type parameters). However, while
determining whether a type is valid Java uses subtyping which im-
plicitly assumes all types involved are valid, potentially leading
to an implicitly infinite proof. In Figure 3, Super<Super<?,?>,C> is a
valid type provided C is a subtype of Super<?,?>. By inheritance, this
reduces to whether Super<Super<?,?>,C> is a subtype of Super<?,?>.
The implicit constraints on the wildcards in Super<?,?> are not
checked because Java implicitly assumes Super<Super<?,?>,C> is a
valid type. Thus the proof that Super<Super<?,?>,C> is valid implic-
itly assumes that Super<Super<?,?>,C> is valid, which is the source of
infinity after translation. This example can be modified similarly to
Figure 2 to produce a proof that is implicitly acyclically infinite.

Implicitly infinite proofs are the reason why Java’s rejection of
infinite proofs is an inconsistent choice. The programs and proofs

class C<P extends List<? super C<D>>> implements List<P> {}
Decl. 1) class D implements List<C<?>> {}
Decl. 2) class D implements List<C<? extends List<? super C<D>>>> {}

Is C<D> a valid type?

Using Declaration 1
D <?: List<? super C<D>> (check constraint on P)
List<C<?>> <?: List<? super C<D>> (inheritance)
C<D> <?: C<?> (check wildcard ? super C<D>)
Accepted (implicitly assumes C<D> is valid)

Using Declaration 2
D <?: List<? super C<D>>
List<C<? extends List<? super C<D>>>> <?: List<? super C<D>>
C<D> <?: C<? extends List<? super C<D>>>
D <?: List<? super C<D>>
Rejected (implicit assumption above is explicit here)

Figure 4. Example of the inconsistency of rejecting infinite proofs

in Figure 4 are a concrete example illustrating the inconsistency.
We provide two declarations for class D which differ only in that
the constraint on the wildcard is implicit in the first declaration and
explicit in the second declaration. Thus, one would expect these
two programs to be equivalent in that one would be valid if and
only if the other is valid. However, this is not the case in Java
because Java rejects infinite proofs. The first program is accepted
because the proof that C<D> is a valid type is finite. However, the
second program is rejected because the proof that C<D> is a valid
type is infinite. In fact, javac accepts the first program but suffers a
stack overflow on the second program. Thus Java’s choice to reject
infinite proofs is inconsistent with its use of implicit constraints.
Interestingly, when expressed using traditional existential types,
the (infinite) proof for the first program is exactly the same as the
(infinite) proof for the second program as one would expect given
that they only differ syntactically, affirming that existential types
are a suitable formalization of wildcards.

Note that none of the wildcard types in Figures 3 and 4 are im-
plicitly infinite. This means that, even if one were to prevent proofs
that are infinite using subtyping rules for wildcards and prevent im-
plicitly infinite wildcard types so that one could translate to tradi-
tional existential types, a subtyping algorithm can still always make
progress and yet run forever. Our algorithm avoids these problems
by not translating to traditional or even finite existential types.

4. Improved Subtyping
Now that we have presented the many non-termination challenges
in subtyping wildcards, we present our subtyping rules with a sim-
ple sound and complete subtyping algorithm which always termi-

class C<P extends Number> extends ArrayList<P> {}
List<? extends List<? extends Number>> cast(List<C<?>> list)
{return list;}

Figure 5. Example of subtyping incorrectly rejected by javac

Eτ := v | ∃Γ:∆(∆). C< Eτ, ..., Eτ>
Γ := ∅ | Γ, v
∆ := ∅ | ∆, v <:: Eτ | ∆, v ::> Eτ

Figure 6. Grammar of our existential types (coinductive)

SUB-EXISTS SUB-VAR

C<P1, ..., Pm> is a subclass of D< Ēτ1, ..., Ēτn>

G,Γ
∅←− Γ′ ` D< Ēτ1, ..., Ēτn>[P1 7→ Eτ1, . . . , Pm 7→ Eτm] ≈θi D< Eτ ′1, ..., Eτ ′n>

for all v′ in Γ′, exists i in 1 to n with θ(v′) = θi(v
′)

for all i in 1 to n, G,Γ : D,∆ ` Ēτi[P1 7→ Eτ1, . . . , Pm 7→ Eτm] ∼= Eτ ′i [θ]

for all v <:: Êτ in ∆· ′, G,Γ : D,∆ ` θ(v) <: Êτ [θ]

for all v ::> Êτ in ∆· ′, G,Γ : D,∆ ` Êτ [θ] <: θ(v)

G : D ` ∃Γ:∆(∆·). C< Eτ1, ..., Eτm> <: ∃Γ′ :∆′(∆· ′). D< Eτ ′1, ..., Eτ ′n>

G : D ` v <: v

v <:: Eτ in D G : D ` Eτ <: Eτ ′

G : D ` v <: Eτ ′

v ::> Eτ ′ in D G : D ` Eτ <: Eτ ′

G : D ` Eτ <: v

Figure 7. Subtyping rules for our existential types (inductive and coinductive definitions coincide given restrictions)

nates even when the wildcard types and proofs involved are im-
plicitly infinite. We impose two simple restrictions, which in Sec-
tion 9 we demonstrate already hold in existing code bases. With
these restrictions, our subtype system has the property that all pos-
sible proofs are finite, although they may still translate to infinite
proofs using subtyping rules for traditional existential types. Even
without restrictions, our algorithm improves on the existing subtyp-
ing algorithm since javac fails to type check the simple program
in Figure 5 that our algorithm determines is valid. Here we pro-
vide the core aspects of our subtyping rules and algorithms; the full
details can be found in our technical report [15].

4.1 Existential Formalization
We formalize wildcards using existential types. However, we do
not use traditional existential types. Our insight is to use a variant
that bridges the gap between wildcards, where constraints can be
implicit, and traditional existential types, where all constraints must
be explicit. We provide the grammar for our existential types,
represented by Eτ , in Figure 6.

Note that there are two sets of constraints so that we denote
our existential types as ∃Γ : ∆(∆·). Eτ . The constraints ∆ are the
constraints corresponding to traditional existential types, combin-
ing both the implicit and explicit constraints on wildcards. The con-
straints ∆· are those corresponding to explicit constraints on wild-
cards, with the parenthetical indicating that only those constraints
need to be checked during subtyping.

Our types are a mix of inductive and coinductive structures,
meaning finite and infinite. Most components are inductive so that
we may do structural recursion and still have termination. How-
ever, the combined constraints ∆ are coinductive. This essentially
means that they are constructed on demand rather than all ahead of
time. This corresponds to only performing wildcard capture when
it is absolutely necessary. In this way we can handle wildcards rep-
resenting implicitly infinite types as in Section 3.2.

4.2 Existential Subtyping
We provide the subtyping rules for our existential types in Figure 7
(for sake of simplicity, throughout this paper we assume all prob-
lems with name hiding are taken care of implicitly). The judgement
G : D ` Eτ <: Eτ ′ means that Eτ is a subtype of Eτ ′ in the context of
type variables G with constraints D. The subtyping rules are syn-
tax directed and so are easily adapted into an algorithm. Further-
more, given the restrictions we impose in Section 4.4, the inductive
and coinductive definitions coincide, meaning there is no distinc-
tion between finite and infinite proofs. From this, we deduce that
our algorithm terminates since all proofs are finite.

The bulk of our algorithm lies in SUB-EXISTS, since SUB-VAR
just applies assumed constraints on the type variable at hand. The
first premise of SUB-EXISTS examines the inheritance hierarchy to
determine which, if any, invocations of D that C is a subclass or
subinterface of (including reflexivity and transitivity). For Java this
invocation is always unique, although this is not necessary for our
algorithm. The second and third premises adapt unification to exis-
tential types permitting equivalence and including the prevention of
escaping type variables. The fourth premise checks that each pair
of corresponding type arguments are equivalent for some chosen
definition of equivalence such as simple syntactic equality or more
powerful definitions as discussed in Sections 7.3 and 8.3. The fifth
and sixth premises recursively check that the explicit constraints
in the supertype hold after instantiation. Note that only the explicit
constraints ∆· ′ in the supertype are checked, whereas the combined
implicit and explicit constraints ∆ in the subtype are assumed. This
separation is what enables termination and completeness.

We have no rule indicating that all types are subtypes of Object.
This is because our existential type system is designed so that
such a rule arises as a consequence of other properties. In this
case, it arises from the fact Object is a superclass of all classes
and interfaces in Java and the fact that all variables in Java are
implicitly constrained above by Object. In general, the separation of
implicit and explicit constraints enables our existential type system
to adapt to new settings, including settings outside of Java. General
reflexivity and transitivity are also consequences of our rules. In
fact, the omission of transitivity is actually a key reason that the
inductive and coinductive definitions coincide.

