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Abstract

Nash equilibrium (NE) assumes that players always make a best response. However, this is not
always true; sometimes people cooperate even it is not a best response to do so. For example, in
the Prisoner’s Dilemma, people often cooperate. Are there rules underlying cooperative behavior?
In an effort to answer this question, we propose a new equilibrium concept: perfect cooperative
equilibrium (PCE), and two related variants: max-PCE and cooperative equilibrium. PCE may help
explain players’ behavior in games where cooperation is observed in practice. A player’s payoff in
a PCE is at least as high as in any NE. However, a PCE does not always exist. We thus consider
α-PCE, where α takes into account the degree of cooperation; a PCE is a 0-PCE. Every game has
a Pareto-optimal max-PCE (M-PCE); that is, an α-PCE for a maximum α. We show that M-PCE
does well at predicting behavior in quite a few games of interest. We also consider cooperative
equilibrium (CE), another generalization of PCE that takes punishment into account. Interestingly,
all Pareto-optimal M-PCE are CE. We prove that, in 2-player games, both a PCE (if it exists) and
a M-PCE can be found in polynomial time, using bilinear programming. This is a contrast to Nash
equilibrium, which is PPAD complete even in 2-player games [Chen, Deng, and Teng 2009]. We
compare M-PCE to the coco value [Kalai and Kalai 2009], another solution concept that tries to
capture cooperation, both axiomatically and in terms of an algebraic characterization, and show that
the two are closely related, despite their very different definitions.

1 Introduction

Nash Equilibrium (NE) assumes that players always make a best response to what other players are
doing. However, this assumption does not always hold. Consider the Prisoner’s Dilemma, in which two
prisoners can choose either to defect or to cooperate, with payoffs as shown in Table 1
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Cooperate Defect
Cooperate (3,3) (0,5)

Defect (5,0) (1,1)

Table 1: Payoffs for Prisoner’s Dilemma

Although the only best response here is to play Defect no matter what the other player does, people
often do play (Cooperate, Cooperate).

There are a number of other games in which Nash equilibrium does not predict actual behavior
well. To take one more example, in the Traveler’s Dilemma [Basu 1994; Basu 2007], two travelers have
identical luggage, for which they paid the same price. Their luggage is damaged (in an identical way) by
an airline. The airline offers to recompense them for their luggage. They may ask for any dollar amount
between $2 and $100. There is only one catch. If they ask for the same amount, then that is what they
will both receive. However, if they ask for different amounts—say one asks for $m and the other for
$m′, with m < m′—then whoever asks for $m (the lower amount) will get $(m + 2), while the other
traveler will get $(m−2). A little calculation shows that the only NE in the Traveler’s Dilemma is (2, 2).
(Indeed, (2, 2) is the only strategy that survives iterated deletion of weakly dominated strategies and is
the only rationalizable strategy; see [Osborne and Rubinstein 1994] for a discussion of these solution
concepts.) Nevertheless, in practice, people (even game theorists!) do not play (2,2). Indeed, when
Becker, Carter, and Naeve [2005] asked members of the Game Theory Society to submit strategies for
the game, 37 out of 51 people submitted a strategy of 90 or higher. The strategy that was submitted
most often (by 10 people) was 100. The winning strategy (in pairwise matchups against all submitted
strategies) was 97. Only 3 of 51 people submitted the “recommended” strategy 2. In this case, NE is
neither predictive nor normative; it is neither the behavior that was submitted most often (it was in fact
submitted quite rarely) nor the strategy that does best (indeed, it did essentially the worst among all
strategies submitted).

In both Prisoner’s Dilemma and Traveler’s Dilemma, people display what might be called “coop-
erative” behavior. This cannot be explained by the best response assumption of NE. Are there rules
underlying cooperative behavior?

In this paper, we propose a new solution concept, perfect cooperative equilibrium (PCE), in an
attempt to characterize cooperative behavior. Intuitively, in a 2-player game, a strategy profile (i.e., a
strategy for each player) is a PCE if each player does at least as well as she would if the other player
were best-responding. In Prisoner’s Dilemma, both (Cooperate, Cooperate) and (Defect, Defect) are
PCE. To see why, suppose that the players are Amy and Bob. Consider the game from Amy’s point
of view. She gets a payoff of 3 from (Cooperate, Cooperate). No matter what she does, Bob’s best
response is Defect, which gives Amy a payoff of either 0 or 1 (depending on whether she cooperates or
defects). Thus, her payoff with (Cooperate, Cooperate) is better than the payoff she would get with any
strategy she could use, provided that Bob best-responds. The same is true for Bob. Thus, (Cooperate,
Cooperate) is a PCE. The same argument shows that (Defect, Defect) is also a PCE.

This game already shows that some PCE are not NE. In Traveler’s Dilemma, any strategy profile
that gives each player a payoff above 99 is a PCE (see Section 2 for details). For example, both (99, 99)
and (100, 100) are PCE. Moreover, the unique NE is not a PCE. Thus, in general, PCE and NE are quite
different. We can in fact show that, if a PCE exists, the payoff for each player is at least as good as it is
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in any NE. This makes PCE an attractive notion, especially for mechanism design.

This leads to some obvious questions. First, why should or do players play (their part of) a PCE?
Second, does a PCE always exist? Finally, how do players choose among multiple PCE, when more
than one exists?

With regard to the first question, first consider one of the intuitions for NE. The assumption is that
players have played repeatedly, and thus have learned other players’ strategies. They thus best respond
to what they have learned. A NE is a stable point of this process: every players’ strategy is already a
best response to what the other players are doing. This intuition focuses on what players have done in
the past; with PCE, we also consider the future. In a PCE such as (Cooperate, Cooperate) in Prisoner’s
Dilemma, players realize that if they deviate from the PCE, then the other player may start to best
respond; after a while, they may well end up in some NE, and thus have a payoff that is guaranteed to be
no better than (and is often worse than) that of the PCE. Although cooperation here (and in other games)
gives a solution concept that is arguably more “fragile” than NE, players may still want to play a PCE
because it gives a better payoff. Of course, we are considering one-shot games, not repeated games, so
there is no future (or past); nevertheless, these intuitions may help explain why players actually play a
PCE. (See Section 7 for a comparison of PCE and NE in repeated games.)

It is easy to see that a PCE does not always exist. Consider the Nash bargaining game [Nash 1950].
Each of two players requests a number of cents between 0 and 100. If their total request is no more than
a dollar, then they each get what they asked for; otherwise, they both get nothing. Each pair (x, y) with
x + y = 100 is a NE, so there is clearly no strategy profile that gives both players a higher payoff than
they get in every NE, so a PCE does not exist.

We define a notion of α-PCE, where s is an α-PCE if, playing s, each player can do at least α
better than the best payoff she could get if the other player were best-responding (note that α may be
negative). Thus, if a strategy is an α-PCE, then it is an α′-PCE for all α′ ≤ α. A strategy is a PCE iff
it is a 0-PCE. We are most interested in max-perfect cooperative equilibrium (M-PCE). A strategy is a
M-PCE if it is an α-PCE, and no strategy is an α′-PCE for some α′ > α. We show that every game
has a M-PCE; in fact, it has a Pareto-optimal M-PCE (so that there is no other strategy profile where all
players do at least as well and at least one does better). We show that M-PCE does well at predicting
behavior in quite a few games of interest. For example, in Prisoner’s Dilemma, (Cooperate, Cooperate)
is the unique M-PCE; and in the Nash bargaining game, (50, 50) is the unique M-PCE. As the latter
example suggests, the notion of a M-PCE embodies a certain sense of fairness. In cases where there are
several PCE, M-PCE gives a way of choosing among them.

Further insight into M-PCE, at least in 2-player games, is provided by considering another gen-
eralization of PCE, called cooperative equilibrium (CE), which takes punishment into account. It is
well-known that people are willing to punish non-cooperators, even at a cost to themselves (see, for
example, [Hauert, Traulsen, Brandt, Nowak, and Sigmund 2007; Sigmund 2007; de Quervain, Fis-
chbacher, Treyer, Schellhammer, Schnyder, Buck, and Fehr 2004] and the references therein). CE is
defined only for 2-player games. Intuitively, a strategy profile s in a 2-player game is a CE if for each
player i and each possible deviation s′i for i, either (1) i does at least as well with s as she would do if
the other player j were best-responding to s′i; or (2) all of j’s best responses to s′i result in j being worse
off than he is with s, so he “punishes” i by playing a strategy s′′j in response to s′i that results in i being
worse off. Note that it may be the case that by punishing i, j is himself worse off.

It is almost immediate that every PCE is a CE. More interestingly, we show that every Pareto-optimal
M-PCE is a CE. Thus, every 2-player game has a CE. While CE does seem to capture reasoning often
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done by people, there are games where it does not have much predictive power. For example, in the
Nash bargaining game, CE and NE coincide; all strategy profiles (x, y) where x + y = 100 are CE.
CE also has little predictive power in the Ultimatum game [Güth, Schmittberger, and Schwarze 1982],
a well-known variant of the Nash bargaining game where player 1 moves first and proposes a division,
which player 2 can either accept or reject; again, all offers give a CE. In practice, “unfair” divisions
(typically, where player 2 gets less than, say, 30% of the pot, although the notion of unfairness depends
in part of cultural norms) are rejected; player 2 punishes player 1 although he is worse

This type of punishment is not captured by CE, but can be understood in terms of M-PCE. For
example, a strategy in the ultimatum game might be considered acceptable if it is close to a M-PCE; that
is, if a M-PCE is an α-PCE, then a strategy might be considered acceptable if it is an α′-PCE, where
α − α′ is smaller than some (possibly culturally-determined) threshold. Punishment is applied if the
opponent’s strategy precludes an acceptable strategy being played. To summarize, M-PCE is a solution
concept that is well-founded, has good predictive power, and may help explain when players are willing
to apply punishment in games.

Motivated by the attractive properties of PCE and M-PCE, we analyze the complexity of finding a
PCE or M-PCE. We prove that in 2-player games, both a PCE and a M-PCE can be found in polynomial
time, using bilinear programming. We can also determine in polynomial time whether a PCE exists.
This is a contrast to Nash equilibrium, which is PPAD complete even in 2-player games [Chen, Deng,
and Teng 2009].

We then compare M-PCE to other cooperative solutions. We focus on the coco (cooperative compet-
itive) value [Kalai and Kalai 2009], another solution concept that tries to capture cooperative behavior
in 2-player games. Because the coco value is not always achievable without side payments, in order to
make a fair comparison, we consider games with side payments. We provide a technique for converting
a 2-player game without side payments into one with side payments. We then compare M-PCE and
the coco value both axiomatically and in terms of an algebraic characterization. We show that, despite
their quite different definitions, these two notions are closely related. They have quite similar algebraic
characterizations involving maximum social welfare and minimax values, and their axiomatic charac-
terizations differ in only one axiom. The surprising similarities between M-PCE and coco value may
lead to insights for a deeper understanding of cooperative equilibrium in general.

The rest of the paper is organized as follows. In Section 2, we introduce PCE, prove its most
important properties, and give some examples to show how it works. In Section 3, we consider α-PCE
and M-PCE; in Section 4, we consider CE. We examine the complexity of finding a PCE/M-PCE/CE
(and determining whether a PCE exists) in 2-player games in Section 5. In Section 6, we compare
M-PCE to the coco value. We discuss relevant related work in Section 7.

2 Perfect Cooperative Equilibrium

In this section, we introduce PCE. For ease of exposition, we focus here on finite normal-form games
G = (N,A, u), where N = {1, . . . , n} is a finite set of players, A = A1 × . . . × An, Ai is a finite
set of possible actions for player i, u = (u1, . . . , un), and ui is player i’s utility function, that is,
ui(a1, . . . , an) is player i’s utility or payoff if the action profile a = (a1, . . . , an) is played. Players are
allowed to randomize. A strategy for player i is thus a distribution over actions in Ai; let Si represent
the set of player i’s strategies. Let Ui(s1, . . . , sn) denote player i’s expected utility if the strategy profile
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s = (s1, . . . , sn) is played. Given a profile x = (x1, . . . , xn), let x−i denote the tuple consisting of all
values xj for j 6= i.

Definition 2.1. Given a game G, a strategy si for player i in G is a best response to a strategy s−i for
the players in N −{i} if si maximizes player i’s expected utility given that the other players are playing
s−i, that is, Ui(si, s−i) = sups′i∈Si

Ui(s
′
i, s−i). Let BRG

i (s−i) be the set of best responses to s−i in
game G. We omit the superscript G if the game is clear from context.

We first define PCE for 2-player games.

Definition 2.2. Given a 2-player game G, let BUG
i denote the best utility that player i can obtain if the

other player j best responds; that is,

BUG
i = sup

{si∈Si,sj∈BRG(si)}
Ui(s).

(We again omit the superscript G it if it is clear from context.)

Definition 2.3. A strategy profile s is a perfect cooperative equilibrium (PCE) in a 2-player game G if,
for all i ∈ {1, 2}, we have

Ui(s) ≥ BUG
i .

