
Mixed-Site Variance

Ross Tate
Cornell University
ross@cs.cornell.edu

Abstract
Java introduced wildcards years ago. Wildcards were very
expressive, and they were integral to updating the existing
libraries to make use of generics. Unfortunately, wildcards
were also complex and verbose, making them hard and in-
convenient for programmers to adopt. Overall, while an im-
pressive feature, wildcards are generally considered to be a
failure. As such, many languages adopted a more restricted
feature for generics, namely declaration-site variance, be-
cause designers believed its simplicity would make it easier
for programmers to adopt. Indeed, declaration-site variance
has been quite successful. However, it is also completely un-
helpful for many designs, including many of those in the
Java SDK. So, we have designed mixed-site variance, a care-
ful combination of definition-site and use-site variance that
avoids the failings of wildcards. We have been working with
JetBrains to put this into practice by incorporating it into the
design of their upcoming language, Kotlin. Here we exposit
our design, our rationale, and our experiences.

1. Introduction
The adoption of (parametric) polymorphism1 [13] by major
industry object-oriented languages has been an interesting
progression. C++ was possibly the first widely used object-
oriented language to adopt this technology as the feature
known as templates. Yet C++ templates were lacking in two
critical ways. First, a template had no way to express the
requirements on the type it was polymorphic over, nor a
way to check that the implementation always worked under
those assumptions. Thus, the only way to know is to try,
making it hard for programmers to plan ahead when devising
implementation plans, and making it hard to know who was
at fault when a type error arose (especially since the error
messages for templates are famously convoluted). Second,
templates were not well integrated with a key type feature of
object-oriented languages: subtyping. This was not a huge
problem for C++ since its types tended to be strongly tied
to implementation, but other languages such as Java made
heavy use of interfaces and relied on subtyping to make
them convenient to use. Thus, when it came time for Java

1 We will use the term polymorphism to refer to parametric rather than
subtype polymorphism.

to incorporate polymorphism, Sun had an opportunity to
address many of the issues faced by the C++ programmers it
was hoping to convert.

And so, Java reintroduced polymorphism to the family
of widely adopted object-oriented languages in the form of
generics [8]. With generics, one could write a List inter-
face that could simultaneously work for many types of el-
ements, such as a List<Integer> and a List<String>,
much like with C++ templates. Plus, in order to address the
first aforementioned weakness of C++ templates, Java incor-
porated F-bounded polymorphism [6]. This feature allows
programmers to specify which interfaces/classes they can
expect/require the type being parameterized to satisfy, and
it allows the type checker to ensure that the implementation
is indeed safe under only those assumptions. While there
still are some limitations occasionally important in practice,
overall this feature has been a success.

Unfortunately, Java’s solution to C++ templates’ poor in-
tegration with subtyping is generally considered to be a fail-
ure. The feature known as wildcards [17] is in practice an
encoding of use-site variance [15] using a restrictive form of
existential types [4, 5, 9, 16–18]. They are actually quite a
clever and powerful feature. However, they are also quite
complex and quite verbose. For example regarding com-
plexity, in order to address the challenge of mixing use-site
variance with polymorphism, Java introduced a technique
known as wildcard capture [17] that introduces a constrained
fresh type variable representing the existentially qualified
type denoted by a wildcard. Wildcard capture is powerful
when type checking succeeds but can lead to some famously
convoluted error messages when type checking fails. Wild-
card syntax itself, List<? extends Number>, reads as “a
list of some subtype of numbers”, a little too complex to
be intuitive. This syntax is also rather verbose, made sig-
nificantly worse by the fact ? extends occurs extremely
frequently in code with precise usage of use-site variance
(especially since Java does not have type inference for local
variables). This, in turn, means programmers occasionally
have to trade off between readability and precision, since
precise types often have multiply nested uses of ? extends

and ? super. In fact, there is a widespread convention to
never use a wildcard in the return type of a method [3].

To make matters worse, there are many classes and inter-
faces where use-site annotations should always be present,
Iterator and Iterable being the most significant exam-
ples. This observation, along with the widespread ill feel-
ings towards wildcards, lead Microsoft to adopt declaration-
site variance when it introduced generics to C# [7]. With
declaration-site variance, a programmer can annotate a type
parameter for a generic class/interface as being covari-
ant (out in C#) or contravariant (in in C#). For example,
C#’s variant of iterators is declared IEnumerator<out T>.
This enables one to use an IEnumerator<String> as an
IEnumerator<Object> because String is a subtype of
Object. Another way to think of it is that IEnumerator im-
plicitly always has the ? extends annotation. This makes
declaration-site variance much less verbose than wildcards,
and programmers tend to find it more intuitive. Scala actu-
ally had declaration-site variance from the beginning [11],
and so, unlike C#, designed its core libraries around dec-
laration-site variance, which conveniently coincided with
Scala’s push for immutable data structures in order to em-
brace concurrency.

Yet, despite its popularity, declaration-site variance is
not without limitations. In particular, declaration-site vari-
ance is particularly poor for mutable data structures, such as
most of the Java collections library. Consider a hypothetical
generic class Array<T>, which is an array with the usual
ability to read from and write to indices. It is unsafe to treat
an Array<Object> as an Array<String>, because then
someone reading from the array of strings would expect to
get strings but could in fact get arbitrary objects. From the
other direction, it is also unsafe to treat an Array<String>

as an Array<Object>, because then someone could add ar-
bitrary objects to the array when it is supposed to contain
only strings — note that both Java and C# have this wrong
for historical reasons. This means that Array is neither co-
variant nor contravariant; it is an invariant type constructor.
However, often one wants to only read from an array or
sometimes they only want to write to an array. Interestingly,
the read-only aspects of arrays are almost all covariant, and
the write-only aspects of arrays are almost all contravariant.
Yet, programmers working with declaration-site languages
have no direct way to specify they want only the covariant or
contravariant portions of arrays and so have to jump through
annoying and inefficient hoops to circumvent the limitations
of the type system. In fact, Altidor et al. found that 61%
of use-site annotations in existing code bases would still be
necessary even if Java added declaration-site variance [1].
While techniques employed by Scala and C# library design-
ers may improve applicability of declaration-site variance,
there are still many examples that need use-site variance.

More recently, the company JetBrains have been design-
ing a new programming language which they call Kotlin,
seeking to create a tidier successor to Java by reflecting on
the evolution and lessons of object-oriented languages over

the last decade, and whom we have been advising and col-
laborating with particularly on the topic of type systems. In
our reflections, we observed that, although wildcards failed,
that does not necessarily mean use-site variance has failed.
Rather, use-site variance has the ability to address the weak-
nesses of declaration-site variance, provided we allow pro-
grammers to use declaration-site variance when possible as
it is the less verbose option. Thus, we have designed what we
call mixed-site variance, which is a carefully crafted combi-
nation of declaration-site variance and use-site variance that
also avoids the complexities of wildcards that we have thor-
oughly discussed in recent work [14]. In addition to giving
us the best of both worlds, mixed-site variance has an in-
tuitive correspondence with Java wildcards, which aids in
making Kotlin able to conveniently interact with existing
Java code bases. While mixed-site variance is intuitive for
the most part, there are some unexpected challenges and in-
teresting subtleties, which we explain here so that others may
understand the reasons behind our design as well as under-
stand how and why they might incorporate the feature into
their own language designs.