Although we do not need the full generality of our existential
types and proofs to handle wildcards, this generality informs which
variations of wildcards and existential types would still ensure our
algorithm terminates. In Section 10, we will present a few such
extensions compatible with our existential types and proofs.

4.3 Wildcard Subtyping
While the existential formalization is useful for understanding and
generalizing wildcards, we can specialize the algorithm to wild-
cards for a more direct solution. We present this specialization
of our algorithm in Figure 8, with τ representing a Java type
and ?

τ representing a Java type argument which may be a (con-
strained) wildcard. The function explicit takes a list of type argu-
ments that may be (explicitly bound) wildcards, converts wildcards
to type variables, and outputs the list of fresh type variables, ex-
plicit bounds on those type variables, and the possibly converted
type arguments. For example, explicit(Numbers<? super Integer>) re-
turns 〈X; X ::> Integer; Numbers<X>〉. The function implicit takes a list

SUB-EXISTS
C<P1, ..., Pm> is a subclass of D<τ̄1, ..., τ̄n>

explicit(?

τ1, . . . ,
?

τm) = 〈Γ; ∆· ; τ1, . . . , τm〉
explicit(?

τ
′
1, . . . ,

?

τ
′
n) = 〈Γ′; ∆· ′; τ ′1, . . . , τ ′n〉

implicit(Γ;C; τ1, . . . , τm) = ∆◦
for all i in 1 to n, τ̄i[P1 7→τ1, . . . , Pm 7→τm] = τ ′i [θ]
for all v <:: τ̂ in ∆· ′, G,Γ : D,∆◦ ,∆· ` θ(v) <: τ̂
for all v ::> τ̂ in ∆· ′, G,Γ : D,∆◦ ,∆· ` τ̂ <: θ(v)

G : D ` C<
?

τ1, ...,
?

τm> <: D<
?

τ
′
1, ...,

?

τ
′
n>

SUB-VAR

G : D ` v <: v

v <:: τ in D G :D ` τ <: τ ′

G : D ` v <: τ ′
v ::> τ ′ in D G :D ` τ <: τ ′

G : D ` τ <: v

Figure 8. Subtyping rules specialized for wildcards

of constrainable type variables, a class or interface name C, and a
list of type arguments, and outputs the constraints on those type ar-
guments that are constrainable type variables as prescribed by the
requirements of the corresponding type parameters ofC, constrain-
ing a type variable by Object if there are no other constraints. For
example, implicit(X; Numbers; X) returns X <:: Number. Thus, applying
explicit and then implicit accomplishes wildcard capture. Note that
for the most part ∆◦ and ∆· combined act as ∆ does in Figure 7.

4.4 Termination
Unfortunately, our algorithm does not terminate without imposing
restrictions on the Java language. Fortunately, the restrictions we
impose are simple, as well as practical as we will demonstrate in
Section 9. Our first restriction is on the inheritance hierarchy.

Inheritance Restriction
For every declaration of a direct superclass or superinterface τ
of a class or interface, the syntax ? super must not occur within τ .

Note that the programs leading to infinite proofs in Section 3.1
(and in the upcoming Section 4.5) violate our inheritance restric-
tion. This restriction is most similar to a significant relaxation of
the contravariance restriction that Kennedy and Pierce showed en-
ables decidable subtyping for declaration-site variance [8]. Their
restriction prohibits contravariance altogether, whereas we only re-
strict its usage. Furthermore, as Kennedy and Pierce mention [8],
wildcards are a more expressive domain than declaration-site vari-
ance. We will discuss these connections more in Section 10.1.

Constraints on type parameters also pose problems for termi-
nation. The constraint context can simulate inheritance, so by con-
straining a type parameter P to extend List<List<? super P>> we en-
counter the same problem as in Figure 1 but this time expressed
in terms of type-parameter constraints. Constraints can also pro-
duce implicitly infinite types that enable infinite proofs even when
our inheritance restriction is satisfied, such as in Figure 9 (which
again causes javac to suffer a stack overflow). To prevent prob-
lematic forms of constraint contexts and implicitly infinite types,
we restrict the constraints that can be placed on type parameters.

Parameter Restriction
For every parameterization <P1 extends τ1, ..., Pn extends τn>,
every syntactic occurrence in τi of a type C<..., ? super τ, ...>
must be at a covariant location in τi.

Note that our parameter restriction still allows type parameters
to be constrained to extend types such as Comparable<? super P>, a
well known design pattern. Also note that the inheritance restriction

class C<P extends List<List<? extends List<? super C<?>>>>>
implements List<P> {}

Is C<?> a subtype of List<? extends List<? super C<?>>>?

Steps of Proof
C<?> <?: List<? extends List<? super C<?>>>

C<?> 7→ C<X> with X <:: List<List<? extends List<? super C<?>>>>
C<X> <?: List<? extends List<? super C<?>>>
X <?: List<? super C<?>>
List<List<? extends List<? super C<?>>>> <?: List<? super C<?>>
C<?> <?: List<? extends List<? super C<?>>>
(repeats forever)

Figure 9. Example of infinite proof due to implicitly infinite types

is actually the conjunction of the parameter restriction and Java’s
restriction that no direct superclass or superinterface may have a
wildcard as a type argument [5: Chapters 8.1.4 and 8.1.5].

With these restrictions we can finally state our key theorem.

Subtyping Theorem. Given the inheritance and parameter re-
strictions, the algorithm prescribed by the rules in Figure 8 always
terminates. Furthermore it is a sound and complete implementation
of the subtyping rules in the Java language specification [5: Chap-
ter 4.10.2] provided all types are valid according to the Java lan-
guage specification [5: Chapter 4.5].‡

Proof. Here we only discuss the reasons for our restrictions; the
full proofs can be found in our technical report [15]. The first
thing to notice is that, for the most part, the supertype shrinks
through the recursive calls. There are only two ways in which it
can grow: applying a lower-bound constraint on a type variable via
SUB-VAR, and checking an explicit lower bound on a wildcard via
SUB-EXISTS. The former does not cause problems because of the
limited ways a type variable can get a lower bound. The latter is the
key challenge because it essentially swaps the subtype and super-
type which, if unrestricted, can cause non-termination. However,
we determined that there are only two ways to increase the num-
ber of swaps that can happen: inheritance, and constraints on type
variables. Our inheritance and parameter restrictions prevent this,
capping the number of swaps that can happen from the beginning
and guaranteeing termination.

4.5 Expansive Inheritance
Smith and Cartwright conjectured that prohibiting expansive inher-
itance as defined by Kennedy and Pierce [8] would provide a sound
and complete subtyping algorithm [13]. This is because Kennedy
and Pierce built off the work by Viroli [19] to prove that, by pro-
hibiting expansive inheritance, any infinite proof of subtyping in
their setting would have to repeat itself; thus a sound and complete
algorithm could be defined by detecting repetitions.

Unfortunately, we have determined that prohibiting expansive
inheritance as defined by Kennedy and Pierce does not imply that
all infinite proofs repeat. Thus, their algorithm adapted to wildcards
does not terminate. The problem is that implicit constraints can
cause an indirect form of expansion that is unaccounted for.

Consider the class declaration in Figure 10. According to the
definition by Kennedy and Pierce [8], this is not expansive inheri-
tance since List<Q> is the type argument corresponding to P rather
than to Q. However, the proof in Figure 10 never repeats itself. The
key observation to make is that the context, which would be fixed
in Kennedy and Pierce’s setting, is continually expanding in this

‡ See Section 7.4 for a clarification on type validity.

class C<P, Q extends P> implements List<List<? super C<List<Q>,?>>> {}

Is C<?,?> a subtype of List<? super C<?,?>>?