It is easy to show that every player does at least as well in a PCE as in a NE.

Theorem 2.4. If s is a PCE and s∗ is a NE in a 2-player game G, then for all i ∈ {1, 2}, we have
Ui(s) ≥ Ui(s∗).

Proof. Suppose that s is a PCE and s∗ is a NE. Then, by the definition of NE, s∗3−i ∈ BR(s∗i ), so by
the definition of PCE, Ui(s) ≥ Ui(s∗).

It is immediate from Theorem 2.4 that a PCE does not always exist. For example, in the Nash
bargaining game, a PCE would have to give each player a payoff of 100, and there is no strategy profile
that has this property. Nevertheless, we continue in this section to investigate the properties of PCE; in
the following two sections, we consider generalizations of PCE that are guaranteed to exist.

A strategy profile s Pareto dominates strategy profile s′ if Ui(s) ≥ Ui(s
′) for all players i, strategy

s strongly Pareto dominates s′ if s Pareto dominates s′ and Uj(s) > Uj(s
′) for some player j; strategy

s is Pareto-optimal if no strategy profile strongly Pareto dominates s; s is a dominant strategy profile if
it Pareto dominates all other strategy profiles.

A dominant strategy profile is easily seen to be a NE; it is also a PCE.

Theorem 2.5. If s is a dominant strategy profile in a 2-player game G, then s is a PCE.

Proof. Suppose that s is a dominant strategy profile in G. Then for all i ∈ {1, 2}, all s′i ∈ Si, and all
s′3−i ∈ BR3−i(s

′
i), we have that Ui(s) ≥ Ui(s′). Thus, Ui(s) ≥ BUi for all i, so s is a PCE.

The next result shows that a strategy profile that Pareto dominates a PCE is also a PCE. Thus, if s
is a PCE, and s′ makes everyone at least as well off, then s′ is also a PCE. Note that this property does
not hold for NE. For example, in Prisoner’s Dilemma, (Cooperate, Cooperate) is not a NE, although it
strongly Pareto dominates (Defect, Defect), which is a NE.
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Theorem 2.6. In a 2-player game, a strategy profile that Pareto dominates a PCE must itself be a PCE.

Proof. Suppose that s is a PCE and s∗ Pareto dominates s. Thus, for all i ∈ N , we have

Ui(s
∗) ≥ Ui(s) ≥ BUi.

Thus, s∗ is a PCE.

Corollary 2.7. If there is a PCE in a 2-player game G, there is a Pareto-optimal PCE in G (i.e., a PCE
that is Pareto-optimal among all strategy profiles).

Proof. Given a PCE s, let S∗ be the set of strategy profiles that Pareto dominate s. This is a closed set,
and hence compact. Let f(s) = U1(s) + U2(s). Clearly f is a continuous function, so f takes on its
maximum in S∗; that is, there is some strategy s∗ ∈ S∗ such that f(s∗) ≥ f(s′) for all s′ ∈ S∗. Clearly
s∗ must be Pareto-optimal, and since s∗ Pareto dominates s, it must be a PCE, by Theorem 2.6.

We now want to define PCE for n-player games, where n > 2. The problem is that “best response”
is not well defined. For example, in a 3-player game, it is not clear what it would mean for players 2
and 3 to make a best response to a strategy of player 1, since what might be best for player 2 might not
be best for player 3. We nevertheless want to keep the intuition that player 1 considers, for each of her
possible strategies s1, the likely outcome if she plays s1. If there is only one other player, then it seems
reasonable to expect that that player will play a best response to s1. There are a number of ways we
could define an analogue if there are more than two players; we choose an approach that both seems
natural and leads to a straightforward generalization of all our results. Given an n-player game G and a
strategy si for player i, let Gsi be the (n − 1)-player game among the players in N − {i} that results
when player i plays si. We assume that the players inN−{i} respond to si by playing some NE inGsi .
Let NEG(si) denote the NE of Gsi . Again, we omit the superscript G if it is clear from context. We
now extend the definition of PCE to n-player games for n > 2 by replacing BR(si) by NE (si). Note
that if |N | = 2, then NE (si) = BR(si), so this gives a generalization of what we did in the 2-player
case. As a first step, we extend the definition of BUG

i to the multi-player case by using NEG(si) instead
of BRG(si); that is,

BUG
i = sup

{s∈Si,s−i∈NEG
i (si)}

Ui(s).

Definition 2.8. A strategy profile s is a perfect cooperative equilibrium (PCE) in a game G if for all
i ∈ N , we have

Ui(s) ≥ BUG
i .

With this definition, we get immediate analogues of Theorems 2.4, 2.5, 2.6, and Corollary 2.7, with
almost identical proofs. Therefore, we state the results here and omit the proofs.

Theorem 2.9. If s is a PCE and s∗ is a NE in a game G, then for all i ∈ N , we have Ui(s) ≥ Ui(s∗).

Theorem 2.10. If s is a dominant strategy profile in a game G, then s is a PCE.

Theorem 2.11. A strategy profile that Pareto dominates a PCE must itself be a PCE.

Corollary 2.12. If there is a PCE in a game G, there is a Pareto-optimal PCE in G.
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a b

a (k1, k2) (0, 0)
b (0, 0) (1, 1)

Table 2: Payoffs for coordination game

We now give some examples of PCE in games of interest.

Example 2.13. A coordination game: A coordination game has payoffs as shown in Table 2. It is well
known that if k1 and k2 are both positive, then (a, a) and (b, b) are NE (there is also a NE that uses
mixed strategies). On the other hand, if k1 > 1 and k2 > 1, then (a, a) is the only PCE; if k1 < 1
and k2 < 1, then (b, b) is the only PCE; and if k1 > 1 and k2 < 1, then there are no PCE (since, by
Theorem 2.4, a PCE would simultaneously have to give player 1 a payoff of at least k1 and player 2 a
payoff of at least 1). ut

Example 2.14. Prisoner’s Dilemma: Note that, in Prisoner’s Dilemma, BU 1 = BU 2 = 1, since the
best response is always to defect. Thus, a strategy profile s is a PCE iff min(U1(s), U2(s)) ≥ 1. It
is immediate that (Cooperate, Cooperate) and (Defect, Defect) are PCE, and are the only PCE in pure
strategies, but there are other PCE in mixed strategies. For example, (12Cooperate+1

2Defect, Cooperate)
and (12Cooperate+1

2Defect, 1
2Cooperate+1

2Defect) are PCE (where αCooperate + (1−α)Defect denotes
the mixed strategy where Cooperate is played with probability α and Defect is played with probability
1− α). ut

Example 2.15. Traveler’s Dilemma: To compute the PCE for Traveler’s Dilemma, we first need to
compute BU 1 and BU 2. By symmetry, BU 1 = BU 2. We now show that BU 1 is between 981

6 and 99.
If player 1 plays 1

2100+ 1
699+ 1

698+ 1
697, then it is easy to see that player 2’s best responses are 99 and

98 (both give player 2 an expected payoff of 985
6 ); player 1’s expected payoff if player 2 plays 99 is 981

6 .
Thus, BU 1 ≥ 981

6 . To see that BU 1 is at most 99, suppose by way of contradiction that it is greater
than 99. Then there must be strategies s1 = p100100 + p9999 + · · ·+ p22 ∈ S1 and s2 ∈ BR2(s1) such
that U1(s1, s2) > 99. It cannot be the case that s2 gives positive probability to 100 (for then s2 would
not be a best response). Suppose that s2 gives positive probability to 99. Then 99 must itself be a best
response. Thus, U2(s1, 99) ≥ U2(s1, 98), so 101p100 + 99p99 + 96p98 ≥ 100(p100 + p99) + 98p98, so
p100 ≥ p99 + 2p98. Since a best response by player 2 cannot put positive weight on 100, the highest
utility that player 1 can get if player 2 plays a best response is if player 2 plays 99; then U1(s1, 99) ≤
97p100 + 99p99 + 100p98 + 99(1−p100−p99−p98). Since U1(s1, 99) > 99, it follows that p98 > p100.
This gives a contradiction. Thus, s2 cannot give positive probability to 99. This means that s1 does not
give positive probability to either 100 or 99. But then U1(s1, s2) ≤ U1(s1, 98) ≤ 99, a contradiction.

Since s is a PCE if Ui(s) ≥ BU i(s), for i = 1, 2, it follows that the only PCE in pure strategies are
(100, 100) and (99, 99). There are also PCE in mixed strategies, such as (12100 + 1

299, 12100 + 1
299)

and (100, 23100 + 1
399). ut

Example 2.16. Centipede game: In the Centipede game [Rosenthal 1982], players take turns moving,
with player 1 moving at odd-numbered turns and player 2 moving at even-numbered turns. There is a
known upper bound on the number of turns, say 20. At each turn t < 20, the player whose move it is
can either stop the game or continue. At turn 20, the game ends if it has not ended before then. If the
game ends after an odd-numbered turn t, then the payoffs are (2t + 1, 2t−1); if the game ends after an
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even-numbered turn t, then the payoffs are (2t−1, 2t + 1). Thus, if player 1 stops at round 1, player
1 gets 3 and player 2 gets 1; if player 2 stops at round 4, then player 1 gets 8 and player 2 gets 17; if
player 1 stops at round 5, then player 1 gets 33 and player 2 gets 16. If the game stops at round 20, both
players get over 500,000. The key point here is that it is always better for the player who moves at step
t to end the game than it is to go on for one more step and let the other player end the game. Using this
observation, a straightforward backward induction shows the best response for a player if he is called
upon to move at step t is to end the game. Not surprisingly, the only Nash equilibrium has player 1
ending the game right away. But, in practice, people continue the game for quite a while.

We can think of the centipede game as a normal-form game, where players are choosing strategies.
To compute the PCE for the game, we need to first compute BU 1 and BU 2. If player 1 continues to
the end of the game, then player 2’s best response is to also continue to the end of the game, giving
player 1 a payoff of 219 (and player 2 a payoff of 220 + 1). If we take qi,j to be the strategy where
player i quits at turn j and qi,C to be the strategy where player i continues to the end of the game, then a
straightforward computation shows that q2,C continues to be a best response to αq1,19 + (1− α)q1,C as
long as α ≥ 3×218

3×218+1
. If we take α = 3×218

3×218+1
and player 2 best responds by playing q2,C , then player

1’s utility is 219+ 3×218
3×218+1

. It is then straightforward to show that this is in fact BU 1. A similar argument
shows that, if player 1 is best responding, then the best player 2 can do is to play βq2,18 + (1− β)q2,C ,
where β = 3×217

3×217+1
. With this choice, player 1’s best response is q1,19. using this strategy for player 2,

we get that BU 2 = 218 + 3×217
3×217+1

.
It is easy to see that there is no pure strategy profile s such that U1(s) ≥ BU 1 and U2(s) ≥ BU 2.

However, there are many mixed PCE. For example, every strategy profile (q1,C , s2) where s2 = βq2,18+

(1− β)q2,C and β ∈ [1− 3×217
(3×217+1)(3×218+1)

, 3×218
3×218+1

] is a PCE. ut

While PCE has a number of attractive properties, and does seem to capture some aspects of coopera-
tive behavior, it does not always exist In the next section, we consider a variant of PCE that is guaranteed
to exist.

3 α-Perfect Cooperative Equilibrium

In this section, we start by considering a more quantitative version of PCE called α-PCE, which takes
into account the degree of cooperation exhibited by a strategy profile.

Definition 3.1. A strategy profile s is an α-PCE in a game G if Ui(s) ≥ α+ BUG
i for all i ∈ N .

Clearly, if s is an α-PCE, then s is an α′-PCE for α′ ≤ α, and s is a PCE iff s is a 0-PCE. Note that
an α-PCE imposes some “fairness” requirements. Each player must get at least α more (where α can
be negative) than her best possible outcome if the other players best respond.

We again get analogues of Theorems 2.4 and 2.6, and Corollary 2.7, with similar proofs.

Theorem 3.2. If s is an α-PCE and s∗ is a NE in a game G, then for all i ∈ N , we have Ui(s) ≥
α+ Ui(s

∗).

Theorem 3.3. A strategy profile that Pareto dominates an α-PCE must itself be an α-PCE.

Corollary 3.4. If there is an α-PCE in a game G, there is a Pareto-optimal α-PCE in G.
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Of course, we are interested in α-PCE with the maximum possible value of α.

Definition 3.5. The strategy profile s is an maximum-PCE (M-PCE) in a game G if s is an α-PCE and
for all α′ > α, there is no α′-PCE in G.

A priori, a M-PCE may not exist in a game G. For example, it may be the case that there is an α-
PCE for all α < 1 without there being a 1-PCE. The next theorem, which uses the fact that the strategy
space is compact, shows that this cannot be the case.

Theorem 3.6. Every game G has a Pareto-optimal M-PCE.