So far we have briefly described the history of our design
space. In Section 2 we will discuss and formalize our form
of use-site variance. In Section 3 we will add declaration-site
variance to our system to address the weaknesses of use-
site variance we just detailed, while illustrating our rationale
as to precisely how we chose to mix the two together. In
Section 4 we will explain how these types fit into a language
as a whole, focusing on those features where mixed-site
variance has the most impact. Finally, we will conclude with
a discussion of forwards compatibility, highlighting some
of the more interesting interactions mixed-site variance has
with other common language features so that designers can
know what other points to take into consideration.

2. Use-Site Variance
We have yet to properly describe what use-site variance
is. With use-site variance, every time you use a generic
class/interface you furthermore specify whether you want
to access it invariantly, covariantly, contravariantly, or in-
dependently. For example, Array<inv Number> indicates
you want invariant access to an array of numbers, which
grants you access to all attributes2 of the array but also re-
stricts the array instances you can be provided. In particular,
I could not provide you with an array of objects because you
may try to read numbers from the array, and I could not pro-
vide you with an array of integers because you may try to
write arbitrary numbers into the array. On the other hand,
Array<out Number> indicates you want covariant access
to an array of numbers, which intuitively grants you access
to attributes letting you get numbers out of the array but
not letting you put numbers in to the array. This means I
can safely give you an array of integers since I do not have

2 We use the term attributes to refer to both fields and methods.

τ ::= ⊥ | > | v | C<in τ out τ>

Figure 1. A simplified grammar for use-site variance

to worry about you adding arbitrary integers into the array.
Alternatively, Array<in Number> indicates you want con-
travariant access, intuitively granting you access to attributes
letting you put numbers in to the array but not letting you
take them out, so that I can safely give you an array of
objects. Lastly, Array<?> indicates you want access to the
type-parameter-independent portion of the array, which in-
cludes attributes that tell you its size or clears it of all its
contents.

It is important that, while out and in intuitively mean
read only and write only, those are just intuitions. For exam-
ple, with an Array<out Number> I can still safely clear the
array of all its contents (assuming we are in a language with
nulls, although interestingly Kotlin is not such a language),
and can even safely rearrange the contents of the array. And
on the other hand, with an Array<in Number> I can still
safely get the size of the array. Thus, it is important to under-
stand that they actually represent the type-theoretic concepts
of covariance and contravariance.

The fact that Array<out •> is covariant means that,
if τ is a subtype of τ ′, then Array<out τ> is a subtype
of Array<out τ ′>. For example, Array<out String> is
a subtype of Array<out Object>. In order to be safe,
e.g. prevent people from writing objects into an array of
strings, the type system projects the covariant portion of
the type signature for arrays, typically the read-only at-
tributes, and hides everything else, typically the writing at-
tributes. From the other side, the fact that Array<in •>
is contravariant means that, if τ is a subtype of τ ′, then
Array<in τ ′> is a subtype of Array<in τ> — note the
reversal. For example, Array<in Object> is a subtype of
Array<in String>. Again, in order to be safe, e.g. prevent
people from reading strings from an array of objects, the type
system projects the contravariant portion of the type signa-
ture for arrays, typically the write-only attributes, and hides
everything else, typically the read-only attributes. There are
some variations on how this projection and hiding is done,
and we will illustrate our version in Section 4.1. For now,
though, we focus on the types themselves.

2.1 Types
Figure 1 shows an extremely simplified syntax. To keep from
being distracted by details, we assume a bottom type, ⊥,
which intuitively is the empty set and formally is a subtype
of every type, and a top type, >, which intuitively is the
set of all values and formally is the supertype of every
type. In this way, the annotation in ⊥ intuitively means
“you can put nothing in” so that the contravariant portion
is useless, and the annotation out > intuitively means “you
will get arbitrary values out” so that the covariant portion

Γ ` ⊥ <: τ Γ ` τ <: > Γ ` v <: v

τi <: v <: τo ∈ Γ
Γ ` τ <: τi
Γ ` τ <: v

τi <: v <: τo ∈ Γ
Γ ` τo <: τ

Γ ` v <: τ

C<P> is a subclass of D<τP>
v is fresh

Γ, τi <: v <: τo ` τ ′i <: τP[P 7→ v]
Γ, τi <: v <: τo ` τP[P 7→ v] <: τ ′o

Γ ` C<in τi out τo> <: D<in τ ′i out τ ′o>

Figure 2. Algorithmic subtyping rules for use-site variance

is useless. Thus we can encode the more user-friendly use-
site annotations described above in terms of a single all-
encompassing in out annotation:

C<inv τ> 7→ C<in τ out τ >
C<out τ> 7→ C<in ⊥ out τ >
C<in τ> 7→ C<in τ out >>
C<?> 7→ C<in ⊥ out >>

In practice, Kotlin users never actually write both an in

and out annotation, and unannotated uses are invariant
by default (unless the class/interface specifies otherwise).
Nonetheless, even if a user never explicitly writes an in out

annotation, they can arise intermediately as a result of the
approximation algorithm presented in Section 4.1, though
we will discuss how this can be avoided through restrictions
should a language designer prefer to do so. Conceptually,
the type C<in τ out τ ′> can be thought of as instances of
C whose actual type argument is bounded below by τ and
above by τ ′. Note that a language does not actually need a
⊥ or > type, and of course classes/interfaces can have an
arbitrary number of type parameters, but we elide those de-
tails as they are not relevant to the intuitions, challenges, or
algorithms discussed in this paper.

2.2 Subtyping
An advantage of simplifying the grammar is that we can
present the subtyping rules for use-site variance concisely,
as shown in Figure 2. A context Γ indicates the lower and
upper bound on each type variable v, effectively using ⊥ to
indicate no lower bound and > to indicate no upper bound.
Note that the rules are algorithmic; in particular, there is no
rule for transitivity, rather transitivity is a property that can
be proven about the system when the context is consistent.
Soundness is near trivial given soundness of existing systems
as this system can easily be translated to both declarations-
site variance with multiple inheritance and to bounded exis-
tential types.