Constraints Subtyping (wildcard capture done automatically)
X1 <:: X0 C<X0,X1> <?: List<? super C<?,?>>
Y1 <:: Y0 C<Y0,Y1> <?: List<? super C<List<X1>,?>>
X2 <:: List<X1> C<List<X1>,X2> <?: List<? super C<List<Y1>,?>>
Y2 <:: List<Y1> C<List<Y1>,Y2> <?: List<? super C<List<X2>,?>>
X3 <:: List<X2> C<List<X2>,X3> <?: List<? super C<List<Y2>,?>>
Y3 <:: List<Y2> C<List<Y2>,Y3> <?: List<? super C<List<X3>,?>>
X4 <:: List<X3> C<List<X3>,X4> <?: List<? super C<List<Y3>,?>>

(continue forever)

Figure 10. Example of expansion through implicit constraints

class Var {
boolean mValue;
void addTo(List<? super Var> trues, List<? super Var> falses)
{(mValue ? trues : falses).add(this);}

}

Figure 11. Example of valid code erroneously rejected by javac

setting. In the last step we display, the second type argument of C
is a subtype of List<? extends List<? extends List<?>>>, which will
keep growing as the proof continues. Thus Smith and Cartwright’s
conjecture for a terminating subtyping algorithm does not hold. In
our technical report we identify syntactic restrictions that would be
necessary (although possibly still not sufficient) to adapt Kennedy
and Pierce’s algorithm to wildcards [15]. However, these restric-
tions are significantly more complex than ours, and the adapted al-
gorithm would be strictly more complex than ours.

5. Challenges of Type-Argument Inference
So far we have discussed only one major challenge of wildcards,
subtyping, and our solution to this challenge. Now we present
another major challenge of wildcards, inference of type arguments
for generic methods, with our techniques to follow in Section 6.

5.1 Joins
Java has the expression cond ? t : f which evaluates to t if cond
evaluates to true, and to f otherwise. In order to determine the
type of this expression, it is useful to be able to combine the
types determined for t and f using a join(τ, τ ′) function which
returns the most precise common supertype of τ and τ ′. Un-
fortunately, not all pairs of types with wildcards have a join
(even if we allow intersection types). For example, consider the
types List<String> and List<Integer>, where String implements
Comparable<String> and Integer implements Comparable<Integer>. Both
List<String> and List<Integer> are a List of something, call it X,
and in both cases that X is a subtype of Comparable<X>. So while
both List<String> and List<Integer> are subtypes of simply List<?>,
they are also subtypes of List<? extends Comparable<?>> and of
List<? extends Comparable<? extends Comparable<?>>> and so on. Thus
their join using only wildcards is the undesirable infinite type
List<? extends Comparable<? extends Comparable<? extends ...>>>.

javac addresses this by using an algorithm for finding some
common supertype of τ and τ ′ which is not necessarily the most
precise. This strategy is incomplete, as we even saw in the class-
room when it failed to type check the code in Figure 11. This sim-
ple program fails to type check because javac determines that the
type of (mValue ? trues : falses) is List<?> rather than the obvious

<P> P getFirst(List<P> list) {return list.get(0);}
Number getFirstNumber(List<? extends Number> nums)
{return getFirst(nums);}

Object getFirstNonEmpty(List<String> strs, List<Object> obs)
{return getFirst(!strs.isEmpty() ? strs : obs);}

Object getFirstNonEmpty2(List<String> strs, List<Integer> ints)
{return getFirst(!strs.isEmpty() ? strs : ints);}

Figure 12. Examples of capture conversion

List<? super Var>. In particular, javac’s algorithm may even fail to
return τ when both arguments are the same type τ .

Smith and Cartwright take a different approach to joining types.
They extend the type system with union types [13]. That is, the join
of List<String> and List<Integer> is just List<String> | List<Integer>
in their system. τ | τ ′ is defined to be a supertype of both τ and
τ ′ and a subtype of all common supertypes of τ and τ ′. Thus, it
is by definition the join of τ and τ ′ in their extended type system.
This works for the code in Figure 11, but in Section 5.2 we will
demonstrate the limitations of this solution.

Another direction would be to find a form of existential types
beyond wildcards for which joins always exist. For example,
using traditional existential types the join of List<String> and
List<Integer> is just ∃X : X <:: Comparable<X>. List<X>. However,
our investigations suggest that it may be impossible for an existen-
tial type system to have both joins and decidable subtyping while
being expressive enough to handle common Java code. Therefore,
our solution will differ from all of the above.

5.2 Capture Conversion
Java has generic methods as well as generic classes [5: Chap-
ter 8.4.4]. For example, the method getFirst in Figure 12 is generic
with respect to P. Java attempts to infer type arguments for invoca-
tions of generic methods [5: Chapter 15.12.2.7], hence the uses of
getFirst inside the various methods in Figure 12 do not need to be
annotated with the appropriate instantiation of P. Interestingly, this
enables Java to infer type arguments that cannot be expressed by the
user. Consider getFirstNumber. This method is accepted by javac; P
is instantiated to the type variable for the wildcard ? extends Number,
an instantiation of P that the programmer cannot explicitly annotate
because the programmer cannot explicitly name the wildcard. Thus,
Java is implicitly opening the existential type List<? extends Number>
to List<X> with X <:: Number and then instantiating P as X so that the
return type is X which is a subtype of Number. This ability to im-
plicitly capture wildcards, known as capture conversion [5: Chap-
ter 5.1.10], is important to working with wildcards but means type
inference has to determine when to open a wildcard type.

Smith and Cartwright developed an algorithm for type-argument
inference intended to improve upon javac [13]. Before going into
their algorithm and showing some of its limitations, let us first go
back to Figure 11. Notice that the example there, although origi-
nally presented as a join example, can be thought of as an infer-
ence example by considering the ? : operator to be like a generic
method. In fact, Smith and Cartwright have already shown that
type-argument inference inherently requires finding common su-
pertypes of two types [13], a process that is often performed using
joins. Thus the ability to join types is closely intertwined with the
ability to do type-argument inference. Smith and Cartwright’s ap-
proach for type-argument inference is based on their union types,
which we explained in Section 5.1. Their approach to type infer-
ence would succeed on the example from Figure 11, because they
use a union type, whereas javac incorrectly rejects that program.

Although Smith and Cartwright’s approach to type-argument in-
ference improves on Java’s approach, their approach is not strictly

<P> List<P> singleton(P elem) {return null;}
<Q extends Comparable<?>> Q foo(List<? super Q> list) {return null;}
String typeName(Comparable<?> c) {return "Comparable";}
String typeName(String s) {return "String";}
String typeName(Integer i) {return "Integer";}
String typeName(Calendar c) {return "Calendar";}
boolean ignore() {...};
String ambiguous() {

return typeName(foo(singleton(ignore() ? "Blah" : 1)));
}

Figure 13. Example of ambiguous typing affecting semantics

better than Java’s. Consider the method getFirstNonEmpty in Fig-
ure 12. javac accepts getFirstNonEmpty, combining List<String> and
List<Object> into List<?> and then instantiating P to the captured
wildcard. Smith and Cartwright’s technique, on the other hand,
fails to type check getFirstNonEmpty. They combine List<String> and
List<Object> into List<String> | List<Object>. However, there is no
instantiation of P so that List<P> is a supertype of the union type
List<String> | List<Object>, so they reject the code. What their tech-
nique fails to incorporate in this situation is the capture conversion
permitted by Java. For the same reason, they also fail to accept
getFirstNonEmpty2, although javac also fails on this program for rea-
sons that are unclear given the error message. The approach we will
present is able to type check all of these examples.

5.3 Ambiguous Types and Semantics
In Java, the type of an expression can affect the semantics of
the program, primarily due to various forms of overloading. This
is particularly problematic when combining wildcards and type-
argument inference. Consider the program in Figure 13. Notice
that the value returned by ambiguous depends solely on the type
of the argument to typeName, which is the return type of foo which
depends on the inferred type arguments for the generic methods foo
and singleton. Using javac’s typing algorithms, ambiguous returns
"Comparable". Using Smith and Cartwright’s typing algorithms [13],
ambiguous returns either "String" or "Integer" depending on how
the types are (arbitrarily) ordered internally. In fact, the answers
provided by javac and by Smith and Cartwright are not the only
possible answers. One could just as well instantiate P to Object and
Q to Calendar to get ambiguous to return "Calendar", even though a
Calendar instance is not even present in the method.

The above discussion shows that, in fact, all four values are
plausible, and which is returned depends on the results of type-
argument inference. Unfortunately, the Java specification does not
provide clear guidance on what should be done if there are multiple
valid type arguments. It does however state the following [5: Chap-
ter 15.12.2.7]: “The type-inference algorithm should be viewed as
a heuristic, designed to perform well in practice.” This would lead
one to believe that, given multiple valid type arguments, an imple-
mentation can heuristically pick amongst them, which would actu-
ally make any of the four returned values a correct implementation
of ambiguous. This is not only surprising, but also leads to the un-
fortunate situation that by providing javac with smarter static typ-
ing algorithms one may actually change the semantics of existing
programs. This in turn makes improving the typing algorithms in
existing implementations a risky proposition.

