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Recent research has identified significant performance hurdles that sound gradual typing needs to overcome.
These performance hurdles stem from the fact that the run-time checks gradual type systems insert into code
can cause significant overhead. We propose that designing a type system for a gradually typed language hand
in hand with its implementation from scratch is a possible way around these and several other hurdles on
the way to efficient sound gradual typing. Such a design process also highlights the type-system restrictions
required for efficient composition with gradual typing. We formalize the core of a nominal object-oriented
language that fulfills a variety of desirable properties for gradually typed languages, and present evidence that
an implementation of this language suffers minimal overhead even in adversarial benchmarks identified in
earlier work.
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1 INTRODUCTION

Sound gradual typing is the idea that typed and untyped code can be mixed together in a single
language in such a way that the typed code is able to execute as if there were no untyped code.
This means that typed code can rely on type soundness to enable type-driven optimizations.

The basic intuition of how to achieve sound gradual typing is relatively simple: we must protect
the guarantees obtained through static type-checking by inserting run-time checks at locations
in the code where values flow from untyped components to typed components. If a value from
untyped code fails to have its expected type at run time, an exception is thrown. Thus, the statically
checked components of the program can assume all values passed to them are well-typed.

Painted this way, the picture leads us to expect that gradual typing may incur some overhead for
those inserted checks, proportional to the number of times we transition from untyped to typed
parts of the program. In the optimal scenario, these checks are infrequent and efficient, and thus the
overall cost of gradual typing is low and can be easily estimated and planned for by analyzing the
level of interaction between typed and untyped parts of the program. Furthermore, typed code can
be optimized in ways untyped code cannot, so one would expect performance to smoothly improve
as types are added to a code base. However, we are not aware of any existing proposal for a sound
gradually typed language which has such performance behavior and reasonable performance for
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fully untyped code. In fact, Takikawa et al. [2016] measured extreme and unpredictable dips in
performance for programs consisting of both typed and untyped code. These measurements were
made on their current proposal for sound gradual typing for Racket [Tobin-Hochstadt and Felleisen
2006], but they argue that no other system provides convincing reasons for why it should perform
significantly better.
In this paper, we present a way to achieve efficient sound gradual typing. The core component

of this approach is a nominal type system with run-time type information, which lets us verify
assumptions about many large data structures with a single, quick check. The downside of this
approach is that it limits expressivity, particularly with respect to structural data. Nonetheless, we
argue that one should be able to build useful programming languages even under these limitations,
and we sketch ideas about how to address the limitations in the future. Furthermore, by designing
this system hand-in-hand with gradual typing, we are able to execute even untyped code efficiently
despite our reliance on nominal typing.
To support our claims about efficiency, we built a prototype compiler for a nominal object-

oriented language and used it to implement key examples presented by Takikawa et al. Given that
this involves a major shift in programming paradigms, we engineered the examples to exhibit the
same complexity in terms of transitions between untyped and typed code as they did in Racket.
Whereas Takikawa et al. measured overheads over 10,000% relative to the performance of fully
untyped code, we measured worst-case overheads of less than 10%.
In summary, the contributions of this paper are as follows:

• We present new desirable properties of sound gradual type systems that we believe signifi-
cantly improve their performance (Section 3).

• We present a simple gradually typed nominal object-oriented language (Section 5 through 7)
that fulfills the properties traditionally desired of gradual type systems in addition to our
own new properties (Section 8). We also give a crisp connection between the direct semantics
of the language (Section 6) and the cast semantics of the language (Section 7).

• We provide evidence of our approach’s feasibility and efficiency by presenting an implemen-
tation of said language and comparing benchmarks between it, Typed Racket [Takikawa et al.
2016], C# [Bierman et al. 2010], and Reticulated Python [Vitousek et al. 2014] (Section 9).

• We illustrate the significant tradeoffs and future challenges of our approach and sketch
possible avenues for addressing its current limitations in the future (Section 10).

This work draws heavily from earlier work on gradual typing, which we review next.

2 BACKGROUND

Gradual typing, as originally proposed by Siek and Taha [2006], features two core elements: a
special type dyn and a consistency relation τ ∼ τ ′ expressing that τ and τ ′ are structurally equal
except for places featuring dyn. For example, the following types are consistent:

dyn ∼ (dyn → dyn) ∼ (int → dyn) ∼ (int → bool)

A program in their gradually typed language type-checks according to the original typing rules,
but with type equality replaced with the consistency relation in many places. This enables dyn
to stand for any type while also maintaining the familiar static typing rules where dyn is not
present. The gradually typed program is then translated into a variant of the original statically
typed language by inserting dynamic casts where run-time checks are necessary to monitor the
boundary between untyped and typed code.
Here is how this works for an example program:

f : dyn → dyn ⊢ (λf ′ : int → int. f ′ 5) f
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The lambda term expects a parameter of type int → int, but it is applied to an argument of
type dyn → dyn. Despite this difference in types, the program type-checks because these two
types are considered to be consistent with each other. This gradually typed program is then
translated to a statically typed program by inserting run-time casts, resulting in

f : dyn → dyn ⊢ (λf ′ : int → int. f ′ 5) (f :: int → int)

Here e :: τ represents a run-time check that e has type τ , conceptually throwing a run-time
exception if it does not.

2.1 Casting Strategies

In most gradual typing settings, casts are the only source of run-time overhead incurred by gradual
typing. Thus, where casts are inserted and how they work has a big impact on the performance of
a gradually typed program. Before we suggest our own variation on casts in Section 3, we give an
overview of existing casting strategies that have been studied as such.

2.1.1 Guarded. Most work on sound gradual typingÐincluding the original works by Siek and
Taha [2006], Tobin-Hochstadt and Felleisen [2006], Matthews and Findler [2007], and Gronski et al.
[2006]Ðuses the guarded cast semantics. In those systems, a cast like the one above reduces as
follows:

f :: int → int 7→ λx : int. (f (x :: dyn)) :: int

Instead of checking whether the function f always returns an int when given an int, which is
generally impossible, it is wrapped in a new function that upcasts its input to dynÐwhich always
worksÐand, after the call to f completes, checks that its output is an int. Wadler and Findler [2009],
and later Ahmed et al. [2011], showed that this is sound even if it is later discovered that f does
not always return an int when given an int. However, instead of having one check at the point
where the function is passed to the typed part of the program, this strategy will incur checks every
time the function is called, which can cause signficant overhead if that function is heavily used.
Simply wrapping functions into other functions also does not preserve object identity, which can
be a problem in languages where object identity is semantically significant.

2.1.2 Transient. The transient cast semantics was proposed by Vitousek et al. [2014] to preserve
object identity in Reticulated Python. It puts casts nearly everywhere in the code: the caller of
a function casts an argument to the type that the function expects, but since a different caller
might see that function as dyn → τ , the function itself also casts its parameters, leading to many
unnecessary checks even in fully typed code. As such, soundness was not originally meant to be
monitored in production programs, but rather intended to help with finding the sources of type
errors during debugging. However, Vitousek et al. [2017] recently used this casting strategy as the
basis of their work on open-world soundness, finding overheads much smaller than those reported
by Takikawa et al. [2016], but still several multiples of the original run times, sometimes over 10x.

2.1.3 Monotonic. Another approach used by Vitousek et al. [2014] in Reticulated Python, and by
Swamy et al. [2014] and Rastogi et al. [2015] in Safe TypeScript, is what Siek et al. [2015b] formalized
as the monotonic approach. Here, every value keeps track of what type it has been checked to
have, and enforces that type in later mutations. For example, the record {x : 5, y : łHello′′} might
be checked to have type {x : int}, after which it will get a special run-time-type-information
field assigned and become {x : 5, y : łHello′′, rtti : {x : int}}. Any subsequent assignment of a
non-integer value to x would fail, and future checks can use the information in rtti to fast-track
failure or success instead of checking the value of x itself. The rtti field itself can only change
monotonically towards more precise types (if they are consistent with the current values in the
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structure). Applying this scheme to higher-order types is not straightforward; thus Swamy et al.
do not treat a function dyn → dyn as compatible with int → int, while Siek et al. fall back to
guarded semantics for function types.

2.2 Properties of Gradual Type Systems

Beyond soundness, there are additional desired properties for gradual type systems suggested
by the literature. In the following, we describe what they are and why they are useful. Later, in
Section 3, we propose two more properties related specifically to the efficiency of gradual typing.

2.2.1 Blame and Accountability. Lacking a proper word for a notion of łcan assign blame
correctlyž as defined by Tobin-Hochstadt and Felleisen [2006] and Wadler and Findler [2009], we
define accountability as the property that, when an inserted cast fails, it can refer the programmer
to some untyped part of the program that is at fault. Higher-order types are what make blame
hard to implement, since a higher-order cast cannot be determined right or wrong until later in the
program when the cast function is supplied an argument. Blame tracking is the technique used to
enable dynically created casts to keep track of the statically inserted cast they originated from.

2.2.2 The Gradual Guarantee. Siek et al. [2015a] defined the gradual guarantee, which expresses
the idea that adding or removing type information from a program should not change its behavior
in unexpected ways. In particular, making a well-typed program more dynamic should always
result in a well-typed program that produces the same output. The only exception is that a more
dynamic program can succeed where the original would fail because the original might assert some
unnecessary and overly restrictive type cast.

The gradual guarantee thus captures the expectation that adding type annotations to an untyped
program should preserve the semantics of the program provided those annotations are correct.
While this clearly seems like a desirable property for gradually typed languages, Siek et al. [2015a]
demonstrate that several existing gradual type systems do not satisfy this property, including Safe
TypeScript [Swamy et al. 2014]. They remark that it seems łchallenging to satisfy the gradual
guarantee and efficiency at the same timež.