The one rule to focus attention on is that for subtyping
two classes. First, the clause “C<P> is a subclass of D<τP>”
indicates that, according to the inheritance hierarchy, the

generic class C<P> is declared to be a subclass of D<τP>,
where P is the type parameter of C and subclassing is re-
flexive and transitive — note that P and τP are direct type
arguments without any use-site annotations. More impor-
tantly, let us explain the intuition behind the fresh vari-
able v. The idea is that any instance of C is allocated with
some type argument, call it v. For that instance to belong to
C<in τi out τo>, v must be a supertype of τi so that it is
safe to write τis to it, and v must be a subtype of τo so that
it is safe to read τos from it. So, if we can prove the rest of
the subtyping via inheritance and use-site variance using just
these constraints on v, which is what the remaining clauses
do, then we know that instance can safely be treated as a
D<in τ ′i out τ ′o>.

Now, there are issues with termination for this algorithm.
In general, since declaration-site variance can easily be en-
coded into use-site variance, Kennedy and Pierce’s undecid-
ability result applies here as well [10]. Thankfully, though,
our formulation of use-site variance can be encoded as
declaration-site variance with multiple inheritance, so their
decidability results also apply here. In particular, unlike with
wildcards [14], disallowing expansive inheritance [10] en-
sures termination with one caveat: as you recurse you need
to look up the stack to see if the same argument pair has
ever been recursed upon before, in which case you accept
the subtyping (although C# unnecessarily rejects in this situ-
ation). Interestingly, this algorithm can also be encoded into
bounded existential types, so we can apply the decidability
results from there here as well [14]. In particular, disallowing
in annotations in declarations of superclasses/interfaces en-
sures termination without the above caveat, though one has
to optimize inv annotations to use unification rather than
both an upper- and lower-bound check, which can only be
done if the type system can ensure that if there is an explict
in τi out τo annotation then τi is a subtype of τo. Regard-
less of the algorithms and restriction used, with our rules we
have one significant advantage over wildcards and existen-
tial types: two types are equivalent in our system (meaning
subtypes of each other) if and only if they are syntactically
identical. This observation leads us to more thoroughly con-
trast our system with wildcards.

2.3 Wildcards
The use-site variance system we propose here is admittedly
very similar to wildcards. Yet the small differences have
been carefully tuned to account for our own type-theoretic
issues with wildcards [14] and the opinions expressed by
various Java developers whom we have discussed the mat-
ter with. The first small difference is the syntax. One issue
is that the syntax ? extends does not convey any intuition
about how to use the type; it simply conveys the existen-
tial formalization behind the type system. Scala’s _<: suffers
the same criticism. While not entirely accurate, out informs
the programmer that intuitively this type is something you
can only get values out of. This is particularly relevant to

beginning programmers; initially they work primarily with
collections where this annotation accurately represents the
usage pattern, and so they can afford to learn the details
only later when they have become more experienced with
the language. On the other hand, when first exposed to wild-
cards, beginning programmers often misread ? to be a spe-
cial name, like> and⊥, and so think all the ?s represent the
same type. Thus, we believe our small syntactic change can
help with adoption of the feature and the language.

Now, from a more type-theoretic perspective, there is a
much more important difference between wildcards and our
use-site variance. Our subtyping rules for use-site variance
do not use implicit constraints [14]. In Java, if we declared a
class Sorted<T extends Comparable<T>>, which does
happen in practice even though Comparable should al-
ways have a ? super argument, then Sorted<?> is a sub-
type of Sorted<? extends Comparable<?>> and even of
Sorted<? extends Comparable<? extends Comparable<?>>>

and so on forever. This is because, when Java introduces
a fresh variable v much like we do in subtyping, it also
knows that v must satisfy the constraints imposed upon the
type parameter, in this case v <: Comparable<v>, and so
Java adds those to the context as well. These implicit con-
straints are perfectly legitimate and in a way quite clever,
but they are also the source of many of the issues exposed
by our earlier work [14]. For one, they impact type equiva-
lence, since the above subtypings mean Sorted<?> is actu-
ally equivalent to Sorted<? extends Comparable<?>>.
Thus, an Array<Sorted<? extends Comparable<?>>

should be assignable to Array<Sorted<?>> and vice versa
even though Array is invariant but the two arguments are
not syntactically identical. Hopefully this sampling offers a
glimpse of all the algorithmic challenges we avoid with our
simpler design.

Thus so far our use-site variance design addresses both
the syntactic and algorithmic weaknesses of wildcards. But
we have not yet addressed what is possibly the worst aspect
of wildcards: frequency. For this we, like C# and Scala, look
to declaration-site variance. Yet, unlike C# and Scala, we do
not abandon use-site variance as an integral component of
the type system. Instead, we ensure these two forms of vari-
ance collaborate with each other in a manner both intuitive
and efficient.

3. Adding Declaration-Site Variance
In use-site variance, every type argument is annotated with
its intended variance, limiting how that specific type can be
used. In declaration-site variance, every type parameter is
annotated with its intended variance, limiting how that type
parameter can be used. The latter has the advantage that
there are significantly fewer type parameters than type argu-
ments, making it less burdensome. This is why it has become
the widespread standard. However, it also has the disadvan-
tage that some type parameters do not naturally fall within

the restricted uses of just covariance or just contravariance.
Hence we believe there is room for use-site variance to make
an improvement.

First, let us restate how declaration-site variance works.
In a signature for a generic class/interface, there are invari-
ant, covariant, and contravariant uses of a type parameter.
For example, having the return type of a method be a type
parameter is a covariant use, whereas having a parameter
type of a method be a type parameter is a contravariant
use. Having a mutable field whose type is a type parame-
ter is an invariant use, supposing that field is visible pub-
licly or even just to other instances of the same class. With
declaration-site variance, if one annotates a type parameter
as in or out (- or + in Scala), the type checker ensures
that the signature of the class/interface contains respectively
only contravariant or covariant uses of that type parameter.
In other words, the type checker ensures that, for that class
C, the type C<inv τ> is no more useful than C<in τ> or
C<out τ> respectively so that there is no point in distin-
guishing the invariant case from the appropriate variant case.
However, below we will offer some slight variations on how
a declaration-site variance can be interpreted.

Surprisingly, there are multiple ways to combine use-site
and declaration-site variance. First, we explain the solutions
we did not take and why. Then, we explain our own solution
and its advantages. For sake of discussion, we will use In,
Out, and Invariant to represent generics with type param-
eters that have been declared to be contravariant, covariant,
and invariant respectively.

3.1 Defaulting
One approach to combining use-site and declaration-site
variance is to make the declared variance simply a default
variance that can be overridden by a use-site annotation. This
way a programmer can indicate that typically a class will be
used, say, covariantly, but occasionally fellow programmers
will want more powerful access and use the inv annotation
to indicate so (or even the in annotation if they only want to
access the less commonly used write-only attributes). This
means that a programmer can declare a type parameter to
be covariant even if the class/interface’s signature contains
invariant or contravariant uses of that parameter. So Out<P>

could actually have a method void add(P elem), which
by default people do not have access to so that they can con-
veniently use covariance, but which people can explicitly ask
for by specifying Out<in String> or Out<inv String>.