6. Improving Type-Argument Inference
Here we present an algorithm for joining wildcards as existential
types which addresses the limitations of union types and which is
complete provided the construction is used in restricted settings.

We also describe preliminary techniques for preventing ambiguity
due to type-argument inference as discussed in Section 5.3.

6.1 Lazily Joining Wildcards
As we mentioned in Section 5.1, it seems unlikely that there is an
existential type system for wildcards with both joins and decid-
able subtyping. Fortunately, we have determined a way to extend
our type system with a lazy existential type that solves many of
our problems. Given a potential constraint on the variables bound
in a lazy existential type we can determine whether that constraint
holds. However, we cannot enumerate the constraints on the vari-
ables bound in a lazy existential type, so lazy existential types
must be used in a restricted manner. In particular, for any use of
τ <: τ ′, lazy existential types may only be used in covariant lo-
cations in τ and contravariant locations in τ ′. Maintaining this in-
variant means that τ ′ will never be a lazy existential type. This is
important because applying SUB-EXISTS requires checking all of
the constraints of τ ′, but we have no means of enumerating these
constraints for a lazy existential type. Fortunately, cond ? t : f as
well as unambiguous type-argument inference only need a join for
covariant locations of the return type, satisfying our requirement.

So suppose we want to construct the join (t) of captured wild-
card types ∃Γ:∆. C<τ1, ..., τm> and ∃Γ′ : ∆′. D<τ ′1, ..., τ ′n>.
Let {Ei}i in 1 to k be the set of minimal raw superclasses and super-
interfaces common to C and D. Let each Ei<τ̄ i1, ..., τ̄ i`i> be the
superclass of C<P1, ..., Pm>, and each Ei<τ̂ i1, ..., τ̂ i`i> the su-
perclass of D<P ′1, ..., P ′n>. Compute the anti-unification [11, 12]
of all τ̄ ij [P1 7→τ1, . . . , Pm 7→τm] with all τ̂ ij [P

′
1 7→τ ′1, . . . , P ′n 7→τ ′n],

resulting in t
τ ij with fresh variables Γt and assignments θ and θ′

such that each t
τ ij [θ] equals τ̄ ij [P1 7→τ1, . . . , Pm 7→τm] and each

t
τ ij [θ

′] equals τ̂ ij [P
′
1 7→ τ ′1, . . . , P

′
n 7→ τ ′n]. For example, the anti-

unification of the types Map<String,String> and Map<Integer,Integer>
is Map<v,v> with assignments v 7→ String and v 7→ Integer. The
join, then, is the lazy existential type

∃Γt : 〈θ 7→ Γ : ∆; θ′ 7→ Γ′ : ∆′〉.
E1<

t
τ11 , ...,

t
τ1`1> & ... & Ek<

t
τk1 , ...,

t
τk`k >

The lazy constraint 〈θ 7→ Γ : ∆; θ′ 7→ Γ′ : ∆′〉 indicates that the
constraints on Γt are the constraints that hold in context Γ : ∆ after
substituting with θ and in context Γ′ : ∆′ after substituting with θ′.
Thus the total set of constraints is not computed, but there is a way
to determine whether a constraint is in this set. Note that this is the
join because Java ensures the τ̄ and τ̂ types will be unique.

Capture conversion can be applied to a lazy existential type,
addressing the key limitation of union types that we identified in
Section 5.2. The lazy constraint 〈θ 7→ Γ : ∆; θ′ 7→ Γ′ : ∆′〉 is
simply added to the context. The same is done when SUB-EXISTS
applies with a lazy existential type as the subtype. When SUB-VAR
applies for v <: τ ′ with v constrained by a lazy constraint rather
than standard constraints, one checks that both θ(v) <: τ ′[θ] holds
and θ′(v) <: τ ′[θ′] holds, applying the substitutions to relevant
constraints in the context as well. A similar adaptation is also made
for τ <: v. This extended algorithm is still guaranteed to terminate.

With this technique, we can type check the code in Figure 11
that javac incorrectly rejects as well as the code in Figure 12 in-
cluding the methods that Smith and Cartwright’s algorithm incor-
rectly rejects. For example, for getFirstNonEmpty2 we would first join
List<String> and List<Integer> as the lazy existential type

∃X : 〈{X 7→ String} 7→ ∅ : ∅; {X 7→ Integer} 7→ ∅ : ∅〉. List<X>
This type would then be capture converted so that the type param-
eter P of getFirst would be instantiated with the lazily constrained
type variable X. Although not necessary here, we would also be
able to determine that the constraint X <:: Comparable<X> holds for
the lazily constrained type variable.

Occasionally one has to join a type with a type variable. For this
purpose, we introduce a specialization of union types. This spe-
cialization looks like τt(v1 | ... | vn) or τt(τ | v1 | ... | vn)
where each vi is not lazily constrained and τt is a supertype of
some wildcard capture of each upper bound of each type variable
(and of τ if present) with the property that any other non-variable
τ ′ which is a supertype of each vi (and τ) is also a supertype of
τt. A type τ ′ is a supertype of this specialized union type if it is a
supertype of τt or of each vi (and τ). Note that τt might not be a
supertype of any vi or of τ and may instead be the join of the upper
bounds of each vi (plus τ) after opening the lazy existential type.
This subtlety enables capture conversion to be applied unambigu-
ously when called for. Unfortunately, we cannot join a type with a
type variable that is lazily constrained because we cannot enumer-
ate its upper bounds.

6.2 Inferring Unambiguous Types
We believe that the Java language specification should be changed
to prevent type-argument inference from introducing ambiguity
into the semantics of programs. Since the inferred return type
is what determines the semantics, one way to prevent ambiguity
would be to permit type-argument inference only when a most
precise return type can be inferred, meaning the inferred return type
is a subtype of all other return types that could arise from valid
type arguments for the invocation at hand. Here we discuss how
such a goal affects the design of type-argument inference. However,
we do not present an actual algorithm since the techniques we
present need to be built upon further to produce an algorithm which
prevents ambiguity but is also powerful enough to be practical.

Typical inference algorithms work by collecting a set of con-
straints and then attempting to determine a solution to those con-
straints. If those constraints are not guaranteed to be sufficient, then
any solution is verified to be a correct typing of the expression (in
this case the generic-method invocation). Both javac [5: Chap-
ters 15.12.2.7 and 15.12.2.8] and Smith and Cartwright [5] use this
approach. Smith and Cartwright actually collect a set of sets of con-
straints, with each set of constraints guaranteed to be sufficient.

However, to prevent ambiguity due to type-argument inference,
necessity of constraints is important rather than sufficiency. For
the ambiguous program in Figure 13, each of the solutions we
described in Section 5.3 was sufficient; however, none of them
were necessary, which was the source of ambiguity. Unfortunately,
Smith and Cartwright’s algorithm is specialized to find sufficient
rather than necessary sets of constraints. This is why their algorithm
results in two separate solutions for Figure 13. However, their algo-
rithm could be altered to sacrifice sufficiency for sake of necessity
by producing a less precise but necessary constraint at each point
where they would currently introduce a disjunction of constraints,
which actually simplifies the algorithm since it no longer has to
propagate disjunctions.

After a necessary set of constraints has been determined, one
then needs to determine a solution. Some constraints will suggest
that it is necessary for a type argument to be a specific type, in
which case one just checks that the specific type satisfies the other
constraints on that type argument. However, other type arguments
will only be constrained above and/or below by other types so
that there can be many types satisfying the constraints. In order
to prevent ambiguity, one cannot simply choose solutions for these
type arguments arbitrarily. For example, if the parameterized return
type of the method is covariant (and not bivariant) with respect
to a type parameter, then the solution for the corresponding type
argument must be the join of all its lower bounds, ensuring the
inferred return type is the most precise possible. Fortunately, since
such joins would occur covariantly in the return type, it is safe to
use the construction described in Section 6.1.

Unfortunately, requiring the inferred return type to be the most
precise possible seems too restrictive to be practical. Consider
the singleton method in Figure 13. Under this restriction, type-
argument inference would never be permitted for any invocation of
singleton (without an expected return type) even though the inferred
types of most such invocations would not affect the semantics of
the program. In light of this, we believe the unambiguous-inference
challenge should be addressed by combining the above techniques
with an ability to determine when choices can actually affect the
semantics of the program. We have had promising findings on this
front, but more thorough proofs and evaluations need to be done,
so we leave this to future work.