2.3 Overhead of Gradual Typing

Recently, Takikawa et al. [2016] surveyed the state of performance evaluations on gradual type
systems. They found that no gradually typed language had a systematic evaluation of the behavior
of the language during the process of gradually typed software development, by which they mean
an evaluation of how having mixed typed and untyped code affects run-time overheads. What they
found instead was that if there was some kind of overhead evaluation, it usually just compared
completely typed and completely untyped versions of programs. Thus, Takikawa et al. proposed a
scheme of using microbenchmarks divided up into smaller modules. Each of these modules would
exist in two versions, one completely typed, and one completely untyped. Thus, if a program
consists of N modules, it would have 2N potential configurations (i.e. different combinations of
typed/untyped versions of the modules). Takikawa et al. created a suite of microbenchmarks in
Typed Racket, and measured the overhead of gradual typing by comparing the running time of each
configuration to the running time of the completely untyped configuration. While the completely
typed configuration was usually about 30% faster than the completely untyped one, they found
some programs had configurations with over 10,000% overhead. Furthermore, for some programs
there was no sequence of annotating modules (simulating a gradual evolution from a completely
untyped to a completely typed program) where every intermediate configuration had less than
1,000% overhead. We agree with their assessment that such overheads are far beyond acceptable,
and that sound gradual typing needs significant improvements in efficiency in order to be adopted.
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2.4 Gradual Typing for Object-Oriented Languages

Gradual typing was extended to object-oriented languages quite early, again by Siek and Taha
[2007]. Their approach was based on structural subtyping on records. They used the guarded
casting strategy, even delaying checks for the presence of expected fields to whenever that field
was actually accessed. This is an example of how design choices in casting strategies are not
limited to just functions. Since the language we are formalizing and have implemented is a nominal
object-oriented language, it touches on many aspects from prior work on sound gradual object-
oriented languages (both nominal and structural). Such languages include C# [Bierman et al. 2010],
GradualTalk [Allende et al. 2014], Reticulated Python [Vitousek et al. 2014], Safe TypeScript [Rastogi
et al. 2015; Swamy et al. 2014], and StrongScript [Richards et al. 2015]. We discuss their relations to
our work as we get to the relevant parts of the paper.

3 TOWARDSWELL-BEHAVED AND EFFICIENT GRADUAL TYPING

In the light of the previous discussion, we want to devise a sound gradually typed language that is
accountable, fulfills the gradual guarantee, and has acceptably low overhead for the checks needed
to ensure soundness. Since the overhead of gradual typing comes from the run-time checks it needs
to insert, we aim to minimize the number and cost of those checks. The main ingredients of our
scheme to achieve this goal are nominality and run-time type information. The idea is that every
value will be tagged with its most precise type as run-time type information. This enables what we
call transparency and immediate accountability, the combination of which provides efficiency.
In this section, we give a brief overview of what these ingredients are and how our approach

relates to existing work. We formalize transparency and immediate accountability in Section 8.

3.1 Transparency

A transparent casting strategy is one in which a cast is invisible to the runtime system after it is
evaluated, unless of course it fails. Thus, guarded casting is not transparent because a cast can wrap
a value with a new value that would otherwise not be present. Transient casting, on the other hand,
is transparent because the value is simply passed on after the cast succeeds. Monotonic casting
provides a middle ground in which the same value is passed on, but the value is modified in place.

3.2 Immediate Accountability

Accountability is the ability to identify a source of a cast failure in the source program. Immediate

accountability is the ability to identify that source immediately as it is being executed. In other
words, loops and recursion aside, once execution has successfully proceeded past a point in the
program, then that point cannot be at fault for some future cast failure. None of guarded casting,
transient casting, or monotonic casting are necessarily immediately accountable. They often only
do shallow aspects of a cast immediately, and defer deep aspects of a cast to later. C# [Bierman
et al. 2010] and Safe TypeScript [Swamy et al. 2014] are the only prior gradual type systems that
we know of that are immediately accountable, both of which sacrifice the gradual guarantee to
achieve this.

3.3 Run-Time Type Information

Having every value always be tagged with its most precise type requires a significant assumption:
every value’s most-precise type must be known upon construction of the value, even if it is
constructed in an untyped part of the program. We discuss the implications of this requirement
next and in Section 10.3.
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3.4 Discussion

Most earlier work on gradually typing focuses on adding gradual typing to an existing system.
Half of this work aims to add gradual typing to an existing untyped language. Examples of this
category are Reticulated Python [Vitousek et al. 2014], Gradualtalk [Allende et al. 2014], Safe
TypeScript [Rastogi et al. 2015; Swamy et al. 2014], and StrongScript [Richards et al. 2015], as well as
the two widespread unsound gradually typed languages (preferably referred to as optionally typed
languages [Bracha 2004]), Hack [Facebook, Inc. 2016] and TypeScript [Microsoft 2012]. The other
half aims to add gradual typing to, i.e. łgradualizež, an existing typed language. Examples of this
category are C# [Bierman et al. 2010], gradual typing for generics by Ina and Igarashi [2011], and
work on systematically [Garcia et al. 2016] or automatically [Cimini and Siek 2016] gradualizing
given typed languages.
Certainly much of the appeal of gradual typing is that it can give a preexisting language new

access to the counterpointing paradigm. However, both directions currently have weaknesses to
overcome due to the fact that gradual typing is heavily intertwined with both the type system
and the runtime implementation. Adding sound gradual typing to an untyped language seems to
frequently incur significant overhead, sometimes making programs multiple orders of magnitude
slower [Takikawa et al. 2016]. Part of the problem is that the type-system features needed to capture
the idioms common to untyped languages are not easy to check efficiently, especially when the
underlying runtime is not designed for it.

Conversely, adding gradual typing to a typed language can introduce unexpected behavior due
to violations of the gradual guarantee. For example, in C#, adding more precise type information to
a well-typed program may cause that program to cease being well-typed, as the new information
may introduce ambiguities (e.g. through additional available overloadings) that would have to be
resolved. When such an ambiguity is introduced at compile time, C# can rely on the programmer
to resolve the error. However, with gradual typing, such ambiguities can be introduced at run time,
where no such programmer is readily available to resolve the problem, causing the system to throw
a run-time error. Furthermore, C# compilation is heavily type-directed, but gradual typing often
makes type information available only at run time, so C# is forced to defer much of its compilation
of untyped code to run time. We have found that this can introduce significant overhead, as we
illustrate in Section 9. We discuss these and other issues in more detail in Section 10. The main point
here is that gradual typing is not easy to bolt onto existing languages without serious drawbacks.
Thus, in contrast to most earlier work, we focus on gradual typing for new systems, where the

entire language can be designed from the start to both support and benefit from gradual typing.
Clearly we can benefit from all the work on adding gradual typing to existing systems, but our
change in focus also enables us to benefit from a greater degree of flexibility. Here we use that
flexibility to address the efficiency issues in prior work while retaining desirable properties such
as accountability and the gradual guarantee. While the improvement in performance is certainly
more noticeable when compared to systems that have added sound gradual typing to untyped
languages, we even achieve better performance than systems that have added sound gradual
typing to typed languages. We accomplish this by designing a language with a nominal runtime
environment, which is where most of our performance gains come from, optimized for gradual
typing, which is where our smaller performance gains come from. Nominality in and of itself is not
a guarantee for good performance, nor does it imply transparency or accountability. For example,
our benchmarks for C#Ðwhich is nominal, transparent, and immediately accountableÐshow that its
dynamically typed parts are quite slow (see Section 9). As another example, StrongScript [Richards
et al. 2015] uses nominality for performance in fully typed programs, but the language as a whole is
neither transparent nor immediately accountable, and there is no performance evaluation of mixed
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programs, where Takikawa et al. [2016] found the biggest problems. Furthermore, Richards et al.
found that blame tracking produced significant overhead, prompting them to only evaluate the
performance of their system without blame.

Of course, the nominality of our runtime environment restricts the programmer. While gradual
typing can recover some of the expressiveness of structural typing that prior research has worked
hard to preserve, there is still much that is lost. We expect to address this by developing methods for
mixing structural values into our nominal system, much like we mix untyped and typed code. And
in fact, there is already significant work to this effect, some with [Richards et al. 2015; Wrigstad et al.
2010] and some without gradual typing [Anderson and Drossopoulou 2003]. But it is important to
recognize that adding structural reasoning is not necessary for many of the well-known applications
of gradual typing. Much like how we focus on gradual typing being a part of the language from
the beginning, one envisions gradual typing being a part of the software-development process
from the beginning. Stable code would typically be typed, benefiting from better optimization
and providing machine-checkable document for programmers and IDEs interacting with this code.
Meanwhile unstable code would not need to be typed, which is useful for prototyping, scripting, or
simply letting the programmer first experiment in the paradigm they are most comfortable with. In
particular, student programmers can enjoy the benefits of working with well-typed APIs without
having the type system impede their first explorations into programming.

What we present in this paper is a minimal system striving towards this end, just large enough
to test whether this path has promise. Our formalization presented in Section 5 is sufficient for
covering the same feature set as Featherweight Java [Igarashi et al. 2001] with interfaces and little
more. Meanwhile, we have made an effort to be forwards compatible with a multitude of features
frequently found in nominal industry languages, all while also making an effort to be forwards
compatible with structural values. Our implementation covers a much larger subset of pre-generics
Java, including assignment, interfaces, overloading, primitive types, messages to super, access
control, and null pointers. Some of these features were adapted to work with gradual typing in a
way that satisfies the gradual guarantee. For example, we require that all overloadings of a method
be disjoint in order to avoid ambiguities at dynamic method lookup at run time, and we made null
explicit in anticipation of adding generics types later to avoid problems with both type-argument
inference [Smith and Cartwright 2008] and unsoundness [Amin and Tate 2016]. While we have yet
to decide how to accommodate structural values, we will discuss a number of possible strategies to
this end in Section 10.3.

4 THE OPTIMISTIC PERSPECTIVE

Throughout the remainder of this paper we will be using the terms optimistic and pessimistic. This is
a change in terminology that we find unifies our definitions. The idea is that there are two attitudes
towards typing. One is the optimistic attitude: programs should be able to proceed so long as they
might succeed. Dynamic typing takes this attitude, trying to only stop a program when execution
encounters an issue that cannot be overcome. The other is the pessimistic attitude: programs should
only be able to proceed when it is known they will succeed. Static typing takes this attitude, trying
to only compile a program if it is exhibits certain guarantees.

Both attitudes have their advantages and disadvantages, and consequently are each better suited
to different circumstances. The purpose of gradual typing is to give the programmer the ability to
explicitly control which attitude is applied where in a given program. Thus, when a variable is given
the type dynamic, the programmer is directing the compiler to treat the variable as optimistically
having whatever type is necessary for the usages at hand. On the other hand, when a variable
is given the type Number, the programmer is directing the compiler to treat the variable as
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Class/Interface Name C Field Name f Method Namem Variable Name x

Type τ F ⊤ | C | dynamic

Context Γ F · | Γ,τ x

Expression e F x | let τ x ≔ e in e | C(e, . . .) | e . fδ | e .mδ (e, . . .) | cast e to τ

Dispatch Mode δ F C | dynamic

Method Signature s F τ m(Γ)

Method Definition d F s 7→ e

Interface Definition i F interface C {s; . . . }
Class Definition c F class C(τ f , . . . ) implements C, . . . {d ; . . . }

Environment Definition ΨF · | Ψ, i | Ψ, c

Fig. 1. Grammar

pessimistically only being usable where a Number provides sufficient guarantees. In this way, a
gradually typed language enables the programmer to change attitudes as they see fit.
In technical terms, this new terminology expresses the same concept that Garcia et al. [2016]

generalize as consistent lifting.