This sounds nice and flexible at first as it lets the library
designer, who has first-hand knowledge of what the usage
patterns are expected to be, specify what the most convient
variance would be for those expected usage patterns. How-
ever, some of the consequences of this strategy are unintu-
itive. For example, an In<Integer> would not be a sub-
type of In<out Number> even though Integer is a sub-
type of Number and it looks like you have weakened your
use of In to be covariant. The reason is that In<Integer>

is just a shorthand for In<in Integer>, so it could actu-
ally be an instance of In<inv Object>, which is not an
In<out Number>. We felt such examples behaved contrary
to our own expectations, let alone those of beginning pro-
grammers, so we decided against this strategy.

3.2 Layering
Interestingly, two separate groups have proposed layering
use-site variance on top of declaration-site variance. Scala
uses existential types on top of its declaration-site variance
in order to simulate use-site variance and be compatible
with Java wildcards [11], and Altidor et al. provide a cal-
culus VarJ of existential types over nominal declaration-site
types as a means to add declaration-site variance to Java [2].
Unfortunately, layering both leads to unexpected subtypings
and prevents capturing of implicit constraints. These have
some algorithmic implications, so we suspect neither Scala
nor VarJ have decidable subtyping for reasons described be-
low.

To illustrate, consider the type In<out String>. With
layering, this is a subtype of In<out Integer> even though
String is not a subtype of Integer nor even the other
way around. The reason is that In<out String> is consid-
ered to represent the existential type ∃v <: String. In<v>,
meaning there exists some type v that is a subtype of String
such that this is an In<v> with In being contravariant as
usual. Now, due to contravariance, ∃v <: String. In<v>
is a subtype of ∃v <: String. In<⊥>, since ⊥ is a sub-
type of v regardless of what v is. At this point, the body
of the existential makes no reference to v, so we can just
disregard v entirely, indicating that ∃v <: String. In<⊥>
is a subtype of simply In<⊥>. So, at this point we have
that In<out String> is a subtype of In<⊥>. Next, clearly
⊥ is a subtype of Integer, so In<⊥> satisfies the exis-
tential type ∃v <: Integer. In<v>, which is the long
form of In<out Integer>. Thus, In<⊥> is a subtype of
In<out Integer>. Finally, by transitivity using In<⊥> as
the middle type, we get that In<out String> is a subtype
of In<out Integer>.

Note that transitivity is key to this deduction, which is
why we suspect such a layered subtyping system to be unde-
cidable, considering all decidability results on similar (actu-
ally easier) subtyping systems work by first finding a deduc-
tion system without transitivity [10, 14]. In particular, the
above strategy only works if there is an appropriate inter-
mediate type without use-site annotations, which does not
actually always exist due to constraints on type parameters.
Although not formally documented, Scala’s implementation
seems to skirt that issue by permitting the intermediate type
to be an invalid type, meaning a type that the type checker
would reject had the programmer written it explicitly. This
is most likely sound under a set-theoretic model, but these
inconsistencies and messy details are part of why we opted
against this strategy.

Another issue with layering is that it is not compati-
ble with the concept of wildcard capture. Recall the in-
terface Sorted<N extends Comparable<N>>, and sup-
pose we had an instance of Sorted<? extends Number>.
We know that ? stands for some type, so wildcard capture
names this type with a fresh variable v and knows that v
is a subtype of Number and a subtype of Comparable<v>.
This reasoning is integrated throughout Java’s type system,
so we would like Sorted<out Number> to be compati-
ble with it. Unfortunately, with the layering system, if we
furthermore declared Sorted to be contravariant, wildcard
capture would no longer be sound. The reasoning above
can be used to show that Sorted<String> is a subtype of
Sorted<out Number> if Sorted is contravariant. Clearly
String is not a subtype of Number, so assuming the afore-
mentioned variable v is a subtype of Number would be un-
sound. Rather, all we can assume is that v is a subtype of
Comparable<v> and a supertype of some unknown type v′

that is a subtype of Number. Not only is the capture behavior
unexpected, but this cannot be expressed with wildcards, so
it is not compatible with Java. This issue is even more impor-
tant with the next variation of combining use-site variance
and declaration-site variance.

3.3 Joining
In an earlier work, Altidor et al. [1] proposed joining use-
site variances with declaration-site variances in a lattice-
theoretic sense. For example, Out<in String> is equiva-
lent to Out<?>, regardless of what constraints Out imposes
on its type parameter, because the join of the declaration-
site annotation out and the use-site annotation in is ? in
the annotation lattice. In fact, Scala’s actual implementation
seems to take this approach. The issue is, despite the name
of their publication, Altidor’s proposal is unsound for Java
wildcards. Again, this is due to wildcard capture with im-
plicit constraints, which Scala does not do and so avoids this
issue.

To see the issue, consider the following covariant class:3

interface Trouble<out P extends List<P>>

extends Iterator<P> {}

This seems benign, but we can use this aptly named class
to exploit the combination of wildcard capture and joining
variances to produce an unsafe memory access. For that, we
will need the following two classes:

3 While Scala and C# would not actually allow Trouble to be declared
covariant because the constraint on its type parameter is not covariant, that
restriction is actually unnecessary as we will discuss in Section 4.3.

class AList extends ArrayList<AList> {}

class BList extends ArrayList<BList> {

int i = 0;

public boolean add(BList bs) {

System.out.println(bs.i);

return super.add(bs);

}

}

These are designed to be two different implementations sat-
isfying the requirements of Trouble’s type parameter, one
implementation accessing a field the other does not have.

Next, we need code that takes advantage of wildcard
capture:

void sneaky(Trouble<? super AList> trouble) {

trouble.next().add(new AList())

}

Due to wildcard capture, the expression trouble.next()

returns a v where v is a fresh type variable known to be a
subtype of List<v>, due to the implicit constraint gener-
ated from Trouble’s contraint on its type parameter, and
to be a supertype of AList, due to the explicit constraint
? super AList. The implicit constraint tells us there is an
add method that accepts a v. Then, since the explicit con-
straint tells us AList is a subtype of v, we can supply that
add method an AList, which is why sneaky type checks.

Lastly, for sake of concision suppose troubleMaker is a
generic method that constructs a Trouble by simply wrap-
ping an Iterator of an appropriate type. Then the follow-
ing code results in an unsafe memory access if executed:

List<BList> bs = new ArrayList<BList>();

bs.add(new BList());

Iterator<BList> itr = bs.iterator();

Trouble<BList> trouble = troubleMaker(itr);

sneaky(trouble);

The body of sneaky(trouble) adds a new AList to the
BList in bs, which accesses a non-existent field i because
it expects a BList rather than a AList. Thankfully this does
not type check in Java, because Trouble<BList> is not
a subtype of Trouble<? super AList>. However, it is a
subtype of Trouble<?>, which in Altidor et al.’s system
would actually be equivalent to Trouble<? super AList>

since Trouble is covariant, so with the joining strategy we
would erroneously accept this invalid code. Thus, we cannot
adopt the joining strategy if we want to be compatible with
Java or consistent with capture.

