
LEARNING IN THE PRESENCE OF UNAWARENESS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Nan Rong

May 2016

c© 2016 Nan Rong

ALL RIGHTS RESERVED

LEARNING IN THE PRESENCE OF UNAWARENESS

Nan Rong, Ph.D.

Cornell University 2016

Markov decision processes (MDPs) are widely used for modeling decision-making problems

in robotics, automated control, and economics. Traditional MDPs assume that the decision

maker (DM) knows all states and actions. However, this may not be true in many situations of

interest. We define a new framework, MDPs with unawareness (MDPUs), which allows for the

possibility that a DM may not be aware of all possible actions. We provide a complete charac-

terization of when a DM can learn to play near-optimally in an MDPU, and give an algorithm

that learns to play near-optimally when it is possible to do so, as efficiently as possible. In

particular, we characterize when a near-optimal solution can be found in polynomial time.

We formalize decision-making problems in robotics and automated control using continu-

ous MDPs and actions that take place over continuous time intervals. We then approximate the

continuous MDP using finer and finer discretizations. Doing this results in a family of systems,

each of which has an extremely large action space, although only a few actions are “interest-

ing”. This can be modeled using MDPUs, where the action space is much smaller. As we show,

MDPUs can be used as a general framework for learning tasks in robotic problems. We prove

results on the difficulty of learning a near-optimal policy in an an MDPU for a continuous task.

We apply these ideas to the problem of having a humanoid robot learn on its own how to walk.

Finally, we consider the scenario in which the DM has a limited budget for solving the

problem on top of unawareness. In order to deal with such problems, we define a model called

MDPUs with a prior and a budget (MDPUBs) that considers both unawareness and a limited

budget. We also consider the problem of learning to play approximately optimally in a subclass

of MDPUBs called budgeted learning problems with unawareness (BLPUs), which are multi-

armed bandit problems in which there may be arms that the DM is unaware of. We provide

a policy that is 0.25c-optimal for BLPUs, where c is a constant determined by the probability

of discovering a new arm and the probability of there being undiscovered arms, that can be

computed in polynomial time.

BIOGRAPHICAL SKETCH

Born in Wuhan, Nan Rong is the second child of her family. She went to Wuhan Foreign

Language School in 1994 for middle school and high school. She obtained her Bachelor of

Computing (w. first-class honors) in Computer Engineering from the National University of

Singapore (NUS) in 2005, and obtained her Master of Science in Computer Science from the

Singapore-MIT Alliance in 2006. She worked as a research engineer at the Department of

Electrical and Computer Engineering in NUS for one year in 2007. She is currently a PhD

candidate in Computer Science at Cornell under the supervision of Professor Joseph Halpern.

Her research interests include artificial intelligence, algorithms, robotics, and game theory. She

is passionate in theorem proving and working with robots.

iii

To my parents.

iv

ACKNOWLEDGEMENTS

Firstly, I would like to thank my advisor, Joe Halpern, for his enormous patience, encourage-

ments and support. His knowledge, foresight, and sharpness have guided me through all the

time of my research, and has made me a better researcher. The methodology he uses to examine

models and to break down workable solutions to retain only their essential elements is impres-

sive, and have influenced me in many ways of viewing problems. I have learned many things

from him, among which the property of never give up. I would also like to thank Ashutosh

Saxena for his ideas and passions for robotic research. Without his participation, we could not

have initiated the robotic experiments.

I would like to express my sincere gratitude to Bart Selman for inspiring suggestions and

comments on the research, to Bobby Kleinberg for valuable discussions on budgeted learning

and the continuous-time MDP model, and to Larry Blume for his great classes on Microeco-

nomics and questions on unawareness. I would also like to thank David Hsu, Lee Wee Sun,

Ian Kash, Bao-Toan Nguyen, Andrew Perrault, and Jonathan Diamond.

Finally, I want to thank my parents for their love and support, to Mr. Qin Mingming for the

novels he wrote, his encouragements and supports, and to everyone who cares about me.

This work was supported in part by NSF grants IIS-0534064, IIS-0812045, and IIS-

0911036, by AFOSR grants FA9550-08-1-0438 and FA9550-09-1-0266, and by ARO grant

W911NF-09-1-0281.

v

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . iv
Acknowledgements . v
Table of Contents . vi
List of Tables . viii
List of Figures . ix

1 Introduction 1

2 MDPs with Unawareness 10
2.1 Introduction . 10
2.2 Preliminaries . 14

2.2.1 MDPs . 15
2.2.2 The RMAX algorithm . 17

2.3 MDPs with Unawareness . 21
2.4 Impossibility Results and Lower Bounds . 39
2.5 Learning to Play Near-Optimally . 47
2.6 An Application: Learning Bipedal Walking Using MDPUs 59
2.7 Conclusion . 59

3 MDPs with Unawareness in Robotics 61
3.1 Introduction . 61
3.2 Analyzing robotic problems as MDPUs . 63
3.3 Humanoid Robot Walking . 71

3.3.1 The continuous MDP . 71
3.3.2 Discretizations . 73
3.3.3 Experiments . 76

3.4 Related Work . 78
3.5 Conclusion . 82

4 Budgeted Learning with Unawareness 83
4.1 Introduction . 83
4.2 Preliminaries . 85

4.2.1 The (α, β) distribution . 86
4.2.2 The budgeted learning problem . 86

4.3 MDPUBs and BLPUs . 88
4.4 An approximately optimal policy for BLPUs 92

vi

5 Conclusion 118

A Proofs for Theorems in Chapter 2 120
A.1 Proof of Theorem 2.5.2 . 120
A.2 Proof for Theorem 2.5.3 . 140

B Proofs for Theorems in Chapter 3 144
B.1 Proof for Theorem 3.2.2 . 144
B.2 Proof for Theorem 3.2.1 . 147

vii

LIST OF TABLES

3.1 Performance comparisons. 75

viii

LIST OF FIGURES

2.1 The RMAX algorithm. 20
2.2 Video game scene. 31
2.3 An example path for RC car driving. 35
2.4 The URMAX algorithm. 52

3.1 The arena with the robot at the center; and the robot. 72
3.2 A backward gait (from left to right). 76
3.3 A forward gait (from left to right). 76

4.1
∑k′

j=1(1 − m j−1 − w j−1)r′i j
. 111

B.1 The diagonal execution of URMAX. 145

ix

CHAPTER 1

INTRODUCTION

People have motives and thoughts of which they are unaware. –Albert Ellis

In decision making, standard models such as Markov decision processes (MDPs) [3; 26;

36] often assume that the decision maker (DM) knows the complete set of states and actions.

Unfortunately, in many cases, the decision maker (DM) does not know the state space, and is

unaware of some possible actions she can perform. For example, before evidence was found

on September 28th, 2015, scientists were unaware that there is liquid water on Mars [5], which

means the Mars rover was unaware of certain states and actions on the planet; also, someone

buying insurance may not be aware of all possible contingencies; a mathematician trying to

prove a math problem may not be aware of all possible proof techniques. This leads us to the

problem this thesis aims to solve – how to use mathematical models to capture unawareness in

decision making problems and learn to play optimally when there is unawareness.

Two types of unawareness are relevant here - unawareness in states (e.g., in the first and

second events above) and unawareness in actions (e.g., in the third event). The fact that the DM

may not be aware of all states does not cause major problems. If an action leads to a new state

and the set of possible actions is known, we can use standard techniques (discussed below) to

decide what to do next. The more interesting issue comes in dealing with actions that the DM

may not be aware of. If the DM is not aware of her lack of awareness then it is clear how to

proceed—we can simply ignore these actions. We are interested in a situation where the DM

realizes that there are actions (and states) that she is not aware of, and thus will want to explore

the MDP. In this thesis, we propose a model that captures this by a special explore action. As

a result of playing this action, the DM might become aware of more actions, whose effect she

1

can then try to understand.

We have been deliberately vague about what it means for a DM to be “unaware” on an

action. We have in mind a setting where there is a (possibly large) space A∗ of potential actions.

For example, in a video game, the space of potential actions may consist of all possible inputs

from all input devices combined (e.g., all combinations of mouse movements, presses of keys

on the keyboard, and eye movements in front of the webcam); if a DM is trying to prove a

theorem, at least in principle, all possible proof techniques can be described in English, so the

space of potential actions can be viewed as a subset of the set of English texts. The space

A of actual actions is the (typically small) subset of A∗ that are the “useful actions”. For

example, in a video game, these would be the combinations of arrow presses (and perhaps

head movements) that have an appreciable effect on the game. Of course, A∗ may not describe

how the DM conceives of the potential acts. For example, a first-time video-game player may

consider the action space to include only presses of the arrow keys, and be completely unaware

that eye movement is an action. Similarly, a mathematician trying to find a proof probably does

not think of herself as searching in a space of English texts; she is more likely to be exploring

the space of “proof techniques”. A sophisticated mathematician or video game player will have

a better understanding of the space that she views herself as exploring. Moreover, the space of

potential actions may change over time, as the DM becomes more sophisticated. Thus, we do

not explicitly describe A∗ in our formal model, and abstract the process of exploration by just

having an explore action. (It actually may make sense to have several different explore actions,

with different properties, although we do no consider that possibility in this paper.)

This type of exploration occurs all the time. In video games, first-time players often try

to learn the game by exploring the space of moves, without reading the instructions (and thus,

without being aware of all the moves they can make). Indeed, in many games, there may

2

not be instructions at all (even though players can often learn what moves are available by

checking various sites on the web). Mathematicians trying to generate new approaches to

proving a theorem can be viewed as exploring the space of proof techniques. More practically,

in robotics, if we take an action to be a “useful” sequence of basic moves, the space of potential

actions is often huge. For instance, most humanoid robots (such as the Honda Asimo robot

[48]) have more than 20 degrees of freedom; in such a large space, while robot designers can

hand-program a few basic actions (e.g., standing up, sitting down, or walking with a fixed

gait), it is practically impossible to do so for other general scenarios (e.g., learning various

gaits). Conceptually, it is useful to think of the designer as not being aware of the actions that

can be performed. Exploration is almost surely necessary to discover new actions necessary to

enable the robot to perform the new tasks.

Note that there are two senses of unawareness here. In the first sense, a DM is unaware

of an action if it is not in his potential action space; roughly speaking, it is not on his radar

screen. For example, suppose that there is a proof that P , NP. In that case, leading computer

scientists and mathematicians are not aware of it, in this sense of awareness. Similarly, The

second sense of unawareness is prehaps closer to “aware but unaware it is relevant here” type;

the action is in the DM’s potential action space, but the DM has no idea whether the action is

useful. This is the case in the robotics example above: all the “useful” sequence of moves are

in the robot’s action space, but the robot does not know which of them are useful. Note that

the difference between the two depends in part on how we model the problem. If we take the

potential action space for proofs to be all finite length English texts, then a computer scientist

would not be aware of the proof that P , NP in the second sense; if we take the potential

action space to consist only of proofs that use current proof techniques (e.g., diagonalization)

and the actual proof uses a novel technique, then the computer scientist would not be aware of

the proof in the first sense. Our model, which we call MDPs with unawareness (MDPUs), is

3

useful for dealing with both senses of unawareness.