5 THE TYPE SYSTEM

The grammar of our small gradually typed object-oriented language is shown in Figure 1. The
grammar is mostly standard besides being fairly minimal. Our implementation does of course
handle a much richer set of features as described in Section 9. The point of this formalization is
not to specify our implemented language, but to be able to discuss the interesting aspects of our
approach: nominality, run-time type information, transparency, and immediate accountability. Note
that as another simplification, we do not concern ourselves with naming issues; it is obvious how
to adjust the rules throughout this paper to address problems such as name shadowing.

5.1 Dispatch Modes

The one irregular feature of our grammar is the use of dispatch modes δ . Every field access and
method invocation is annotated with a dispatch mode. This reflects the fact that, at compile time, one
must decide how a field should be accessed or a method implementation should be looked up. For
example, a method could be looked up by accessing some offset of the object’s virtual-method table.
In this case, the dispatch mode is the class that specifies which offset to use. Alternatively, a method
could be looked up by searching through the object’s interface table, in which case the dispatch
mode is the interface to search for. Lastly, since we are providing a gradually typed language, a
method could be looked up in the object’s hashtable, like one would do in a dynamically-typed
language such as Python. In this case, the dispatch mode is dynamic.
Note that this means we view objects as supplying both a virtual-method table1 (and interface

table) and a (possibly immutable and shared) hashtable. Similarly, fields can be accessed through
fixed offsets when the object’s class is known, or through the hashtable when the field access
is being typed dynamically. This allows us to interact with objects efficiently regardless of the
typing attitude we happen to be applying in a given part of the program. Although in theory we
could develop a more traditional calculus without dispatch modes, we include them here to better
illustrate how we are able to implement gradual typing.

1For simplicity, we do not allow classes to extend other classes. However, we have designed our calculus to support class
inheritance, and our implementation supports it as well.
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Ψ ⊢ C S C

C implements C ′ ∈ Ψ

Ψ ⊢ C S C ′
Ψ ⊢ τ S ⊤ Ψ ⊢ τ S dynamic Ψ ⊢ dynamic ◃ C

Fig. 2. Subtyping, where S is optimistic ◃ or pessimistic ◂

Ψ ⊢ τ Ψ ⊢ e S τ

Ψ ⊢S e

Ψ | · ⊢ e S τ

Ψ ⊢ e S τ

τ x ∈ Γ Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ x S τ ′

Ψ ⊢ τ Ψ | Γ ⊢ e S τ

Ψ | Γ,τ x ⊢ e ′ S τ ′

Ψ | Γ ⊢ let τ x ≔ e in e ′ S τ ′

class C(τ1, . . . ,τn) ∈ Ψ

∀i . Ψ | Γ ⊢ ei S τi Ψ ⊢ C S τ

Ψ | Γ ⊢ C(e1, . . . , en) S τ

Ψ ⊢ δ . f : τ
Ψ ⊢ e S δ Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ e . fδ S τ ′

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ Ψ | Γ ⊢ e S δ

∀i . Ψ | Γ ⊢ ei S τi Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ e .mδ (e1, . . . , en) S τ ′

Ψ | Γ ⊢ e S ⊤ Ψ ⊢ τ S τ ′

Ψ | Γ ⊢ cast e to τ S τ ′

class C(τ1 f1, . . . ) ∈ Ψ

Ψ ⊢ C . fi : τi

Ψ ⊢ dynamic. f : dynamic

τ C .m(τ1, . . . ,τn) ∈ Ψ

Ψ ⊢ C .m(τ1, . . . ,τn) : τ

Ψ ⊢ dynamic.m(dynamic, . . . ) : dynamic

Ψ ⊢ ⊤

interface C ∈ Ψ

Ψ ⊢ C

class C ∈ Ψ

Ψ ⊢ C Ψ ⊢ dynamic Ψ ⊢ ·

Ψ ⊢ Γ Ψ ⊢ τ

Ψ ⊢ Γ,τ x

Fig. 3. Expression Typing, where S is either optimistic ◃ or pessimistic ◂ subtyping

In general, the dispatch modes will be inferred by the compiler. As this issue is orthogonal to the
properties that we are trying to formalize and comes with its own interesting design choices, we
defer discussion of dispatch-mode inference to the supplementary material.

5.2 Subtyping

Our system provides two kinds of subtyping: optimistic and pessimistic. Optimistic subtyping (◃)
recognizes that dynamic is optimistically a subtype of any type τ because it can optimistically be
interpreted as being τ . Pessimistic subtyping (◂) ensures that one type is a subtype of another only
if all values of the former type are also values of the latter type. The two differ by only rule, so we
use the metavariable S to formalize both of them simultaneously in Figure 2.

Like most subtyping relations, pessimistic subtyping is transitive. However, optimistic subtyping,
like its inspiration consistent subtyping [Siek and Taha 2007], is not transitive because it conceptually
confuses existentials with universals. That is, dynamic semantically represents ∃α .α . Consequently,
every type is semantically a subtype of dynamic, as is captured by both pessimistic and optimistic
subtyping. But the optimistic attitude says to also treat dynamic as ∀α .α when it would make the

subtyping hold, making dynamic an optimistic subtype of every type. Thus the difference between
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Ψ ⊢ Ψ

⊢ Ψ Ψ ⊢ ·

Ψ ⊢ Ψ
′

Ψ ⊢ i

Ψ ⊢ Ψ
′
, i

Ψ ⊢ Ψ
′

Ψ ⊢ c

Ψ ⊢ Ψ
′
, c

∀i . Ψ ⊢ si

Ψ ⊢ interface C {s1; . . . }

∀i . Ψ ⊢ τi ∀i . Ψ | C ⊢ di
∀i . interface Ci {s

i
1; . . .} ∈ Ψ ∀i .∀j .∃ki, j . Ψ ⊢ dki, j ◃ s

i
j

Ψ ⊢ class C(τ1 f1, . . . ) implements C1, . . . {d1; . . . }

Ψ ⊢ τ Ψ ⊢ Γ

Ψ ⊢ τ m(Γ)

Ψ ⊢ τ Ψ ⊢ Γ Ψ | C this, Γ ⊢ e ◃ τ

Ψ | C ⊢ τ m(Γ) 7→ e

Ψ ⊢ · ◃ ·

Ψ ⊢ Γ ◃ Γ
′

Ψ ⊢ τ ◃ τ ′

Ψ ⊢ Γ,τ x ◃ Γ,τ ′ x

Ψ ⊢ Γ
′
◃ Γ Ψ ⊢ τ ◃ τ ′

Ψ ⊢ τ m(Γ) 7→ e ◃ τ ′m(Γ′)

Fig. 4. Class and Interface Validation

optimistic and pessimistic subtyping captures the difference between the optimistic and pessimistic
attitudes.

5.3 Expression Typing

Our expression-typing rules are shown in Figure 3. Observe that they look nearly identical to what
one might expect for a statically typed language. The only other major difference is that they are
parameterized by a subtyping relation S . When one uses optimistic subtyping ◃ for S , we say the
expression type-checks optimistically. Likewise, when one uses pessimistic subtyping ◂ for S , we
say the expression type-checks pessimistically. This parameterization illustrates that type-checking
is both standard and adjustable to the preferred attitude at hand.

5.4 Class and Interface Validation

Class and interface validation is shown in Figure 4. Once again it is quite standard. The one point to
note is that a class is allowed to only optimistically satisfy method signatures of implemented inter-
faces. In this way the class implementation can be completely untyped, even if it is implementing
typed interfaces. The only requirement then is that the class specify the list of interfaces it intends
to implement, and at least provide methods with the appropriate names and arities. Note also that
method definitions are always type-checked optimistically. Consequently, one of the challenges is
to achieve sound gradual typing throughout the class hierarchy.

6 THE DIRECT SEMANTICS

Traditionally, sound gradually typed calculi are formalized using a type-directed translation to a
cast calculus [Cimini and Siek 2016; Henglein 1994; Siek and Taha 2007, 2006]. We will do so as
well in the next section, but here we first develop an operational semantics directly on our calculus.
The intent is to provide an intuitive semantics that programmers can use to reason about how
their gradually typed programs will behave without needing to understand the details of when and
where casts are inserted and how they are implemented. In the next section, we will demonstrate
that there is a strong relationship between these direct semantics and the ones derived from cast
insertions.
We formalize the direct semantics of our calculus using rewrite rules, as presented in Figure 5.

This formalization is odd in that some of the assumptions of the various rules are parenthesized.
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G
r
a
m
m
a
r

Value v F C(v, . . . )

Error ε F v . fdynamic | v .mdynamic(v, . . . ) | cast v to C

Valuation ν F v | ε | ∞

Evaluation Context E F · | let τ x ≔ E in e | C(v, . . . ,E, e, . . . ) | E. fδ
| E.mδ (e, . . . ) | v .mδ (v, . . . ,E, e, . . . ) | cast E to τ

Method Implementation d̄ F τ mδ (Γ) 7→ e

Class Implementation c̄ F class C(τ f , . . . ) implements C, . . . {d̄ ; . . . }

Environment Implementation Ψ̄F · | Ψ̄, i | Ψ̄, c̄

T
e
r
m
in
a
ls

Ψ ⊢ v ◂ τ

Ψ ⊢ v terminal τ

Ψ ⊢ e erroneous

Ψ ⊢ e terminal τ

Ψ ⊢◂ E Ψ ⊢◂ v

v = C(. . . ) ¬ Ψ ⊢ C ◂ C ′

Ψ ⊢ E[cast v to C ′] bad-cast

∄e ′. Ψ ⊢ e −▸ e ′

¬ Ψ ⊢ e terminal τ

Ψ ⊢ e lapse τ

Ψ ⊢ e bad-cast

Ψ ⊢ e erroneous

Ψ ⊢◂ E Ψ ⊢◂ v

v = C(. . . ) class C(f 1, . . . ) ∈ Ψ ∄i . f = f i

Ψ ⊢ E[v . fdynamic] erroneous

Ψ ⊢◂ E Ψ ⊢◂ v ∀i . Ψ ⊢◂ vi
v = C(. . . ) ∄τ ,τ1, . . . ,τn . τ C .m(τ1, . . . ,τn) ∈ Ψ

Ψ ⊢ E[v .mdynamic(v1, . . . ,vn)] erroneous

V
a
lu
a
t
io
n
s

Ψ̄ ⊢ e R∗ v

Ψ̄ ⊢ v ◂ τ

Ψ̄ ⊢ e R∞ v : τ

Ψ̄ ⊢ e R∗ E[ε]