3.4 Mixed-Site Variance
Now that we have conveyed the options and our careful con-
sideration of their pros and cons, we finally present our solu-
tion. One observation with the above variants is that they all
have reasonable intuitions, which means that a (beginning)
programmer could look at a type and expect any of the above
behaviors without even recognizing the other possibilities,

leading them to make mistakes. Interestingly, though, these
variants only disagree when the declaration-site variance is
opposite the use-site variance (i.e. one is inwhile the other is
out), and furthermore the problems we discussed only arise
in this opposing situation. Thus, our version is quite sim-
ple: all use-site variances must be weaker than their corre-
sponding declaration-site variance. So one can use arbitrary
use-site variances on invariant classes, but only out and ?

on covariant classes and in and ? on contravariant classes.
Thus if a programmer writes a type whose interpretation is
unclear, we reject that type. In practice, we have yet to see a
programmer purposely try to have a use-site variance oppos-
ing the declaration-site variance, so we view this restriction
more as a formalization of realistic usage behavior than as
a limitation of expressiveness. Furthermore, this restriction
keeps our type system compatible with wildcards and cap-
ture via the obvious translation, so it meets Kotlin’s goal of
simple and familiar correspondence with Java.

Now that we have a clean way of mixing use-site and
declaration-site variance, we can take advantage of use-site
variance to add flexibility that would normally need to be
disallowed by declaration-site variance due to inexpressive-
ness. In particular, with just declaration-site variance one
must ensure that a co/contravariant class/interface has an en-
tirely co/contravariant signature. However, with mixed-site
variance we can offer some convenience. In particular, the
signature can be whatever the programmer desires, but only
the co/contravariant portion of the signature can be accessed.
This would be completely useless, except we make one ex-
ception: this can access the entire signature of itself (and
itself only). The particular advantage of doing this is that it
allows a co/contravariant class with type parameter P to have
mutable fields of type containing P.

The following shows how this might be used in practice:

class Lazy<out V>(Function<Null,V> comp) {

private mutable V|Null value;

public V get() {

if (value != null) {

return value;

} else {

V val = comp.invoke(null);

value = val;

return val;

}

}

}

Here comp represents an expensive computation to be eval-
uated only if its result is ever actually needed. However,
since it is expensive, we want to evaluate it at most once.
Thus, Lazy needs a mutable V|Null field to remember what
that value is after it has been computed. This signature is
clearly covariant, yet a typical declaration-site language like
C# would have to reject the out annotation on V due to the
mutable field of type V|Null. The reason is that, if there

were a method that accessed the fields of another instance
of Lazy<V>, due to variance the run-time type of that other
instance could use some strict subtype of V so that writ-
ing just a V to that instance’s value field would be un-
sound. To avoid this issue, whenever the implementation of a
co/contravariant class accesses other instances of that class,
we restrict those accesses to only the co/contravariant por-
tion of the signature for those instances. The existing stan-
dard restrictions would instead force the programmer to sep-
arate out the interface and then have their class implement
that interface.

Of course, a language designer might choose to opt out of
this nuanced feature, mainly since beginning programmers
might be confused by not having access to operations that
appear to be there, and even advanced programmers would
appreciate the type checker informing them when their de-
signed signature does not have the variance they expect it to
have. Right now Kotlin accommodates this issue by allow-
ing only private attributes to violate a declaration-site vari-
ance, so that library designers can ensure that users are get-
ting the public interface they expect. Scala accomodates this
issue by having a private[this] annotation that prevents
other instances from accessing such attributes at all, even
blocking the appropriate co/contravariant aspects of those
attributes. Nonetheless, we felt it prudent to mention the op-
tion, especially since our mixed-site variance has been de-
signed so that the variance-restriction process can be done
nicely from both programmer and type-theoretic perspec-
tives, which brings us to discussing how mixed-site variance
interacts with the type system as a whole.

4. Type Checking
Now that we have the basis of how we have chosen to mix
use-site and declaration-site variance, there are a few key as-
pects of a type system most impacted by this mix. First we
will discuss how to type attribute accesses given restrictions
imposed by use-site annotations. Then we will discuss how
to propogate use-site annotations through polymorphic func-
tions. Lastly we will discuss how to treat constraints on type
parameters with variance.

4.1 Approximation
We mentioned that a use-site annotation like out Number

restricts what access the user has to various attributes. But
we have not described precisely what that restriction is.
One solution is to simply hide all attributes whose type is
not already covariant. In fact, this is the solution a lan-
guage designer needs to take if they want to avoid having
unnamed type variables or in out annotations arise inter-
mediately during type checking (e.g. in order to express
the type returned by a method call). Yet such a solution is
rather harsh. Consider something like the subList method
of Java’s List<E> that returns another List<E>. The in-
tent is to provide a (mutable) view of the larger list. So,

Γ `v ⊥ ←[⊥ 7→ ⊥ Γ `v > ←[> 7→ >
τi <: v <: τo ∈ Γ

Γ `v τi ← [v 7→ τo

Γ `v τ↓i ← [τi 7→ τ↑i Γ `v τ↓o ← [τo 7→ τ↑o

Γ `v C<in τ↑i out τ↓o >← [C<in τi out τo> 7→ C<in τ↓i out τ↑o >

Figure 3. Algorithm for tightly under/overapproximating a type to remove a non-recursively constrained type variable v

if you had a (read-only) List<out Number>, you would
reasonably expect subList to return a (read-only) view of
type List<out Number>. Yet the aforementioned solution
would simply block all access to the subList method. So
we look for more powerful solutions.

Java addresses this by using wildcard capture. Java will
introduce a fresh type variable with both the implicit and
explicit constraints and then type the attribute using that
type variable as the type argument. While quite clever
and powerful, if a type check fails then the capture ap-
proach leads to type errors containing widely despised
capture#n of ? extends Number types, which are es-
pecially confusing when implicit constraints get thrown into
the mix. From the other direction, the capture approach is so
powerful that it will occasionally accept code that program-
mers often expect to be rejected, such as our earlier sneaky
function; more on that later.

Now, in formalizing our subtyping algorithm, we also
used fresh type variables with constraints, much like Java’s
approach. However, we only did this for simplicity and effi-
ciency, not out of necessity. In particular, recall that, unlike
Java, we opted not to use implicit constraints. We did this
not only because our change more accurately reflects practi-
cal use of wildcards and reduces algorithmic complications,
but also because it ensures that constraints on fresh variables
never reference fresh variables but rather are always types di-
rectly expressible and readable by the programmer. Because
of that, it is actually possible to optimally approximate any
such type both above and below by completely programmer-
expressible types.