Given the prevalence of MDPUs, the problem of learning to play well in an MDPU becomes

of interest. There has already been a great deal of work on learning to play optimally in an

MDP. Kearns and Singh [31] gave an algorithm called E3 that converges to near-optimal play

in polynomial time. Brafman and Tennenholtz [4] later gave an elegant algorithm they called

RMAX that converges to near-optimal play in polynomial time not just in MDPs, but in a

number of adversarial settings. Can we learn to play near-optimally in an MDPU? (By “near-

optimal play”, we mean near-optimal play in the actual MDP.) In the earlier work, near-optimal

play involved learning the effects of actions (that is, the transition probabilities induced by the

action). In our setting, the DM still has to learn the transition probabilities, but also has to learn

what actions are available.

Perhaps not surprisingly, we show that how effectively the DM can learn optimal play in

an MDPU depends on the probability of discovering new actions. For example, if it is too low,

then we can never learn to play near-optimally. If it is a little higher, then the DM can learn to

play near-optimally, but it may take exponential time. If it is sufficiently high, then the DM can

learn to play near-optimally in polynomial time. We give an expression whose value, under

minimal assumptions, completely characterizes when the DM can learn to play optimally, and

how long it takes. Moreover, we show that a modification of the RMAX algorithm (that we call

URMAX) can learn to play near-optimally if it is possible to do so. Note that, for the settings

of parameters for which URMAX learns to play near-optimally in polynomial time, the policy

that it learns to play is quite simple; it is in fact linear in the relevant parameters.

There is a subtlety here. Not only might the DM not be aware of what actions can be

performed in a given state, she may be unaware of how many actions can be performed. Thus,

for example, in a state where she has discovered five actions, she may not know whether she

4

has discovered all the actions (in which case she should not explore further) or there are more

actions to be found (in which case she should). All our lower bounds and impossibility results

hold even when the DM knows that there is only one action to be discovered. (For example, if

the action to be discovered is a proof that P , NP, the DM may know that the action has a high

reward; she just does not know what that action is.) On the other hand, URMAX works even if

the DM does not know how many actions there are to be discovered.

Having defined MDPUs and analyzed the complexity of learning to play near-optimally in

MDPUs, we would like to show that the model can be applied to real problems. In order to do

so, we apply MDPUs to robotics and automated control problems. One difficulty of doing so

lies in the fact that the state space and action space of such problems usually being continuous.

To find appropriate policies, we typically discretize both states and actions. However, we do

not know in advance what level of discretization is good enough for getting a good policy.

Moreover, in the discretized space, the set of actions is huge. However, relatively few of

the actions are “interesting”. For example, when flying a robotic helicopter, only a small

set of actions lead to useful flying techniques; an autonomous helicopter must learn these

techniques. Similarly, a humanoid robot needs to learn various maneuvers (e.g., walking or

running) that enable it to move around, but the space of potential actions that it must search to

find a successful gait is huge, while most actions result in the robot losing control and falling

down. In these applications, we can think of the DM (e.g., a humanoid robot) as being unaware

of which actions are the useful actions, and thus can model what is going on using an MDPU.

We model such problems using a new model of continuous MDPs where actions are per-

formed over a continuous duration of time. Although many problems fit naturally in our con-

tinuous MDP framework, and there has been a great deal of work on continuous-time MDPs,

our approach seems new, and of independent interest. (See the discussion in Section 3.4.) It

5

is hard to find near-optimal policies in continuous MDPs. A standard approach is to use dis-

cretization. We use discretization as well, but our discrete models are MDPUs, rather than

MDPs, which allows us both to use relatively few actions (the “interesting actions”), while

taking into account the possibility of there being interesting actions that the DM is unaware

of. We would like to find a discretization level for which the optimal policy in the MDP un-

derlying the approximating MDPU provides a good approximation to the optimal policy in the

continuous MDP that accurately describes the problem, and then find a near-optimal policy in

that discretized MDPU.

We extend and generalize the above results in the complexity of learning to play near-

optimally, so as to apply them to the continuous problems. We characterize when brute-force

exploration can be used to find a near-optimal policy in our setting, and show that a variant

of the URMAX algorithm can find a near-optimal policy. We also characterize the complexity

of learning to play near-optimally in continuous problems, when more “guided” exploration is

used.

We apply MDPUs to solve a real robotic problem: to enable a humanoid robot to learn

walking on its own using simulations. In our experiment, the robot learned various gaits at

multiple discretization levels, including both forward and backward gaits; both efficient and

inefficient gaits; and both gaits that resemble human walking, and those that do not.

Having defined the MDPU model and applied it to a real robotic problem, we examine the

problem of learning to play near-optimally in MDPUs more closely. When we analyzed the

complexity of learning above, we assumed that the DM has unlimited budget (i.e., the DM

can make unlimited number of moves). This may not hold in practice where there is usually

a limited budget in time. What if the DM can make only a fixed number of moves? More

specifically, even if the DM can learn to play optimally in polynomial time, this is not helpful

6

if the DM can make only 10 moves. Notice that all the examples above remain of interest if we

are given a budget (i.e., a bound on the number of moves that can be made). Indeed, they are

arguably of even more practical interest. The Mars rover has limited time to explore the Mars

and to carry out its tasks; the insurance buyer has limited time to make the decision; and the

mathematician has limited time to prove the math problem.

There has been work on budgeted learning without unawareness (i.e., where all actions are

known in advance) [15; 18; 37; 38]. Madani et al. [38] first defined the budgeted learning

problem: the problem of learning to play nearly optimally, given a budget. Much of the work

on this problem has been done in the context of multi-armed bandits. But now the meaning of

“near-optimal” is somewhat different than in the context of above. Rather than there being an

underlying “true” multi-armed bandit problem (with a probability of success for each arm), in

which case the goal would be to learn an arm with the highest expected reward (to the extent

possible, given the budget), it is assumed that the DM has a prior probability on the expected

reward of each arm. Moreover, it is assumed that each arm pays off either 1 (“success”) or

0 (“failure”), so the expected reward is just the expected success probability. If the budget

is limited, it is clearly unreasonable to expect optimal performance. Thus, given a budget h,

the goal is to find a policy whose expected reward is the best among all policies that use only

h steps, where the expectation is taken with respect to the DM’s beliefs. Madani et al. [38]

proved that the problem of finding an optimal policy is NP-hard. Guha and Munagala [18] and

Goel et al. [15] each gave a polynomial-time algorithm for the budgeted learning problem that,

given a budgeted learning problem B, returns an approximately optimal policy for B, that is, a

policy whose expected reward is within a constant factor of that of the optimal policy for B.

As we observed above, in many cases of interest, not all the relevant actions are known

in advance. In this paper, we consider the budgeted learning problem in the presence of un-

7

awareness. We define this formally by considering a variant of MDPUs. There are two key

differences: we add a budget and, rather than assuming that there is a “true” underlying MDP,

we assume a prior distribution over possible MDPs to get what we call MDPs with unaware-

ness, a prior, and a budget (MDPUBs). We now take an optimal policy in an MDPUB with

budget h to be a policy that gives the highest expected reward among all policies that run in

h steps, where the expected reward of a policy π is taken over the probability on the possible

outcomes of running π for h steps (see Section 4.3 for a discussion).

There are a number of subtleties involved with making this precise. For example, what

exactly does it mean for a DM to put a positive probability on an MDP that involves actions

that the DM is not aware of? The DM can consider an MDP that includes such actions possible,

but cannot play such actions. Because we allow such actions, the notion of optimal policy used

above is different from that used here, even in the special case of an MDPUB M′ that places

probability 1 on a single MDP M (which we can think of as the “true” MDP) and has an infinite

budget.

In this thesis, like the earlier literature on budgeted learning, we focus on multi-armed

bandits. Moreover, like the earlier literature, we assume that the DM’s beliefs about the success

probability of each arm is given by an (α, β) prior (also known as a beta density) [11] and that

the success probability of the arms are independent. Without unawareness, given a policy

π, this is enough to determine the probability on the outcomes of π, and hence the expected

reward of π. In our setting, we need more information. Specifically, we need to know (a) the

probability of there being a new arm; (b) the success probability of new arms, if a new arm is

discovered; and (c) the terms D(1, t) described above, which give the probability of discovering

a new arm if there is a new arm to be discovered after having played explore t times since an

arm was last discovered. We call this restricted class of MDPUBs budgeted learning problems

8

with unawareness (BLPUs). We provide an algorithm that, given a BLPU B returns a policy π

that is approximately optimal for B in time polynomial in the number of arms initially known

in B and the budget.

The rest of the thesis is organized as follows. In Chapter 2, we define MDPUs, analyze the

complexity of learning to play near-optimally in MDPUs, and present the URMAX algorithm

that computes a near-optimal policy for MDPUs in polynomial time whenever such a policy

can be computed in polynomial time. (Chapter 2 is taken from [20] and [21], joint with Joseph

Y. Halpern and Ashutosh Saxena.) In Chapter 3, we show that MDPUs can be used to solve real

problems by applying them to robotic problems. We describe in detail how robotic problems

can be modeled as MDPUs, and then solved by the URMAX algorithm. We give an example

of such applications, in which our approach enabled a DARwIn-OP robot to learn to walk on

its own. (Chapter 3 is taken from [46], joint with Joseph Y. Halpern and Ashutosh Saxena.) In

Chapter 4, we define the models of MDPUBs and BLPUs for problems where there are both

unawareness and a limited budget. We provide an algorithm that computes an approximately-

optimal policy for BLPUs in polynomial time. (Chapter 4 is taken from [45], joint with Joseph

Y. Halpern.)

9

CHAPTER 2

MDPS WITH UNAWARENESS

Nobody is bored when he [or she] is trying to make something that is beautiful, or

to discover something that is true. –Willian Ralph Inge

2.1 Introduction

Markov decision processes (MDPs) [3; 26; 36] have been used in a wide variety of settings

to model decision making. The description of an MDP includes a set S of possible states and

a set A of actions. Unfortunately, in many decision problems of interest, the decision maker

(DM) does not know the state space, and is unaware of possible actions she can perform. For

example, someone buying insurance may not be aware of all possible contingencies; someone

playing a video game may not be aware of all the actions she is allowed to perform nor of all

states in the game.

The fact that the DM may not be aware of all states does not cause major problems. If

an action leads to a new state and the set of possible actions is known, we can use standard

techniques (discussed below) to decide what to do next. The more interesting issue comes in

dealing with actions that the DM may not be aware of. If the DM is not aware of her lack

of awareness then it is clear how to proceed—we can simply ignore these actions. We are

interested in a situation where the DM realizes that there are actions (and states) that she is

not aware of, and thus will want to explore the MDP. We model this by using a special explore

action. As a result of playing this action, the DM might become aware of more actions, whose

effect she can then try to understand.

10

We have been deliberately vague about what it means for a DM to be “unaware” on an

action. We have in mind a setting where there is a (possibly large) space A∗ of potential actions.

For example, in a video game, the space of potential actions may consist of all possible inputs

from all input devices combined (e.g., all combinations of mouse movements, presses of keys

on the keyboard, and eye movements in front of the webcam); if a DM is trying to prove a

theorem, at least in principle, all possible proof techniques can be described in English, so the

space of potential actions can be viewed as a subset of the set of English texts. The space

A of actual actions is the (typically small) subset of A∗ that are the “useful actions”. For

example, in a video game, these would be the combinations of arrow presses (and perhaps

head movements) that have an appreciable effect on the game. Of course, A∗ may not describe

how the DM conceives of the potential acts. For example, a first-time video-game player may

consider the action space to include only presses of the arrow keys, and be completely unaware

that eye movement is an action. Similarly, a mathematician trying to find a proof probably does

not think of herself as searching in a space of English texts; she is more likely to be exploring

the space of “proof techniques”. A sophisticated mathematician or video game player will have

a better understanding of the space that she views herself as exploring. Moreover, the space of

potential actions may change over time, as the DM becomes more sophisticated. Thus, we do

not explicitly describe A∗ in our formal model, and abstract the process of exploration by just

having an explore action. (It actually may make sense to have several different explore actions,

with different properties, although we do no consider that possibility in this paper.)