Proof. Let f(s) = mini∈N (Ui(s)−BUG
i ). Clearly f is a continuous function; moreover, if f(s) = α,

then s is an α-PCE. Since the domain consists of the set of strategy profiles, which can be viewed as a
closed subset of [0, 1]|A|×N , the domain is compact. Hence f takes on its maximum at some strategy
profile s∗. Then it is immediate from the definition that s∗ is a M-PCE. The argument that there is
a Pareto-optimal M-PCE is essentially the same as that given in Corollary 2.7 showing that there is a
Pareto-optimal PCE; we leave details to the reader.

The following examples show that M-PCE gives some very reasonable outcomes.

Example 3.7. The Nash bargaining game, continued: ClearlyU1 = U2 = 100; (50, 50) is a (−50)-PCE
and is the unique M-PCE. ut

Example 3.8. A coordination game, continued: If k1 > 1 and k2 > 1, then (a, a) is the unique M-PCE;
if k1 < 1 and k2 < 1, then (b, b) is the unique M-PCE. In both cases, α = 0. If k1 > 1 and k2 < 1,
then the M-PCE depends on the exact values of k1 and k2. If k1 − 1 > 1− k2, then (a, a) is the unique
M-PCE; if k1 − 1 = 1 − k2, then both (a, a) and (b, b) are M-PCE; otherwise, (b, b) is the unique
M-PCE. In all three cases, α = −min(k1 − 1, 1− k2) < 0. ut

Example 3.9. Prisoner’s Dilemma, continued: Clearly (Cooperate, Cooperate) is a 2-PCE and (Defect,
Defect) is a 0-PCE; (Cooperate, Cooperate) is the unique M-PCE. ut

Example 3.10. The Traveler’s Dilemma, continued: (100, 100) is easily seen to be the unique M-PCE;
since there is no strategy profile that guarantees both players greater than 100 (since for any pair of pure
strategies, the total payoff to the players is at most 200, and the total payoff from a mixed strategy profile
is a convex combination of the payoff of pure strategy profiles). ut

Example 3.11. The centipede game, continued: A straightforward computation shows that the M-
PCE in this game is unique, and is the strategy profile s∗ of the form (αq1,C + (1 − α)q1,19, q2,C),
where α is chosen so as to maximize min(U1(s

∗)−BU 1, U2(s
∗)−BU 2). This can be done by taking

α = 1
3×218+2

− 3×217
(3×218+2)(3×218+1)(3×217+1)

. ut

4 Cooperative Equilibrium

We can gain further insight into M-PCE (and into what people actually do in a game) by considering a
notion that we call cooperative equilibrium, which generalizes PCE by allowing for the possibility of
punishment. We define CE for 2-player games. (As we discuss below, it is not clear how to extend the
definition to n-player games for n > 2.)

9



Definition 4.1. A strategy profile s is a cooperative equilibrium (CE) in a 2-player game G if, for all
players i ∈ {1, 2} and all strategies s′i ∈ Si, if j is the player other than i, one of the following conditions
holds:

1. Ui(s) ≥ sups′j∈BRj(s′i)
Ui(s

′);

2. Uj(s) > sups′j∈Sj
Uj(s

′), and for some s′j ∈ Sj , we have Ui(s) ≥ Ui(s′).

If we consider only the first condition, then the definition would be identical to PCE. It thus follows
that all PCEs are CEs. The second condition is where punishment comes in. Suppose that players i and
j are Alice and Bob, respectively. If there is no response that Bob can make to s′i that makes Bob better
off than he is with s then, intuitively, Bob becomes unhappy, and will seek to punish Alice. By “punish
Alice”, we mean that Bob will play a strategy that makes Alice no better off than she is with s. We
assume that if Bob can punish Alice when she plays s′i, then Alice will not deviate to s′i. In other words,
s is a CE if for all strategies s′i ∈ Si, Alice has no motivation to deviate to s′i either because (1) when
Bob best responds to s′i, Alice is no better off than she is with s, or (2) Bob is strictly worse off even
when he best responds to s′i, and Bob can punish Alice by playing a strategy which would make Alice
no better off than she is in s; and similarly with the roles of Alice and Bob reversed.

We are not sure how to generalize CE to arbitrary games. We could, of course, replace BRj(s
′
i) by

NE−i(s
′
i) in the first clause. The question is what to do in the second clause. We could say that if each

player in N − {i} is worse off in every Nash equilibrium in the game Gsi , they punish player i. But
punishment may require a coordination of strategies, and it is not clear how the players achieve such
coordination, at least in a one-shot game. Not surprisingly, the examples in the literature where players
punish others are 2-player games like the Ultimatum game. In general, the intuition of punishment
seems most compelling in 2-player games.

Our main interest in CE is motivated by the following result, which shows that every Pareto-optimal
M-PCE is a CE.

Theorem 4.2. Every Pareto-optimal M-PCE is a CE.

Proof. Suppose that s is a Pareto-optimal M-PCE. To see that s is a CE, consider the maximum α such
that s is an α-PCE. If α ≥ 0, then s is a PCE, and hence clearly a CE, so we are done. If α < 0, then
suppose by way of contradiction that s is not a CE. One of the players, say 1, must have a deviation
to a strategy s′1 such that either (1) player 2 has a best response s′2 to s′1 such that U1(s

′) > U1(s) and
U2(s

′) ≥ U2(s) or (2) for all s′2 ∈ S2, we have U2(s
′) < U2(s) and U1(s

′) > U1(s). Intuitively, case
(2) says that player 2 does worse than U2(s) no matter what he does, and cannot punish player 1. In
case (1), it is immediate that s is not a Pareto-optimal M-PCE. So we need to consider only case (2).

Suppose that (2) holds. By definition, Ui(s) ≥ α + BU i for all i ∈ {1, 2}. By compactness,
there must be a strategy profile s∗ such that s∗1 ∈ BR1(s

∗
2) and U2(s

∗
2) = BU 2. We claim that s∗ is

a β-PCE for some β > α (recall that α is the maximum α′ such that s is an α′-PCE), contradicting
the assumption that s is a M-PCE. Since s∗1 ∈ BR1(s

∗
2), we must have U1(s

∗) ≥ U1(s
′
1, s
∗
2) (by

the definition of BR); moreover, U1(s
′
1, s
∗
2) > U1(s) by case (2). Since U1(s

∗) ≥ U1(s
′
1, s
∗
2) and

U1(s
′
1, s
∗
2) > U1(s), it follows that U1(s

∗) > U1(s). Since U1(s) ≥ α + BU 1, there must be some
β′ > α such that U1(s

∗) ≥ β′+BU 1. By definition, U2(s
∗) = BU 2 = 0 +BU 2. Thus, s∗ is a β-PCE,

where β = min(β′, 0). Since α < 0 and α < β′, we have that α < min(β′, 0) = β. Thus, the claim
holds, completing the proof.
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We can also prove the following analogues of Theorem 2.6 and Corollary 2.7. Since the proofs are
quite similar to proofs of Theorem 2.6 and Corollary 2.7, we omit them here.

Theorem 4.3. A strategy profile that Pareto dominates a CE must itself be a CE.

Corollary 4.4. There is a Pareto-optimal CE in every game.

We now consider how CE works in the examples considered earlier.

Example 4.5. The Nash bargaining game: Recall that the Nash bargaining game does not have a PCE,
and that every profile of the form (a, 100− a) is a NE. We now show that each of these profiles is a CE
as well. To see this, first observe that U1(s) + U2(s) ≤ 100 for any strategy profile s. (This is clearly
true for pure strategy profiles, and the expected utility of a mixed strategy profile is just the convex
combination of the utilities of the underlying pure strategy profiles.) Now suppose that player 1 deviates
from (a, 100−a) to some strategy s1, and that player 2’s expected utility from a best response s′2 to s1 is
b. If b ≥ 100− a, then U1(a, s

′
2) ≤ a, and the first condition of CE applies. If b < 100− a, then player

2 can punish player 1 by playing 100, in which case player 1 always gets a reward of 0, and the second
condition of CE applies. The same considerations apply to player 2’s deviations. Thus, (a, 100 − a) is
a CE. Only one of these CE is a M-PCE: (50, 50).

There are also Nash equilibria in mixed strategies; for example, (1325 + 2
375, 1325 + 2

375) is a NE.
However, it is not hard to show that no nontrivial mixed strategy profile (i.e., one that is not a pure
strategy profile) is a CE. For suppose that s is a CE where either s1 or s2 are nontrivial mixed strategies.
We show below that U1(s) + U2(s) < 100. This means there is pair (a, 100 − a) such that a > U1(s)
and 100 − a > U2(s). So if player 1 deviates to a and player 2 deviates to 100 − a, neither of the two
conditions that characterize CE hold.

It now remains to show that for nontrivial mixed strategy profiles s, we have U1(s) + U2(s) < 100.
Suppose that s1 is a nontrivial mixed strategy. Let s1[a] denote the probability that s1 plays the pure
strategy a. Then U1(s) =

∑
{a:s1[a]>0} s1[a]U1(a, s2), and U2(s) =

∑
{a:s1[a]>0} s1[a]U2(a, s2). So

U1(s) + U2(s) =
∑
{a:s1[a]>0} s1[a](U1(a, s2) + U2(a, s2)). Recall that U1(s

′) + U2(s
′) ≤ 100 for all

possible strategy profiles s′. So
∑
{a:s1[a]>0} s1[a](U1(a, s2) +U2(a, s2)) ≤ 100, with equality holding

only when U1(a, s2) + U2(a, s2) = 100 for all a such that s1[a] > 0. By assumption, there are at least
two strategies a and a′ such that s1[a] > 0 and s1[a′] > 0. As can be easily verified, we cannot have
U1(a, s2) + U2(a, s2) = U1(a

′, s2) + U2(a
′, s2) = 100. Thus U1(s) + U2(s) < 100, as desired. ut

Example 4.6. A coordination game, continued: If k1 > 1 and k2 > 1, then (a, a) is the only CE; if
k1 < 1 and k2 < 1, then (b, b) is the only CE; if k1 > 1 and k2 < 1, then the two NE, (a, a) and (b, b),
are both CE (although neither is a PCE). There is one other NE s in mixed strategies; s is not a CE.
To see this, note that in s both players have to put positive probability on each pure strategy. It easily
follows that U2(s) = U2(s1, b) < 1 (since s1 puts positive probability on a); similarly, U1(s) < 1.
Hence, if player 1 plays b instead of s1, player 2 has a unique best response of b, which strictly increases
both players’ payoffs. Thus, s is not a CE. ut

Example 4.7. Prisoner’s Dilemma, continued: Clearly each PCE in Prisoner’s Dilemma is a CE. As we
now show, no other strategy profile is a CE. Suppose, by way of contradiction, that s is a CE that is not
a PCE. Then some player must get a payoff with s that is strictly less than 1. Without loss of generality,
we can assume that it is player 1. Suppose that U1(s) = r1 < 1. But then if player 1 plays Defect, he is
guaranteed a better payoff—at least 1—no matter what player 2 does, so s cannot be a CE. ut
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Example 4.8. The Traveler’s Dilemma, continued: Of course, every PCE in Traveler’s Dilemma is a
CE, but there are others. For example, (100, 99) is a CE but not a PCE. To see this, note that with
(100, 99), player 1 gets a payoff of 97 and player 2 gets 101, the maximum possible payoff. So player
2 has no motivation to deviate. Suppose that there exists some strategy s1 that gives player 1 a payoff
strictly greater than 97 when player 2 best responds. This strictly decreases player 2’s payoff. However,
player 2 can punish player 1 by playing 2, so that player 1 gets at most 2, strictly less than what he
gets originally. It easily follows that (100, 99) is a CE. A similar argument shows that every other
Pareto-optimal strategy profiles is a CE.

Recall that (100, 100) is the unique M-PCE of this game. Intuitively, a M-PCE satisfies fairness
requirements that an arbitrary CE does not. ut

Example 4.9. The centipede game, continued: Again, every PCE is a CE. In addition, every Pareto-
optimal strategy profile is a CE. Thus, for example, the strategy profile where both players continue to
the end of the game is a CE (although it is not a PCE), as is the profile where player 2 continues at all
his moves, but player 1 ends the game at his last turn. To see that a Pareto-optimal strategy profile is
a CE, let s be a Pareto-optimal strategy profile. By way of contradiction, suppose that s is not a CE.
Then there must be a strategy s′i for some player i such that either (1) there is a best response s′3−i to
s′i such that Ui(s) > Ui(s

′) and U3−i(s
′) ≥ U3−i(s) or (2) for all s′3−i ∈ S3−i, it must be the case that

U3−i(s
′) < U3−i(s) and Ui(s) < Ui(s

′); that is, player 3 − i does worse than U3−i(s) no matter what
he does, and cannot punish player i. In case (1), it is immediate that s is not Pareto optimal; and case
(2) cannot hold, since player 3− i can always punish player i by exiting at his first turn. ut

5 The Complexity of Finding a PCE, M-PCE, and CE

In general, it is not obvious how a PCE (or M-PCE, or CE) can be found efficiently. We show that in
2-player games, a PCE can be found in polynomial time if one exists; moreover, determining whether
one exists can also be done in polynomial time. Similarly, in 2-player games, both a M-PCE and a CE
can always be found in polynomial time. The first step in the argument involves showing that in 2-player
games, for all strategy profiles s, there is a strategy profile s′ = (s′1, s

′
2) that Pareto dominates s such

that both s′1 and s′2 have support at most two pure strategies (i.e., they give positive probability to at
most two pure strategies). We then show that both the problem of computing a PCE and a M-PCE can
be reduced to solving a polynomial number of “small” bilinear programs, each of which can be solved
in constant time. This gives us the desired polynomial time algorithm for PCE and M-PCE. We then use
similar techniques to show that a Pareto-optimal M-PCE, and thus a CE, can be found in polynomial
time,

Notation: For a matrix A, let AT denote A transpose, let A[i, ·] denote the ith row of A, let A[·, j]
denote the jth column of A, and let A[i, j] be the entry in the ith row, jth column of A. We say that a
vector x is nonnegative, denoted x ≥ 0, if its all of its entries are nonnegative.