Ψ̄ ⊢ E[ε] erroneous

Ψ̄ ⊢ e R∞ ε : τ

Ψ̄ ⊢ e R∞

Ψ̄ ⊢ e R∞ ∞ : τ

Ψ ⊢ e R∗ e ′

Ψ ⊢ e ′ lapse τ

Ψ ⊢ e R∗ lapse τ

E
v
a
lu
a
t
io
n

C
o
n
t
e
x
t
s

Ψ ⊢S ·

Ψ ⊢S E

Ψ ⊢S let τ x ≔ E in e

class C(τ1, . . . ,τn) ∈ Ψ

∀j . Ψ ⊢ vj S τj Ψ ⊢S E

Ψ ⊢S C(v1, . . . ,vi ,E, ei+2, . . . , en)

Ψ ⊢S E

Ψ ⊢S E. fδ

Ψ ⊢S E

Ψ ⊢S E.mδ (e1, . . . )

Ψ ⊢ δ .m(τ1, . . . ,τn) : τ

Ψ ⊢ v S δ ∀j . Ψ ⊢ vj S τj Ψ ⊢S E

Ψ ⊢S v .mδ (v1, . . . ,vi ,E, ei+2, . . . , en)

Ψ ⊢S E

Ψ ⊢S cast E to τ

R
e
d
u
c
t
io
n
s

Ψ̄ ⊢ e R e ′

(Ψ̄ ⊢◃ E)

Ψ̄ ⊢ E[e] R E[e ′]

(Ψ̄ ⊢ v ◃ τ )

Ψ̄ ⊢ let τ x ≔ v in e R e[x 7→ v]

v = C(v1, . . . ) class C(f 1, . . . ) ∈ Ψ̄

(Ψ̄ ⊢ v ◃ δ )

Ψ̄ ⊢ v . f i
δ
R vi

v = C(. . . ) C .mδ (τ1 x1, . . . ,τn xn) 7→ e ∈ Ψ̄

(Ψ̄ ⊢ v ◃ δ ) (∀i . Ψ̄ ⊢ vi ◃ τi )

Ψ̄ ⊢ v .mδ (v1, . . . ,vn) R e[this 7→ v,x1 7→ v1, . . . ,xn 7→ vn]

v = C(. . . ) Ψ̄ ⊢ C ◂ τ

(Ψ̄ ⊢ v ◃ ⊤)

Ψ̄ ⊢ cast v to τ R v

Fig. 5. Operational Semantics, where R is either optimistic −▹ (ignoring parenthesized assumptions) or pes-

simistic −▸ (asserting parenthesized assumptions) reduction
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This is because the rules are parameterized by a reduction relation R that can stand for either
optimistic reduction (−▹) or pessimistic reduction (−▸). For optimistic reduction, one ignores the
parenthesized assumptions, optimistically hoping that the expected invariants of the system hold.
For pessimistic reduction, one includes the parenthesized assumptions, pessimistically asserting the
expected invariants of the system throughout execution. Obviously pessimistic reduction provides
more guarantees, but optimistic reduction is much more efficient. Thus we can gain much from
understanding the relationship between these two semantics.

Values, Valuations, and Lapses. The values in our system are instances of classes. The arguments
to the class constructor indicate the object’s values for the class’s fields.

Note that error is not an expression in our formalization. Instead, we simply let failing casts get
stuck. This means even non-value programs can get stuck for both acceptable and unacceptable
reasons. For example, a program could be stuck because it is a failed cast, which is acceptable and
would be caught by the runtime system. However, a program could also be stuck because it is trying
to access a field at amemory offset not provided by the object, which is unacceptable and corresponds
to a potentially dangerous memory-access violation. We use the judgement Ψ ⊢ e terminal τ ,
defined in Figure 5, to indicate when e is stuck for an acceptable reason with type τ . In particular,
e could be a value of type τ , a failed dynamic field lookup, a failed dynamic method lookup, or a
failed cast. As a convenience, we also use the counterpoint judgement Ψ ⊢ e lapse τ to indicate
when e is pessimistically stuck for a reason unacceptable for type τ , which we call a lapse because
it indicates a current violation of some intended invariant.
Each of these cases represents a different observable result of executing a program. We use

valuations ν to represent the acceptable results. The idea is that, ignoring situations where a
program lapses, a program’s semantics are the valuations it can result in. Since a program might fail
to terminate, we include∞ as a valuation representing when programs execute forever. We capture
valuations with the judgement Ψ̄ ⊢ e R∞ ν : τ , defined in Figure 5. As a convenience, we also use
the counterpoint judgement Ψ ⊢ e R∗ lapse τ to indicate that e results in some unacceptable lapse
rather than an acceptable valuation.

Reductions. Now we discuss the reduction rules in more detail. As we mentioned before, these
rules specify both optimistic reduction (−▹), which ignores the parenthesized assumptions, and
pessimistic reduction (−▸), which asserts the parenthesized assumptions. Pessimistic reduction of
evaluation contexts uses the judgement Ψ ⊢◃ E to ensure that evaluation of expressions only moves
on from left to right when the already computed values actually have their expected types. The
use of assertions aside, the reduction rules are standard except for one oddity in our semantics for
method invocations.

In particular, the assumption C .mδ (τ1 x1, . . . ,τn xn) 7→ e ∈ Ψ̄ looks up class C’s implementation

for methodm and dispatch mode δ in the environment implementation Ψ̄. The most important detail
of this assumption is the inclusion of the dispatch mode δ in this lookup. This allows class C to
provide a different implementation ofm for each appropriate dispatch mode. This will enable C
to address the fact that its method definition only optimistically satisfies the signatures of the
interfaces it implements. To understand how, let us consider implementations in more detail.

Implementations. Whereas our typing rules are defined in the context of an environment definition,
our reduction rules are defined in the context of an environment implementation. The two differ in
that the former specifies class definitions, whereas the latter specifies class implementations. A
class definition provides a method definition for each methodm of the class; a class implementation
provides a method implementation for each methodm of the class and each suitable dispatch mode δ
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Ψ | Ψ ⊢S Ψ̄

Ψ ⊢S Ψ̄ Ψ | · ⊢S ·

Ψ | Ψ′ ⊢S Ψ̄

Ψ | Ψ′
, i ⊢S Ψ̄, i

Ψ | Ψ′ ⊢S Ψ̄ Ψ | c ⊢S c̄

Ψ | Ψ′
, c ⊢S Ψ̄, c̄

∀i .∃ji . Ψ | C | dji ⊢S d̄i
∀i .∃ji . Ψ ⊢ d̄ji :C di ∀i .∃ji . Ψ ⊢ d̄ji :dynamic di

∀i . interface Ci {s
i
1; . . . } ∈ Ψ ∀i .∀j .∃ki, j . Ψ ⊢ d̄ki, j :Ci s

i
j

Ψ | class C(τ1 f1, . . . ) implements C1, . . . {d1; . . . } ⊢S class C(τ1 f1, . . . ) implements C1, . . . {d̄1; . . . }

∀i . Ψ ⊢ τ ′i ◃ τi Ψ ⊢ τ ◃ τ ′ Ψ | C this,τ ′1 x1, . . . ,τ
′
n xn ⊢ e ′ S τ ′

Ψ ⊢ let τ1 x1 ≔ x1 in . . . let τn xn ≔ xn in let τ x ≔ e in x ≼ e ′ : τ ′

Ψ | C | τ m(τ1 x1, . . . ,τn xn) 7→ e ⊢S τ ′mδ (τ
′
1 x1, . . . ,τ

′
n xn) 7→ let τ ′ x ≔ e ′ in x

Ψ ⊢ d̄ :δ s

Ψ ⊢ d̄ :δ s 7→ e Ψ ⊢ τ mC (Γ) 7→ e :C τ m(Γ)

Ψ ⊢ dynamicmdynamic(dynamic x1, . . . , dynamic xn) 7→ e :dynamic τ m(τ1 x1, . . . ,τn xn)

Fig. 6. Implementation Validation, where S is either optimistic ◃ or pessimistic ◂ subtyping

form. The body of each such method implementation is a slightly adjusted version of the body of
the method definition to account for the corresponding dispatch mode, as we will describe below.
We formalize implementations of definitions in Figure 6. The judgement Ψ ⊢S Ψ̄ indicates that

Ψ̄ is a valid implementation of the environment definition Ψ. Furthermore, if the parameter S is
optimistic subtyping (◃), then the body of every method implementation in Ψ̄ is optimistically
typed. Likewise, if the parameter S is pessimistic subtyping (◂), then the body of every method
implementation in Ψ̄ is pessimistically typed.
A class implementation c̄ is valid for a class definition c if every method implementation in c̄

corresponds to some method definition in c and every method definition in c has a corresponding
method implementation in c̄ for each necessary dispatch mode. In particular, there must be an
implementation for the dispatch modes corresponding to the class itself and to dynamic dispatch.
Furthermore, if a method definition is used to satisfy some method signature in an interface imple-
mented by the class, then there must be an implementation for the dispatch mode corresponding
to that interface. Thus, a class implementation simply specifies the contents of the virtual-method
table, interface table, and dispatch hashtable, but with each way to dispatch a given method having
its own implementation (employing low-level tricks to keep the size of the executable down).
Each of these method implementations corresponds to the same method definition, and while

that implies they are closely related, it does not imply they are identical. First, the signature of
a method implementation coincides with the signature corresponding to its own dispatch mode,
not to its method definition. Second, the body of the method implementation needs to be adjusted
to conform with the corresponding signature. For example, consider a method implementation
whose dispatch mode is an interface implemented by the class. The body of the method definition
is defined in terms of the class’s signature for the method, but that signature only optimistically

satisfies the signature of the method required by the interface.
We address this difference by inserting variable assignments to retype the method parameters

and return value according to the method signature. Next, the refinement relation (≼) specifies that
the actual method body e ′ of the implementation is a refinement of the original body wrapped
in these retyping expressions, which means the implementation can have casts inserted to check
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optimistic assumptions made in the method definition. Refinement is a relation, not a procedure,
which means the refined expression may have no additional casts at all, or just the right amount to
type-check pessimistically (in addition to optimistically), or many more than necessary. We defer
detailed discussion of refinement until the next section.
Given an environment definition Ψ, there exists a naïve implementation of Ψ. In particular,

because refinement is reflexive, one can simply define every method implementation to be the body
of the corresponding method definition modulo retyping the inputs and output. As an abuse of
notation, we refer to this naïve implementation as Ψ. If Ψ is a valid environment definition, then it
is trivial to prove that Ψ is also a valid optimistically-typed implementation of itself.

Similarly, given an environment implementation Ψ̄, there often exists a corresponding definition
for Ψ̄. In particular, one derives a classC’s definition of a method from that method’s implementation
for the dispatch mode C . As an abuse of notation, we refer to this corresponding definition as Ψ̄.
If Ψ̄ is a valid implementation of some valid environment definition Ψ, then the definition Ψ̄ has
exactly the same typing information as Ψ.