6.3 Removing Intermediate Types
The processes above introduce new kinds of types, namely lazy ex-
istential types. Ideally these types need not be a part of the actual
type system but rather just be an algorithmic intermediary. Fortu-
nately this is the case for lazy existential types. By examining how
the lazy existential type is used while type checking the rest of the
program, one can determine how to replace it with an existential
type which may be less precise but with which the program will
still type check. This is done by tracking the pairs v <: τ ′ and
τ <: v, where v is lazily constrained, that are checked and found
to hold using the modified SUB-VAR rules. After type checking
has completed, the lazy existential type can be replaced by an exis-
tential type using only the tracked constraints (or slight variations
thereof to prevent escaping variables). Proof-tracking techniques
can also be used to eliminate intersection types, important for ad-
dressing the non-determinism issues we will discuss in Section 7.2,
as well as our specialized union types.

7. Challenges of Type Checking
Wildcards pose difficulties for type checking in addition to the
subtyping and inference challenges we have discussed so far. Here
we identify undesirable aspects of Java’s type system caused by
these difficulties, and in Section 8 we present simple changes to
create an improved type system.

7.1 Inferring Implicit Constraints
Java ensures that all types use type arguments satisfying the criteria
of the corresponding type parameters. Without wildcards, enforc-
ing this requirement on type arguments is fairly straightforward.
Wildcards, however, complicate matters significantly because there
may be a way to implicitly constrain wildcards so that the type ar-
guments satisfy their requirements. For example, consider the fol-
lowing interface declaration:

interface SubList<P extends List<? extends Q>, Q> {}

Java accepts the type SubList<?,Number> because the wildcard can
be implicitly constrained to be a subtype of List<? extends Number>
with which the requirements of the type parameters are satisfied.
However, Java rejects the type SubList<List<Integer>,?> even though
the wildcard can be implicitly constrained to be a supertype of
Integer with which the requirements of the type parameters are
satisfied (in our technical report we formalize when a wildcard
can be implicitly constrained [15]). Thus, Java’s implicit-constraint
inference is incomplete and as a consequence types that could be
valid are nonetheless rejected by Java.

This raises the possibility of extending Java to use complete
implicit-constraint inference (assuming the problem is decidable).
However, we have determined that this would cause significant al-
gorithmic problems (in addition to making it difficult for users to
predict which types will be accepted or rejected as illustrated in our
technical report [15]). In particular, complete implicit-constraint in-
ference would enable users to express types that have an implicitly

infinite body rather than just implicitly infinite constraints. Con-
sider the following class declaration:

class C<P extends List<Q>, Q> extends List<C<C<?,?>,?>> {}

For the type C<C<?,?>,?> to be valid, C<?,?> must be a subtype of
List<X> where X is the last wildcard of C<C<?,?>,?>. Since C<?,?>
is a subtype of List<C<C<?,?>,?>>, this implies X must be equal to
C<C<?,?>,?>, and with this implicit constraint the type arguments sat-
isfy the requirements of the corresponding type parameters. Now, if
we expand the implicit equality on the last wildcard in C<C<?,?>,?>
we get the type C<C<?,?>,C<C<?,?>,?>>, which in turn contains the
type C<C<?,?>,?> so that we can continually expand to get the infinite
type C<C<?,?>,C<C<?,?>,...>>. As one might suspect, infinite types of
this form cause non-termination problems for many algorithms.

In light of these observations, we will propose using implicit-
constraint inference slightly stronger than Java’s in order to ad-
dress a slight asymmetry in Java’s algorithm while still being user
friendly as well as compatible with all algorithms in this paper.

7.2 Non-Deterministic Type Checking
The type checker in javac is currently non-deterministic from the
user’s perspective. Consider the following interface declaration:

interface Maps<P extends Map<?,String>> extends List<P> {}

javac allows one to declare a program variable m to have type
Maps<? extends Map<String,?>>. The type of m, then, has a wildcard
which is constrained to be a subtype of both Map<?,String> and
Map<String,?>. This means that m.get(0).entrySet() has two types, es-
sentially ∃X. Set<Entry<X,String>> and ∃Y. Set<Entry<String,Y>>, nei-
ther of which is a subtype of the other. However, the type-checking
algorithm for javac is designed under the assumption that this will
never happen, and as such javac only checks whether one of the
two options is sufficient for type checking the rest of the program,
which is the source of non-determinism.

javac makes this assumption because Java imposes single-
instantiation inheritance, meaning a class (or interface) can ex-
tend C<τ1, ..., τn> and C<τ ′1, ..., τ ′n> only if each τi equals
τ ′i [5: Chapter 8.1.5] (in other words, prohibiting multiple-in-
stantiation inheritance [8]). However, it is not clear what single-
instantiation inheritance should mean in the presence of wild-
cards. The Java language specification is ambiguous in this re-
gard [5: Chapter 4.4], and javac’s enforcement is too weak for the
assumptions made by its algorithms, as demonstrated above.

Thus, we need to reconsider single-instantiation inheritance in
detail with wildcards in mind. There are two ways to address this:
restrict types in some way, or infer from two constraints a stronger
constraint that is consistent with single-instantiation inheritance.
We consider the latter first since it is the more expressive option.

Knowing that the wildcard in m’s type above is a subtype
of both Map<?,String> and Map<String,?>, single-instantiation in-
heritance suggests that the wildcard is actually a subtype of
Map<String,String>. With this more precise constraint, we can deter-
mine that the type of m.get(0).entrySet() is Set<Entry<String,String>>,
which is a subtype of the two alternatives mentioned earlier. For this
strategy to work, given two upper bounds on a wildcard we have to
be able to determine their meet: the most general common subtype
consistent with single-instantiation inheritance. Interestingly, the
meet of two types may not be expressible by the user. For example,
the meet of List<?> and Set<?> is ∃X. List<X> & Set<X>.

Unfortunately, meets encounter many of the same problems of
complete implicit-constraint inference that we discussed in Sec-
tion 7.1. Assuming meets can always be computed, predicting
when two types have a meet can be quite challenging. Furthermore,
meets pose algorithmic challenges, such as for equivalence check-
ing since with them Maps<? extends Map<String,?>> is equivalent to

class C implements List<D<? extends List<D<? extends C>>>> {}
class D<P extends C> {}

Is D<? extends List<D<? extends C>>>
equivalent to D<? extends C>?

Key Steps of Proof

D<? extends List<D<? extends C>>>
?∼= D<? extends C>

(Checking :>) D<? extends C> <?: D<? extends List<D<? extends C>>>
C <?: List<D<? extends C>>
List<D<? extends List<D<? extends C>>>> <?: List<D<? extends C>>

D<? extends List<D<? extends C>>>
?∼= D<? extends C>

(repeat forever)

Figure 14. Example of infinite proofs due to equivalence

Maps<? extends Map<String,String>> even though neither explicit con-
straint is redundant.

This problem is not specific to combining implicit and explicit
constraints on wildcards. Java allows type parameters to be con-
strained by intersections of types: <P extends τ1 & ... & τn>. Al-
though Java imposes restrictions on these intersections [5: Chap-
ter 4.4], when wildcards are involved the same problems arise as
with combining implicit and explicit constraints. So, while javac
rejects the intersection Map<?,String> & Map<String,?>, javac does
permit the intersection Numbers<?> & Errors<?>. Should P be con-
strained by this intersection, then due to the implicit constraints
on the wildcards P is a subtype of both List<? extends Number> and
List<? extends Error>, which once again introduces non-determin-
ism into javac’s type checking.

As a more severe alternative, one might consider throwing
out single-instantiation inheritance altogether and redesigning the
type checker for multiple-instantiation inheritance, especially if
Java decided to also throw out type erasure. However, multiple-
instantiation inheritance in the presence of wildcards can actually
lead to ambiguity in program semantics. Suppose an object has
an implementation of both List<String> and List<Integer>. That ob-
ject can be passed as a List<?>, but which List implementation
is passed depends on whether the wildcard was instantiated with
String or Integer. Thus an invocation of get(0) to get an Object from
the List<?> (which is valid since the wildcard implicitly extends
Object) would return different results depending on the subtyping
proof that was constructed (non-deterministically from the user’s
perspective). Thus a language with wildcards would either need
to use single-instantiation inheritance or statically determine when
subtyping can ambiguously affect semantics.

After careful consideration, our solution will be to restrict inter-
sections and explicit constraints on wildcards so that they are con-
sistent with single-instantiation inheritance adapted to wildcards.