This type of exploration occurs all the time. In video games, first-time players often try

to learn the game by exploring the space of moves, without reading the instructions (and thus,

without being aware of all the moves they can make). Indeed, in many games, there may

not be instructions at all (even though players can often learn what moves are available by

checking various sites on the web). Mathematicians trying to generate new approaches to

11

proving a theorem can be viewed as exploring the space of proof techniques. More practically,

in robotics, if we take an action to be a “useful” sequence of basic moves, the space of potential

actions is often huge. For instance, most humanoid robots (such as the Honda Asimo robot

[48]) have more than 20 degrees of freedom; in such a large space, while robot designers can

hand-program a few basic actions (e.g., standing up, sitting down, or walking with a fixed

gait), it is practically impossible to do so for other general scenarios (e.g., learning various

gaits). Conceptually, it is useful to think of the designer as not being aware of the actions that

can be performed. Exploration is almost surely necessary to discover new actions necessary to

enable the robot to perform the new tasks.

Note that there are two senses of unawareness here. In the first sense, a DM is unaware

of an action if it is not in his potential action space; roughly speaking, it is not on his radar

screen. For example, suppose that there is a proof that P , NP. In that case, leading computer

scientists and mathematicians are not aware of it, in this sense of awareness. Similarly, The

second sense of unawareness is prehaps closer to “aware but unaware it is relevant here” type;

the action is in the DM’s potential action space, but the DM has no idea whether the action is

useful. This is the case in the robotics example above: all the “useful” sequence of moves are

in the robot’s action space, but the robot does not know which of them are useful. Note that

the difference between the two depends in part on how we model the problem. If we take the

potential action space for proofs to be all finite length English texts, then a computer scientist

would not be aware of the proof that P , NP in the second sense; if we take the potential

action space to consist only of proofs that use current proof techniques (e.g., diagonalization)

and the actual proof uses a novel technique, then the computer scientist would not be aware of

the proof in the first sense. Our model is useful for dealing with both senses of unawareness.

Given the prevalence of MDPUs—MDPs with unawareness, the problem of learning to

12

play well in an MDPU becomes of interest. There has already been a great deal of work on

learning to play optimally in an MDP. Kearns and Singh [31] gave an algorithm called E3 that

converges to near-optimal play in polynomial time. Brafman and Tennenholtz [4] later gave an

elegant algorithm they called RMAX that converges to near-optimal play in polynomial time

not just in MDPs, but in a number of adversarial settings. Can we learn to play near-optimally

in an MDPU? (By “near-optimal play”, we mean near-optimal play in the actual MDP.) In the

earlier work, near-optimal play involved learning the effects of actions (that is, the transition

probabilities induced by the action). In our setting, the DM still has to learn the transition

probabilities, but also has to learn what actions are available.

Perhaps not surprisingly, we show that how effectively the DM can learn optimal play in

an MDPU depends on the probability of discovering new actions. For example, if it is too low,

then we can never learn to play near-optimally. If it is a little higher, then the DM can learn to

play near-optimally, but it may take exponential time. If it is sufficiently high, then the DM can

learn to play near-optimally in polynomial time. We give an expression whose value, under

minimal assumptions, completely characterizes when the DM can learn to play optimally, and

how long it takes. Moreover, we show that a modification of the RMAX algorithm (that we call

URMAX) can learn to play near-optimally if it is possible to do so. Note that, for the settings

of parameters for which URMAX learns to play near-optimally in polynomial time, the policy

that it learns to play is quite simple; it is in fact linear in the relevant parameters.

There is a subtlety here. Not only might the DM not be aware of what actions can be

performed in a given state, she may be unaware of how many actions can be performed. Thus,

for example, in a state where she has discovered five actions, she may not know whether she

has discovered all the actions (in which case she should not explore further) or there are more

actions to be found (in which case she should). All our lower bounds and impossibility results

13

hold even when the DM knows that there is only one action to be discovered. (For example, if

the action to be discovered is a proof that P , NP, the DM may know that the action has a high

reward; she just does not know what that action is.) On the other hand, URMAX works even if

the DM does not know how many actions there are to be discovered.

There has been a great deal of recent work on awareness in the game theory literature (see,

for example, [12; 13; 19; 24]). There has also been work on MDPs with a large action space

(see, for example [9; 23]), and on finding new actions once exploration is initiated [1]. None of

these papers, however, considers the problem of learning in the presence of lack of awareness;

we believe that we are the first to do so.

The rest of the paper is organized as follows. In Section 2.2, we review the work on learning

to play optimally in MDPs. In Section 2.3, we describe our model of MDPUs. We give our

impossibility results and lower bounds in Section 2.4. In Section 2.5, we present a general

learning algorithm (adapted from R-MAX) for MDPU problems, and give upper bounds. We

conclude in Section 2.7.

2.2 Preliminaries

In this section, we review the work on learning to play optimally in MDPs and, specifically,

Brafman and Tennenholtz’s R-MAX algorithm [4].

14

2.2.1 MDPs

An MDP is a tuple M = (S , A, gA, P,R), where S is a finite set of states; A is a finite set

of actions; gA : S → 2A, where gA(s) is the set of actions that can be performed at state s;

P : ∪s∈S ({s} × S × gA(s)) → [0, 1] is the transition probability function, where P(s, s′, a) is

the probability of going to state s′ given that the DM is in state s and action a is used; and

R : ∪s∈S ({s} × S × gA(s)) → IR is the reward function, where R(s, s′, a) gives the reward for

playing action a at state s and transition to s′. Since P is a (conditional) probability function,

we have
∑

s′∈S P(s, s′, a) = 1 for all s ∈ S and a ∈ A.

The expected average reward: A policy for an MDP (S , A, gA, P,R) is a function from his-

tories to actions in A. (Thus, we are implicitly restricting to deterministic policies here.) Given

an MDP M = (S , A, gA, P,R), let UM(s, π,T) denote the expected T -step undiscounted average

reward of policy π started in state s—that is, the expected total reward of running π for T steps,

divided by T . Policy π is an optimal T -step policy starting at s if UM(s, π,T) ≥ UM(s, π′,T)

for all policies π′.

We would like to define UM(s, π) as limT→∞UM(s, π,T); however, for an arbitrary pol-

icy π, this limit may not exist. However, note that UM(s, π,T) is bounded from below (by

mins,s′,a R(s, s′, a)). Thus, although limT→∞UM(s, π,T) may not exist,

lim inf
T→∞

UM(s, π,T) = lim
T→∞

inf
T ′>T

UM(s, π,T ′)

does; thus, following Brafman and Tennenholtz [4], we define UM(s, π) = lim infT→∞UM(s, π,T).

(Of course, lim infT→∞UM(s, π,T) = limT→∞UM(s, π,T) if the limit exists.) Finally, let

UM(π) = mins∈S UM(s, π).

15

The mixing time: For a policy π such that UM(π) = α, it may take a long time for π to get

an expected reward of α. For example, if getting a high reward involves reaching a particular

state s∗, and the probability of reaching s∗ from some state s is low, then the time to get the

high reward will be high. To deal with this, Kearns and Singh [31] argue that the running time

of a learning algorithm should be compared to the time that an algorithm with full information

takes to get a comparable reward. Define the ε-return mixing time of policy π to be the smallest

value of T such that π guarantees an expected reward of at least UM(π)− ε; that is, it is the least

T such that UM(s, π, t) ≥ UM(π) − ε for all states s and times t ≥ T . Let Π(ε,T) consist of all

policies whose ε-mixing time is at most T . Let Opt(M, ε,T) = maxπ∈Π(ε,T)(mins∈S UM(s, π,T)).

Thus, Opt(M, ε,T) is the best average reward over T steps that can be guaranteed by a policy

whose ε-mixing time is T , no matter which state it starts in.

Paths: Let M = (S , A, gA, P,R) be an MDP, and let π be a policy for M. A path in M is a

sequence ρ of state-action pairs followed by a final state:

ρ = (s1, a1), (s2, a2), . . . , (sT , aT), sT+1.

The probability that ρ is traversed in M when starting at state s and executing policy π is

Prπ,sM (ρ) = δs1(s)ΠT
k=1P(sk, sk+1, ak)δπ(sk)(ak),

where δx(y) = 1 if x = y, and 0 otherwise. The undiscounted average reward of path ρ in M is

UM(ρ) =
1
T

T∑
k=1

R(sk, sk+1, ak).

Define a T-path to be a path of length T , that is, a sequence of T state-action pairs followed

by a final state.

16

Definition 2.2.1: A policy π is (ε,T)-optimal for an MDP M if UM(π) ≥ Opt(M, ε,T) − ε, and

a reward r is (ε,T)-optimal for M if r ≥ Opt(M, ε,T) − ε. ut

2.2.2 The RMAX algorithm

RMAX [4] is a model-based near-optimal polynomial-time reinforcement learning algorithm

for zero-sum stochastic games, which also directly applies to standard MDPs. RMAX assumes

that the DM knows all the actions that can be played in the game, but needs to learn the

transition probabilities and reward function associated with each action. It does not assume

that the DM knows all states; new states might be discovered when playing actions at known

states. On the other hand, it does assume that the DM knows the number of states. RMAX

does not assume that the DM knows the ε-mixing time T . However, following Brafman and

Tennenholtz [4], we first present the algorithm under the assumption that T is known, and then

show how to remove this assumption.

RMAX uses an “explore or exploit” approach that is biased towards exploration. Given an

MDP M, let R∗max be the maximum possible reward in M, let Rmax be an upper bound on R∗max,

and let T be an estimate of the ε-return mixing time. RMAX gets T and Rmax as inputs, as well

as parameters ε, δ, |S | (the total number of states in the MDP), and s0 (the start state).

RMAX is described formally below. We briefly discuss some of its key features here; we

refer the reader to [4] for details:

• The initial approximation: RMAX proceeds iteratively. At each step, t gets a better and

better approximation to the true MDP M and the optimal policy π. The variable M′ is

used to keep track of the current approximation to M, and the variable π′ is used to keep

17

track of the current approximation to π. M′ is initialized to M0, where M0 has a dummy

state called sd, and its transition and reward functions are trivial: when an action a is

taken in any state s (including the dummy state sd), with probability 1 the DM transits to

sd and gets reward Rmax. The algorithm then sets π′ to an optimal T -step policy for M′

starting at the DM’s current state. For an MDP with N states and k actions, such a policy

can be computed using standard techniques (value iteration) in time O(N2kT) [47].

• Updating the approximation: Each iteration of RMAX goes through the outer loop in

the RMAX algorithm once (see the psuecode in Figure 2.1). In each iteration, RMAX

plays π′, the current approximation to π, for T steps or until some state-action pair (s, a)

becomes known, whichever happens first. A state-action pair becomes known if it is

played sufficiently many times, as explained below. As π′ is played, statistics are col-

lected. Specifically, for each state s that is reached, the algorithm keeps track of the

number of times that a transition from s is taken, and the reward associated with that

transition. If the iteration terminates because the state-action pair (s, a) has just become

known, then the approximation M′ is updated by replacing the reward of (s, a) with the

observed reward.That is, if (s, a) has just become known, then we take R(s, s′, a) to be

the observed reward for playing a in state s and transitioning to s′, and take P(s, s′, a)

to be the fraction of times that a transition from s to s′ was observed when playing a in

state s.