Soundness. Even without inserting casts or restricting to specific implementations, we can make
interesting observations about the behavior of our direct semantics, as proven in the supplementary
material. The first is that typed expressions are guaranteed to be either terminal or reducible:

Theorem 6.1 (Progress). For every environment Ψ and implementation Ψ̄ where ⊢ Ψ and Ψ ⊢S Ψ̄

hold,

∀e,τ . Ψ ⊢ e S τ =⇒ Ψ ⊢ e terminal τ xor ∃e ′. Ψ̄ ⊢ e R e ′

where S is either optimistic ◃ or pessimistic ◂ subtyping, and R is either optimistic −▹ or pessimistic −▸

reduction.

Note that this theorem states that even an optimistically typed expression is either terminal
or pessimistically reducible. That is, we can even guarantee pessimistic progress for optimistic
expressions. Also, note that in order to be terminal, every relevant value inv must be pessimistically

typed. This is ensurable even for optimistically typed expressions because every optimistically
typed value is necessarily also pessimistically typed.
The second observation we can make is that pessimistic typing is preserved by reduction:

Theorem 6.2 (Pessimistic-Type Preservation). For every environment Ψ and implementation Ψ̄

where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀τ , e, e ′. Ψ ⊢ τ ∧ Ψ ⊢ e ◂ τ ∧ Ψ̄ ⊢ e R e ′ =⇒ Ψ ⊢ e ′ ◂ τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

Importantly, this states that even optimistic reduction preserves pessimistic typing, which is
arguably the whole purpose of pessimistic typing. However, neither form of reduction preserves
optimistic typing. Clearly optimistic reduction does not preserve optimistic typing, otherwise
we would not be referring to it as optimistic typing. But it is surprising that even pessimistic
reduction fails to preserve optimistic typing despite the many run-time assertions it makes. To
see why, optimistically type the program let dynamic x ≔ "Hello" in x % 10, and then try
to optimistically type the reduction of that program, "Hello" % 10. This failure of pessimistic
reduction is critical, as it illustrates why inserting casts is necessary to ensure soundness.

The third and final observation we make is that optimistic and pessimistic reduction coincide for
pessimistically typed programs:
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Theorem 6.3 (Pessimistic Identification). For every environment Ψ and implementation Ψ̄

where ⊢ Ψ and Ψ ⊢◂ Ψ̄ hold,

∀e,τ . Ψ ⊢ e ◂ τ =⇒ ∀ν . Ψ̄ ⊢ e −▹∞ ν : τ ⇐⇒ Ψ̄ ⊢ e −▸∞ ν : τ

This means that, for pessimistically typed programs, we can use the more efficient optimistic
reduction and yet still enjoy the stronger guarantees of pessimistic reduction. In particular, a
pessimistically typed program will never become unacceptably stuck by either semantics, so its
observable results are completely described by its set of valuations, which is identical across the
two forms of reduction. Again, this is not true for optimistically typed programs. Thus, given
an optimistically typed program, we would like a way to interpret it using a łbetterž-behaved
pessimistically typed program. This is the purpose of cast insertion, or program refinement, which
we discuss next.

7 THE CAST SEMANTICS

We define the cast semantics for our gradual calculus using program refinement. Program refinement
is a generalization of cast insertion, the process traditionally used to enforce soundness for gradual
type systems [Findler and Felleisen 2002; Siek and Taha 2006; Tobin-Hochstadt and Felleisen
2006]. Whereas cast insertion traditionally specifies how to transform a program by inserting casts,
program refinement simply states that two programs are similar but with one having some casts
inserted, akin to the similarity relation defined by Tobin-Hochstadt and Felleisen [2006]. That is,
refinement specifies no strategy about how to insert casts. A refinement might have too few casts
to achieve a particular goal, or more casts than are strictly necessary. This laxity actually makes
it easier to reason about refinement, especially with respect to reduction, and in a more uniform
manner, especially with respect to typing.

Program Refinement. Program refinement is formalized using the judgement Ψ ⊢ e ≼ ẽ : τ ,
which indicates that the expression ẽ2 is a refinement of e when the expected output type is τ . The
formalization of refinement has only one interesting rule, presented below; the other rules in the
supplementary material simply allow this rule to be applied throughout the program.

Ψ ⊢ e ≼ ẽ : τ

Ψ ⊢ e ≼ cast ẽ to τ : τ

This rule is the only rule that lets refinement insert a cast. It states that we can refine a program
by inserting a cast to the expected return type τ of the program. By restricting inserted casts to
be of precisely this form, we ensure that they only check optimistic assumptions of the original
program. In particular, we avoid inserting casts that would introduce run-time errors that have no
relationship to the optimism of the original program, say by arbitrarily inserting casts of string
expressions to integers.

Program Translation. We mentioned that refinement is reflexive, but the primary purpose of
refinement is translation of optimistically typed programs into pessimistically typed programs.
Although refinement does not specify how precisely to implement such a translation, we can
combine it with the concepts we have already developed to formalize the concept of a translation.
Given an environment definition Ψ and implementation Ψ̄, expressions e and ẽ , and type τ , we say
we have a well-formed translation if ⊢ Ψ | e  Ψ̄ | ẽ : τ holds, as defined in Figure 7. That is, a
translation is well-formed if the original program Ψ | e optimistically has type τ , the translated

2Note that, whereas the grammar for a Ψ̄ is different than that for a Ψ, the notation ẽ is not introducing a new grammar. It
is simply a convention we employ to help the reader keep track of which expressions are łoriginalž expressions versus
łrefinedž expressions.
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⊢ Ψ Ψ ⊢ τ Ψ ⊢ e ◃ τ

Ψ ⊢◂ Ψ̄ Ψ ⊢ e ≼ ẽ : τ Ψ ⊢ ẽ ◂ τ

⊢ Ψ | e  Ψ̄ | ẽ : τ

⊢ Ψ | e  Ψ̄ | ẽ : τ Ψ̄ ⊢ ẽ −▹∞ ν : τ

Ψ ⊢ e  ∞ ν : τ

Fig. 7. Cast Semantics

program Ψ̄ | ẽ is a refinement of the original programwith expected return type τ , and the translated
program pessimistically has type τ .
This indicates when we have a well-formed translation, but for a given Ψ and e there may be

multiple such translations. To this end, we have the following property, proven in the supplementary
material, that all well-formed translations are semantically equivalent (recalling that pessimistically
typed programs cannot get stuck in an unacceptable manner):

Theorem 7.1 (Translation Irrelevance). For every Ψ, Ψ̄1, Ψ̄2, e , ẽ1, ẽ2, and τ ,(
⊢ Ψ | e  Ψ̄1 | ẽ1 : τ

⊢ Ψ | e  Ψ̄2 | ẽ2 : τ

)
=⇒ ∀ν . Ψ̄1 ⊢ ẽ1 R

∞ ν : τ ⇐⇒ Ψ̄2 ⊢ ẽ2 R
∞ ν : τ

where R is either optimistic −▹ or pessimistic −▸ reduction.

This means that, in order to use well-formed translation as a basis for our cast semantics, we
just need some well-formed translation for our given optimistically typed program. Which one we
happen to choose is irrelevant. Fortunately, we have the following:

Theorem 7.2 (Translation Existence). For every environment Ψ, expression e , and type τ ,

⊢ Ψ ∧ Ψ ⊢ τ ∧ Ψ ⊢ e ◃ τ =⇒ ∃Ψ̄, ẽ . ⊢ Ψ | e  Ψ̄ | ẽ : τ

Thus every optimistically typed program has a well-formed translation. Defining such a transla-
tion is straightforward and tedious, so we defer formal construction to the supplementary material.

Given that we have both translation irrelevance and existence, we can define the cast semantics
for our gradually typed language using the judgement Ψ ⊢ e  ∞ ν : τ defined in Figure 7.

Semantic Preservation. Now that we know that we can always refine an optimistically typed
program into a pessimistically typed program, we want to know that this translation respects the
direct semantics of the original program in a reasonable manner. We demonstrate this with two
observations, the proofs of which can be found in the supplementary material.

Theorem 7.3 (Pessimistic-Valuation Preservation). For every environment Ψ, expression e ,

and type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e −▸∞ ν : τ =⇒ Ψ ⊢ e  ∞ ν : τ

This states that if the direct semantics of our original program can pessimistically produce
some result, then translation also produces that result. That is, translation preserves pessimistic
valuations. Note that translation does not preserve optimistic valuations, though. This is because a
program can happen to optimistically reduce to some value even if it requires repeatedly violating
expected invariants of the system throughout the process, and a typical sound gradual type system
has no principled way of safely arriving at that haphazard but fortuitous result.

This leads us to wonder what happens when the original program goes awry. In particular, due to
pessimistic progress and preservation, we know that the translation must result in some valuation
even if the original program does not. The following gives us some insight into what the valuation
must be.

Proc. ACM Program. Lang., Vol. 1, No. OOPSLA, Article 56. Publication date: October 2017.



Sound Gradual Typing is Nominally Alive and Well 56:17

Theorem 7.4 (Optimistic-Valuation Reflection). For every environment Ψ, expression e , and

type τ where ⊢ Ψ and Ψ ⊢ τ and Ψ ⊢ e ◃ τ hold,

∀ν . Ψ ⊢ e  ∞ ν : τ =⇒

Ψ ⊢ e −▹∞ ν : τ

or

Ψ ⊢ ν bad-cast ∧ Ψ ⊢ e −▹∗ lapse τ

This states that any valuation resulting from translation must also result optimistically from the
original program unless the valuation is a bad cast catching the fact that the original program would
become pessimistically stuck in an unacceptable manner, which Theorem 6.1 guarantees can only
happen if the original program would become ill-typed. In combination with pessimistic-valuation
preservation, this informs us that the cast semantics is essentially the same as the direct semantics
except that it results in bad casts rather than lapsing.
Thus, with the combination of valuation preservation and reflection, we see that there is a

very close relationship between our cast semantics and our direct semantics, one that is common
among sound gradual type systems. This suggests that programmers can rely on the more intuitive
direct semantics as a reasonable approximation of what the cast semantics provides. There is still
some gap, though, since the cast semantics preserves pessimistic valuations but reflects optimistic

valuations. In most gradual type systems, bridging this gap requires understanding the details of
where casts are inserted and how they are implemented. In our system, though, we can actually
close that gap. The stronger guarantees in the next section ensure that our cast semantics even
reflects pessimistic valuations, showing that programmers need only understand direct pessimistic
reduction to anticipate the behavior of our cast semantics.