The algorithm for this process is presented in Figure 3.
The guarantee is that, provided the types bounding variables
in Γ do not contain v, Γ `v τ↓ ← [τ 7→ τ↑ holds if and only
if every type not containing v that is a sub/supertype of τ is
also respectively a subtype of τ↓ or supertype of τ↑. That
is, τ↓ is the greatest subtype of τ not containing v, and τ↑

is the least supertype of τ not containing v. Thus, the sub-
typing rule for inheritance in Figure 2 could equivalently be
defined by simultaneously substituting and overapproximat-
ing rather than introducing a constrained fresh type variable.

This approximation technique can easily be extended
to signatures rather than just types. For example, with a
method we underapproximate the parameter types and over-
approximate the return types. So if List<E> had a method
with signature List<E> sort(Comparator<E>), where
Comparator has been declared to be contravariant, then a

List<in Integer out Number> would be seen as having
a List<in Integer out Number> sort(Comparator<Number>)

method — no matter what the actual run-time type argu-
ment of the list is, given the in Integer out Number

we know a Comparator<Number> can always be safely
supplied to sort and a List<in Integer out Number>

can be safely expected from sort. Similarly, with a field
we underapproximate its writeable type and overapproxi-
mate its readable type. So if a generic class Foo<T> had
a field bars of type List<Out<T>>, then a read from
the bars field of a Foo<out Number> would have type
List<in Out<⊥> out Out<Number>>. We present this
complicated example to illustrate that an in out annotation
can arise from types without in out annotations. Indeed
both sides to the annotation are useful in this case, since
the in Iterable<⊥> annotation lets us add the immutable
empty iterable to the list, and the out Iterable<Number>

annotation lets us get iterables of numbers from the list.

Consistency While we are on the topic of approximation,
we should consider the type List<in > out ⊥>, which
essentially is a list I can both put anything I want into
and take anything I want out of. One might think this im-
possible: how can I choose to put a String in and then
choose to get an Integer out? The answer is: throw an
exception either whenever anyone puts anything into the
list or whenever anyone gets anything from the list. Java’s
java.util.Collections.EMPTY_LIST does the former.
These observations exemplify the two practical perspectives
on the type List<in > out ⊥>.

Let us consider the latter perspective: we can use the type
List<in > out ⊥> to express the concept ∀α.List<α>,
meaning a list of whatever type we want, since after all
List<in > out ⊥> is a subtype of List<α> for any α.
The shorthand for this type could be List<*> as opposed
to List<?>. In Java, raw types (e.g. the type List used for
EMPTY_LIST) intended primarily for backwards compatibil-
ity are often also used for this special case of a universal
instance since Java’s generic type system is incapable of ex-
pressing it. Thus, one could design a language extension en-
abling programmers to write universal instances of generics,
using List<in > out ⊥> to plug them into the type sys-
tem. One would have to take care in designing a type system
to ensure these instances are actually universal. Also, this
feature would be incompatible with our existential model, so
soundness may be an issue especially if one uses the capture
feature in Section 4.2. These concerns are out of the scope of

this paper though; we just mention the opportunity in order
to offer a complete picture of the options at hand.

With that aside, suppose on the other hand we want to
exploit our existential model to know that such types are
uninhabitable (without unsound features such as raw types).
After all, an instance of List<in > out ⊥> would mean
there exists some v that is a supertype of > and subtype
of ⊥, which is clearly impossible since that would imply
> is a subtype of ⊥ and so everything would be nothing.
In fact, having types C<in τi out τo> where τo is a strict
subtype of τi is problematic algorithmically as well, since
then C<in τi out τo> can be a subtype of C<inv τ>
without all of τi, τo, and τ being equivalent, a property
that prevents the use of unification when deciding subtyping,
which our prior work heavily relies on for decidability [14].
Furthermore, these types are simply unintuitive from a user
perspective. So, for these reasons, we offer a variation on the
type system.

We consider a type C<in τi out τo> to be consistent
only if τi is a subtype of τo and both are consistent, with
⊥, >, and v being consistent unconditionally. The chal-
lenge is that various operations using such types may in-
troduce types that violate this restriction. For example, if
Foo<T> had a field bars of type List<List<T>>, then
a read from the bars field of a Foo<?> has the inconsis-
tent type List<in List<in > out ⊥> out List<?>>.
In particular, the type contains List<in > out ⊥> even
though all the original types involved were consistent. Note,
though, that this type occurs at a contravariant location. This
means that replacing it with ⊥ would result in the less pre-
cise type List<out List<?>>. Interestingly, though, this
supertype is in fact the most precise consistent supertype.

This observation leads us to our fortunate result on this
matter. Suppose one were to change the recursive case of
the approximation algorithm in Figure 3 so that it checks
whether τ↑i is a subtype of τ↓o and instead underapproxi-
mates with ⊥ if that check fails. Then, supposing τ were
valid under our new restrictions, both approximations would
be valid and they would be the tightest consistent approx-
imations. Thus, since all other typing operations could be
adapted to use consistent approximations instead, one could
have a type system where all types are consistent and all
operations cleanly preserve consistency. This is what the de-
signers of Kotlin have opted to do.

4.2 Capture
The tight approximation feature of our design is key to its
usability. For example, it improves the error messages of
the language since every type used internally can also be
expressed by the programmer; no more capture#n of ?

types. In fact, one can use the more efficient fresh-variable
technique intermediately and only approximate when report-
ing a type error or otherwise leaving the scope of that vari-
able. Also, since we do not use fresh variables formally,

any well typed expression can be broken into its parts each
on a separate line. That is not true for Java. For example,
there is no way to separate any subexpression of sneaky

onto another line and still get sneaky to type check. Scala
has the same problem with the same example, though one
has to write an explicitly recursively bound existential type.
Unfortunately, there is no way to extend our approximation
techniques to Java (or Scala), since the recursive nature of
implicit constraints from wildcards prevent tight approxima-
tions. But since we have designed our subtyping system so
that we can have these approximations, we want to propagate
the technology through other features of type systems.

We have used approximation to address how use-site an-
notations restrict access to attributes. Now we will use ap-
proximation to address how use-site annotations are propa-
gated through generic methods. For example, suppose we
had List<T> reverseView<T>(List<T>). Should we
call reverseView with a List<out Number>, we would
expect the returned value to be a List<out Number>. How-
ever, we cannot naively substitute T with out Number. If we
passed List<List<T>> singletonsView(List<T>) a
List<out Number>, it would be unsound to have the return
type be List<List<out Number>>. This would allow us
to add a List<Integer> to the view, consequently adding
Integers to the original list, even if the original list were
actually a List<Double>. In fact, the return type should be
List<in List<in Number out ⊥> out List<out Number>>,
or List<out List<out Number>> if we use only consis-
tent types.