At the end of each iteration, RMAX sets π′ to be a T -step optimal policy for the updated

M′, and continues to the next iteration.

• Becoming known: A state-action pair (s, a) becomes known when it has been played

enough time to learn a good approximation to the transition probabilities for action a in

state s, given that T is the ε-mixing time and Rmax ≥ R∗max, where “good” means with

probability at least 1 − δ
3Nk2 , all the estimated transition probabilities are within ε

2NTRmax

18

of the actual transition probabilities. Brafman and Tennenholtz show that the required

number of times to do this is polynomial in T , 1/ε, and 1/δ. This number is computed

in the algorithm as H1(T). Thus, a state-action pair becomes known when it has been

played H1(T) times.

• Termination: The algorithm terminates when it has run sufficiently many iterations to

attain an expected reward ≥ Opt(M, ε,T) − 2ε with probability at least 1 − δ. The num-

ber of iterations required is denoted H4(T) in the algorithm; again, it is polynomial in

T , 1/δ, and 1/ε. H4(T) is computed in terms of two other quantities, H2(T) and H3.

To understand H2(T) and H3, it is useful to partition the iterations of RMAX into explo-

ration iterations and exploitation iterations. If the policy π′i being played in iteration i is

(ε,T)-optimal for M, then i is an exploitation iteration (since the DM gets a near-optimal

expected reward in such iterations); otherwise, i is an exploration iteration. Brafman

and Tennenholtz [4] show that, in exploration iterations, RMAX explores (i.e., visits)

an unknown state-action pair with probability at least ε/Rmax. Of course, the DM does

not know in general which are the exploration iterations and which are the exploitation

iterations. H2(T) is the number of exploration iterations required so that, with high prob-

ability, RMAX learns an (ε,T)-optimal policy; H3 is the number of exploitation iterations

required so that, with high probability, the average reward of these H3 iterations is at least

Opt(M, ε,T) − 3ε/2. During the H2(T) exploration iterations, the DM may be getting a

low reward. Thus, extra exploitation iterations are required to make up for this period of

low reward. Brafman and Tennenholtz [4] showed that for 0 < θ < 1, in order to make

up the potential loss during the H2(T) exploration iterations, so as to get the average ex-

pected reward to within θ of the average reward that is available during the exploitation

iteration, we need an extra H2(T)Rmax/θ exploitation iterations. In our case, θ = ε/2, so

that the average reward is at least Opt(M, ε,TM)−3ε/2−ε/2 = Opt(M, ε,TM)−2ε. Thus,

19

we need H2(T)(1 + Rmax
ε/2) + H3 iterations altogether.

RMAX(|S |, |A|,Rmax,T, ε, δ, s0):

sc := s0

H1(T) := max((d 4|S |T Rmax
ε
e)3, d−6 ln3(δ

6|S | |A|2)e) + 1
H4(T) = H2(T)(1 + Rmax

ε/2) + H3, where
H2(T) = max((k2N(H1(T))3, 6(ln 3

δ
)3), H3 = max((2Rmax

ε
)3, 6(ln 3

δ
)3)

M′ := M0 (the initial approximation described in the main text)
Compute an optimal T -step policy π′ for M′ starting at sc

Repeat H4(T) times:
Play π′ starting at sc for T steps, or until some (s, a) has just become known and record the transitions
and rewards
if (s, a) has just become known (i.e., has been played H1(T) times)

then update M′ so that the transition probabilities for (s, a) are the observed frequencies, and the
rewards for playing (s, a) are those that have been observed (as described in the main text)

sc := the DM’s current state
Compute an optimal T -step policy π′ for M′ starting at sc

Return π′

Figure 2.1: The RMAX algorithm.

Brafman and Tennenholtz [4] show that RMAX(|S |, |A|,Rmax, T, ε, δ, s0) achieves an ex-

pected reward of at least Opt(M, ε,T) − 2ε with probability greater than 1 − δ, no matter what

state s0 the DM starts at, in time polynomial in |S |, |A|, Rmax, T , 1/δ, and 1/ε. What makes

RMAX work is that, in each iteration, it either uses a near-optimal policy with respect to the real

model (i.e., it exploits), or it visits an unknown state-action pair with constant probability (i.e.,

it explores). Brafman and Tennenholtz [4] showed that by running RMAX for H2(T) explo-

ration iterations, with probability 1 − 2δ/3, RMAX learns an (ε,T)-optimal policy. In addition,

as discussed above, it takes RMAX at most H3 exploitation iterations until, with probability

1 − δ/3, the average reward of these H3 exploitation iterations is at least Opt(M, ε,T) − 3ε/2;

and it takes a further H2(T)Rmax
ε/2 iterations until the algorithm attains an overall average reward

of at least Opt(M, ε,T)− 2ε. Thus, after H4(T) iterations, with probability 1− δ, RMAX attains

20

an expected reward of at least Opt(M, ε,T) − 2ε.

All this assumes that the ε-return mixing time T is known; it is an argument to the algo-

rithm. If the ε-return mixing time T is not known, we run the algorithm with T = 1, then

T = 2, T = 3, and so on. Sooner or later, we hit the right value of T ; from then on, RMAX

computes a policy that is near-optimal. We expand on this point in Section 2.5.

2.3 MDPs with Unawareness

Intuitively, an MDPU is like a standard MDP except that the player is initially aware of only a

subset of the complete set of states and actions. To reflect the fact that new states and actions

may be learned during the game, the model provides a special explore action. By playing

this action, the DM may become aware of actions that she was previously unaware of. The

model includes a discovery probability function characterizing the likelihood that a new action

is discovered. At any moment in game, the DM can perform only actions that she is currently

aware of.

Definition 2.3.1: An MDPU is a tuple M = (S , A, S 0, a0, gA, g0,D, P,R,G0), where

• S is the set of states in the underlying MDP;

• A is the set of actions in the underlying MDP;

• S 0 ⊆ S is the set of states that the DM is initially aware of;

• a0 < A is the explore action;

• gA : S → 2A, where gA(s) is the set of actions that can be performed at s other than a0

(we assume that a0 can be performed in every state);

21

• g0 : S 0 → 2A, where g0(s) ⊆ gA(s) is the set of actions that the DM is initially aware of

(i.e., that the DM can perform) at state s other than a0 (we assume that the DM is always

aware of a0);

• D : IN × IN × S → [0, 1] is the discovery probability function. D(j, t, s) gives the proba-

bility of discovering a new action by playing a0 in state s ∈ S given that there are j > 0

actions that have not yet been discovered at state s and a0 has already been played t − 1

times in s since the last new action was discovered, or since the beginning, if no new

action has yet been discovered (see below for further discussion);

• P : ∪s∈S ({s} × S × gA(s)) → [0, 1] is the transition probability function (as usual, we

require that
∑

s′∈S P(s, s′, a) = 1 if a ∈ gA(s));

• R : ∪s∈S ({s} × S × gA(s)) → IR+ is the reward function. We assume without loss of

generality that all rewards are non-negative. If not, then we can increase all rewards by a

constant so that all rewards become non-negative.1

• G0 ⊆ ∪s∈S 0({s}×S 0×g0(s)). Intuitively, G0 is the set of tuples for which the DM initially

knows the transition probability and reward function. (For simplicity, we assume that the

DM knows that transition probability and reward function for the same tuples.) We allow

G0 to be the empty set; this just says that the DM does not initially know the trasition

probability or reward for any transitions.

Let Mu = (S , A, gA, P,R) be the MDP underlying the MDPU M. ut

Given S 0 and g0, we define A0 = ∪s∈S 0g0(s); that is, A0 is the set of actions that the DM is

initially aware of.

1Our definition of MDPU in the earlier version included functions R+ and R−, the rewards for performing a0

and discovering (resp., not discovering) a new action. For ease of exposition, we omit these values here; our
theorems do not depend on them in any way.

22

Just like a standard MDP, an MDPU has a state space S , action space A, transition probabil-

ity function P, and reward function R.2 Note that we do not give the transition function for the

explore action a0 above; since we assume that a0 does not result in a state change (although new

actions might be discovered when a0 is played), for each state s ∈ S , we have P(s, s, a0) = 1.

The new features here involve dealing with a0. We need to quantify how hard it is to discover

a new action. Intuitively, this should in general depend on how many actions there are to be

discovered, and how long the DM has been trying to find a new action. For example, if the DM

has in fact found all the actions, then this probability is clearly 0.

As the notation suggests, while we are allowing the discovery probability D(j, t, s) to de-

pend on the current state s, the number t of times a0 has been played, and the number j of

actions there are to be discovered, we are assuming that it does not depend on anything else.

Among other things, this means that we are assuming that it does not depend on what actions

are played other than a0, and the order in which actions have been discovered. For example,

suppose that there is a state s where, initially, there are two undiscovered actions, say a1 and

a2. Suppose that, intuitively, a1 is easy to discover, and a2 is hard to discover. In this case, if a1

has been discovered and not a2, then we might expect that D(1, t, s) to be low, since a2 is hard

to discover, while if a2 has been discovered and not a1, then we might expect D(1, t, s) to be

relatively high. We cannot capture this in our present framework; thus, we implicitly assume

that all actions are equally hard to discover.

Similarly, it might in principle be the case that it is easier to discover an action a1 after

playing a3. Again, we are assuming that this is not the case. We are assuming that all that

affects the probability of discovering a1 is how many times the explore action a0 has been

played, and not what other actions are played, or the order in which they are played. While

2It is often assumed that the same actions can be performed in all states. Here we allow slightly more generality
by assuming that the actions that can be performed is state-dependent, where the dependence is given by g.

23

all these assumptions are admittedly quite strong, they are reasonable in many settings, and

help us gain an understanding of the impact of unawareness. Without such assumptions, even

defining the likelihood of discovering a new action seems to be quite difficult.

In order to explain the D function, we need to consider runs of the MDPU. Intuitively, a

run represents a possible execution of the MDPU, and records the set of states and actions that

the DM is aware of at every time step.

Definition 2.3.2: An extended state in MDPU M = (S , A, S 0, a0, gA, g0,D, P,R,G0) is a tuple

(S ′, h, s, a), where (a) S 0 ⊆ S ′ ⊆ S , (b) h : S ′ → 2A is a function such that g0(s′) ⊆ h(s′) for

s′ ∈ S 0 and h(s′) ⊆ gA(s′) for all s′ ∈ S , (c) s ∈ S ′, and (d) a ∈ h(s) ∪ {a0}. An MDPU run r is

a function from time (which we take to range over the natural numbers) to extended states. We

require that r(0) = (S 0, g0, s, a) for some s and a, denote r(t) as (S t, ht, st, at), and require that

ht(s′) = ht+1(s′) for s′ , st, ht(st) ⊆ ht+1(st), S t+1 = S t ∪ {st+1}, and ht+1(st) = ht(st) if at , a0. ut

Intuitively, an extended state records what happens at a specific time step, including the action

taken by the DM (this is the a component), the state that the DM is in (this is the s component),

and the DM’s awareness, specifically, the set of states and actions that the DM is aware of at

that time step (this is captured by the S ′ component and the h component; note that h describes

what actions that DM is aware of at each state of S ′). A run is a sequence of extended states.