We start by proving the first claim above. In this discussion, it is convenient to identify a strategy
for player 1 with a column vector in IRn, and a strategy for player 2 with a column vector in IRm. The
strategy has a support of size at most two if the vector has at most two nonzero entries.

Lemma 5.1. In a 2-player game, for all strategy profiles s∗, there exists a strategy profile s′ = (s′1, s
′
2)

that Pareto dominates s∗ such that both s′1 and s′2 have support of size at most two.
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See the appendix for the proof of this lemma and other results not proved in the main text.

The rest of the section makes use of bilinear programs. There are a number of slightly different
definitions of “bilinear program”. For our purposes, we use the following definition.

Definition 5.2. A bilinear program P (of size n×m) is a quadratic program of the form

maximize xTAy + xT c+ yT c′

subject to xTB1y ≥ d1
B2x = d2
B3y = d3
x ≥ 0
y ≥ 0,

where A and B1 are n ×m matrices, x, c ∈ IRn, y, c′ ∈ IRm, B2 is a k × n matrix for some k, and
B3 is a k′ ×m matrix for some k′. P is simple if B2 and B3 each has one row, consisting of all 1’s.
(Thus, in a simple bilinear program, we have a single bilinear constraint xTB1y ≥ d1, non-negativity
constraints on x and y, and constraints on the sum of the components of the vectors x and y; that is,
constraints of the form

∑n
i=1 x[i] = d′ and

∑m
j=1 y[j] = d′′.) ut

Lemma 5.3. A simple bilinear program of size 2× 2 can be solved in constant time.

We can now give our algorithm for finding a PCE. The idea is to first find BU 1 and BU 2, which
can be done in polynomial time. We then use Lemma 5.1 to reduce the problem to (n2 )(m2 ) = O(n2m2)
smaller problems, each of a which is a simple bilinear program of size 2 × 2. By Lemma 5.3, each of
these smaller problems can be solved in constant time, giving us a polynomial-time algorithm.

Theorem 5.4. Given a 2-player game G = ({1, 2}, A, u), we can compute in polynomial time whether
G has a PCE and, if so, we can compute a PCE in polynomial time.

The argument that a M-PCE can be found in polynomial time is very similar.

Theorem 5.5. Given a 2-player game G = ({1, 2}, A, u), we can compute a M-PCE in polynomial
time.

Again, we use similar arguments to show that a Pareto-optimal M-PCE, and thus CE, can be found
in polynomial time.

Theorem 5.6. Given a 2-player game G = ({1, 2}, A, u), we can compute a Pareto-optimal M-PCE in
polynomial time.

Since, by Theorem 4.2, a Pareto-optimal M-PCE is a (Pareto-optimal) CE, the following corollary
is immediate.

Corollary 5.7. Given a 2-player game G = ({1, 2}, A, u), we can compute a Pareto-optimal CE in
polynomial time.
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6 Comparing M-PCE and the Coco Value

In this section, we compare M-PCE to the coco value, a solution concept proposed by Kalai and Kalai
[2009] that also tries to capture cooperation. Since the coco value is only defined for 2-player games, we
consider only 2-player games in this section. We show that despite their definitions being quite different,
the two solution concepts are closely related. We also consider their computational complexity, and
show that both can be solved in polynomial time in 2-player games.

6.1 A review of the coco value

The coco value is computed by decomposing a game into two components, which can be viewed as a
purely cooperative component and a purely competitive component. The cooperative component is a
team game, a game where both players have identical utility matrices, so that both players get identical
payoffs, no matter what strategy profile is played. The competitive component is a zero-sum game, that
is, one where if player 1’s payoff matrix is A, then player 2’s payoff matrix is −A.

As Kalai and Kalai [2009] observe, every game G can be uniquely decomposed into a team game
Gt and a zero-sum game Gz , where if (A,B), (C,C), and (D,−D) are the utility matrices for G, Gt,
and Gz , respectively, then A = C + D and B = C −D. Indeed, we can take C = (A + B)/2 and
D = (A−B)/2. We call Gt the team game of G and call Gz the zero-sum game of G.

The minimax value of game G for player i, denoted mmi(G), is the payoff player i gets when the
opponent is minimizing i’s maximum payoff; formally,

mm1(G) = min
s2∈S2

max
s1∈S1

U1(s1, s2);

mm2(G) is defined similarly, interchanging 1 and 2.

We are now ready to define the coco value. Given a game G, let a be the largest value obtainable in
the team game Gt (i.e., the largest value in the utility matrix for Gt), and let z be the minimax value for
player 1 in the zero-sum game Gz . Then the coco value of G, denoted coco(G), is

(a+ z, a− z).

Note that the coco value is attainable if utilities are transferable: the players simply play the strategy
profile that gives the value a in Gt; then player 2 transfers z to player 1 (z may be negative, so that 1
is actually transferring money to 2). Clearly this outcome maximizes social welfare. Kalai and Kalai
[2009] argue that it is also fair in an appropriate sense.

6.2 Examples

The coco value and M-PCE value are closely related in a number of games of interest, as the following
examples show.

Example 6.1. The Nash bargaining game, continued: Clearly, the largest payoff obtainable in the team
game corresponding to the Nash Bargaining game is (50, 50). Since the game is symmetric, the minimax
value of each player in the zero-sum game is 0. Thus, the coco value of the Nash bargaining game is
(50, 50), which, as we have seen, is also the unique M-PCE value. ut
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Example 6.2. Prisoner’s Dilemma, continued: Clearly, the largest payoff obtainable in the team game
corresponding to Prisoner’s Dilemma (given the payoffs shown in the Introduction) is (3, 3). Since
the game is symmetric, again, the minimax value in the corresponding zero-sum game is 0. Thus,
the coco value is (3, 3), which is easily seen to also be the unique M-PCE value: with these payoffs,
BU 1 = BU 2 = 1, so by both cooperating, the players have a 2-PCE, which is clearly also a M-PCE. ut

Example 6.3. Traveler’s Dilemma, continued: Clearly, the largest payoff obtainable in the team game
corresponding to the Traveler’s Dilemma is (100, 100). And again, since the game is symmetric, the
minimax value for each player in the zero-sum game is 0. Thus, the coco value is (100, 100), which is
also the unique M-PCE value. ut

As the next example shows, there are games in which the coco value and

Example 6.4. The centipede game, continued: It is easy to see that the largest payoff obtainable in
the team game corresponding to the centipede game is (2

19+220+1
2 , 219+220+1

2 ): both players play to
the end of the game and split the total payoff. It is also easy to compute that, in the zero-sum game
corresponding to the centipede game, player 1’s minimax value is 1, while player 2’s minimax value is
−1, obtained when both players quit immediately. Thus, the coco value is (2

19+220+1
2 +1, 2

19+220+1
2 −1)

= (2
19+220+3

2 , 2
19+220−1

2 ). This value is not achievable without side payments, and is higher than the
M-PCE value. ut

Although, as Example 6.4 shows, the M-PCE value and the coco value can differ, we can say more.
Part of the problem in the centipede game is that the computation of the coco value effectively assumes
that side payments are possible. The M-PCE value does not take into account the possibility of side
payments. Once we extend the centipede game to allow side payments in an appropriate sense, it turns
out that the coco value and the M-PCE value are the same. To do a fairer comparison of the M-PCE and
coco values, we consider games with side payments.

6.3 2-player games with side payments

In this subsection, we describe how an arbitrary 2-player game without payments can be transformed
into a game with side payments. There is more than one way of doing this; we focus on one, and briefly
discuss a second alternative. Our procedure may be of interest beyond the specific application to coco
and M-PCE. We implicitly assume throughout that outcomes can be expressed in dollars and that players
value the dollars the same way. The idea is to add strategies to the game that allow players to propose
“deals”, which amount to a description of what strategy profiles should be played and how much money
should be transferred. If the players propose the same deal, then the suggested strategy profile is played,
and the money is transferred. Otherwise, a “backup” action is played.

Given a 2-player game G = ({1, 2}, A, u), let G∗ = ({1, 2}, A∗, u∗) be the game with side pay-
ments extending G, where A∗ and u∗ are defined as follows. A∗ extends A by adding a collection of
actions that we call deal actions. A deal action for player i is a triple of the form (a, r, a′i) ∈ A×IR×Ai.
Intuitively, this action proposes that the players play the action profile a and that player 1 should transfer
r to player 2; if the deal is not accepted, then player i plays a′i. Given this intuition, it should be clear how
u∗ extends u. For action profiles a ∈ A, u∗(a) = u(a). For profiles actions a ∈ (A∗1−A1)×(A∗2−A2),
the players agree on a deal if they both propose a deal strategy with the same first two components (a, r).
In this case they play a and r is transferred. Otherwise, players just play the backup action. More pre-
cisely, for a, a′ ∈ A, bi ∈ Ai, and r, r′ ∈ IR:
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• u∗(a) = u(a);

• u∗1((a, r, b1), (a, r, b2)) = u1(a)− r;
u∗2((a, r, b1), (a, r, b2)) = u2(a) + r;

• u∗((a, r, b1), (a′, r′, b2)) = u(b1, b2) if (a, r) 6= (a′, r′);

• u∗((a, r, b1), b2) = u∗(b1, (a
′, r′, b2)) = u(b1, b2).

As usual, players are allowed to randomize, and a strategy of player i inG∗ is a distribution over actions
in A∗i ; let S∗i represent the set of player i’s strategies. Let U∗i (s) denote player i’s expected utility if the
strategy profile s ∈ S∗ is played. We call G∗ the game with side payments extending G, and call G the
game underlying G∗.

Intuitively, when both players play deal actions, we can think of them as giving their actions to a
trusted third party. If they both propose the same deal, the third party ensures that the deal action is
carried out and the transfer is made. Otherwise, the appropriate backup actions are played.

In our approach, we have allowed players to propose arbitrary backup actions in case their deal
offers are not accepted. We also considered an alternative approach, where if a deal is proposed by one
of the parties but not accepted, then the players get a fixed default payoff (e.g., they could both get 0,
or a default strategy could be played, and the players get their payoff according to the default strategy).
Essentially the same results as those we prove hold for this approach as well; see the end of Section 6.4.

6.4 Characterizing the coco value and the M-PCE value algebraically

At first glance, the coco value and the M-PCE value seem quite different, although both are trying to get
at the notion of cooperation. However, we show below that both have quite similar characterizations.
In this section, we characterize the two notions algebraically, using two similar formulas involving the
maximum social welfare and the minimax value. In the next section, we compare axiomatic characteri-
zations of the notions.

Before proving our results, we first show that, although they are different games, G and G∗ agree
on the relevant parameters (recall that G∗ is the game with side payments extending G). Let MSW (G)
be the maximum social welfare of G; formally, MSW (G) = maxa∈A(u1(a) + u2(a)).

Lemma 6.5. For all 2-player games G, MSW (G) = MSW (G∗) and mmi(G
∗) = mmi(G), for

i = 1, 2.

Proof. To see that MSW (G) = MSW (G∗), observe that, by the definition of u∗, for all action profiles
a∗ ∈ A∗, there exists an action profile a ∈ A and r ∈ IR such that u∗(a∗) = (u1(a) + r, u2(a)− r), so
u∗1(a

∗) + u∗2(a
∗) = u1(a) + u2(a).

To see that mm1(G
∗) = mm1(G), observe that for all t ∈ S2, a ∈ A, and a′1 ∈ A1, we have that

U∗1 ((a, r, a′1), t) = U1(a
′
1, t) so

max
a′1∈A∗1

U∗1 (a′1, t) = max
a′1∈A1

U1(a
′
1, t).

It then follows that
max
s1∈S∗1

U∗1 (s1, t) = max
s1∈S1

U1(s1, t).
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Thus,
min
t∈S2

max
s1∈S∗1

U∗1 (s1, t) = min
t∈S2

max
s1∈S1

U1(s1, t).