8 THE GUARANTEES

The challenge at hand is to design a gradually typed language that is both principled and efficient.
Here we address the principles by formalizing the guarantees that our calculus provides, the proofs
of which can be found in the supplementary material. Afterwards, we will address efficiency by
comparing with other similarly principled gradual type systems.

8.1 Immediacy

Sound gradual typing guarantees that a cast will fail before the program would get stuck in an
unacceptable manner. However, most sound gradually typed languages only have this property
with respect to optimistic reduction. Our system has a stronger property, which we call immediacy,
formalized as follows:

Theorem 8.1 (Immediacy). For every Ψ, Ψ̄, e , ẽ , and τ where ⊢ Ψ | e  Ψ̄ | ẽ : τ holds,

∀e ′.

(
Ψ ⊢ e −▸∗ e ′

Ψ ⊢ e ′ lapse τ

)
=⇒ ∃ẽ ′.

(
Ψ̄ ⊢ ẽ −▹∗ ẽ ′

Ψ̄ ⊢ ẽ ′ bad-cast

)
∧ Ψ ⊢ e ′ ≼ ẽ ′ : τ

In the statement of this theorem, we distinguish the clause Ψ ⊢ e ′ ≼ ẽ ′ : τ . Without this
clause, the theorem simply states that the cast semantics results in a bad cast whenever the original
program would eventually get pessimistically stuck in an unacceptable manner. This is sufficient to
strengthen optimistic-valuation reflection into pessimistic-valuation reflection, as we discussed in
the previous section. And with the distinguished clause, the theorem furthermore guarantees that
the bad cast occurs immediately when the original program would get pessimistically stuck.

This is in contrast with most work on sound gradual typing. To see why, consider the following
traditional gradually typed program:

let dyn → dyn f ≔ (λs : str. s .length) in let int → int д ≔ f in slow(); д 5
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This program can pessimistically reduce in a single step to the following:

let int → int д ≔ (λs : str. s .length) in slow(); д 5

This reduced program, however, can no longer reduce pessimistically. The value λs : str. s .length
fails to have the expected type int → int of the variable д, even optimistically. This clearly
indicates a violation of the intended invariants of the program. For a gradual type system to provide
immediacy, the cast semantics for this program would have to raise an error at this point in the
execution. However, most prior work cannot recognize the error until the call to д 5 eventually
executes.

Interestingly, threesomes [Siek and Wadler 2010] do raise an error immediately for this example,
provided one uses a variant that is what Siek et al. [2009] describe as the eager error-detection
strategy. Furthermore, it has been proven that eager threesomes can be viewed as a cast-insertion
implementation of the semantics prescribed by Garcia et al. [2016] when applied to a gradually
typed lambda calculus [Toro and Tanter 2017]. So it might generally be the case that the semantics
prescribed by Garcia et al. [2016] will always provide immediacy.

8.2 Immediate Accountability

Accountability is the ability to indicate what component of the program is to blame for a given
cast failure observed by the cast semantics of a program, and to furthermore ensure that only
dynamically typed components are ever blamed. Like in previous work on blame [Ahmed et al.
2011; Tobin-Hochstadt and Felleisen 2006; Wadler and Findler 2009], we can augment our calculus
with labels and errors so that, when such a cast failure occurs, it provides a label specifying
some optimistic assumption that turned out not to hold at run time. However, we forgo such an
augmentation here because, for our calculus, the process is particularly uninteresting.

The reason is that our system is transparentÐunlike in most existing accountable systems, casts
are not introduced by our operational semantics. This means that casts are only introduced by
program refinement and so directly correspond to locations in the original program. All erroneous
casts in our semantics have the property that they are casts to a class or interface type, never to
dynamic. Program refinement only introduces casts of an expression to its expected return type,
which means the receiver of such a cast must be statically typed. Furthermore, the expression being
refined optimistically has that expected return type. If that expression were also statically typed, that
would imply the expression also has that expected return type pessimistically. Type preservation
would then ensure that this cast would succeed. So the cast can only fail if the expression is
dynamically typed. Thus, all erroneous casts not in the original program are necessarily casts from
dynamically typed code to statically typed code that were directly inserted by program refinement,
making blame trivial to achieve.

But whereas accountability is the property that a failing cast correctly identifies a faulty optimistic
assumption in the source code, what we call immediate accountability furthermore demands
that execution is currently at that point in the source code. That is, optimistic checks either fail
immediately or never. This property makes blame tracking completely unnecessary, since immediate
accountability guarantees that a cast fails only if that cast itself is to blame. For our system, the
reasoning above, in combination with immediacy, ensures that our system provides immediate
accountability.

However, in general the combination of immediacy and accountability is not sufficient to provide
immediate accountability. This is evidenced by the fact that eager threesomes [Toro and Tanter
2017] require blame tracking in order to provide accountability [Siek and Wadler 2010] even though
they provide immediacy.
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Fig. 8. Optimism Relation, a.k.a. Precision Relation [Garcia et al. 2016; Siek et al. 2015a]

8.3 The Gradual Guarantee

The gradual guarantee [Siek et al. 2015a], in our terms, states that adding optimism to a program
should increase the likelihood that the program will type-check and evaluate successfully, and
nothing more. We formalize this using an optimism relation (⊑), shown in Figure 8, which indicates
when two components only differ in terms of degree of optimism, with the right component being
the more optimistic of the two. This is traditionally known as a precision relation [Garcia et al. 2016;
Siek et al. 2015a] or naïve subtyping [Wadler and Findler 2009]. We use the new terminology both
to be consistent to with the rest of the paper and to address the fact that the precision relation is
backwards, as noted by its inventors [Siek et al. 2015a], since it places the more precise component
on what the name suggests should be the less precise side.

The gradual guarantee formally consists of three theorems adapted from [Siek et al. 2015a]. Our
first theorem states that a program that is already optimistically typed will still be optimistically
typed if it is made more optimistic:

Theorem 8.2 (Gradual Optimism).

∀
©«

Ψ,Ψ
′

Γ, Γ
′

τ , τ ′

e, e ′

ª®®®¬
.

©«

⊢ Ψ

Ψ ⊢ Γ

Ψ ⊢ τ

Ψ | Γ ⊢ e ◃ τ

ª®®®¬
∧

©«

Ψ ⊑ Ψ
′

Γ ⊑ Γ
′

τ ⊑ τ ′

e ⊑ e ′

ª®®®¬
=⇒

©«

⊢ Ψ
′

Ψ
′ ⊢ Γ

′

Ψ
′ ⊢ τ ′

Ψ
′ | Γ′ ⊢ e ′ ◃ τ ′

ª®®®¬
Our second theorem states that if a program results in a valuation, then a more optimistic version

of that program results in the same valuation or some more optimistic one unless the valuation was
an overly pessimistic cast in the more pessimistic program.
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Theorem 8.3 (Gradual Preservation). For every Ψ, Ψ′, e , e ′, τ , and τ ′ such that ⊢ Ψ, ⊢ Ψ
′,

Ψ ⊢ τ , Ψ′ ⊢ τ ′, Ψ ⊢ e ◃ τ , and Ψ
′ ⊢ e ′ ◃ τ ′ hold,

∀ν .
©«

Ψ ⊢ e  ∞ ν : τ

Ψ ⊑ Ψ
′

τ ⊑ τ ′

e ⊑ e ′

ª®®®¬
=⇒

∃ν ′.

(
Ψ
′ ⊢ e ′  ∞ ν ′ : τ ′

ν ⊑ ν ′

)
or

Ψ ⊢ ν bad-cast

Our third theorem states that, if an optimistic program results in a valuation, then a more
pessimistic version results in that same valuation or some more pessimistic one unless it encounters
an overly pessimistic cast first.

Theorem 8.4 (Gradual Reflection). For every Ψ, Ψ′, e , e ′, τ , and τ ′ such that ⊢ Ψ, ⊢ Ψ
′, Ψ ⊢ τ ,

Ψ
′ ⊢ τ ′, Ψ ⊢ e ◃ τ , and Ψ

′ ⊢ e ′ ◃ τ ′ hold,

∀ν ′.
©«

Ψ ⊑ Ψ
′

τ ⊑ τ ′

e ⊑ e ′

Ψ
′ ⊢ e ′  ∞ ν ′ : τ ′

ª®®®¬
=⇒ ∃ν . Ψ ⊢ e  ∞ ν : τ ∧

ν ⊑ ν ′

or

Ψ ⊢ ν bad-cast

Together, these theorems prove our calculus provides the gradual guarantee. Interestingly, gradual
preservation and reflection can be derived from our earlier theorems bymaking one key observation:
making a program more optimistic has the effect of making it more likely to be able to reduce
pessimistically. Thus our direct semantics provides new perspective on the gradual guarantee.

8.4 Transparency

Lastly, it is easy to prove the following theorem about our optimism relation:

Theorem 8.5 (Transparency).

∀v,v ′
. v ⊑ v ′

=⇒ v = v ′

For languages providing the gradual guarantee, we believe this accurately formalizes our concept
of transparency. In particular, the combination implies that making a program more optimistic
will not affect the values that arise during that program’s execution. This is in contrast to calculi
like the cast calculus [Siek et al. 2015a], in which two values can be related and yet differ due to
inserted casts, which are precisely the wrapper functions we actively avoided in order to get the
following promising experimental results.

9 EXPERIMENTAL EVALUATION

We claim that our approach to gradual typing can be implemented efficiently and avoid the
performance pitfalls of gradual typing that Takikawa et al. [2016] described. Here we present an
evaluation of our experimental language called Nom. We used benchmarks from two different
sources: first, there are two benchmarks from the benchmark suite used by Takikawa et al. [2016],
and second, there are five benchmarks that are among those that Vitousek et al. [2017] selected
from the official Python benchmark suite [Python Development Team 2008] at the time. These
serve to evaluate our implementation on two metrics, respectively. The first set of benchmarks tests
the overhead that is introduced at the boundaries between typed and untyped code. The second set
of benchmarks tests whether type annotations improve the performance of programs, which is a
part of our motivation for gradual typing. For comparison with another sound nominally typed
language with gradual typing, we also translated the first group of benchmarks to C#, and we
present the results of running those translations alongside the others.
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9.1 The Experimental Compiler

Our experimental compiler supports our language Nom that implements the formalized features
discussed so far along with mutable state, primitive types, implementation inheritance, overloading,
access/visibility modifiers, and static fields and methods. Unlike in our calculus, field accesses and
method invocations are not explicitly annotated with a dispatch mode, and the supplementary
material discusses how Nom addresses the subtleties involved in bridging this gap.
Because dynamic checks are more common with gradual typing, we make some optimizations

to the standard implementation for a nominally typed object-oriented language. At compile time, a
number is generated for each class type. An object is represented as its class number followed by
its fields. The class number is used to index arrays that provide standard features such as method
tables and interface tables, which are used by statically typed method invocations. Each class index
is also associated with a flat list of all its supertypesÐclass hierarchies are usually rather shallow,
so scanning these lists for a matching supertype can be expected to be quick. In order to make
dynamically typed method invocations efficient, the class number is used to access an array of
association lists mapping method identifiers to dispatching methods, each of which employs a
statically determined decision tree to determine which overloading to call, if any, based on the
types of the arguments. This is essentially an extension of the hybrid-casting technique of Allende
et al. [2013] in GradualTalk [Allende et al. 2014]. Furthermore, at the call site of each applicable
method invocation, we cache the result of method lookup for the three most recent run-time types
of the receiver. This is a standard technique for dynamic languages, known as inline caching [Ahn
et al. 2014; Deutsch and Schiffman 1984].