Initially, the DM is aware of only the states in S 0 and the only actions that the DM is aware of

at a state s′ ∈ S 0 are the ones in g0(s′). That is why r(0) has the form (S 0, g0, s, a) for some

state s and action a. During a run, the DM’s awareness can change only if the DM performs

the explore action; moreover, if the explore action is performed at state s at time t, then at

time t + 1, only the DM’s awareness of actions at state s can change. Thus, we require that

ht(s′) = ht+1(s′) if s , s′ and that ht(s) = ht+1(s) if a , a0. Finally, the DM becomes aware of a

new state only if he reaches it, so S t+1 = S t ∪ {st}.

24

Note that each extended state includes a state-action pair, so a sequence of extended states

determines a sequence of state-action pairs. Thus, given an MDPU run r, every segment

r(n1), . . . , r(n2) of r determines a path ρ = (sn1 , an1), (sn1+1, an1+1), . . . , (sn2−1, an2−1), sn2 in the

MDP underlying the MDPU.

We can understand the D function in terms of a probability on runs. Note that such a

probability distribution must incorporate assumptions about how likely it is that a new action

will be discovered, given that a0 has been played. To define this probability, we need some

preliminary definitions.

Let s ∈ S , and let m′ ≥ m ≥ 0 be integers. For a sequence ~n = (n1, n2, . . . , nk) of integers

with k ≥ 0, 0 < n1 < n2 < . . . < nk, and 0 ≤ k ≤ |gA(s) − g0(s)|,3 let Γ~ns,m,m′ be the subset of

MDPU runs where the jth new action at state s is discovered the n jth time that a0 is played at s,

for j = 1, . . . , k, a0 is played at state s at least nk + m′ times, and the (k + 1)st new action is not

discovered on or before the (nk +m)th time that a0 is played at s. Note that by 0 < n1 < . . . < nk,

we are implicitly assuming that the DM can discover at most one new action at any given time.4

Also note that if k = 0, then ~n is just the empty sequence (); Γ
()
s,m,m′ is the subset of MDPU runs

where a0 is played at s at least m′ times, and no new action is discovered on or before the mth

time that a0 is played at s.

For ~n = (n1, n2, . . . , nk), let Γ~ns,−1 consist of the runs where the ith new action at state s is

discovered the nith time that a0 is played at s, for i = 1, . . . , k (with no constraints on how many

times a0 is played at s after the kth new action is discovered, or on when the (k + 1)st action

3In this paper, we follow the convention of using |A| to denote the size of set A. Recall that both gA(s) and
g0(s) are sets, so |gA(s) − g0(s)| is the size of gA(s) − g0(s).

4By changing the constraint of 0 < n1 < . . . < nk to 0 ≤ n1 ≤ . . . ≤ nk, D(j, t, s) allows multiple actions to
be discovered at a single step. All of our results continue to hold even if multiple action discovery is allowed at a
single step. However, since this add no insight, and makes the notation more clustered, we focus on our current
setting where at most one new action can be discovered at each time step.

25

is discovered). Let Γ~ns,−1,m′ be the set of runs in Γ~ns,−1 where a0 is played at least nk + m′ times

at s (with no constraints on when the (k + 1)st new action is discovered). Let Γ
()
s,−1,m′ be the set

of all MDPU runs where a0 is played at least m′ times. Note that Γ
()
s,−1,m′ = Γ

()
s,0,m′ . Moreover,

if k = 0, then Γ
()
s,−1 is the set of runs where no new actions at s are discovered before the DM

plays the explore action for the first time; thus, Γ
()
s,−1 consists of all MDPU runs.

Given a state s0 ∈ S , let Ls0 be the set of MDPU runs starting at state s0. A probability

Pr on Ls0 is compatible with D if, for all integers j with 0 ≤ j ≤ |gA(s) − g0(s)|, all integers u

with u ≥ 0, all integers t with t ≥ 0, and all increasing sequences ~n = (n1, n2, . . . , nk) where

k = |gA(s) − g0(s)| − j, ni ∈ IN, and Pr(Γ~ns,t−1,t+u ∩ Ls0) > 0, we have

D(j, t, s) = Pr(Γ~n·(nk+t)
s,−1,u | Γ

~n
s,t−1,t+u ∩ Ls0), (2.1)

where ~n · ~n′ is the result of appending ~n′ to the end of ~n (so that ~n · (nk + t) is the sequence

(n1, . . . , nk, nk + t)). Note that if ~n = (), then ~n · ~n′ = ~n′.

Thus, D(j, t, s) is the probability of discovering the (k + 1)st new action at s, conditional on

starting at s0, having found the ith new action at s the nith time that a0 is played, for i = 1, . . . , k,

and a0 being played at least nk + t + u times. For (2.1) to hold, it must be the case that this

conditional probability is independent of the sequence ~n, the state s0, and the integer u. In

the rest of this paper, we consider only distributions Pr on Ls0 that are compatible with D, so

we are assuming that these independence assumptions do in fact hold. These independence

assumptions are already implicit in the notation D(j, t, s). If the probability of discovering a

new action depends only on the state s, the number j of remaining undiscovered actions, and

the number t of times a0 has been played since the last new action was discovered, then, among

other things, it cannot depend on when the previous actions were discovered, or depend on the

initial state that the DM starts in, or depend on future events such as how many times a0 is

played in the future.

26

These assumptions are reasonable in many applications of interest. For example, given a

fixed potential action space, if we use an exploration strategy that explores the potential action

space uniformly at random, then the probability of discovering a new action at the tth time that

a0 is played after the ith new action is discovered is indeed independent of when the previous

actions were discovered, the start state, and how many times a0 will be played in the future, no

matter what policy is used. (Note that a policy decides when to explore, but cannot determine

the likelihood of the outcomes of exploration.)

However, the assumptions are not always reasonable. For example, when playing a video

game, compare the situation where the DM discovers the first three actions the first, second,

and third times that she plays the explore action to one where she discovers the first three

actions the 100th, 3,000th, and 10,000th times that she plays the explore action. In the first

situation, the DM is likely to feel optimistic that she will discover a fourth new action soon,

while in the second, the DM is likely to become discouraged, and consider it highly unlikely

that she will discover the fourth new action any time soon after the third. The history of when

previous actions were discovered may psychologically affect a DM’s discovery probability. If

the DM is insensitive to history (for example, if the DM is a robot), then the assumption that

D(j, t, s) is independent of when previous actions were discovered seems more reasonable.

To summarize the discussion thus far, to make sense of D(j, t, s), we need to assume a

probability Pr on Ls0 , the runs of the MDPU starting at state s0. But rather than giving Pr

explicitly when describing the MDPU, we just define D(j, t, s). The D function can be viewed

as putting constraints on Pr. There are two other sources of constraints on Pr: the policy used,

and the transition probability function. To make the first constraint precise, recall that a policy

maps histories to actions. Up to now, we have not defined a history in an MDPU formally. We

now do so.

27

Definition 2.3.3: A history x of length T in an MDPU M is a prefix of a run in M; formally,

it is a sequence of T extended states followed by a tuple (S ′T , hT , sT) such that there exists a

run l of M such that x(i) = l(i) for all i ∈ [0,T − 1], and l(T) = (S ′T , hT , sT , a) for some action

a ∈ hT (sT). ut

For a history x of length t in an MDPU M, let Cx,a be the set of MDPU runs r with prefix x

such that a is the action in r(t) (i.e., a is the action played at time t in r). A probability Pr on Ls0

is compatible with a policy π for M if Pr(Cx,a ∩ Ls0) = 0 for all histories x such that π(x) , a.

The second source of constraints on Pr is the transition probability function P of the MDP

underlying the MDPU M. Given a history x, let Pr(x) be the probability of the set of runs

extending x. A probability Pr on Ls0 is compatible with a transition probability function P if,

for all t > 0, all histories x of length t, and all actions a , a0, if x(t) = (S ′, h, s), then Pr(y |

x) = P(s, s′, a) where y is the history of length t + 1 such that y(i) = x(i) for all i = 0, . . . , t − 1,

y(t) = (S ′, h, s, a), and y(t + 1) = (S ′ ∪ {s′}, h, s′). The constraint says that Pr is compatible

with P if the probability of transitioning between extended states if an action a , a0 is played

is determined by the transition probability described by P. This constraint does not consider

transitions between extended states induced by a0; that is described by D. Given a state s0,

the discovery probability function D and the transition probability function P of an MDPU M,

and a policy π for M, it is easy to see that there is a unique probability distribution Pr on Ls0

compatible with D, π, and P. Thus, we talk sometimes about the probability on runs of an

MDPU M determined by M and a policy π.

Now that we have explained the D function, it is worth considering what we should assume

about it. The only assumption that we make is that D(j, t, s) is nondecreasing as a function

of j: with more actions available, it is easier to find a new one. This seems like a natural

assumption for all our applications. How D(j, t, s) varies with t depends on the problem. For

28

example, if the DM is searching for the on/off button on her new iPhone, which is guaranteed

to be found in a limited surface area, then D(j, t, s) should increase as a function of t. The more

possibilities have been eliminated, the more likely it is that the DM finds the button when the

next possibility is tested. On the other hand, if the DM is searching for a proof, then the longer

she searches without finding one, the more discouraged she gets; she will believe that it is more

likely that no proof exists. In this case, we would expect D(j, t, s) to decrease as a function of

t. Finally, if we think of the explore action as doing a random test in some space of potential

actions, the probability of finding a new action is a constant, independent of t.

In stating our results, we need to be clear about what the inputs to an algorithm for near-

optimal play are. We assume that S 0, g0 and G0 are always part of the input to the algorithm.

The reward function R is not part of the input; rather, it is part of what is learned. (We could

equally well assume that the values of R for all the actions and states that the DM is aware

of are included in the input; this assumption would have no impact on our results.) Brafman

and Tennenholtz [4] assume that the DM is given a bound on the maximum reward, but later

show that this information is not needed to learn to play near-optimally in their setting. Our

algorithm URMAX does not need to be given a bound on the reward either. Perhaps the most

interesting question is what the DM knows about A and S . Our lower bounds and impossibility

result hold even if the DM knows |S | and |gA(s)| for all s ∈ S . On the other hand, URMAX

requires neither |S | nor |gA(s)| for s ∈ S . That is, when something cannot be done, knowing the

size of the set of states and actions does not help; but when something can be done, it can be

done without knowing the size of the set of states and actions.

Formally, we can view the DM’s knowledge as the input to the learning algorithm. An

MDP M is compatible with the DM’s knowledge if all the parameters of M agree with the

corresponding parameters that the DM knows about. If the DM knows only S 0, g0, and G0

29

(we assume that the DM always knows at least this), then every MDP (S ′, A′, g′, P′,R′) where

S 0 ⊆ S ′, g0(s) ⊆ A′(s), P(s, s′, a) = P′(s, s′, a) and R(s, s′, a) = R′(s, s′, a) for all (s, s′, a) ∈ G0

is compatible with the DM’s knowledge. If the DM also knows |S |, then we must have |S ′| =

|S |; if the DM knows that S = S 0, then we must have S ′ = S 0. We use R∗max to denote the

maximum possible reward. Thus, if the DM knows R∗max, then in a compatible MDP, we have

R(s, s′, a) ≤ R∗max for all s, s′ ∈ S and a ∈ gA(s), with equality holding for some transition.

(The DM may just know a bound on R∗max, or not know R∗max at all.) Brafman and Tennenholtz

essentially assume that the DM knows |A|, |S |, and an upper bound on R∗max. They mentioned

that they believe the assumption that the DM knows an upper bound of R∗max can be removed.

It follows from our results that, in fact, the DM does not need to know any of |A|, |S |, or R∗max,

or even a bound on these quantities.