Our basic strategy is simple: reuse the capture con-
cept we stole from wildcards but without implicit con-
straints, just like we did with subtyping. So if an argument
type has a top-level use-site annotation, such as the argu-
ment type List<out Number> but not the argument type
List<List<out Number>>, replace the annotated type ar-
gument with an appropriately constrained fresh type vari-
able, producing say List<v> with v constrainted to be a
subtype of Number. Now none of the invocation’s argu-
ments’ types have use-site variance, so proceed with generic-
method invocation as normal. This will result in a return type
containing fresh type variables, so remove those by tightly
overapproximating the return type. This basic strategy has
one major issue though.

Often a generic method will place constraints on its type
parameters. For example, it may require a type parameter to
be comparable to itself. When such a method is invoked, the
type system needs to check that the type arguments satisfy
those constraints. With capture, though, the type arguments
may contain capture variables. This means failures on con-
straint checks could result in the exact kind of unfriendly
error messages we have tried so hard to avoid. The alterna-
tive, then, is to use approximations before doing constraint
checks. Unfortunately, this is lossy since both sides of a re-
cursive constraint would reference capture variables, plus the

mismatch between the approximations and the original con-
straints still make error messages confusing.

We found this behavior unsatisfactory, especially com-
pared to the cleanliness of the rest of the type system. Thank-
fully, by considering the details of the application, we found
a solution remarkably consistent with the rest of the type
system. The key observation we made is that the only prac-
tical applications of capture occur when a type parameter
for the generic method occurs as a top-level invariant argu-
ment to one of the method’s parameters’ types, such as T

in the parameter type List<T> for both reverseView and
singletonsView. The first reason is that a type parameter
must occur as a top-level (not necessarily invariant) argu-
ment to one of the method’s parameters’ types in order for
its corresponding type argument to contain a capture vari-
able, and the second reason is that, except in contrived cases,
when it was not an invariant argument then an approximation
could be used instead. Thus, capture is only useful in prac-
tice when we essentially have a generic method with a con-
text object of sorts as a parameter. So, we realized we should
just type this much like we would a method of a generic
class.

With that, we modified our basic strategy to emulate
method invocation with additional context objects. For each
argument to the generic method whose corresponding pa-
rameter type is context-object-like as described above, do
the following. First, apply inheritance to the type of the ar-
gument so that it has the same class/interface name as the
corresponding parameter type, rejecting if this is not pos-
sible. Second, introduce appropriately constrained capture
variables for the use-site annotations except in out anno-
tations where the in type is equivalent to the out type. After
doing this for each argument type, determine the type argu-
ments using standard techniques. Note that, since those type
parameters whose type arguments can benefit from capture
occur as a top-level invariant argument to some parameter
type, they are uniquely determined and so always inferable.
Other type arguments may need to be specified explicitly by
the programmer though. If a constraint fails to be satisfiable,
report the error with approximations; due to applying inher-
itance before introducing capture variables, type arguments
can only contain a capture variable if they are exactly a cap-
ture variable, and consequently all constraints can be shown
to hold if and only if they hold for the approximations. There
may still be an apparent mismatch between the approxima-
tions and the original description of the constraint, but un-
fortunately this seems unavoidable by any solution to this
challenge of propagating use-site variances through generic
methods. Lastly, use the type arguments to construct the re-
turn type and then overapproximate to remove the capture
variables.

That is complicated, so let us demonstrate with an ex-
ample. Suppose Jagged<E> inherits List<List<E>> and
that jagged has type Jagged<in Integer out Number>.

We want to determine the type of reverseView(jagged).
reverseView has a context-object-like parameter because
its type is List<T> where List is invariant and T is a
type parameter for reverseView. Thus, to handle jagged’s
type’s use-site annotation, we will first use inheritance (with
approximation) to phrase jagged’s type as a List. For sim-
plicity, we will use only consistent types. Thus we get the
type List<out List<in Integer out Number>>. Next
we introduce a fresh type variable v, constrain it to be
a subtype of List<in Integer out Number>, and then
treat the type of jagged as List<v>. We then proceed
with type-argument inference as usual, which in this case
results in T being matched with v. We then check con-
straints on type parameters, which in this case is trivial
since there are no constraints. Finally, we substitute type
parameters with corresponding type arguments to produce
the return type List<v>. Lastly we overapproximate this
to remove the capture variable v, finally resulting in the
type List<out List<in Integer out Number>> for
reverseView(jagged).

This may seem like a lot of effort for one feature, but
we view it to be a very important feature. In particular, we
need this feature to make generic methods written by others
about a generic class/interface to be just as expressive as a
method written as an attribute of that generic class/interface.
This way a user of a List library can write a method like
reverseView and use it just as conveniently (albeit with
slightly different syntax) as if it were part of the List inter-
face itself.

Now there is one last alternative that is less convenient but
more powerful. In particular, we could enable the program-
mer to name capture variables. For example, suppose nums

were a List<out Number>. Then we could add a syntax
List<?N> top = nums, where the top-level argument ?N
indicates that the new type variable N should be assigned the
capture variable for List<out Number>, inheriting the up-
per bound of Number. This way the programmer could freely
take elements from top and put them back into top. Further-
more, the programmer could pass top to generic methods
like reverseView even in a type system without capture.
Nonetheless, the Kotlin team felt this would be too unfamil-
iar to their target audience of Java programmers, and so has
opted for the more convenient capture system instead.

4.3 Constraints
Lastly, we touch upon how constraints on type parameters of
a generic class/interface affect validity and variance of types.
The answer is simple: they have no effect on either the valid-
ity of type arguments or the variance of the types. Suppose
Ordered<E extends Comparable<in E>> is simply an
iterable with the additional informal guarantee that the it-
eration will be in increasing order. Contrary to what C# and
Scala reject, Ordered can perfectly safely be declared co-
variant, and, regardless of variance, Ordered<Object> is
a valid type despite the fact that Object does not extend

Ja
va

C
#

Sc
al

a

D
ef

au
lti

ng

L
ay

er
in

g
[2

]

Jo
in

in
g

[1
]

M
ix

ed

M
ix

ed
an

d
C

on
si

st
en

t

Can express use-site variance 3 7 3 3 3 3 3 3
Has declaration-site variance 7 3 3 3 3 3 3 3

C<τ> <: C<out τ> 3 - 3 7 3 3 3 3
C<out τ> <: C<out τ ′> implies τ <: τ ′ 7 - 7 3 7 7 3 3

Invariant<τ> has no strict subtypes disregarding inheritance 3 3 7 7 7 7 7 3
Equivalent types are essentially syntactically identical 7 3 7 3 7 3 3 3

Any C<out τ> is a C<v> for some v subtype of τ 3 - 3 3 3 7 3 3
Any C<out τ> was allocated as C<v> for some v subtype of τ 3 - 7 3 7 7 3 3

C<in τ out τ ′> is expressible 7 7 3 3 3 7 3 3
C<in τ out τ> is valid implies C<τ> is valid - - 7 3 3 - 3 3
Sorted<?> <: Sorted<out Comparable<?>> 3 - 7 7 7 7 7 7

Figure 4. Comparison of features and properties of various nominal type systems with variance

Comparable<in Object>. The only time constraints need
to be checked for type arguments is when allocating an in-
stance (and consequently when one class/interface inherits
another). These relaxations are consistent with the existen-
tial type model and therefore sound, and there are numerous
reasons to make these relaxations.