Therefore,
mm1(G

∗) = mint∈S∗2 maxs1∈S∗1 U
∗
1 (s1, t)

≤ mint∈S2 maxs1∈S∗1 U
∗
1 (s1, t) [since S∗2 ⊃ S2]

= mint∈S2 maxs1∈S1 U1(s1, t)
= mm1(G).

Thus, mm1(G
∗) ≤ mm1(G). Similarly, for all s1 ∈ S1, we have mina2∈A∗2 U

∗
1 (s1, a2) = mina2∈A2 U1(s1, a2).

It then follows that mint∈S∗2 U
∗
1 (s1, t) = mint∈S2 U1(s1, t). Thus,

min
t∈S∗2

max
s1∈S1

U∗1 (s1, t) = min
t∈S2

max
s1∈S1

U1(s1, t).

It follows that

mm1(G
∗) = mint∈S∗2 maxs1∈S∗1 U

∗
1 (s1, t)

≥ mint∈S∗2 maxs1∈S1 U
∗
1 (s1, t) [since S∗1 ⊃ S1]

= mint∈S2 maxs1∈S1 U1(s1, t)
= mm1(G).

Thus, mm1(G
∗) = mm1(G). A similar argument shows that mm2(G

∗) = mm2(G). ut

We now characterize the coco value.

Theorem 6.6. IfG is a 2-player game, then coco(G) =
(
MSW (G)+mm1(Gz)−mm2(Gz)

2 , MSW (G)−mm1(Gz)+mm2(Gz)
2

)
.1

Moreover, coco(G) = coco(G∗).

Proof. It is easy to see that the Pareto-optimal payoff profile in Gt is
(
MSW (G)

2 , MSW (G)
2

)
. Thus, by

definition,
coco(G)

=
(
MSW (G)

2 , MSW (G)
2

)
+ (mm1(Gz),mm2(Gz))

=
(
MSW (G)+2mm1(Gz)

2 , MSW (G)+2mm2(Gz)
2

)
=

(
MSW (G)+mm1(Gz)−mm2(Gz)

2 , MSW (G)−mm1(Gz)+mm2(Gz

2

)
The last equation follows since Gz is a zero-sum game, so mm1(Gz) = −mm2(Gz).

The fact that coco(G) = coco(G∗) follows from the characterization of coco(G) above, the fact that
MSW (G) = MSW (G∗) (Lemma 6.5), and the fact that (Gz)

∗ = (G∗)z , which we leave to the reader
to check. ut

The next theorem provides an analogous characterization of the M-PCE value in 2-player games
with side payments. It shows that in such games the M-PCE value is unique and has the same form as
the coco value. Indeed, the only difference is that we replace mmi(Gz) by mmi(G).

1Note that mm1(Gz) = −mm2(Gz) by von Neumann’s minimax theorem [von Neumann 1928] (which says that in every
2-player zero-sum games, there is an equilibrium where both players play a minimax strategy). We write the expression in the
form above to better compare it to the M-PCE value.
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Theorem 6.7. IfG is a 2-player game, then the unique M-PCE value of the gameG∗ with side payments
extending G is

(
MSW (G)+mm1(G)−mm2(G)

2 , MSW (G)−mm1(G)+mm2(G)
2

)
.

Proof. We first show that BUG∗
1 = MSW (G) − mm2(G) and BUG∗

2 = MSW (G) − mm1(G). For
BUG∗

1 , let a∗ be an action profile in G that maximizes social welfare, that is, U1(a
∗) + U2(a

∗) =
MSW (G), and let (s′1, s

′
2) be a strategy profile in G such that s′2 ∈ BRG(s′1) and U2(s

′
1, s
′
2) =

mm2(G). (Thus, by playing s′1, player 1 ensures that player 2 can get no more utility than mm2(G),
and by playing s′2, player 2 ensures that she does get utility mm2(G) when player 1 plays s′1.)

Let s = (s1, s2) be such that, in s1, player 1 plays deal action (a∗,mm2(G) − u2(a∗), a′1) with
the same probability that she plays a′1 in s′1 (where s′1 is as defined above) for all a′1 ∈ A1; and s2 =
(a∗,mm2(G)−u2(a∗), a2) for some fixed a2 ∈ A2. Intuitively, s1 does the following: if player 2 agrees
to the deal in s1, then a∗ is carried out, and player 1 transfers mm2(G)− u2(a∗) to player 2; otherwise
player 1 plays the mixed strategy s′1. s2 is a deal action that agrees to s1. Thus, U∗1 (s) = u1(a

∗) −
(mm2(G)−u2(a∗)) = U1(a

∗)+u2(a
∗)−mm2(G) = MSW (G)−mm2(G), and U∗2 (s) = mm2(G).

On the other hand, if player 2 plays an action a2 ∈ A2, then Thus, player 2 gets at most mm2(G) when
player 1 plays s1, so s2 ∈ BRG∗

2 (s1). This shows that BUG∗
1 ≥ MSW (G)−mm2(G).

To see that BUG∗
1 ≤ MSW (G) − mm2(G), consider a strategy profile s′′ = (s′′1, s

′′
2) ∈ S∗ with

s′′2 ∈ BRG∗
2 (s′′1). Since mm2(G

∗) = mm2(G), it follows thatU∗2 (s′′) ≥ mm2(G). Since MSW (G∗) =
MSW (G) by Lemma 6.5, it follows that U∗1 (s′′)+U∗2 (s′′) ≤ MSW (G). Thus, U∗1 (s′′) ≤ MSW (G)−
mm2(G), so BUG∗

1 ≤ MSW (G)−mm2(G). Thus, BUG∗
1 = MSW (G)−mm2(G), as desired.

The argument that BUG∗
2 = MSW (G)−mm1(G) is similar.

Now suppose that we have a strategy s+ ∈ S∗ such that U1(s
+) ≥ BUG∗

1 + α and U∗2 (s+) ≥
BUG∗

2 +α. Since MSW (G∗) = MSW (G), it follows that BU 1(G
∗) +BU 2(G

∗) + 2α ≤ MSW (G).
Plugging in our characterizations of BU 1(G

∗) and BU 2(G
∗), we get thatα ≤ −MSW (G)+mm1(G)+mm2(G)

2 .
Taking β = −MSW (G)+mm1(G)+mm2(G)

2 , we now show that we can find a β-PCE. It follows that this
must be a M-PCE.

Let a∗ be the action profile in G defined above that maximizes social welfare, and let a′ ∈ A. Let
s+ = (s+1 , s

+
2 ), where s+1 = (a∗, u1(a

∗) − MSW (G)+mm1(G)−mm2(G)
2 , a′1) and s+2 = (a∗, u1(a

∗) −
MSW (G)+mm1(G)−mm2(G)

2 , a′2). It is also easy to check that U1(s
+) = MSW (G)+mm1(G)−mm2(G)

2 , and
U2(s

+) = MSW (G)−mm1(G)+mm2(G)
2 .

It can also easily be checked that Ui(s+) = BU i + β for i = 1, 2, so s+ is indeed a β-PCE.
Therefore, s+ is a M-PCE, and its value is a M-PCE value, as desired. Since U1(s

+) + U2(s
+) =

MSW (G), it follows that the M-PCE value is unique.

As Theorems 6.6 and 6.7 show, in a 2-player game G∗ with side payments, the coco value and M-
PCE value are characterized by very similar equations, making use of MSW (G∗) and minimax values.
The only difference is that the coco value uses the minimax value of the zero-sum game Gz , while the
M-PCE value uses minimax value of G. It immediately follows from Theorem 6.6 and 6.7 that the coco
value and the M-PCE value coincide in all games where

mm1(Gz)−mm2(Gz) = mm1(G)−mm2(G).

Such games include team games, equal-sum games (games with a payoff matrices (A,B) such that
A + B is a constant matrix, all of whose entries are identical), symmetric games (games where the
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strategy space is the same for both players, that is, S1 = S2, and U1(s1, s2) = U2(s2, s1) for all
s1, s2 ∈ S1), and many others. We can also use these theorems to show that the M-PCE value and the
coco value can differ, even in a game where side payments are allowed, as the following example shows.

Example 6.8. Let G be the 2-player game described by the following payoff matrix:

a b
c (3,2) (1,0)

Let G∗ be the game with side payments extending G. Taking player 1 to be the row player and player 2
to be the column player, it is easy to check that MSW (G) = 5, mm1(G) = 1, and mm2(G) = 2, Thus,
by Theorem 5.5, the M-PCE value of G∗ is (5+1−2

2 , 5−1+2
2 ) = (2, 3). On the other hand, it is easy to

check that coco(G) = coco(G∗) = (3, 2).

It seems somewhat surprising that the M-PCE here should be (2, 3), since player 1 gets a higher
payoff than player 2 no matter which strategy profile in G is played. Moreover, BUG

1 = 3 and BUG
2 =

2. But things change when transfers are allowed. It is easy to check that it is still the case that BUG∗
1 =

3; if player 1 plays c, then player 2’s best response is to play a. But BUG∗
2 = 4; if player 2 plays

((c, a), 2, b), offering to play (c, a), provided that player 1 transfers an additional 2, then player 1’s best
response is to agree (for otherwise player 2 plays b), giving player 2 a payoff of 4. The possibility that
player 2 can “threaten” player 1 in this way (even though the moves are made simultaneously, so no
actual threat is involved) is why mm2(G) ≥ mm1(G). ut

We conclude this subsection by considering what happens if a default strategy profile is used instead
of backup actions when defining games with side payments. Let the default payoffs be (d1, d2). Then a
similar argument to above shows that the M-PCE value becomes(

MSW (G) + d1 − d2
2

,
MSW (G)− d1 + d2

2

)
.

Thus, rather than using the minimax payoffs in the formula, we now use the default payoffs. Note that
if the default payoffs are (0, 0), then the M-PCE amounts to the players splitting the maximum social
welfare. We leave the details to the reader.

6.5 Axiomatic comparison

In this section, we provide an axiomatization of the M-PCE value and compare it to the axiomatization
of the coco value given by Kalai and Kalai [2009]. Before jumping into the axioms, we first explain the
term “axiomatize” in this context. Given a function f : A→ B, we say a set AX of axioms axiomatizes
f in A if f is the unique function mapping A to B that satisfies all axioms in AX. Recall that every
2-player normal-form game has a unique coco value. We can thus view the coco value as a function
from 2-player normal-form games to IR2. Therefore, a set AX of axioms axiomatizes the coco value if
the coco value is the unique function that maps from the set to IR2 that satisfies all the axioms in AX.

Kalai and Kalai [2009] show that the following collection of axioms axiomatizes the coco value. We
describe the axioms in terms of an arbitrary function f . If f(G) = (a1, a2), then we take fi(G) = ai,
for i = 1, 2.
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1. Maximum social welfare. f maximizes social welfare: f1(G) + f2(G) = MSW (G).

2. Shift invariance. Shifting payoffs by constants leads to a corresponding shift in the value. That
is, if c = (c1, c2) ∈ IR2, G = ({1, 2}, A, u) and Gc = ({1, 2}, A, uc), where uci (a) = ui(a) + ci
for all a ∈ A, then f(Gc) = (f1(G) + c1, f2(G) + c2).

3. Monotonicity in actions. Removing an action of a player cannot increase her value. That is,
if G = ({1, 2}, A1 × A2, u), and G′ = ({1, 2}, A′1 × A2, u|A′1×A2

), where A′1 ⊆ A1, then
f1(G

′) ≤ f1(G), and similarly if we replace A2 by A′2 ⊆ A2.

4. Payoff dominance. If, for all action profiles a ∈ A, a player’s expected payoff is strictly larger
than her opponent’s, then her value should be at least as large as the opponent’s. That is, if
ui(a) ≥ uj(a) for all a ∈ A, then fi(G) ≥ fj(G).

5. Invariance to replicated strategies. Adding a mixed strategy of player 1 as a new action for her
does not change the value of the game; similarly for player 2. That is, ifG = ({1, 2}, A1×A2, u),
t ∈ S1, and G′ = ({1, 2}, A′1 × A2, u

′), where A′1 = A1 ∪ {t}, u′(t, a2) = U(t, a2) for all
a2 ∈ A2, and u′(a) = u(a) for all a ∈ A (so that G′ extends G by adding to A1 one new action,
which can be identified with a mixed strategy in S1). Then f(G) = f(G′). The same holds if we
add a strategy to A2.