Our theorems talk about whether there is an algorithm for a DM to learn to play near-

optimally given some knowledge. We define “near-optimal play” by extending the definitions

of Brafman and Tennenholtz [4] and Kearns and Singh [31] to deal with unawareness. In an

MDPU, a policy is again a function from histories to actions, but now the action must be one

that the DM is aware of at the last state in the history. The DM can learn to play near-optimally

given a state space S 0 and some other knowledge if, for all ε > 0, δ > 0, T , and s ∈ S 0, the DM

can learn a policy πε,δ,T,s such that, for all MDPs M compatible with the DM’s knowledge, there

exists a time nM,ε,δ,T such that, with probability at least 1 − δ, UM(s, πε,δ,T,s, t) ≥ Opt(M, ε,T) −

ε for all t ≥ nM,ε,δ,T .5 The DM can learn to play near-optimally given some knowledge in

polynomial (resp., exponential) time if, there exists a polynomial (resp., exponential) function

f of six arguments such that we can take nM,ε,δ,T = f (T, |S |, |A|,R∗max, 1/ε, 1/δ).

5Note that we allow the policy to depend on the start state. However, it must have an expected reward that is
close to that obtained by M no matter what state M is started in.

30

We close this section with two detailed examples of how MDPUs can be used to model

real-world situation.

Example 2.3.4: Consider a video game, where the game area is in the shape of a box. Roughly

speaking, playing the game involves firing colored balls into the game area and clearing them

from the game. Balls come in three colors: red, yellow, and green. When the game starts, the

box has a red ball at the center of the box (as shown in Figure 2.2).

Figure 2.2: Video game scene.

The user controls the game using a mouse. When the user left-clicks the mouse and the

cursor is inside the game area (call such actions slc actions, for single left-click), a colored

ball is fired from the point marked A in the figure in the direction of the cursor; if the cursor

is outside the game area, then a left-click has no effect. Balls and walls are sticky, so if a ball

touches another ball, it sticks to that ball, and if a ball runs into a wall, it sticks to the wall.

However, if two balls of the same color touch, then they both disappear from the game. Once

a ball sticks to another ball or a wall, it stays there unless/until it is cleared from the game as

a result of being touched by a ball of the same color. The color of the next ball to be fired is

chosen at random. The user knows the color, so he can plan where to fire the next ball. The

user wins the game if removes all balls from the game area; he loses if the game area fills up

with balls.

31

There is one more possible action, which the user is initially not aware of: if the user

double right-clicks the mouse (call this action drc), the color of the next ball changes to a

random different color; double left-clicks and single right-clicks of the mouse have no effect.

Unaware here means “not on the user’s radar screen”; that is, initially, it does not occur to the

user that drc is a possible move in the game. (If it seems implausible that it does not occur

to the user that a double right-click could be a move in the game, consider a triple right-click

instead.) Clearly, the easiest way to win the game is to change the color of first ball to red using

double right-clicks, then to fire the ball at the red ball in the center of the game area, so that

both balls disappear. In order to do so, the player needs to discover the drc action.

The game can be formally described as an MDPU. The state space, action space, and tran-

sition probabilities are almost immediate from the informal description. Thus, we focus here

on elements that are new/different from the ones in the MDP model. We think of the explore

action a0 as an abstraction of trying out an action a∗ and deciding whether a∗ counts as a real

action in the game. For example, the user may try right-clicking the mouse in various locations,

or simultaneously pressing the left and right buttons of the mouse in various locations to see if

they have any effect. The user may also try double right-clicking the mouse and not notice that

this results in a change of color; that does not count as discovering a new action. The user adds

drc to the set of actions only when he realizes that it actually has an effect.6

Note that in this game it is not even clear what the the potential action space A∗ should

be. An arbitrary sequence of mouse clicks (left or right) together with an arbitrary cursor

movement could be a potential action. Moreover, if there is a video sensor, a head movement

or a facial expression could also be a potential action. Although, in principle, we could describe

the problem as an MDP with some large action space A∗, such a description is unlikely to be
6We are implicitly assuming that the user does not make mistakes here; for example, he does not mistakenly

view double left-clicking as an action. if he did make such a mistake though, it would not be a major problem.
He could add double left-clicking to the set of actions, and then discover that it has a trivial transition function.

32

useful, particularly since the exact choice of A∗ is hard to motivate. It is not obvious why

one choice for A∗ is better than another, and the appropriate choice may be user dependent.

(Certainly different users might try different actions.) Moreover, since a reasonable A∗ could be

huge, standard techniques for finding optimal policies for MDPs, which run in time polynomial

in the number of actions, are likely to be infeasible. MDPUs provide arguably a more useful

model, both because we are spared the need of deciding what A∗ should be, and because (as

we shall show), there are techniques for finding optimal policies that run in time polynomial in

the number of actual actions, rather than the potential actions.

Here is a formal description of the game as an MDPU:

• S = {s : s = (color, {(color, x, y), . . .})}. That is, the state of the game is described by the

color of the next ball and a set of tuples describing the color and the position of the balls

currently in the game area. For example, when the game starts, if the color of the next

ball is yellow, then the state of the game is (yellow, {(red, 0, 0)}), where, for convenience,

we take (0, 0) to be the coordinates of the center of the game area. Given a state s, we

use s[1] to denote the color of the next ball, and s[2] the game-area description, that is,

the location and color of all the balls in the game area.

• A = A0 ∪ {drc} where A0 consists of all actions of the form slc(x, y), which is a single

left-click with the cursor in position (x, y), and drc is a double right-click of the mouse.

• S 0 = S .

• gA(s) = A for all s ∈ S .

• g0(s) = A0 for all s ∈ S 0. That is, the user is initially unaware of the double right-click

action, but is aware of all the single left-click actions.

• a0: The process of trying out a potential action, and deciding whether it is a real action

in the game.

33

• P(s, s′, slc(x, y)) = 1/3 if s′[2] is the unique game-area position that results from s[2]

and action slc(x, y) given the rules above (the 1/3 arises because the next color is chosen

randomly); otherwise, P(s, s′, slc(x, y)) = 0.

• P(s, s′, drc) = 1/2 if s′[2] = s[2] and s′[1] , s[1]; otherwise P(s, s′, drc) = 0.

• There is some flexibility in how we define the reward function R. For simplicity, we as-

sume that it considers only whether a position is a winning or a losing position, although

we could take a more refined choice. Thus, we take R(s, s′, a) = 10 if s′[2] is a winning

position (i.e., there are no balls in the game area), we take R(s, s′, a) = −10 if s′[2] is a

losing position (i.e., the game area is full of balls), and otherwise, we take R(s, s′, a) = 0.

• Recall that D(j, t, s) is the probability that the user discovers a new action the tth time

that a0 is performed, given that j > 0 actions have not yet been discovered and the user

has not discovered a new action the previous t − 1 times that a0 was performed. Since

there is only one action to be discovered in this game, namely, drc, we care only about

D(1, t, s), that is, the likelihood of the user discovering the double right-click action if

he has not discovered it in his first t − 1 exploration moves. Clearly this depends on the

user (and perhaps on how often the user has played the game before), although we might

expect that, for large values of t, D(1, t, s) is likely to be close to 0, since if the user has

not discovered the double right-click action after exploring for a large number of moves,

it is likely that the game area is full, and the user has lost the game.

Experiments could be carried out to determine plausible values for D(1, t, s). A video

game designer might well be interested in this probability, since the interest in the game

depends on it. If the probability is too low, perhaps a double left-click action might be

used instead, since it might be easier to discover; if it is too high, a triple right-click

might be required.

34

Example 2.3.5: When building a robotic remote control (RC) car, we need to learn a policy that

enables the car to drive on a desired path successfully. (See Figure 2.3 for an example path.)

Some parts of these paths are smooth; the car can follow them using simple familiar actions,

such as smoothly turning the steering wheel. Other parts of the path involve sharp turns. The

best way to deal with them is often by drifting, a driving technique frequently used in car

races to make fast sharp turns via slipping. Drifting requires taking a series of precisely-timed

actions.

Figure 2.3: An example path for RC car driving.

Suppose that we preprogram the RC car with a few basic standard actions, but expect it to

learn how to perform drifting actions. Then the problem of driving through a predefined path

can be viewed as an MDPU, where the car is unaware of the drifting actions. The actions that

the robotic car is aware of (the actions that are preprogrammed) include going straight forward

or backward at a certain speed, or turning at a fixed slow speed at various angles (which results

in turns with a large radius, rather than sharp turns). The state of the car includes its position,

35

orientation, velocity, and angular velocity. The goal is to let the car navigate the path as quickly

as possible, while staying on the path (there are penalties for going off path). Since all paths

contain sharp turns that are impossible to complete while staying in path without learning

drifting actions, the car gets a low reward if only basic actions are used.

In this game, the space A∗ of potential actions is somewhat clearer than in the videogame.

Roughly speaking, it could consist of arbitrary car-control sequence over a certain interval of

time. There are issues of the level of granularity at which to model actions, and how long an

interval of time we should consider, but these can be dealt with. Once we have fixed A∗, the

problem can be modeled as an MDP using A∗ as the action set. But again, A∗ is huge. A∗

does have some structure that can be exploited—we can view the actions in A∗ as high-level

actions that are composed of a sequence of basic actions. There has been some work that deals

with such structured sets of actions; see, for example, [52]. Thinking in terms of MDPUs

gives us an alternative approach. We take the space of in the MDPU to be the “interesting”

actions; intuitively, these are the ones that are useful for the driving task. The set of useful

actions is much smaller than A∗. Thus, the algorithms we use will be much more efficient than

comparable MDP algorithms. Of course, we cannot explicitly write down the action space of

the MDPU; we do not know in advance what the useful actions are. This does not prevent us

from using the framework (or the URMAX algorithm that we present later). More importantly,

by modeling things in terms of MDPUs, we may get a deeper insight into why certain problems

are harder to solve than others; specifically, the form of D(j, t) may help explain why learning

an optimal policy requires polynomial, exponential, or infinite time.

We now consider some elements of the formal model. As in the video game example, we

think of the explore action a0 here as an abstraction of trying out a potential action a∗ and

deciding whether a∗ counts as a useful action for car control. For example, the car may try

36

spinning itself with maximum throttle, or speeding up and down very quickly, and find that

these lead it to lose control of the drive, and are thus not useful. On the other hand, drifiting

actions that allow the car to quickly turn around sharp corners are useful. We are implicitly

assuming that when the car tries a potential action, it is able to detect whether the action is

useful or not. The robotic car could use criteria predefined by the robot designer to do this;

for example, it could take an action to be useful if it allows the car to complete certain path

sections quickly. Alternatively, a human could supervise the exploration process, and tell the

robot which actions are useful.

Here D(j, t, s) is the probability for the car to discover a new useful action at the tth time

that a0 is performed, given that j > 0 actions have not yet been discovered, and the car has not

discovered a new action in the previous t − 1 times that a0 was performed. The actual value

of D(j, t, s) depends on the exploration method the car uses to select the next potential action

to be explored in a0; different exploration methods result in different values. For example, if

the robot explores by just choosing a new action to try at random from the space of potential

actions, then the probability will be essentially a (small) constant, whose value depends on the

ratio of interesting actions to total actions. However, if the choice of actions is guided by a

domain expert, then the discovery probability will be significantly higher.

Again, experiments could be carried out to determine the actual values for D(j, t, s). A

robot designer could use the values of this function to decide whether random experimentation

suffices or a domain expert is needed.