First, by not incorporating type-parameter constraints
into variance checking we improve programmers’ ability
to take advantage of declaration-site variance, such as with
Ordered.

Second, by not always checking type arguments we make
type checking more efficient.

Third, by not always checking type arguments we need
not worry about how type manipulations affect validity. As a
nonexample, in Scala Ordered[Any] is considered invalid
but the type Ordered[_>:Any<:Any] is considered valid
even though Scala considers the two types to be the same
and even seems to internally transform the latter valid type
into the former supposedly invalid type.

Fourth, and possibly most important from personal ex-
perience, not always checking type arguments means that
adding constraints to a generic class/interface does not
force one to propagate those constraints through every ex-
isting generic method that makes polymorphic use of that
class/interface, even those that do not allocate any instances
of the class, which is most often the case. This is especially
frustrating when the generic methods that needlessly need
to be modified are in a code base the programmer has no
control over.

So, to summarize, relaxing the incorporation of con-
straints into a type system results in a more convenient,
efficient, consistent, and changeable type system.

5. Conclusion
We have presented mixed-site variance, a type system that
combines the best of both use-site variance and declaration-
site variance while avoiding the subtle complexities of ex-
isting versions of both and existing attempts to combine
the two. This system was driven by industrial experience
and controlled by academic experience, resulting in a de-
sign amenable to both perspectives. Figure 4 illustrates our
contribution by showing how existing systems hold up to a
few expectations from users, implementers, and formalizers,
with mixed-site variance consistently satisfying all these ex-
pectations except the one we purposely sacrificed due to its
irrelevance in practice. Our core concept is that use-site vari-
ances should only weaken declaration-site variances, since
otherwise ambiguities and complications arise. Our primary
lesson is that avoiding implicit constraints allows types to
stay simple throughout type checking. Our major complex-
ity is that maintaining simple types requires careful treat-
ment of use-site capture. While nothing in this type system
is ground breaking, the appeal lies in its simplicity despite
the surrounding complexities. Thus it has already been inte-
grated into the developing industrial programming language,
Kotlin, whose designers and users have provided the feed-
back resulting in the choices made in this paper.

There is still much to be done for generics. For exam-
ple, type inference is in increasing demand. Scala has taken
a very aggressive approach towards inference, but this has
also made type inference and checking rather unpredictable,
which has been problematic for industry adoption. Thus,
there is incentive to investigate type systems with decid-
able intraprocedural inference (interprocedural inference is
not desired much in practice due to software-engineering
concerns). This is quite challenging though, since even just
type-argument inference for generic-method invocation has
proven difficult [12, 14]. One step in that direction is to add

intersection (&) and union (|) types. In single-instantiation-
inheritance [10] models, these additions have some inter-
esting interactions with mixed-site variance. For example,
List<String>|List<Integer> can be made equivalent
to List<in String&Integer out String|Integer>.
Note that this is a new way for inconsistent types to be intro-
duced through manipulations of consistent types. Nonethe-
less, preliminary investigations suggest that mixed-site vari-
ance in a slightly more expressive variation of single-
instantiation inheritance can greatly simplify type checking
in the presence of intersection and union types. Although
Kotlin does not plan to incorporate such features now, as
they are inexpressible in Java, these features may eventu-
ally form the basis for a rich object-oriented language with
strong decidability and inference properties.

Acknowledgements We thank Andrey Breslav and the rest
of the Kotlin team at JetBrains for their collaborative efforts.
Their openness to suggestion and inquiry made for an excel-
lent opportunity to explore, and their industry insights and
experience provided invaluable guidance.

References
[1] John Altidor, Shan Shan Huang, and Yannis Smaragdakis.

Taming the wildcards: Combining definition- and use-site
variance. In PLDI, 2011.

[2] John Altidor, Christoph Reichenbach, and Yannis Smarag-
dakis. Java wildcards meet definition-site variance. In
ECOOP, 2012.

[3] Joshua Bloch. Effective Java. Prentice Hall PTR, Upper
Saddle River, NJ, USA, second edition, 2008.

[4] Nicholas Cameron and Sophia Drossopoulou. On subtyping,
wildcards, and existential types. In FTfJP, 2009.

[5] Nicholas Cameron, Sophia Drossopoulou, and Erik Ernst. A
model for Java with wildcards. In ECOOP, 2008.

[6] Peter Canning, William Cook, Walter Hill, Walter Olthoff,
and John C. Mitchell. F-bounded polymorphism for object-
oriented programming. In FPCA, 1989.

[7] Burak Emir, Andrew Kennedy, Claudio Russo, and Dachuan
Yu. Variance and generalized constraints for C# generics. In
ECOOP, 2006.

[8] James Gosling, Bill Joy, Guy Steel, and Gilad Bracha. The
JavaTM Language Specification. Addison-Wesley Profes-
sional, third edition, June 2005.

[9] Atsushi Igarashi and Mirko Viroli. On variance-based subtyp-
ing for parametric types. In ECOOP, 2002.

[10] Andrew Kennedy and Benjamin Pierce. On decidability of
nominal subtyping with variance. In FOOL, 2007.

[11] Martin Odersky. The Scala language specification version 2.9,
May 2010.

[12] Daniel Smith and Robert Cartwright. Java type inference is
broken: Can we fix it? In OOPSLA, 2008.

[13] Christopher Strachey. Fundamental concepts in programming
languages. Lecture notes for the International Summer School
in Computer Programming, August 1967.

[14] Ross Tate, Alan Leung, and Sorin Lerner. Taming wildcards
in Java’s type system. In PLDI ’11: Proceedings of the 2011
ACM SIGPLAN conference on Programming Language De-
sign and Implementation, New York, NY, USA, 2011. ACM.

[15] Kresten Krab Thorup and Mads Torgersen. Unifying generic-
ity - combining the benefits of virtual types and parameterized
classes. In ECOOP, 1999.

[16] Mads Torgersen, Erik Ernst, and Christian Plesner Hansen.
Wild FJ. In FOOL, 2005.

[17] Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter
von der Ahé, Gilad Bracha, and Neal Gafter. Adding wild-
cards to the Java programming language. In SAC, 2004.

[18] Stefan Wehr and Peter Thiemann. On the decidability of
subtyping with bounded existential types. In APLAS, 2009.