Theorem 6.9. [Kalai and Kalai 2009] Axioms 1-5 characterize the coco value in 2-player normal-
formal games.2

Note that, following Kalai and Kalai [2009], we have stated the axioms for the coco value in terms of
the underlying gameG. Since, as we have argued, Kalai and Kalai are assuming there are side payments,
we might consider stating the axioms in terms ofG∗. We could certainly replace all occurrences of fi(G)
by fi(G∗); nothing would change if we did this, since, by Theorem 6.6, coco(G) = coco(G∗). But we
could go further, replacing G, A, and u uniformly by G∗, A∗, and u∗. For example, Axiom 1 would
say f1(G∗) + f2(G

∗) = MSW (G∗); Axiom 2 would say that f((G∗)c) = (f1(G
∗) + c1, f2(G

∗) + c2).
It is not hard to check that the resulting axioms are still sound. Moreover, for all axioms but Axiom 4
(payoff dominance), the resulting axiom is essentially equivalent to the original axiom. (In the case of
shift invariance, this is because (G∗)c = (Gc)∗.) However, the version of Axiom 4 for G∗ is vacuous.
No matter what the payoffs are in G, it cannot be the case that a player’s expected payoff is larger than
his opponent’s for all actions in G∗, since players can always agree to a deal action that results in the
opponent getting a large transfer. Thus, we must express payoff dominance in terms of G in order to
prove Theorem 6.9.

We now characterize the M-PCE value axiomatically. The M-PCE value of G is not equal to that
of G∗ in general. Since we want to compare the M-PCE value and coco value, it is most appropriate
to consider games with side payments. Thus, in the axioms for M-PCE, we write fi(G∗) rather fi(G).
We start by considering the extent to which the M-PCE value satisfies the axioms above for coco value,
with fi(G) replaced by fi(G∗). As we noted, this change has no impact for coco value except in the
case of Axiom 4 (payoff dominance). But Example 6.8 shows that the M-PCE value does not satisfy
payoff dominance. The following result shows that it satisfies all the remaining axioms.

2Kalai and Kalai actually consider Bayesian games in their characterization, and have an additional axiom that they call
monotonicity in information. This axiom trivializes in normal-form games (which can be viewed as the special case of Bayesian
games where players have exactly one possible type). It is easy to see that their proof shows that Axioms 1-5 characterizes the
coco value in normal-form games.
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Theorem 6.10. The function mapping 2-player games with side payments to their (unique) M-PCE
value satisfies maximum social welfare, shift invariance, monotonicity in actions, and invariance in
replicated strategies.

Proof. We consider each property in turn:

• The fact that the function satisfies maximum social welfare is immediate from the characterization
in Theorem 6.7.

• It is easy to see that MSW (Gc) = MSW (G) + c1 + c2, mm1(G
c) = mm1(G) + c1 and

mm2(G
c) = mm2(G) + c2. It then follows from Theorem 6.7 that the M-PCE value of (Gc)∗ is

the result of adding c to the M-PCE value of G∗.

• Let G′ be as in the description of Axiom 3. It is almost immediate from the definitions that
MSW (G′) ≤ MSW (G), mm1(G

′) ≤ mm1(G), and mm2(G
′) ≥ mm2(G). The result now

follows from Theorem 6.7.

• Let G′ be the result of adding a replicated action to S1, as described in the statement of Axiom 5.
Clearly MSW (G′) = MSW (G), mm1(G

′) = mm1(G), and mm2(G
′) = mm2(G). Again, the

result now follows from Theorem 6.7.

Our goal now is to axiomatize the M-PCE value in games with side payments. Since the M-PCE
value and the coco value are different in general, there must be a difference in their axiomatizations.
Interestingly, we can capture the difference by replacing payoff dominance by another simple axiom:

6. Minimax dominance. If a player’s minimax value is no less than her opponent’s minimax value,
then her value is no less than her opponent’s. That is, if mmi(G) ≥ mmj(G), then fi(G∗) ≥
fj(G

∗).

It is immediate from Theorem 6.7 that the M-PCE value satisfies minimax dominance; Example 6.8
shows that the coco value does not satisfy it. We now prove that the M-PCE value is characterized by
Axioms 1, 2, and 6. (Although Axioms 3 and 5 also hold for the M-PCE value, we do not need them
for the axiomatization.) Interestingly, for all these axioms, we can replace all occurrences of G, A, and
u by G∗, A∗, and u∗, respectively, to get an equivalent axiom; it really does not matter if we state the
axiom in terms of G or G∗ (although the argument to f must be G∗).

Theorem 6.11. Axioms 1, 2, and 6 characterize the M-PCE value in 2-player games with side payments.

Proof. Theorem 6.10 shows that the M-PCE value satisfies Axioms 1 and 2. As we observed, the fact
that the M-PCE value satisfies Axiom 6 is immediate from Theorem 6.7.

To see that the M-PCE value is the unique mapping that satisfies Axioms 1, 2, and 6, suppose that f is
a mapping that satisfies these axioms. We want to show that f(G∗) is the M-PCE value for all games G.
So consider an arbitrary game G such that the M-PCE value of G∗ is v = (v1, v2). By shift invariance,
the M-PCE value of (G−v)∗ is (0, 0). By Axiom 1, MSW (G) = v1 + v2, so MSW (G−v) = 0.
Note that it follows from Theorem 6.7 that 0 = MSW (G−v) + mm1(G

−v) − mm2(G
−v). Since
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MSW (G−v) = 0, it follows that mm1(G
−v) = mm2(G

−v). Suppose that f((G−v)∗) = (v′1, v
′
2). By

Axiom 1, we must have v′1 + v′2 = 0. By Axiom 6, since mm1(G
−v) = mm2(G

−v), we must have
v′1 = v′2. Thus, f((G−v)∗) = (0, 0). By shift invariance, f(G∗) = f((G−v)∗) + v = (v1, v2), as
desired.

Again, we conclude this subsection by considering what happens if a default payoff is used instead
of backup actions when defining games with side payments. It is still the case that the M-PCE value
satisfies Axioms 1, 2, 3, and 5, and does not satisfy Axiom 4. To get an axiomatization of the M-PCE
value in such games with side payments, we simply need to change Axiom 6 (Minimax Dominance)
so that it uses the default value rather than the minimax value: if the default value of a player is no
less than the default value of the opponent, then the player’s value is no less than the opponent’s value.
Thus, variations in the notion of games with side payments lead to straightforward variations in the
characterization of the M-PCE value.

6.6 Complexity comparison

In this section, we consider the complexity of computing the M-PCE value and the coco value, and the
corresponding strategy profiles.

It follows easily from the characterization in Theorem 6.6 that in a 2-player gameGwith (or without)
side payments, the coco value is determined by MSW (G), mm1(Gz), and mm2(Gz). Gz can clearly
be determined from G in polynomial time (polynomial in the number of strategies), and MSW (G) can
be determined in polynomial time (simply by inspecting the payoff matrix for G). The minimax value
of a 2-player game can be computed in polynomial time (see Appendix G). Moreover, if (c1, c2) is the
coco value of G, and s∗ is a pure strategy profile that obtains MSW (G), the strategy profile that gives
players the coco value is ((s∗, U1(s

∗)− c1), (s∗, U1(s
∗)− c1)), which is simply the deal strategy profile

in which both players agree to play s∗, and agree that player 1 pays player 2 (U1(s
∗)− c1).

Similarly, we can compute a M-PCE in a 2-player game with side payments in polynomial time.

Theorem 6.12. In a 2-player game G∗ with side payments, we can compute its M-PCE value and a
strategy profile that obtains it in polynomial time.

Proof. LetG be the game underlyingG∗. By Theorem 6.7, the M-PCE value ofG is entirely determined
by its MSW and its minimax value. We show in Appendix G that is determined by MSW (G), mm1(G),
and mm2(G). Since the minimax value of a 2-player game can be computed in polynomial time, and
MSW (G) can be computed by simply finding the entry in the matrix with the highest total utility, the
M-PCE value can be computed in polynomial time.

Let the M-PCE value be (m1,m2), and let s∗ be a pure strategy profile that obtains MSW (G). Then
((s∗, U1(s

∗)−m1), (s
∗, U1(s

∗)−m1)), which is simply the deal strategy profile in which both players
agree to play s∗, and agree that player 1 pays player 2 U1(s

∗)−m1, is a M-PCE.

For 2-player games (without side payments), a PCE can be found in polynomial time if one exists;
moreover, determining whether one exists can also be done in polynomial time (see Theorem 5.4).
Similarly, in 2-player games, a M-PCE can always be found in polynomial time (see Theorem 5.5).
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7 Related Work

There are many solution concepts in the literature that attempt to model cooperative play. We compared
PCE to the coco value in some detail in Section 6. In this section, we compare PCE to a number of
others.

Although PCE is meant to apply to one-shot games, our motivation for it involved repeated games. It
is thus interesting to compare Cooperative Equilibrium to solutions of repeated games. The well-known
Folk Theorem [Osborne and Rubinstein 1994] says that any payoff profile that gives each player at least
his minimax utility is the payoff profile of some NE in the repeated game. Moreover, the proof of the
Folk Theorem shows that if s is a strategy in the underlying normal-form game where each player’s
utility is higher than the minimax utility in the repeated game, then there is a NE in the repeated game
where s is played at each round. Thus, playing cooperatively repeatedly in the repeated game will
typically be an outcome of a NE. However, so will many other behaviors. Because so many behaviors
are consistent with the Folk Theorem, it has very little predictive power. For example, in repeated
Traveler’s Dilemma, a player can ensure a payoff of at least 2 per iteration simply by always playing 2.
It follows from the Folk Theorem that for any strategy profile s in the one-shot game where each player
gets at least 2, there is a NE in the repeated game where each player i plays si in each round. By way
of contrast, as we have seen, in a PCE of the single-shot game, each player gets more than 98. More
generally, we can show that, for each PCE s in a normal-form game, there is a NE of the repeated game
where s is played repeatedly.

Halpern and Pass [2013] and Capraro and Halpern [2014] consider what they call translucent play-
ers, who believe that how other players respond may depend in part on what they do. This is implicitly
the case in PCE as well. The notion of translucency assumes that each player i has beliefs regarding
how other players would respond if i deviates from his intended strategy to another strategy. That is, for
each pair of strategies (si, s

′
i) for player i, i assigns a probability µsi,s

′
i

i (s−i) to each (joint) strategy pro-

file s−i for players other than i. Intuitively, µsi,s
′
i

i (s−i) is the probability at which player i believes the
others would jointly play s−i, if i deviated from si to s′i. A strategy profile is a translucent equilibrium
(TE) if there does not exist a player i such that i can strictly improve her payoff if i deviates and other
players respond to the deviation according to i’s belief (of how they would respond to the deviation).
In 2-player games, every PCE is a TE, one in which each player believes that the other player would
best respond to a deviation; similarly, every CE is a TE, one in which each player believes that the other
player best responds to a deviation if that makes the other player no worse off compared to when no one
deviates, and otherwise punishes the deviation by playing a strategy that makes the one who deviates
strictly worse off than in the case where no one deviates whenever possible. In n-player games for
n > 2, every PCE is a TE in which each player believes that if she deviates, the other players would
play a NE among themselves given the deviation. (Recall that CE is defined only for 2-player games.)
However, it is not the case that every TE is a PCE.

Farsighted pre-equilibrium (FPE) [Jamroga and Melissen 2011], like PCE, allows players to react
to what other players are doing. Very roughly speaking, while PCE assumes that if a player deviates, the
other players get to best respond, in FPE, the player who deviates gets to make the final response. For
example, suppose that Alice deviates from s to s′. PCE considers how Bob would react to the deviation,
and whether Alice is better or worse off given Bob’s response. FPE also considers how Bob would
react, but allows Alice to take the last step, and then compares Alice’s payoff in s to her payoff at the
end of this process. PCE also allows a player i to deviate to a strategy that may (temporarily) decrease
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i’s payoff (this could be useful because the response to the deviation may make i better off); FPE does
not consider such deviations. Every NE is an FPE; as we have seen, not every NE is a PCE. As a con-
sequence, in games like the centipede game, PCE and M-PCE do a better job of predicting cooperative
behavior than FPE. The concept of farsightedness in FPE, which allows players to consider other play-
ers’ responses and responses to other players’ responses, and so on, dates back to von Neumann and
Morgenstern’s stable set in coalitional games [1944]. The idea was then developed by Harsanyi who
proposed indirect dominance of coalition structures [1974], and then followed by a number of works
[Chwe 1994; Diamantoudi and Xue 2003; Greenberg 1990; Nakanishi 2007; Suzuki and Muto 2005].
However, all these works except FPE consider cooperative games instead of non-cooperative games –
which are the main topic of these paper.