Here is a formal description of the problem as an MDPU:

• S = {s : s = (x, y, θ, v, θ̇)}. That is, a state of the problem is described by the current

position (x, y) of the car, the velocity v of the car, its current orientation θ, and its current

37

angular velocity θ̇.

• A: The car is preprogrammed with the following actions: going straight for-

ward/backward at velocity v, making a non-drifting turn of angle α. Other than that,

drifting turns at angles α are also actions in A.

• S 0 = S .

• a0: The process of trying out a potentially useful action, and deciding whether the action

is useful; if it is, then add the action into A.

• gA = A.

• g0: This includes all preprogrammed actions: going straight forward/backward at veloc-

ity v, making a non-drifting turn of angle α. That is, the car is aware of all actions in A

except the drifting actions.

• P(s, s′, a): the probability of traversing from state s to state s′ via action a.

• D: the value of the discovery probability depends on the exploration methods being used

(that decides the order of the potentially useful action to be experimented). For example,

if there are n potential actions, and the car experiments these potential actions uniformly

at random, while there are j possible drifting actions to be discovered, then we have

D(j, t, s) =
j
n .

• R: given s, s′ ∈ S , if the car is at the end of the track at s′, then R(s, s′, a) = 1000−100t1−

t2, where t1 is the amount of time that the car is off track while performing a, and t2 is

the amount of time required for performing action a; otherwise R(s, s′, a) = 100t1 − t2.

Therefore, the car is rewarded for finishing the track, is penalized for being off track, and

is encouraged to finish the track in a timely manner so as to avoid time penalty from t2.

38

2.4 Impossibility Results and Lower Bounds

The ability to estimate in which cases the DM can learn to play optimally is crucial in many

situations. For example, in robotics, if the probability of discovering new actions is so low that

it would require an exponential time to learn to play near-optimally, then the designer of the

robot must have human engineers design the actions and not rely on automatic discovery. We

begin by trying to understand when it is feasible to learn to play optimally, and then consider

how to do so.

We first show that, for some problems, there are no algorithms that can guarantee near-

optimal play; in other cases, there are algorithms that learn to play near-optimally, but require

at least exponential time to do so. These results hold even for problems where the DM knows

that there are two actions, already knows one of them, and knows the reward of the other.

Example 2.4.1: Let M = (S , A, S 0, a0, gA, g0,D, P,R,G0) be an MDPU where A = {a1, a2}, and

the DM knows that S = S 0 = {s1}, g0(s1) = {a1}, |A| = 2, P(s1, s1, a) = 1 for both actions

a ∈ A, R(s1, s1, a1) = r1, D(j, t, s1) = 1
(t+1)2 , and the reward for the optimal policy for the true

MDP is r2, where r2 > r1. Since the DM knows that there is only one state and two actions,

the DM knows that in the true MDP, there is an action a2 that she is not aware of such that

R(s1, s1, a2) = r2. That is, she knows everything about the true MDP but the action a2. We now

show that, despite all this knowledge, the DM cannot learn to play optimally in M.

Clearly, in the true MDP, the optimal policy is to always play a2. However, to play a2, the

DM must learn about a2. As we now show, no algorithm can learn about a2 with probability

greater than 1/2, and thus no algorithm can attain an expected reward ≥ (r1 + r2)/2 = r2 − (r2 −

r1)/2.

39

Recall that Γ
()
s,t,t′ is the event that a0 is played at least t′ times at s, and no new action is

discovered on or before the tth time that a0 is played at state s1, and Γ
()
s,−1,t is the event that

a0 is played at least t times at s. Let s0 ∈ S . Given a policy π, let Pr be the probability on

the runs in Ls0 determined by M and π. We first show that, for all t > 0, and all t′ ≥ t, if

Pr(Γ()
s1,−1,t′ ∩ Ls0) > 0, then

Pr(Γ()
s1,t,t′
| Γ

()
s1,−1,t′ ∩ Ls0) =

t∏
n=1

(1 − D(1, n, s1)). (2.2)

It should be intuitively clear why (2.2) is true. Since, by assumption there is exactly one new

action to be discovered at s1, the probability that no new action is discovered the first t times

that a0 is played at s1 is just the probability that, for each j with 1 ≤ j ≤ t, no new action

is discovered the jth time that a0 is played, given that no new action has yet been discovered.

D(1, j, t) is the probability that a new action is discovered the jth time that a0 is played given

that no new action has yet been discovered, so 1 − D(1, j, t) is the probability a new action is

not discovered then. We prove (2.2) formally by induction on t.

Base case: For t = 1, note that since Γ
(1)
s1,−1,t′−1 is the set of all runs where a0 is played at

least t′ times at s1 and a new action is discovered the first time that a0 is played, and Γ
()
s1,1,t′

is

the set of runs where a0 is played at least t′ times at s, and a new action is not discovered the

first time that a0 is played at s, these two sets form a disjoint partition of Γs1,−1,t′ . Moreover,

since Γ
()
s1,−1,t′ = Γ

()
s1,0,t′

, we must have

Pr(Γ()
s1,1,t′

| Γ
()
s1,−1,t′ ∩ Ls0) = Pr(Γ()

s1,1,t′
| Γ

()
s1,0,t′
∩ Ls0)

= 1 − Pr(Γ(1)
s1,−1,t′−1 | Γ

()
s1,0,t′
∩ Ls0)

= 1 − D(1, 1, s1).

Induction step: Suppose that (2.2) holds for t. We now show that it holds for t + 1; that is,

40

for all t′ ≥ t + 1, the following holds:

Pr(Γ()
s1,t+1,t′ | Γ

()
s1,−1,t′ ∩ Ls0) =

t+1∏
n=1

(1 − D(1, n, s1)). (2.3)

For t ≥ 0, note that

Pr(Γ()
s1,t+1,t′ ∩ Ls0)

= Pr(Γ()
s1,t+1,t′ | Γ

()
s1,t,t′
∩ Ls0) Pr(Γ()

s1,t,t′
∩ Ls0) [since Γ

()
s1,t+1,t′ ⊆ Γ

()
s1,t,t′

]

= Pr(Γ()
s1,t+1,t′ | Γ

()
s1,t,t′
∩ Ls0) Pr(Γ()

s1,t,t′
| Γ

()
s1,−1,t′ ∩ Ls0) Pr(Γ()

s1,−1,t′ ∩ Ls0)

[since Γ
()
s1,t,t′
⊆ Γ

()
s1,−1,t′]

(2.4)

As above, it is easy to see that Γ
(t+1)
s1,−1,t′−t−1 and Γ

()
s1,t+1,t′ form a disjoint partition of Γ

()
s1,t,t′

. More-

over, it follows from the definition of D(1, t + 1, s1) that D(1, t + 1, s1) = Pr(Γ(t+1)
s1,−1,t′−t−1 |

Γ
()
s1,t,t′
∩ Ls0). Thus,

Pr(Γ()
s1,t+1,t′ | Γ

()
s1,t,t′
∩ Ls0) = 1 − Pr(Γ(t+1)

s1,−1,t′−t−1 | Γ
()
s1,t,t′
∩ Ls0) = 1 − D(1, t + 1, s1). (2.5)

Plugging (2.5) into (2.4) and applying the induction hypothesis, we get

Pr(Γ()
s1,t+1,t′ ∩ Ls0)

= (1 − D(1, t + 1, s1)) Pr(Γ()
s1,t,t′
| Γ

()
s1,−1,t′ ∩ Ls0) Pr(Γ()

s1,−1,t′ ∩ Ls0)

= (1 − D(1, t + 1, s1))
∏t

n=1(1 − D(1, n, s1)) Pr(Γ()
s1,−1,t′ ∩ Ls0)

=
∏t+1

n=1(1 − D(1, n, s1)) Pr(Γ()
s1,−1,t′ ∩ Ls0).

(2.6)

By assumption, Pr(Γ()
s1,−1,t′ ∩ Ls0) > 0. Thus, dividing both sides of (2.6) by Pr(Γ()

s1,−1,t′ ∩ Ls0),

we get (2.3), as desired. This completes the proof of the induction hypothesis.

Thus, for all t > 0 and t′ ≥ t,

Pr(Γ()
s1,t,t′
| Γ

()
s1,−1,t′ ∩ Ls0) =

∏t
n=1(1 − D(1, n, s1))

=
∏t

n=1

(
1 − 1

(n+1)2

)
= t+2

2(t+1) [see below]

> 1
2 .

(2.7)

41

For the third equality, note that 1 − 1
(n+1)2 = (1 − 1

n+1) × (1 + 1
n+1); it follows that

t∏
n=1

(
1 −

1
(n + 1)2

)
=

(
1
2
×

3
2

)
×

(
2
3
×

4
3

)
× · · · ×

(
t

t + 1
×

t + 2
t + 1

)
.

All terms but the first and last cancel out. Thus, the product is t+2
2(t+1) , as desired.

Since (2.7) holds for all t > 0 and t′ ≥ t, taking t′ = t, we get that Pr(Γ()
s1,t,t | Γ

()
s1,−1,t ∩ Ls0) is

always strictly greater than 1/2 for all t, which means the DM cannot discover the better action

a2 with probability greater than 1/2 no matter how many times a0 is played, and no matter what

policy is used. It easily follows that the expected reward of any policy is at most (r1 + r2)/2.

Thus, there is no policy that learns to play near-optimally.

The problem in Example 2.4.1 is that the discovery probability is so low that there is a

probability bounded away from 0 that some action will not be discovered, no matter how

many times a0 is played. The following theorem generalizes Example 2.4.1, giving a sufficient

condition on the failure probability (which we later show is also necessary) that captures the

precise sense in which the discovery probability is too low. Intuitively, the theorem says that

if the DM is unaware of some acts that can improve her expected reward, and the discovery

probability is sufficiently low (where “sufficiently low” means that, for some state s, D(1, t, s) <

1 for all t, and
∑∞

t=1 D(1, t, s) < ∞), then the DM cannot learn to play near-optimally. To make

the theorem as strong as possible, we show that the lower bound holds even if the DM has quite

a bit of extra information, as characterized in the following definition.

Definition 2.4.2: Define a DM to be quite knowledgeable if (in addition to S 0, g0) she knows

D, S = S 0, |A|, the transition function P0, the reward function R0 for all states in S 0 and actions

in A0 (i.e., G0 = ∪s∈S 0(s × S 0 × g0(s))), and R∗max. ut

42

We can now state our theorem. It turns out that there are slightly different conditions on the

lower bound depending on whether |S 0| ≥ 2 or |S 0| = 1.

Theorem 2.4.3: Using the notation of Definition 2.4.2, if there exists a state s1 ∈ S such that

D(1, t, s1) < 1 for all t and
∑∞

t=1 D(1, t, s1) < ∞, then there exists a constant c > 0 and an

MDP M compatible with what the DM knows such that no algorithm can obtain within c of the

optimal reward for M, even if the DM is quite knowledgeable, provided that |S 0| ≥ 2, |A| > |A0|,

and R∗max is greater than the reward of the optimal policy for the MDP (S 0, A0, g0, P0,R0). If

|S 0| = 1, the same result holds if there exists s1 such that
∑∞

t=1 D(j, t, s1) < ∞, where j =

|A| − |A0|.