Rather than compiling to assembly, our compiler translates to C, which can then be compiled by
a standard C compiler.3 We use the Boehm-Demers-Weiser conservative garbage collector [Demers
et al. 1990].

9.2 Design of Benchmark Programs

In contrast to work that adds gradual typing to existing programming languages, we do not have
access to a large collection of programs written in our language. However, as a first step, all we
need is a program that has a large number of transitions between untyped and typed code, as
these are the only possible sources of gradual-typing overhead in our system. Fortunately, the two
smallest poorly performing (i.e. more than 100x slowdown) programs in the benchmark suite of
Takikawa et al. were also among those with the highest numbers of boundary transitions. These
two programs are sieve and snake. sieve implements the sieve of Eratosthenes using streams to
determine the 10,000th prime number. snake implements the popular game Snake and runs it using
a statically predetermined list of about 55,000 moves and events. Note that sieve in particular was
written łto illustrate the pitfalls of sound gradual typingž [Takikawa et al. 2016], as it consists of
just two heavily interacting modules.
Given that the programs were written in a different programming paradigm, there are some

design choices to be made in how to translate them to Nom and C#. We strove to mimic the
structure of the original programs as much as possible in order to keep the numbers and kinds
of transitions across module boundaries the same. The biggest differences are that we manually
implement tail-recursion elimination in our translation andÐas Nom does not support anonymous
functionsÐwe model function types using interfaces and closures using classes. All in all, the
converted programs are nominal but not necessarily written in an object-oriented style. Thus good
performance with these programs is likely to imply good performance in most cases both because

3For the benchmarks, we use the Microsoft C compiler, set to optimize for speed (/O2).
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Fig. 9. Benchmark results for sieve (left) and snake (right)

they have already been demonstrated to cause problems for prior work due to frequent interaction
between modules and because they are written in a style that is not favored by our implementation.
The Python benchmarks were much easier to translate, as they were written in a style that

fits our language much more closely. As such, they are more what a typical benchmark for our
language would look like.

9.3 Benchmark Results

All benchmarks were run on an Intel Core i7-3770 at 3.4Ghz with 16GB of main memory, running
Windows 7 with minimal background activity. The benchmark programs were run over several
iterations. For each iteration, the sequence in which individual configurations were run was
determined randomly.

9.3.1 Sieve. sieve is an extreme microbenchmark, consisting of just two heavily interacting
modules with several hundred million transitions between those two modules. As such, it is a key
benchmark to measure the efficiency of casts in a gradually typed language. The left-hand side
of Figure 9 shows the results for the sieve benchmark for Racket, C#, and Nom. There are four
configurations, corresponding to the fully untyped program ł00ž, the fully typed program ł11ž,
and the two mixed configurations ł01ž and ł10ž. In Typed Racket, the two mixed configurations
cause extreme overheads due to gradual typing, as described by Takikawa et al. [2016]. C#, on the
other hand, is unaffected by interaction but instead suffers significant slowdown in the presence of
dynamic typing.
Regarding Nom, its performance is, in relative terms, fairly constant across the configurations,

though there is an increase in performance in the fully typed configuration. This is despite the
fact that we still measured several hundreds of millions of transitions between typed and untyped
code when executing either mixed configuration in Nom, the same magnitude that Takikawa et al.
reported for Racket.

9.3.2 Snake. The right-hand side of Figure 9 shows the timings for snake as a scatter plot of
running times, in seconds, grouped by the number of typed modules. There are two versions for
Racket here because the original version published by Takikawa et al. checks the entire contents of
lists when casting them from untyped code to typed code, an operation that in theory increases the
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Fig. 10. Benchmarks taken from Vitousek et al. [2017]’s selection of Python benchmarks

time complexity of the programs. We thus developed a modified version of snake, labeled Racket*,
that uses a user-defined structure instead of Racket’s cons-lists in an attempt to make those checks
lazy, similar to how our Nom implementation of lists works. Interestingly, there does not seem to be
much difference in performance between the two Racket versions, suggesting that the performance
issues Takikawa et al. observed are due to the concerns we have discussed throughout the paper
rather than due to the use of deep casts. As before, the performance of Nom, on the other hand,
consistently improves as more types are added to the program. The same holds for C#, though
again suffering significantly more overhead in the presence untyped code.

9.3.3 Python Benchmarks. For the Python benchmarks, we chose five with some preference
towards the ones that had poor performance under the transient-cast implementation of Vitousek
et al. [2017] (pystone and float suffer from about 200% overhead, and go and spectralnorm

suffer from about 400% overhead for typed code compared to untyped code4). In contrast to the
Racket benchmarks, these programs were written in a language that is close to ours and thus
were translated with minimal effort. The left-hand side of Figure 10 shows the results of these
benchmarks for Reticulated Python, and the right-hand side of Figure 10 shows the results for Nom.
The absolute running times should not be compared other than to serve as an indicator of overall
reasonableness; Python is interpreted, whereas our code is compiled and optimized by a C compiler,
so absolute differences are not meaningful. The effect of types on performance within each language
is meaningfully different, though. The transient casting strategy slows down programs as more
type annotations are added because type annotations cause checks to be inserted and executed
regardless of whether the whole program is typed or not. This may be a reasonable thing to do in
the scenarios that Vitousek et al. are considering, where an open world can readily circumvent
invariants of the gradual-typing implementation, but we believe that in general programs should
overall become faster as more type annotations are added due to the additional optimizations this
enables. Nom achieves this goal here, although the snake benchmark best illustrates this behavior
because it provides data on many intermediate configurations as well.

9.4 Validity

We only evaluated our system on a small set of small programs.While our system performed well for
these programs, there is always the possibility that it may perform poorly for some other program.
However, by the nature of our implementation, our overhead is proportional to the number of run-
time interactions between typed and untyped code. Importantly, our overhead is fairly unaffected
by the kind of interactions that occur due to the transparency of our casts. Consequently, it is likely

4Without blame. Adding blame tracking in many cases more than doubles the overhead.
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the case that sieve does in fact represent a worst-case scenario regarding overhead created by our
system due to the immense degree of interaction points as designed by Takikawa et al. While it
seems possible that there are other programs that could increase our overhead by small factors, say
by designing a program to thwart any effectiveness of inline caches, it seems unlikely that there
are programs that would increase our overhead by large factors, especially to the degree observed
in the related works we compare to.
As for the measurements we do provide, the usual caveats to experimental running-time mea-

surements apply. Efforts we took to mitigate the risk of obtaining misleading numbers include

• running the benchmarks sequentially, not in parallel, with a separate randomized order for
each trial run,

• confirming that several minor variations of the Nom benchmarks, such as employing object-
oriented-style dynamic dispatch instead of functional-style static dispatch, exhibited similar
performances,

• and observing no significant differences in performance across three different machines.

Furthermore, the artifact-evaluation committee approved the validity of our manual translations of
the benchmarks and successfully replicated our results.

10 DISCUSSION

To the best of our knowledge, we have provided the first results of an evaluation of a sound
gradually typed language following the methodology suggested by Takikawa et al. [2016] that
showsminimal overhead.While our type system is relatively restrictive compared to other gradually
typed languages, we hope to have established a baseline from which more expressive sound gradual
type systems can be explored with similarly minimal overhead. In this section, we argue that this
baseline is valid and useful, sketching an outlook of how to get to more expressive type systems
from it, and sketching the challenges that still need to be overcome.

10.1 Designing for Performance

Nom’s efficiency comes from a combination of multiple factors that keep potentially expensive
run-time operations cheap. Nominality makes casts infrequent and efficient. Transparency prevents
overhead due to wrapper allocation. Immediate accountability makes blame tracking unnecessary.
Furthermore, the clear separation of dynamic vs. statically checked field accesses and method
invocations allows us to implement and optimize both using the techniques appropriate to each. In
the following, we illustrate the advantages of each of these properties by comparing Nom to the
other languages that we benchmarked.

Typed Racket. In Typed Racket, most of the overhead of gradual typing is caused by expensive
run-time checks. Compared to Nom, these have two major causes: wrappers vs. transparency, and
structural vs. nominal. In gradually-typed Racket, transferring a value across the typed/untyped
boundary, in either direction, often requires the value to be wrapped in order to enforce soundness
and provide blame. Thus each such transfer causes an allocation, and these wrappers themselves
often have to produce more wrapped values, leading to more allocations. Allocation is known to
be a fairly slow operation even in Racket where allocation is quite optimized. Furthermore, these
wrappers introduce layers of indirection, especially since wrappers often end up being stacked onto
each other in our benchmarks. Note that this stacking is indirect, so using threesomes à la Siek and
Wadler [2010] would not helpÐin fact it would only add more overhead. Our system is transparent,
so we suffer none of these allocations or layers of indirection.
The second major reason is that Typed Racket uses a structural type system whereas we use

a nominal type system. In Typed Racket, one can dynamically check that a value has a field of
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the appropriate name, and one can check that the value in that field is a function. However, one
cannot check what kind of function it is. Consequently, every time one uses that function to get
an integer (the type that your typed code is expecting), one has to check that it actually returns
an integer. This is even the case when that function was created by typed code but happened to
transfer through untyped code. In Nom, we can often accomplish all these checks with a single
nominal check. In particular, if the value was created by typed code, then that single nominal
check accomplishes what Racket would need a potentially infinite number of structural checks
for. In problematic programs, such as sieve and snake, these two major differences can each
introduce multiple factors of overhead in gradually-typed Racket (but not in Nom), explaining the
performance differences.

C#. We experimented with a few variations of dynamic programs in C# to investigate why
increased dynamism causes large overheads. As an example, we experimented with casting every-
thing to and from Object instead of dynamic. Conceptually, these two programs should have the
same performance since the dynamic program is simply doing those casts implicitly at run time.
However, we found that the Object version of the program was significantly faster. This leads us
to believe that C#’s choice of implementation of dynamic, which recompiles the relevant code at
run time using the run-time type of the relevant value, is the cause of its inefficiency. This choice
seems to be forced upon C# in order to accommodate the many type-system features of C# that
were not designed with gradual typing in mind, an issue we will discuss this further in Section 10.3.