There have also been attempts to explain cooperative behavior by saying that the utility function that
players use is different from the utility function that is presented in the game, and takes into account
fairness and/or social welfare. The two best-known examples of this approach are due to Charness
and Rabin [2002] and Fehr and Schmidt [1999]. Given utility functions ui for players i = 1, . . . , n,
Charness and Rabin [2002] consider the modified utility functions

uCRi = (1− aCRi )ui(s) + aCRi (bCRi min
j=1,...,N

uj(s) + (1− bCRi )

N∑
j=1

uj(s)),

where aCRi is the degree of importance that agent i gives to social welfare and the plight of the worst-off
individual (so that (1−α) is the degree of importance of his base utility to player i), while bCRi measures
the relative degree of importance of the worst-off individual and (1− bCRi ) measures the relative degree
of importance of total social welfare. Similarly, Fehr and Schmidt [1999] modify the utility to

uFSi (s) = ui(s)−
aFSi
n− 1

∑
j 6=i

max(uj(s)− ui(s), 0)− bFSi
n− 1

∑
j 6=i

max(ui(s)− uj(s), 0),

where bFSi ≤ aFSi , aFSi can be viewed as measuring the importance of the inequity caused by i having
a lower payoff than others, and bFSi can be viewed as measuring the importance of the inequity caused
by i having a higher payoff than others. As shown in Section 6, M-PCE is closely related to maximal
social welfare, and also embodies a certain sense of fairness, so to some extent it captures some of the
features that the modified utility functions of Charness and Rabin [2002] and Fehr and Schmidt [1999]
are trying to capture.

While not intended to model cooperation, the recently-introduced notion of iterated regret mini-
mization (IRM) [Halpern and Pass 2011] often produce results similar to PCE. As its name suggests,
IRM iteratively deletes strategies that do not minimize regret. Although it based on a quite different phi-
losophy than PCE or its variants, IRM leads to quite similar predictions as PCE in a surprising number
of games. For example, in Traveler’s Dilemma, (97, 97) is the unique profile that survives IRM. In the
Nash bargaining game, (50, 50) is the unique profile that survives IRM and is also the unique M-PCE
of the game. There are a number of other games of interest where PCE and IRM either coincide or are
close.

There are also games in which they behave differently. For example, consider a variant of Prisoner’s
Dilemma with the following payoff matrix: It can be shown that, if there are dominant actions in a
game, then these are the only actions that survive IRM. Since defecting is the only dominant action in
this game, it follows that (Defect, Defect) is the only strategy profile that survives IRM, giving a payoff
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Cooperate Defect
Cooperate (10000,10000) (0,10001)

Defect (10001,0) (1,1)

(1, 1). On the other hand, the unique M-PCE is (Cooperate, Cooperate) with payoffs (10000, 10000)
(although (Defect, Defect) is also a PCE). In this game, M-PCE seems to do a better job of explaining
behavior than PCE. Nevertheless, the fact that PCE and IRM lead to similar answers in so many games
of interest suggests that there may be some deep connection between them. We leave the problem of
explaining this connection to future work.

A Computing the PCE in the centipede game

To compute the PCE in the centipede game, we need to first compute BU 1 and BU 2. If player 1
continues to the end of the game, then player 2’s best response is to also continue to the end of the
game, giving player 1 a payoff of 219 (and player 2 a payoff of 220 + 1). If we take qi,j to be the
strategy where player i quits at turn j and qi,C to be the strategy where player i continues to the end
of the game, then a straightforward computation shows that q2,C continues to be a best response to
αq1,19 + (1 − α)q1,C as long as α ≥ 3×218

3×218+1
. If we take α = 3×218

3×218+1
and player 2 best responds by

playing q2,C , then player 1’s utility is 219 + 3×218
3×218+1

. It is then straightforward to show that this is in
fact BU 1. A similar argument shows that, if player 1 is best responding, then the best player 2 can do
is to play βq2,18 + (1− β)q2,C , where β = 3×217

3×217+1
. With this choice, player 1’s best response is q1,19;

using this strategy for player 2, we get that BU 2 = 218 + 3×217
3×217+1

.
It is easy to see that there is no pure strategy profile s such that U1(s) ≥ BU 1 and U2(s) ≥ BU 2.

However, there are many mixed PCE. For example, every strategy profile (q1,C , s2) where s2 = βq2,18+

(1− β)q2,C and β ∈ [1− 3×217
(3×217+1)(3×218+1)

, 3×218
3×218+1

] is a PCE.

B Proof of Lemma 5.1

LEMMA 5.1. In a 2-player game, for all strategy profiles s∗, there exists a strategy profile s′ =
(s′1, s

′
2) that Pareto dominates s∗ such that both s′1 and s′2 have support of size at most two.

Proof. Let A and B be the payoff matrices (of size n×m) for player 1 and player 2 respectively. Given
a strategy profile s∗ = (s∗1, s

∗
2), let U1(s

∗) = r∗1 and U2(s
∗) = r∗2. We first show that there exists a

strategy s′2 for player 2 with support of size at most two such that (s∗1, s
′
2) Pareto dominates s∗. We then

show that there exists a strategy s′1 for player 1 with support of size at most two such that (s′1, s
′
2) Pareto

dominates (s∗1, s
′
2), and hence s∗.

Consider the following linear program P1, where y is a column vector in IRm:

maximize (s∗1)Ay
subject to (s∗1)

TBy = r∗2∑m
i=1 y[i] = 1

y ≥ 0.
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As usual, an optimal solution of P1 is a vector y that maximizes the objective function ((s∗1)Ay) and
satisfies the three constraints; a feasible solution of P1 is one that satisfies the constraints; finally, an
optimal value of P1 is the value of the objective function for the optimal solution y (if it exists). We
show that P1 has an optimal solution y∗ with at most two nonzero entries.

Since all constraints in P1 are equality constraints except for the non-negativity constraint, P1 is a
standard-form linear program [Murty 1983]. We can rewrite the equality constraints in P1 as

Dy =

[
r∗2
1

]
,

where D is an (m× 2) matrix whose first row is (s∗1)
TB and whose second row has all entries equal to

1. In geometric terms, the region represented by the constraints in P1 is a convex polytope. Since P1 is
a standard-form linear program, it is well-known that y is a vertex of the polytope (i.e., an extreme point
of the polytope) iff all columns i in D where y[i] 6= 0 are linearly independent [Murty 1983]. Since the
columns of D are vectors in IR2, at most two of them can be linearly independent. Thus, a vertex y of
the polytope can have at most two nonzero entries.

Clearly s∗2 is a feasible solution of P1. Since (s∗1)As
∗
2 = r∗1, by assumption, the optimal value of

P1 is at least r∗1. Moreover, since the objective function of P1 is linear, y ≥ 0, and
∑m

i=1 y[i] = 1, the
optimal value is bounded. Therefore, the linear program has an optimal solution. By the fundamental
theorem of linear programming, if a linear program has an optimal solution, then it has an optimal
solution at a vertex of the polytope defined by its constraints [Murty 1983]. Let s′2 be the strategy
defined by an optimal solution at the vertex of the polytope. As we observed above, s′2 has at most two
nonzero entries. It is immediate that U1((s

∗
1, s
′
2)) ≥ r∗1 and U2((s

∗
1, s
′
2)) ≥ r∗2.

This completes the first step of the proof.

The second step of the proof essentially repeats the first step. Suppose that U1((s
∗
1, s
′
2)) = r1 and

U2((s
∗
1, s
′
2)) = r2. Consider the following linear program P2, where x is column vector in IRn:

maximize xTBs′2
subject to xTAs′2 = r1∑n

i=1 x[i] = 1
x ≥ 0.

Since s∗1 is a feasible solution of P2 and (s∗1)
TBs′2 ≥ r∗2, the optimal value of P2 is at least r∗2. As above,

if we take s′2 to be an optimal solution of P2 that is a vertex of the polytope defined by the constraints,
then s′2 has support of size at most two, and (s′1, s

′
2) Pareto dominates s∗.

C Proof of Lemma 5.3

LEMMA 5.3. A simple bilinear program of size 2× 2 can be solved in constant time.
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Proof. Let P be the following simple bilinear program, where x = [x1 x2]
T , y = [y1 y2]

T :

maximize xTAy + xT c+ yT c′

subject to xTBy ≥ d1
x1 + x2 = d2
y1 + y2 = d3
x ≥ 0
y ≥ 0,

where A and B are 2× 2 matrices.

We show that P can be solved in constant time. That is, we either find an optimal solution of P ,
or find that P has no optimal solution in constant time. The idea is to show that P can be reduced into
eight simpler problems, each of which can more obviously be solved in constant time.

Suppose that A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
. Then we can write P as the following

quadratic program Q:

maximize a11x1y1 + a12x1y2 + a21x2y1 + a22x2y2 + c[1]x1 + c[2]x2 + c′[1]y1 + c′[2]y2

subject to b11x1y1 + b12x1y2 + b21x2y1 + b22x2y2 − d1 ≥ 0

x1 + x2 = d2

y1 + y2 = d3

x1, x2, y1, y2 ≥ 0.

After replacing x2 with (d2 − x1) and y2 with (d3 − y1), then rearranging terms, the objective function
of Q becomes

(a11 − a12 − a21 + a22)x1y1 + (a12d3 − a22d3 + c[1]− c[2])x1+

(a21d2 − a22d2 + c′[1]− c′[2])y1 + (a22d2d3 + c[2]d2 + c′[2]d3),

and the first constraint becomes

(b11 − b12 − b21 + b22)x1y1 + (b12d3 − b22d3)x1 + (b21d2 − b22d2)y1 + (b22d2d3 − d1).

We can get an equivalent problem by removing the constant terms a22d2d3 + c[2]d2 + c′[2]d3 from
the objective function, since adding or removing additive constants from a function that we want to
maximize does not affect its optimal solutions (e.g., “maximize x” has the same optimal solutions as
“maximize (x+ 1)”).

Thus, Q is equivalent to the following quadratic program Q′:

maximize γ1x1y1 + γ2x1 + γ3y1

subject to γ4x1y1 + γ5x1 + γ6y1 + γ7 ≥ 0

x1 ∈ [0, d2]

y1 ∈ [0, d3],
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where
γ1 = a11 − a12 − a21 + a22
γ2 = a12d3 − a22d3 + c[1]− c[2]
γ3 = a21d2 − a22d2 + c′[1]− c′[2]
γ4 = b11 − b12 − b21 + b22
γ5 = b12d3 − b22d3
γ6 = b21d2 − b22d2
γ7 = b22d2d3 − d1.

(Note that γi is a constant, for i = 1, . . . , 7.)

The first step in solvingQ′ involves expressing the values of y1 that make (x1, y1) a feasible solution,
that is, one that satisfies the constraint

γ4x1y1 + γ5x1 + γ6y1 + γ7 = (γ4y1 + γ5)x1 + γ5x1 + γ6y1 + γ ≥ 0.

For each y1 ∈ [0, d3], let Ψ1(y1) be the set of x1 such that (x1, y1) is a feasible solution of Q′. The
characterization of Ψ1(y1) depends on the sign of γ4y1 + γ5. Specifically:

Ψ1(y1) =
[
−γ6y1−γ7
γ4y1+γ5

, d2

]
∩ [0, d2] if γ4y1 + γ5 > 0, −γ6y1−γ7γ4y1+γ5

≤ d2,

Ψ1(y1) =
[
0, −γ6y1−γ7γ4y1+γ5

]
∩ [0, d2] if γ4y1 + γ5 < 0, −γ6y1−γ7γ4y1+γ5

≥ 0,

Ψ1(y1) = [0, d2] if γ4y1 + γ5 = 0, Qγ6y1 + γ7 ≥ 0,
Ψ1(y1) = ∅, if γ4y1 + γ5 = 0, γ6y1 + γ7 < 0.

(1)

Note that the first three regions are single intervals.

Let f(x1, y1) = γ1x1y1 + γ2x1 + γ3y1, so that f(x1, y1) is the objective function of Q′. We want
to maximize f over all feasible pairs (x1, y1). Taking the derivative of f with respect to x1, we get

∂f(x1, y1)

∂x1
= γ1y1 + γ2,

which is a linear function of y1. Because the derivative is linear, for each fixed value of y1, the value that
maximizes f(x1, y1) must lie at an endpoint of the interval appropriate for that value of y1. Whether it
is the left endpoint or the right endpoint depends on whether the derivative is negative or positive. For
example, if y1 satisfies the constraints corresponding to the first interval in (1) (i.e., if γ4y1 + γ5 > 0
and −γ6y1−γ7γ4y1+γ5

≤ d2) and γ1y1 + γ2 > 0, then x1 = d2 (i.e., the right endpoint of the interval of Ψ1(y1))
maximizes f(x1, y1); and the problem of maximizing f(x1, y1) reduces to that of maximizing f(d2, y1)
(see Q1 below). On the other hand, if γ1y1 +γ2 > 0, then maximizing f(x1, y1) reduces to maximizing
f(0, y1) or f( −γ6−γ7γ4y1+γ5

, y1), depending on whether −γ6y1−γ7γ4y1+γ5
is negative (see Q5 and Q6 below).