7.3 Equivalence
Numbers<?> is equivalent to Numbers<? extends Number> because of the
implicit constraint on the wildcard. As such, one would expect
List<Numbers<?>> to be equivalent to List<Numbers<? extends Number>>.
However, this is not the case according to the Java language spec-
ification [5: Chapters 4.5.1.1 and 4.10.2] and the formalization by
Torgersen et al. [17] referenced therein (although javac makes
some attempts to support this). The reason is that Java uses syn-
tactic equality when comparing type arguments, reflected in our
SUB-EXISTS rule by the use of = in the sixth premise.

Ideally equivalent types could be used interchangeably. Thus,
during subtyping Java should only require type arguments to be
equivalent rather than strictly syntactically identical. The obvi-
ous way to implement this is to simply check that the type ar-

explicit(?

τ1, . . . ,
?

τm) = 〈Γ; ∆· ; τ1, . . . , τm〉 explicit(?

τ
′
1, . . . ,

?

τ
′
n) = 〈Γ′; ∆· ′; τ ′1, . . . , τ ′n〉

for all

C<P1,...,Pm> is a subclass of E<τ̄1,...,τ̄k>
and

D<P ′1,...,P
′
n> is a subclass of E<τ̄ ′1,...,τ̄

′
k>

 and i in 1 to k, τ̄i[P1 7→τ1, . . . , Pm 7→τm] = τ̄ ′i [P
′
1 7→τ ′1, . . . , P ′n 7→τ ′n]

G : D ` C<
?

τ1, ...,
?

τm> t· D<
?

τ
′
1, ...,

?

τ
′
n>

Figure 15. Definition of when two types join concretely

guments are subtypes of each other, as proposed by Smith and
Cartwright [13]. Yet, to our surprise, this introduces another source
of infinite proofs and potential for non-termination. We give one
such example in Figure 14, and, as with prior examples, this ex-
ample can be modified so that the infinite proof is acyclic. This
example is particularly problematic since it satisfies both our inher-
itance and parameter restrictions. We will address this problem by
canonicalizing types prior to syntactic comparison.

7.4 Inheritance Consistency
Lastly, for sake of completeness we discuss a problem which, al-
though not officially addressed by the Java language specification,
appears to already be addressed by javac. In particular, the type
Numbers<? super String> poses an interesting problem. The wildcard
is constrained explicitly below by String and implicitly above by
Number. Should this type be opened, then transitivity would imply
that String is a subtype of Number, which is inconsistent with the
inheritance hierarchy. One might argue that this is sound because
we are opening an uninhabitable type and so the code is unreach-
able anyways. However, this type is inhabitable because Java al-
lows null to have any type. Fortunately, javac appears to already
prohibit such types, preventing unsoundness in the language. Com-
pleteness of our subtyping algorithm actually assumes such types
are rejected; we did not state this as an explicit requirement of our
theorem because it already holds for Java as it exists in practice.

8. Improved Type System
Here we present a variety of slight changes to Java’s type system
regarding wildcards in order to rid it of the undesirable properties
discussed in Section 7.

8.1 Implicit Lower Bounds
Although we showed in Section 7.1 that using complete implicit-
constraint inference is problematic, we still believe Java should
use a slightly stronger algorithm. In particular, consider the types
Super<Number,?> and Super<?,Integer>. The former is accepted by Java
whereas the latter is rejected. However, should Java permit type
parameters to have lower-bound requirements, then the class Super
might also be declared as

class Super<P super Q, Q> {}

Using Java’s completely syntactic approach to implicit-constraint
inference, under this declaration now Super<Number,?> would be re-
jected and Super<?,Integer> would be accepted. This is the oppo-
site of before, even though the two class declarations are conceptu-
ally equivalent. In light of this, implicit-constraint inference should
also infer implicit lower-bound constraints for any wildcard corre-
sponding to a type parameter P with another type parameterQ con-
strained to extend P . This slight strengthening addresses the asym-
metry in Java’s syntactic approach while still having predictable
behavior from a user’s perspective and also being compatible with
our algorithms even with the language extensions in Section 10.

8.2 Single-Instantiation Inheritance
We have determined an adaptation of single-instantiation inheri-
tance to existential types, and consequently wildcards, which ad-
dresses the non-determinism issues raised in Section 7.2:

For all types τ and class or interface names C,
if τ has a supertype of the form ∃Γ:∆. C<...>,
then τ has a most precise supertype of that form.

Should this be ensured, whenever a variable of type τ is used as an
instance of C the type checker can use the most precise supertype
of τ with the appropriate form without having to worry about any
alternative supertypes.

Java only ensures single-instantiation inheritance with wild-
cards when τ is a class or interface type, but not when τ is a type
variable. Type variables can either be type parameters or captured
wildcards, so we need to ensure single-instantiation inheritance in
both cases. In order to do this, we introduce a concept we call con-
cretely joining types, defined in Figure 15.

Conceptually, two types join concretely if they have no wild-
cards in common. More formally, for any common superclass or
superinterface C, there is a most precise common supertype of the
form C<τ1, ..., τn> (i.e. none of the type arguments is a wild-
card). In other words, their join is a (set of) concrete types.

Using this new concept, we say that two types validly intersect
each other if either is a subtype of the other or they join concretely.
For Java specifically, we should impose additional requirements in
Figure 15: C or D must be an interface to reflect single inheri-
tance of classes [5: Chapter 8.1.4], and C and D cannot have any
common methods with the same signature but different return types
(after erasure) to reflect the fact that no class would be able to ex-
tend or implement both C and D [5: Chapter 8.1.5]. With this, we
can impose our restriction ensuring single-instantiation inheritance
for type parameters and captured wildcard type variables so that
single-instantiation inheritance holds for the entire type system.

Intersection Restriction
For every syntactically occurring intersection τ1 & ... & τn,
every τi must validly intersect with every other τj . For every
explicit upper bound τ on a wildcard, τ must validly inter-
sect with all other upper bounds on that wildcard.

This restriction has an ancillary benefit as well. Concretely join-
ing types have the property that their meet, as discussed in Sec-
tion 7.2, is simply the intersection of the types. This is not the case
for List<?> with Set<?>, whose meet is ∃X. List<X> & Set<X>. Our
intersection restriction then implies that all intersections coincide
with their meet, and so intersection types are actually unnecessary
in our system. That is, the syntax P extends τ1 & ... & τn can sim-
ply be interpreted as P extends τi for each i in 1 to n without intro-
ducing an actual type τ1 & ... & τn. Thus our solution addresses
the non-determinism issues discussed in Section 7.2 and simplifies
the formal type system.

` τ Z⇒ τ̄ ` τ ′ Z⇒ τ̄ ′ τ̄ = τ̄ ′

G : D ` τ ∼= τ ′

explicit(?

τ1, . . . ,
?

τn) = 〈Γ; ∆· ; τ1, . . . , τn〉
implicit(Γ;C; τ1, . . . , τn) = ∆◦

{v <:: τ̂ in ∆· | for no v <:: τ̂ ′ in ∆◦ , ` τ̂ ′ <· τ̂} = ∆· <::

{v ::> τ̂ in ∆· | for no v ::> τ̂ ′ in ∆◦ , ` τ̂ <· τ̂ ′} = ∆· ::>
for all i in 1 to n, ` τi Z⇒ τ ′i

{v <:: τ̂ ′ | v <:: τ̂ in ∆· <:: and ` τ̂ Z⇒ τ̂ ′} = ∆· ′<::

{v ::> τ̂ ′ | v ::> τ̂ in ∆· ::> and ` τ̂ Z⇒ τ̂ ′} = ∆· ′::>
〈Γ; ∆· ′<::,∆· ′::>; τ ′1, . . . , τ

′
n〉 = explicit(?

τ
′
1, . . . ,

?

τ
′
n)

` C<
?

τ1, ...,
?

τn> Z⇒ C<
?

τ
′
1, ...,

?

τ
′
n>

` v Z⇒ v

explicit(?

τ1, . . . ,
?

τn) = 〈Γ; ∆· ; τ1, . . . , τn〉
explicit(?

τ
′
1, . . . ,

?

τ
′
n) = 〈Γ′; ∆· ′; τ ′1, . . . , τ ′n〉

for all i in 1 to n, if τ ′i in Γ′ then τi = τ ′i [θ] else τi not in Γ
implicit(Γ;C; τ1, . . . , τn) = ∆◦

for all v <:: τ̂ in ∆· ′, θ(v) <:: τ̂ ′ in ∆◦ ,∆· with ` τ̂ ′ <· τ̂
for all v ::> τ̂ in ∆· ′, θ(v) ::> τ̂ ′ in ∆◦ ,∆· with ` τ̂ <· τ̂ ′

` C<
?