Reticulated Python. As already stated in Section 9.3.3, the transient casting strategy in Reticulated
Python inserts more casts as more type annotations are added, making fully typed code the slowest
configuration of any program. In contrast, pessimistically typed code in Nom is sound without
any casts being inserted and can additionally benefit from type-directed compiler optimizations.
Furthermore, the numbers we give for the Reticulated Python benchmarks are for the versions
of the programs where blame tracking was turned off. Blame tracking significantly increasesÐ
sometimes doublesÐthe overhead of gradual typing in Reticulated Python. In contrast, as discussed
in Section 8.2, Nom’s immediate accountability makes blame tracking completely unnecessary.

10.2 Scaling to Industry

Our compiler and language are experimental and thus lack many features that real-world compilers
and languages would have, such as support for debugging, multithreading, separate compilation,
etc. However, features that do not affect the type system should not affect the efficiency of gradual-
typing-related operations. In fact, in contrast to systems with monotonic run-time type information,
our approach has trivial multithreading support, as all operations during a cast are read-only.
With respect to type-system features, the major differences between Nom and pre-generics Java is
that Nom restricts overloading and does not support exceptions and arrays (though we provide a
natively implemented ArrayList class whose getter method is typed as returning dynamic). We
do not believe that adding these features would cause significant gradual-typing overhead. If that
turns out to be the case, then Nom should be easy to extend to something that could be used in
an industrial setting, although incorporating more powerful features such as generics would still
require substantial research, as discussed next.

10.3 Increasing Expressiveness

Nominal typing faces many challenges specific to nominality. This is true even without gradual
typing, and still today discoveries about the foundations of nominal typing are being made. Here we
discuss some of the challenges related to gradual typing, in particular ones that make the gradual
guarantee difficult to achieve.
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10.3.1 Types Affect Execution. Unlike structurally typed languages, types in statically typed
nominal languages often affect execution. Examples of this are method overloading and extension
methods. With method overloading, the type of the arguments is used to determine which over-
loading to call. When there is ambiguity, languages like C# and Java report a type error forcing
the programmer to resolve the ambiguity before compiling. This use of ambiguity as error is often
necessary when types affect execution in order to keep execution predictable.

However, with gradual typing these ambiguities arise at run time, when the programmer is not
generally available to disambiguate the execution, and so an error is thrown. And because the
run-time types of values can provide more overloadings than might have been statically available,
making a program more dynamic can even introduce such ambiguity errors, violating the gradual
guarantee. Thus, gradually typed nominal languages cannot rely on the programmer to resolve the
many ambiguities that statically typed nominal language often have. For method overloading, this
means all overloadings provided by a given class or interface must have pairwise disjoint signatures
in order to satisfy the gradual guarantee.
C# has another issue with gradual typing: extension methods. Extension methods are a way

to retroactively add methods to an interface or class. In C#, when the type-checker fails to find a
method declaration in a given receiver’s class or interface, it checks for extension methods defined
for that class or interface in the current static scope. But this faces two challenges when gradually
typed. First, the current static scope is not available at run time. As a consequence, C# fails to
identify extension methods at run time and simply throws a run-time type exception. This means
that LINQ, the specialized syntax used to describe database queries that is built entirely on extension
methods, is completely unusable by dynamically typed C#. Second, a method declaration that is
not visible at compile time, so that the extension method is invoked, could be visible at run time, so
that the instance’s method is invoked, thereby causing dynamic typing to change the semantics of
the program, violating the gradual guarantee.

10.3.2 Generics. Java, C#, and Scala have all had generics for over a decade, and more recent
nominal languages such as Ceylon and Kotlin continue the trend. Thus gradual typing for nominal
types needs to address generics. Ina and Igarashi have considered gradual typing for generics [Ina
and Igarashi 2011]. They have an interesting approach to Foo<dynamic>, where Foo<T> is a generic
class, which is to consider all uses of T in the body of Foo as potentially dynamic. Unfortunately, this
means that even well-typed code may need to have frequent run-time checks inserted. Furthermore,
they do not consider generic methods, type-argument inference, or any form of variance, all of
which are essential to how generics are used in practice. As such, there is still significant work to
be done for generics, some of the many challenges of which we discuss here.
One surprisingly simple yet challenging problem is decidability. In order to fulfill the gradual

guarantee, subtyping needs to be decidable so that run-time casts are guaranteed to terminate. In
the presence of variant generics, subtyping is often undecidable, as Kennedy and Pierce [2007] and
Grigore [2017] have shown. A promising approach is that of Greenman et al. [2014], who identified
a pattern in how generics are used in practice; a pattern that can be enforced by the language
design to ensure that subtyping is decidable.

Our approach requires the ability to check subtyping at run time. This implies that every instance
of List<String> stores the information necessary to determine at run time that the instance is
not just a List, but a List of String. This is known as reified generics and is the counterpoint to
type erasure. This might cause some concern, as reified generics imply that type information has
to be constructed and passed around at run time throughout generic methods. Schinz [2005] did an
analysis of what the impact of this would be for Scala on the JVM, and he found that it would on
average make programs run 50% slower, allocate 140% more memory, and compile to 30% more
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byte code. However, Microsoft added reification to the CLR because of its potential to improve
performance with primitive types and specialization, and Ceylon’s generics are reified because the
team found they could implement it with little overhead, even on the JVM. It is thus unclear what
the overhead of reified generics might actually entail for gradual typing.

The greatest challenge, though, is likely to be type-argument inference, a feature that is critical
to making use of generic methods convenient. To understand why it is likely to be such a significant
challenge, consider the following statically typed C# function SnocS (without extension methods):

List<T> SnocS<T>(IEnumerable<T> startS, T endS) {

var elemsS = Enumerable.ToList(startS);

elemsS.Add(endS);

return elemsS;

}

and its corresponding dynamically typed C# function SnocD

dynamic SnocD(dynamic startD, dynamic endD) {

var elemsD = Enumerable.ToList(startD);

elemsD.Add(endD);

return elemsD;

}

In order to fulfill the gradual guarantee, if a call to SnocS succeeds, the same call to SnocD should
succeed. However, the expression SnocS(new List<string>(), 5) succeeds in C#, whereas the
expression SnocD(new List<string>(), 5) throws a run-time type exception. In particular, the
invocation elemsD.Add(endD) fails because at run time elemsD is a List<string> but endD is
an int. In the corresponding line of SnocS, the run-time type of elemsS is List<object>. The
cause of the difference in behavior is that in SnocS, the type argument for ToList is inferred to
be T, which at run time is object, due to the static type of startS and endS, whereas in SnocD

it is inferred to be string due to the dynamic type of startD. Thus, in addition to developing a
decision procedure for type-argument inference, which is as of yet an unsolved problem, a gradual
type system for generics must also overcome this challenge regarding the gradual guarantee.

It is due to these many complications with nominal typing that C# is forced to implement gradual
typing using run-time compilation. This unfortunate fact is likely the cause of its poor performance
in Section 9. Thus, with nominal typing, it seems to be important to design the language with
gradual typing in mind in order to not only achieve the gradual guarantee, but also to achieve
efficient implementation of dynamic typing.

10.3.3 Interacting with Structural Values. Our work relies heavily on one major assumption:
that all C-like values can be explicitly tagged to indicate that they indeed are instances of C . It is
particularly critical that this assumption applies even to values created in untyped code.
However, there are many situations in which structural values are either unavoidable or are

the appropriate solution. Values might originate from other languages, with JavaScript being a
particularly notable example. Records might be the natural way to represent certain data, and
are especially useful for interacting with databases or performing database-like operations. Pro-
grammers might want to write function expressions without having to concern themselves with
determining specifically which interface that function is implementing. Each of these are important
applications of gradual typing that are especially well suited for structural typing and therefore
especially challenging for nominal typing.

Structural Run-Time Type. One likely step towards addressing these challenges is to allow a
Structural run-time type. In C#, this type is the specially handled ExpandoObject class. Values
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of this type would be structural values, and method invocation and field access on this type would
implement standard structural method invocation and field access. This would likely be a sufficient
solution for records and interacting with databases. However, like Thorn’s like types [Wrigstad
et al. 2010] or StrongScript’s optional types [Richards et al. 2015], it provides no means for
structural values to be given to code expecting nominal values, implying there is still a significant
interoperability barrier between the two.
One potential solution to overcoming this barrier is to adapt the existing work on monotonic

references [Siek et al. 2015b; Swamy et al. 2014; Vitousek et al. 2014] to assign nominal type-tags to
objects. A question that needs to be resolved here is whether additional type specialization should
be allowed to happen after the first tag has been added, as this is not something one would expect
from a nominal type system. Furthermore, although this avoids introducing wrappers, it is not fully
transparent since it modifies values in place, so it is possible performance may return as an issue.

First-Class Functions. Given that it is in general impossible to decide whether a given function
only returns values of some type when passed values of some other type, implementing transparent
casting and immediate accountability for unannotated functions is a daunting task. Intraprocedural
type inference is still an unsolved problem in object-oriented languages like ours, but if it is possible,
it should enable run-time type-checking of dynamic code. In such a scenario, function values could
then mostly consist of an AST representation and a map from already checked and validated
signatures of the function to accordingly compiled code. In the absence of intraprocedural type
inference, another solution might be to have declared function types, similar to C#’s delegates, and
require that such a type be specified for every anonymous function. Alternatively, one might be
able to efficiently adapt monotonic casting specifically to function values and nominal interfaces.

11 CONCLUSION

We have provided new properties of gradual type systems that, in conjunction with the gradual
guarantee, capture an intuition about when and where gradual typing can produce overhead even
in the ideal case. The properties do not necessarily guarantee an efficient implementation of gradual
typing, as we demonstrate with benchmarks for C#.
We showed, however, that by codesigning the type system and underlying runtime system

alongside these desired properties for gradual typing, we could create an efficient and well-behaved
gradually typed nominal object-oriented language. We provided evidence that our language does
not suffer from previously measured extreme overheads due to gradual typing, even in adversarial
scenarios where programs have a high level of interaction between typed and untyped code.

As part of our design, we chose to use nominal typing instead of structural typing as an explicit
tradeoff of expressiveness for performance. We argued how this loss of expressiveness is acceptable
for many applications of gradual typing, and we illustrated paths forward towards recovering
expressiveness while still maintaining performance. In general, there are many desirable features
that our language does not have, but it seems that many of them can be added with reasonable
effort. Indeed, sound gradual typing is nominally alive and well.
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