These considerations show that to find the value (x1, y1) that maximizes f(x1, y1), it suffices to find
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the value of y1 that maximizes each of the expressions below, and take the one that is best among them:

Q1 : maximize f(d2, y1), subject to
γ4y1 + γ5 > 0, −γ6y1−γ7γ4y1+γ5

≤ d2, γ1y1 + γ2 ≥ 0, y1 ∈ [0, d3]

Q2 : maximize f(0, y1), subject to
γ4y1 + γ5 > 0, −γ6y1−γ7γ4y1+γ5

≤ 0, γ1y1 + γ2 < 0, y1 ∈ [0, d3]

Q3 : maximize f(−γ6y1−γ7γ4y1+γ5
, y1), subject to

γ4y1 + γ5 > 0, 0 ≤ −γ6y1−γ7γ4y1+γ5
≤ d2, γ1y1 + γ2 < 0, y1 ∈ [0, d3]

Q4 : maximize f(d2, y1), subject to
γ4y1 + γ5 < 0, −γ6y1−γ7γ4y1+γ5

≥ d2, γ1y1 + γ2 ≥ 0, y1 ∈ [0, d3]

Q5 : maximize f(−γ6y1−γ7γ4y1+γ5
, y1), subject to

γ4y1 + γ5 < 0, 0 ≤ −γ6y1−γ7γ4y1+γ5
≤ d2, γ1y1 + γ2 ≥ 0, y1 ∈ [0, d3]

Q6 : maximize f(0, y1), subject to
γ4y1 + γ5 < 0, −γ6y1−γ7γ4y1+γ5

≥ 0, γ1y1 + γ2 < 0, y1 ∈ [0, d3]

Q7 : maximize f(d2, y1), subject to
γ4y1 + γ5 = 0, γ6y1 + γ7 ≥ 0, γ1y1 + γ2 ≥ 0, y1 ∈ [0, d3]

Q8 : maximize f(0, y1), subject to
γ4y1 + γ5 = 0, γ6y1 + γ7 ≥ 0, γ1y1 + γ2 < 0, y1 ∈ [0, d3].

Note that Q1, Q2, and Q3 describe the possibilities for the first case in (1), Q4, Q5, and Q6 are the
possibilities for the second case, and Q7 and Q8 are the possibilities for the third case.

Each of Q1, Q2, Q4, Q6, Q7, and Q8 can be easily rewritten as linear programs of a single variable
(y1), so can be solved in constant time. With a little more effort, we can show Q3 and Q5 can also be
solved in constant time. We explain how this can be done for Q3. The argument for Q5 is similar and
left to the reader. All the constraints in Q3 can be viewed as linear constraints; the set of feasible values
of y1 is thus an interval, whose endpoints can clearly be computed in constant time. Now the objective
function is

f(
−γ6y1 − γ7
γ4y1 + γ5

, y1) =
(γ1y1 + γ2)(−γ6y1 − γ7)

γ4y1 + γ5
+ γ3y1.

To find the maximum value of the objective function among the feasible values, we need to take its
derivative (with respect to y1). A straightforward calculation shows that this derivative is

(−2γ1γ6y1 − γ1γ7 − γ2γ6)(γ4y1 + γ5)− γ4(γ6y1 + γ7)(γ1y1 + γ2)

(γ4y1 + γ5)2
+ γ3.

This derivative is 0 when its numerator is 0 (since the constraints in Q3 guarantee that the denominator
is positive). The numerator is a quadratic, so can be solved in constant time.

Thus, to find the optimal value for Q3, we must just check f at the endpoints of the interval defined
by the constraints (which, as we observed above, can be computed in constant time) and at the points
where the derivative is 0 (which can also be computed in constant time). Thus, Q3 can be solved in
constant time.

This completes the argument that Q can be solved in constant time.
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D Proof of Theorem 5.4

THEOREM 5.4. Given a 2-player game G = ({1, 2}, A, u), we can compute in polynomial time
whether G has a PCE and, if so, we can compute a PCE in polynomial time.

Proof. Suppose that G = ({1, 2}, A, u), where A = A1×A2, |A1| = n, |A2| = m, u1 is characterized
by the payoff matrix A, and u2 is characterized by the payoff matrix B.

In order to compute a PCE for the game, we need the values of BU 1 and BU 2. These can be
computed in polynomial time, as follows. For BU i, for each i ∈ {1, . . . ,m}, we solve the following
linear program Pi:

maximize sT1 (A[·, i])
subject to sT1 (B[·, i]) ≥ sT1 (B[·, j]) for all j ∈ {1, . . .m}∑n

l=1 s1[l] = 1
s1 ≥ 0.

Suppose that ri is the optimal value of Pi. Since Pi is a linear program, ri can be computed in poly-
nomial time. Intuitively, ri is the maximum reward player 1 can get if player 2 plays action bi and bi
is a best response for player 2 to 1’s action. (The first constraint ensures that bi is a best response for
player 2 to player 1’s strategy.) BU 1 = maxmi=1 ri, so can be computed in polynomial time. BU 2 can
be similarly computed.

After computing BU 1 and BU 2, we can compute a PCE. Recall that a strategy profile s is a PCE iff
U1(s) ≥ BU 1 and U2(s) ≥ BU 2. Suppose that game G has a PCE s∗. By Lemma 5.1, there must exist
a strategy profile s′ = (s′1, s

′
2) that Pareto dominates s∗, where both s′1 and s′2 have support of size at

most two. By Theorem 2.6, s′ is also a PCE. We call such a PCE a (2× 2)-PCE. Our arguments above
show that G has a PCE iff it has a (2× 2)-PCE. Thus, in order to check whether G has a PCE, it suffice
to check whether it has a (2× 2)-PCE.

We do this exhaustively. For all i1, i2 ∈ {1, 2, . . . , n} with i1 6= i2 and all j1, j2 ∈ {1, 2, . . . ,m}
with j1 6= j2, we check whether G has a (2× 2)-PCE in which player 1 places positive probability only
on strategies i1 and i2, and player 2 places positive probability only on strategies j1 and j2. For each
choice of i1, i2, j1, j2, this question can be expressed as the following 2×2 simple bilinear programming

problem Pi1,i2,j1,j2 , where Ai1,i2,j1,j2 is the 2×2 matrix
[
A[i1, j1] A[i1, j2]
A[i2, j1] A[i2, j2]

]
, and Bi1,i2,j1,j2 is the

2× 2 matrix
[
B[i1, j1] B[i1, j2]
B[i2, j1] B[i2, j2]

]
:

maximize [x1 x2] Ai1,i2,j1,j2 [y1 y2]
T

subject to [x1 x2] Bi1,i2,j1,j2 [y1 y2]
T ≥ BU 2

x1 + x2 = 1
y1 + y2 = 1
x ≥ 0, y ≥ 0.

The first constraint ensures that player 2’s reward is at least BU 2; the remaining constraints ensure that
player 1 puts positive probability only on strategies i1 and i2, while player 2 puts positive probability
only on j1 and j2. If the optimal value of Pi1,i2,j1,j2 for some choice of of (i1, i2, j1, j2) is at least BU 1,
then the corresponding optimal solution (x, y) is a PCE of G. (Recall that a strategy profile s is a PCE
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if U1(s) ≥ BU 1, and U2(s) ≥ BU 2.) On the other hand, if the optimal value for each Pi1,i2,j1,j2 is
strictly less than BU 1, then G does not have a (2× 2)-PCE and so, by the arguments above, G does not
have a PCE.

The algorithm above must solve (n2 )× (m2 ) simple 2 bilinear programs. By Lemma 5.3, each can be
solved in constant time. Thus, the algorithm runs in polynomial time, as desired.

E Proof of Theorem 5.5

THEOREM 5.5. Given a 2-player gameG = ({1, 2}, A, u), we can compute a M-PCE in polynomial
time.

Proof. We start by computing BU 1 and BU 2, as in Theorem 5.4. Again, this takes polynomial time.

Recall that a M-PCE is an α-PCE such that for all α′ > α, there is no α′-PCE in G. Clearly, a
strategy that Pareto dominates an α-PCE must itself be an α-PCE. Thus, using Lemma 5.1, it easily
follows that there must be a M-PCE for G such that the support of both strategies involved is of size at
most 2. Call such a M-PCE a (2× 2)-M-PCE.

To compute a (2 × 2)-M-PCE, for each tuple (i1, i2, j1, j2), we compute the optimal α for which
there exists an α-PCE when player 1 is restricted to putting positive probability on actions i1 and i2, and
player 2 is restricted to putting positive probability in j1 and j2. Using the notation of Theorem 5.4, we
want to solve the following problemQi1,i2,j1,j2 , where d1(x1, x2, y1, y2) = [x1 x2]Ai1,i2,j1,j2 [y1 y2]

T−
BU 1 and d2(x1, x2, y1, y2) = [x1 x2] Bi1,i2,j1,j2 [y1 y2]

T − BU 2:

maximize min(d1(x1, x2, y1, y2), d2(x1, x2, y1, y2))
subject to x1 + x2 = 1

y1 + y2 = 1
x ≥ 0, y ≥ 0.

The objective function maximizes the α for which the strategy profile determined by [xi1 , xi2 ] and
[yi1 , yi2 ] is an α-PCE (recall that s is an α-PCE if α = min(U1(s) − BU 1, U2(s) − BU 2)). The
problem here is that since the objective function involves a min, this is not a bilinear program. However,
we can solve this problem by solving two simple bilinear programs of size 2 × 2, depending on which
of [xi1xi2 ]Ai1,i2,j1,j2 [yi1yi2 ]T − BU 1 and [xi1xi2 ]Ai1,i2,j1,j2 [yi1yi2 ]T − BU 2 is smaller. Specifically,
let Q′i1,i2,j1,j2 be the following simple bilinear program:

maximize d1(x1, x2, y1, y2)
subject to d1(x1, x2, y1, y2) ≤ d2(x1, x2, y1, y2)

x1 + x2 = 1
y1 + y2 = 1
x ≥ 0, y ≥ 0.

Let Q′′i1,i2,j1,j2 be the same bilinear program with the roles of d1 and d2 reversed. It is easy to see that
the larger of the solutions to Q′i1,i2,j1,j2 and Q′′i1,i2,j1,j2 is the solution to Qi1,i2,j1,j2 . It thus follows that
a M-PCE can be computed in polynomial time.
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F Proof of Theorem 5.6

THEOREM 5.6. Given a 2-player game G = ({1, 2}, A, u), we can compute a Pareto-optimal M-
PCE in polynomial time.

Proof. We start by computing a M-PCE s, as in Theorem 5.5. This takes polynomial time. We then
compute a Pareto-optimal strategy profile s∗ that Pareto dominates s. Clearly, s∗ is a Pareto-optimal
M-PCE, and we are done.

We now show that such an s∗ can be found in polynomial time. We first show that it is impossible
to have both U1(s

∗) > U1(s) and U2(s
∗) > U2(s). To see why, let αs be the greatest α such that s is an

α-PCE. If U1(s
∗) > U1(s) and U2(s

∗) > U2(s), then s∗ is an α′-PCE for some α′ such that α′ > αs,
a contradiction to s being a M-PCE. Therefore, for s∗ to Pareto dominate s, either U1(s

∗) = U1(s) and
U2(s

∗) ≥ U2(s), or U1(s
∗) ≥ U1(s) and U2(s

∗) = U2(s). It then follows that to find s∗, we just need
to solve the following two bilinear programs Q1 and Q2; the solution which Pareto dominates the other
solution is then Pareto optimal (if neither Pareto dominates the other, then both are Pareto-optimal).
Intuitively, Q1 finds a strategy profile that maximizes player 1’s reward while player 2 gets no less than
what she gets in s; and Q2 finds one that maximizes player 2’s reward while player 1 gets no less than
what he gets in s.

Q1 is the following bilinear program:

maximize sT1 As2
subject to sT1 Bs2 ≥ U2(s)∑n

l=1 s1[l] = 1∑m
l=1 s2[l] = 1

s1, s2 ≥ 0.

Q2 is defined similarly, but interchanging A and B, and replacing U2 by U1.

We can use techniques similar to those used in Theorem 5.4 to reduce both Q1 and Q2 to a polyno-
mial number of simple bilinear programs. By Lemma 5.3, each simple bilinear program can be solved
in constant time; thus both Q1 and Q2 can be solved in polynomial time, as desired.

G Minimax Value in 2-player games

Theorem G.1. Given a 2-player game G = ({1, 2}, A, u), we can compute mm1(G) and mm2(G) in
polynomial time.

Proof. Suppose that G = ({1, 2}, A, u), where A = A1×A2, |A1| = n, |A2| = m, u1 is characterized
by the payoff matrix A, and u2 is characterized by the payoff matrix B.

To compute mm1(G), for each i ∈ {1, . . . , n}, we solve the following linear program Pi:

minimize A[i, ·] s2
subject to A[i, ·] s2 ≥ A[j, ·] s2 for all j ∈ {1, . . . n}∑m

l=1 s2[l] = 1
s2 ≥ 0.
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Suppose that ri is the optimal value of Pi (if Pi has a feasible solution). Since Pi is a linear program, ri
can be computed in polynomial time. Intuitively, ri is the minimum reward player 1 gets when action ai
is a best response to player 2’s strategy. (The first constraint ensures that ai is a best response for player
1 to player 2’s strategy.)

It follows that mm1(G) = minni=1 ri, and can be computed in polynomial time; mm2(G) can be
computed similarly.
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