τ1, ...,
?

τn> <· C<
?

τ
′
1, ...,

?

τ
′
n>

` v <· v

Figure 16. Rules for equivalence via canonicalization

8.3 Canonicalization
In order to support interchangeability of equivalent types we can
apply canonicalization prior to all checks for syntactic equality. To
enable this approach, we impose one last restriction.

Equivalence Restriction
For every explicit upper bound τ on a wildcard, τ must not be
a strict supertype of any other upper bound on that wildcard.
For every explicit lower bound τ on a wildcard, τ must be a
supertype of every other lower bound on that wildcard.

With this restriction, we can canonicalize wildcard types by re-
moving redundant explicit constraints under the assumption that
the type is valid. By assuming type validity, we do not have to
check equivalence of type arguments, enabling us to avoid the full
challenges that subtyping faces. This means that the type valida-
tor must check original types rather than canonicalized types. Sub-
typing may be used inside these validity checks which may in turn
use canonicalization possibly assuming type validity of the type be-
ing checked, but such indirect recursive assumptions are acceptable
since our formalization permits implicitly infinite proofs.

Our canonicalization algorithm is formalized as the Z⇒ opera-
tion in Figure 16. Its basic strategy is to identify and remove all
redundant constraints. The primary tool is the <· relation, an im-
plementation of subtyping specialized to be sound and complete
between class and interface types only if τ is a supertype of τ ′ or
they join concretely.

Equivalence Theorem. Given the parameter restriction, the algo-
rithm prescribed by the rules in Figure 16 terminates. Given the
intersection and equivalence restrictions, the algorithm is further-
more a sound and nearly complete implementation of type equiva-
lence provided all types are valid according to the Java language
specification [5: Chapter 4.5].

Proof. Here we only discuss how our restrictions enable soundness
and completeness; the full proofs can be found in our technical re-
port [15]. The equivalence restriction provides soundness and near
completeness by ensuring the assumptions made by the <· relation
hold. The intersection restriction provides completeness by ensur-
ing that non-redundant explicit bounds are unique up to equivalence
so that syntactic equality after recursively removing all redundant
constraints is a complete means for determining equivalence.

We say our algorithm is nearly complete because it is com-
plete on class and interface types but not on type variables. Our
algorithm will only determine that a type variable is equivalent
to itself. While type parameters can only be equivalent to them-
selves, captured wildcard type variables can be equivalent to other
types. Consider the type Numbers<? super Number> in which the wild-
card is constrained explicitly below by Number and implicitly above
by Number so that the wildcard is equivalent to Number. Using our al-
gorithm, Numbers<? super Number> is not a subtype of Numbers<Number>,
which would be subtypes should one use a complete equivalence
algorithm. While from a theoretical perspective this seems to be
a weakness, as Summers et al. have argued [14], from a practical
perspective it is a strength since it forces programmers to use the
more precise type whenever they actually rely on that extra preci-
sion rather than obscure it through implicit equivalences. Plus, our
weaker notion of equivalence is still strong enough to achieve our
goal of allowing equivalent types to be used interchangeably (pro-
vided they satisfy all applicable restrictions). As such, we consider
our nearly complete equivalence algorithm to be sufficient and even
preferable to a totally complete algorithm.

9. Evaluation of Restrictions
One might consider many of the examples in this paper to be con-
trived. Indeed, a significant contribution of our work is identifying
restrictions that reject such contrived examples but still permit the
Java code that actually occurs in practice. Before imposing our re-
strictions on Java, it is important to ensure that they are actually
compatible with existing code bases and design patterns.

To this end, we conducted a large survey of open-source Java
code. We examined a total of 10 projects, including NetBeans
(3.9 MLOC), Eclipse (2.3 MLOC), OpenJDK 6 (2.1 MLOC), and
Google Web Toolkit (0.4 MLOC). As one of these projects we in-
cluded our own Java code from a prior research project because it
made heavy use of generics and rather complex use of wildcards.
Altogether the projects totalled 9.2 million lines of Java code with
3,041 generic classes and interfaces out of 94,781 total (ignoring
anonymous classes). To examine our benchmark suite, we aug-
mented the OpenJDK 6 compiler to collect statistics on the code
it compiled. Here we present our findings.

To evaluate our inheritance restriction, we analyzed all decla-
rations of direct superclasses and superinterfaces that occurred in
our suite. In Figure 17, we present in logarithmic scale how many
of the 118,918 declared superclasses and superinterfaces had type
arguments and used wildcards and with what kind of constraints. If
a class or interface declared multiple direct superclasses and super-
interfaces, we counted each declaration separately. Out of all these
declarations, none of them violated our inheritance restriction.

To evaluate our parameter restriction, we analyzed all con-
straints on type parameters for classes, interfaces, and methods that
occurred in our suite. In Figure 18, we break down how the 2,003
parameter constraints used type arguments, wildcards, and con-
strained wildcards. Only 36 type-parameter constraints contained
the syntax ? super. We manually inspected these 36 cases and de-
termined that out of all type-parameter constraints, none of them
violated our parameter restriction. Interestingly, we found no case

0
.1 1

1
0

1
0

0

1
0

0
0

1
0

0
0

0

1
0

0
0

0
0

No Type Arguments

No Wildcards

Oﾐﾉ┞ UﾐIﾗﾐゲデヴ;ｷﾐWSぐ

Uses ? extends

Uses ? super

0

1
0

0
0

0
0

1
0

0
0

0

Only Unconstrained
Wildcards

Number of Declarations

Figure 17. Wildcard usage in
inheritance hierarchies

No

Wildcards

20.9%

Only

Unconstrained

Wildcards

3.7%

Uses ? extends

1.5%

Uses ? super

1.8%

No

Type Arguments

72.0%

Figure 18. Wildcard usage in
type-parameter constraints

0.1

1

10

100

1000

10000

0 1 2 3 4 5 6N
u

m
b

e
r

o
f

T
y

p
e

 P
a

ra
m

e
te

rs

Number of Constraints

0

Figure 19. Number of con-
straints per type parameter

51% 3.5%

.01%

? extends

? super

Implicit

None
33% ()

5.2%

7.3%

Figure 20. Distribution of con-
straints on wildcards

where the type with a ? super type argument was nested inside the
constraint; only the constraint itself ever had such a type argument.

To evaluate the first half of our intersection restriction, we
examined all constraints on type parameters for classes, interfaces,
and methods that occurred in our suite. In Figure 19 we indicate in
logarithmic scale how many type parameters had no constraints,
one constraint, or multiple constraints by using intersections. In
our entire suite there were only 61 intersections. We manually
inspected these 61 intersections and determined that, out of all these
intersections, none of them violated our intersection restriction.

To evaluate the second half of our intersection restriction as
well as our equivalence restriction, we examined all wildcards that
occurred in our suite. In Figure 20 we break down the various ways
the 19,018 wildcards were constrained. Only 3.5% of wildcards had
both an implicit and an explicit upper bound. In all of those cases,
the explicit upper bound was actually a subtype of the implicit
upper bound (interestingly, though, for 35% of these cases the two
bounds were actually equivalent). Thus out of all explicit bounds,
none of them violated either our intersection restriction or our
equivalence restriction. Also, in the entire suite there were only
2 wildcards that had both an explicit lower bound and an implicit
upper bound, and in both cases the explicit lower bound was a strict
subtype of the implicit upper bound.

In summary, none of our constraints were ever violated in our
entire suite. This leads us to believe that the restrictions we impose
will most likely have little negative impact on programmers.

We also manually investigated for implicitly infinite types, tak-
ing advantage of the syntactic classification of implicitly infinite
types described in the technical report [15]. We encountered only
one example of an implicitly infinite type. It was actually the same
as class Infinite in Section 3.2; however, we investigated this fur-
ther and determined this was actually an error which we easily cor-
rected [15]. We also did a manual investigation for implicitly infi-
nite proofs and found none. These findings are significant because
Cameron et al. proved soundness of wildcards assuming all wild-
cards and subtyping proofs translate to finite traditional existential
types and subtyping proofs [3], and Summers et al. gave semantics
to wildcards under the same assumptions [14], so although we have
determined these assumptions do not hold theoretically our survey
demonstrates that they do hold in practice. Nonetheless, we expect
that Cameron et al. and Summers et al. would be able to adapt their
work to implicitly infinite types and proofs now that the problem
has been identified.

10. Extensions
Although in this paper we have focused on wildcards, our formal-
ism and proofs are all phrased in terms of more general existential
types [15]. This generality provides opportunity for extensions to
the language. Here we offer a few such extensions which prelimi-
nary investigations suggest are compatible with our algorithms, al-
though full proofs have not yet been developed.

10.1 Declaration-Site Variance
As Kennedy and Pierce mention [8], there is a simple translation
from declaration-site variance to use-site variance which preserves
and reflects subtyping. In short, except for a few cases, type argu-
ments τ to covariant type parameters are translated to ? extends τ ,
and type arguments τ to contravariant type parameters are trans-
lated to ? super τ . Our restrictions on ? super then translate to re-
strictions on contravariant type parameters. For example, our re-
strictions would require that, in each declared direct superclass and
superinterface, only types at covariant locations can use classes or
interfaces with contravariant type parameters. Interestingly, this re-
striction does not coincide with any of the restrictions presented by
Kennedy and Pierce. Thus, we have found a new termination re-
sult for nominal subtyping with variance. It would be interesting to
investigate existing code bases with declaration-site variance to de-
termine if our restrictions might be more practical than prohibiting
expansive inheritance.

Because declaration-site variance can be translated to wildcards,
Java could use both forms of variance. A wildcard should not
be used as a type argument for a variant type parameter since it
is unclear what this would mean, although Java might consider
interpreting the wildcard syntax slightly differently for variant type
parameters for the sake of backwards compatibility.

10.2 Existential Types
The intersection restriction has the unfortunate consequence that
constraints such as List<?> & Set<?> are not allowed. We can ad-
dress this by allowing users to use existential types should they
wish to. Then the user could express the constraint above using
exists X. List<X> & Set<X>, which satisfies the intersection restric-
tion. Users could also express potentially useful types such as
exists X. Pair<X,X> and exists X. List<List<X>>.

Besides existentially quantified type variables, we have taken
into consideration constraints, both explicit and implicit, and how
to restrict them so that termination of subtyping is still guaranteed
since the general case is known to be undecidable [20]. While all
bound variables must occur somewhere in the body of the existen-
tial type, they cannot occur inside an explicit constraint occurring
in the body. This both prevents troublesome implicit constraints
and permits the join technique in Section 6.1. As for the explicit
constraints on the variables, lower bounds cannot reference bound
variables and upper bounds cannot have bound variables at covari-
ant locations or in types at contravariant locations. This allows po-
tentially useful types such as exists X extends Enum<X>. List<X>. As
for implicit constraints, since a bound variable could be used in
many locations, the implicit constraints on that variable are the ac-
cumulation of the implicit constraints for each location it occurs at.
All upper bounds on a bound variable would have to validly inter-
sect with each other, and each bound variable with multiple lower
bounds would have to have a most general lower bound.

10.3 Lower-Bounded Type Parameters
Smith and Cartwright propose allowing type parameters to have
lower-bound requirements (i.e. super clauses) [13], providing a
simple application of this feature which we duplicate here.

<P super Integer> List<P> sequence(int n) {
List<P> res = new LinkedList<P>();
for (int i = 1; i <= n; i++)
res.add(i);

return res;
}

Our algorithms can support this feature provided lower-bound re-
quirements do not have explicitly bound wildcard type arguments.
Also, they should not be other type parameters in the same param-
eterization since that is better expressed by upper bounds on those
type parameters.

10.4 Universal Types
Another extension that could be compatible with our algorithms is a
restricted form of predicative universal types like forall X. List<X>.
Although this extension is mostly speculative, we mention it here
as a direction for future research since preliminary investigations
suggest it is possible. Universal types would fulfill the main role
that raw types play in Java besides convenience and backwards
compatibility. In particular, for something like an immutable empty
list one typically produces one instance of an anonymous class
implementing raw List and then uses that instance as a List of any
type they want. This way one avoids wastefully allocating a new
empty list for each type. Adding universal types would eliminate
this need for the back door provided by raw types.

11. Conclusion
Despite their conceptual simplicity, wildcards are formally com-
plex, with impredicativity and implicit constraints being the pri-
mary causes. Although most often used in practice for use-site
variance [6, 16–18], wildcards are best formalized as existential
types [2, 3, 6, 8, 17, 18, 20], and more precisely as coinductive ex-
istential types with coinductive subtyping proofs [15], which is a
new finding to the best of our knowledge.

In this paper we have addressed the problem of subtyping of
wildcards, a problem suspected to be undecidable in its current
form [8, 20]. Our solution imposes simple restrictions, which a sur-
vey of 9.2 million lines of open-source Java code demonstrates are
already compatible with existing code. Furthermore, our restric-
tions are all local, allowing for informative user-friendly error mes-
sages should they ever be violated.

Because our formalization and proofs are in terms of a general-
purpose variant of existential types [15], we have identified a num-
ber of extensions to Java that should be compatible with our al-
gorithms. Amongst these are declaration-site variance and user-
expressible existential types, which suggests that our algorithms
and restrictions may be suited for Scala as well, for which subtyp-
ing is also suspected to be undecidable [8, 20]. Furthermore, it may
be possible to support some form of universal types, which would
remove a significant practical application of raw types so that they
may be unnecessary should Java ever discard backwards compati-
bility as forebode in the language specification [5: Chapter 4.8].

While we have addressed subtyping, joins, and a number of
other subtleties with wildcards, there is still plenty of opportunity
for research to be done on wildcards. In particular, although we
have provided techniques for improving type-argument inference,
we believe it is important to identify a type-argument inference al-
gorithm which is both complete in practice and provides guarantees
regarding ambiguity of program semantics. Furthermore, an infer-

ence system would ideally inform users at declaration-site how in-
ferable their method signature is, rather than having users find out
at each use-site. We hope our explanation of the challenges helps
guide future research on wildcards towards solving such problems.

Acknowledgements
We would like to thank Nicholas Cameron, Sophia Drossopoulou,
Erik Ernst, Suresh Jagannathan, Andrew Kennedy, Jens Palsberg,
Pat Rondon, and the anonymous reviewers for their many insightful
suggestions and intriguing discussions.

References
[1] Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler.

Making the future safe for the past: Adding genericity to the Java
programming language. In OOPSLA, 1998.

[2] Nicholas Cameron and Sophia Drossopoulou. On subtyping, wild-
cards, and existential types. In FTfJP, 2009.

[3] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A model
for Java with wildcards. In ECOOP, 2008.

[4] Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C.
Mitchell. F-bounded polymorphism for object-oriented programming.
In FPCA, 1989.

[5] James Gosling, Bill Joy, Guy Steel, and Gilad Bracha. The JavaTM

Language Specification. Addison-Wesley Professional, third edition,
June 2005.

[6] Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for
parametric types. In ECOOP, 2002.

[7] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Mark Shields. Practical type inference for arbitrary-rank types. Jour-
nal of Functional Programming, 17:1–82, January 2007.

[8] Andrew Kennedy and Benjamin Pierce. On decidability of nominal
subtyping with variance. In FOOL, 2007.

[9] Daan Leijen. HMF: Simple type inference for first-class polymor-
phism. In ICFP, 2008.

[10] Martin Odersky and Konstantin Läufer. Putting type annotations to
work. In POPL, 1996.

[11] Gordon D. Plotkin. A note on inductive generalization. In Machine
Intelligence, volume 5, pages 153–163. Edinburgh University Press,
1969.

[12] John C. Reynolds. Transformational systems and the algebraic struc-
ture of atomic formulas. In Machine Intelligence, volume 5, pages
135–151. Edinburgh University Press, 1969.

[13] Daniel Smith and Robert Cartwright. Java type inference is broken:
Can we fix it? In OOPSLA, 2008.

[14] Alexander J. Summers, Nicholas Cameron, Mariangiola Dezani-
Ciancaglini, and Sophia Drossopoulou. Towards a semantic model
for Java wildcards. In FTfJP, 2010.

[15] Ross Tate, Alan Leung, and Sorin Lerner. Taming wildcards in Java’s
type system. Technical report, University of California, San Diego,
March 2011.

[16] Kresten Krab Thorup and Mads Torgersen. Unifying genericity -
combining the benefits of virtual types and parameterized classes. In
ECOOP, 1999.

[17] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ.
In FOOL, 2005.

[18] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der
Ahé, Gilad Bracha, and Neal Gafter. Adding wildcards to the Java
programming language. In SAC, 2004.

[19] Mirko Viroli. On the recursive generation of parametric types. Tech-
nical Report DEIS-LIA-00-002, Università di Bologna, September
2000.

[20] Stefan Wehr and Peter Thiemann. On the decidability of subtyping
with bounded existential types. In APLAS, 2009.