Proof: Suppose that |S 0| ≥ 2 and the hypotheses of the theorem hold for state s1. We construct

an MDP M′′ = (S , A′′, g′′, P′′,R′′) that is compatible with what the DM knows, such that no

algorithm can obtain within a constant c of the optimal reward in M′′. The construction is

similar in spirit to that of Example 2.4.1. Let j = |A| − |A0|, let A′′ = A0 ∪ {a1, . . . , a j}, where

a1, . . . , a j are fresh actions not in A0, and let g′′ be such that g′′(s1) = g0(s1) ∪ {a1}, g′′(s) = A′′

for s , s1 (such states s exist, since |S | ≥ 2). That is, there is only one action that the DM is

not aware of in state s1, while in all other states, she is unaware of all actions in A − A0. Let

P′′(s1, s1, a1) = P′′(s, s1, a) = 1 for all a ∈ A′′ − A0 and s ∈ S (note that P′′ is determined by

P0 in all other cases), and define R′′(s1, s′, a1) = R∗max and R′′(s, s′, a) = R∗max − 1 for all s′ ∈ S

and s , s1 and a ∈ A − A0 (R′′ is determined by R0 in all other cases). It is easy to check that

M′′ is compatible with what the DM knows, even if the DM knows that S = S 0, knows |A|, and

knows R∗max. By assumption, the reward of the optimal policy for (S 0, A0, g0, P0,R0) is less than

R∗max, so the optimal policy is clearly to get to state s1 and then to play a1 (giving an average

reward of R∗max per time unit). Of course, doing this requires learning a1.

43

As in Example 2.4.1, we first prove that for M′′ there exists a constant d > 0 such that, with

probability d, no algorithm discovers action a1 in state s1.

Again, for a policy π, if Pr is the probability on Ls0 determined by M and π, we have

Pr(Γ()
s1,t,t | Γ

()
s1,−1,t ∩ Ls0) =

∏t
t′=1(1 − D(1, t′, s1)).

Since
∑∞

t=1 D(1, t, s1) < ∞, we must have that limt→∞ D(1, t, s1) = 0. Since D(1, t, s1) < 1 for

all t, there must exist a constant q with 0 < q < 1 such that D(1, t, s1) < q for all t. We show

below that 1 − D(1, t′, s1) ≥ (1 − q)D(1,t′,s1)/q. Thus, we get that

Pr(Γ()
s1,t,t | Γ

()
s1,−1,t ∩ Ls0) ≥

∏t
t′=1(1 − q)D(1,t′,s1)/q

≥ (1 − q)
∑t

t′=1 D(1,t′,s1)/q.

Since, by assumption,
∑∞

t′=1 D(1, t′, s1) < ∞, we can take d = (1 − q)
∑∞

t′=1 D(1,t′,s1)/q.

It remains to show that 1 − D(1, t′, s1) ≥ (1 − q)D(1,t′,s1)/q. Since 0 ≤ D(1, t′, s1) < q < 1,

it suffices to show that 1 − x ≥ (1 − b)x/b = e(x/b) ln(1−b) for 0 ≤ x < b < 1. Let h(x) =

1 − x − e(x/b) ln(1−b). We want to show that h(x) ≥ 0 for 0 ≤ x < b < 1. An easy substitution

shows that h(0) = h(b) = 0. Differentiating h, we get that h′(x) = −1 − ln(1−b)
b e(x/b) ln(1−b),

and h′′(x) = −
ln(1−b)2

b2 e(x/b) ln(1−b) < 0. Since h(0) = h(b) = 0 and h is concave, we must have

h(x) = h((1 − x/b)0 + (x/b)b) ≥ (1 − x/b)h(0) + (x/b)h(b) = 0 for x ∈ [0, b], as desired.

As we have observed, the optimal policy for M′′ has expected reward R∗max. Moreover, the

optimal policy for (S , A′′ − {a1}, g′′, P′′|A−{a1},R
′′|A−{a1}) has expected reward R∗0 < R∗max. With

probability at least d, no algorithm discovers a1, so the DM will know at most the actions in

A′′ − {a1}, and cannot get a reward higher than R∗0. Thus, no algorithm can give the DM an

expected reward higher than (1 − d)R∗max + dR∗0, so we can take c = d(R∗max − R∗0).

If |S 0| = 1, essentially the same argument holds. We again construct an MDP M′′ =

(S 0, A′′, g′′, P′′,R′′). Since |S 0| = 1, all components of M′′ are determined except for R′′. We

44

take R′′(s1, s1, a1) = R∗max for all s′, and R′′(s1, s1, , a) = R∗max − 1, for a ∈ A′′ − (A0 ∪ {a1}).

Again, the unique optimal policy is to play a1 at all times, so the problem reduces to learning

a1. Without further assumptions, all we can say is that this probability of learning a1 after

t steps of exploration is at most D(j, t, s1), so we must replace D(1, t, s1) by D(j, t, s1) in the

argument above.7

Note that Example 2.4.1 is a special case of Theorem 2.4.3, since
∑∞

t=1
1

(t+1)2 <
∫ ∞

t=1
1
t2 dt = 1.

In the next section, we show that if
∑∞

t=1 D(1, t, s) = ∞ for all s ∈ S , then there is an

algorithm that learns near-optimal play (although the algorithm may not be efficient). Thus,∑∞
t=1 D(1, t, s) determines whether or not there is an algorithm that learns near-optimal play. We

can say even more. If
∑∞

t=1 D(1, t, s) = ∞ for all s, then the efficiency of the best algorithm for

determining near-optimal play depends on how quickly
∑∞

t=1 D(1, t, s) diverges. Specifically,

the following theorem shows that if for some s ∈ S we have
∑T

t=1 D(1, t, s) ≤ f (T), where

f : [1,∞) → IR is an increasing function whose co-domain includes (0,∞) (so that f −1(t) is

well defined for t ∈ (0,∞)) and D(1, t, s) < q < 1 for all t, then the DM cannot learn to play

near-optimally with probability ≥ 1 − δ in time less than f −1(q ln(δ)/ ln(1 − q)). It follows,

for example, that if f (T) = m1 log(T) + m2, then it requires time polynomial in 1/δ to learn

to play near-optimally with probability greater than 1 − δ. For if f (T) = m1 log(T) + m2, then

f −1(t) = e(t−m2)/m1 , so f −1(q ln(δ)/ ln(1−q)) = f −1(q ln(1/δ)/ ln(1/(1−q))) has the form a(1/δ)b

for constants a, b > 0. A similar argument shows that if f (T) = m1 ln(ln(T) + 1) + m2, then

f −1(q ln(1/δ)/ ln(1/(1−q))) has the form ae(1/δ)b
for constants a, b > 0; that is, the running time

is exponential in 1/δ.

7We remark that we can still use D(1, t, s1) if the DM does not know that S = S 0, but does know |S |, and
|S | ≥ 2. We can also use D(1, t, s1) if the probability of learning the specific action a1 after t steps of exploration
is D(1, t, s1).

45

Theorem 2.4.4: If |S 0| ≥ 2, |A| > |A0|, R∗max is greater than the reward of the optimal policy for

the MDP (S 0, A0, g0, P0,R0),
∑∞

t=1 D(1, t, s) = ∞ for all s ∈ S , and there exists a constant q < 1

and a state s1 ∈ S such that D(1, t, s1) < q for all t, and an increasing function f : [1,∞)→ IR

such that the co-domain of f includes (0,∞) and
∑T

t=1 D(1, t, s1) ≤ f (T), then for all δ with

0 < δ < 1, there exists a constant c > 0 and an MDP M compatible with what the DM knows

such that no algorithm that runs in time less than f −1(q ln(δ)/ ln(1 − q)) can obtain within c of

the optimal reward for M with probability ≥ 1 − δ, even if the DM is quite knowledgeable. If

|S 0| = 1, the same result holds if
∑T

t=1 D(j, t, s1) ≤ f (T), where j = |A| − |A0|.

Proof: Consider the MDP M′′ constructed in the proof of Theorem 2.4.3. As we observed, M′′

is compatible with what the DM knows (even if the DM knows S = S 0, |A|, and the maximum

possible reward R∗max). Note that, for all ε > 0, the ε-return mixing time of M′′ is 1.

By assumption, there exists a constant q with 0 < q < 1 such that D(1, t, s1) < q for all

t. We now prove for all d > 0, all algorithms require at least time f −1(q ln(d)/ ln(1 − q)) to

discover a1 in M′′ with probability ≥ 1 − d. The same argument as in Theorem 2.4.3 shows

that Pr(Γ()
s1,t,t | Γ

()
s1,−1,t ∩ Ls0) ≥ (1 − q)

∑t
t′=1 D(1,t′,s1)/q. Since

∑t
t′=1 D(1, t′, s1) ≤ f (t), it follows

that Pr(Γ()
s1,t,t | Γ

()
s1,−1,t ∩ Ls0) ≥ (1 − q) f (t)/q. Note that for the probability of discovering a1

to be at least 1 − d at state s1, we must have Pr(Γ()
s1,t,t | Γ

()
s1,−1,t ∩ Ls0) ≤ d, which in turn

requires that (1 − q) f (t)/q ≤ d. Taking logs of both sides and rearranging terms, we must have

f (t) ≥ q ln(d)/ ln(1 − q), so t ≥ f −1(q ln(d)/ ln(1 − q)), since f is increasing. (Note that since

0 < d < 1 and 0 < q < 1, both ln(1 − q) and ln(d) are negative, so ln(d)/ ln(1 − q) > 0, and

f −1(q ln(d)/ ln(1 − q)) is well defined.) Thus, it requires at least time f −1(q ln(d)/ ln(1 − q)) to

discover a1 with probability ≥ 1 − d.

As before, the expected reward of the optimal policy for M′′ is R∗max. Again, let R∗0 <

R∗max be the expected reward of the optimal policy for (S , A′′, g′′, P′′|A′′−{a1},R
′′|A′′−{a1}). If a1

46

is not discovered, the DM will know only the actions in A′′ − {a1}, and cannot get a reward

higher than R∗0. It follows that no algorithm can give the DM an expected reward greater than

(1−d)R∗0 +dR∗max in time less than f −1(q ln(d)/ ln(1−q)), so we can again take c = d(R∗max−R∗0).

In the next section, we prove that the lower bound of Theorem 2.4.4 is essentially tight:

if
∑T

t=1 D(1, t, s) ≥ f (T) for all s ∈ S , then the DM can learn to play near-optimally in time

polynomial in f −1(ln(4N/δ)) and all the other parameters of interest. In particular, if f (t) ≥

m1 ln(t) + m2 for some constants m1 and m2, then the DM can learn to play near-optimally in

time polynomial in the relevant parameters.

2.5 Learning to Play Near-Optimally

In this section, we show that a DM can learn to play near-optimally in an MDPU where∑∞
t=1 D(1, t, s) = ∞ for all s ∈ S . Moreover, we show that when

∑∞
t=1 D(1, t, s) = ∞ for all

s ∈ S , the speed at which D(1, t, s) decreases determines how quickly the DM can learn to

play near-optimally. Specifically, if for all s ∈ S we have
∑T

t=1 D(1, t, s) ≥ m1 f (ln T) + m2 for

all T > 0, some constants m1 > 0 and m2, and some invertible function f , then the DM can

learn to play near-optimally in time polynomial in f −1(1/δ). In particular, if f is the identity

(so that
∑T

t=1 D(1, t, s) ≥ m1 ln T + m2), then the DM can learn in time polynomial in 1/δ (and

all other parameters of interest). We call the learning algorithm URMAX, since it is an exten-

sion of RMAX to MDPUs. While the condition
∑∞

t=1 D(1, t, s) = ∞ may seem rather special,

it arises in many applications of interest. For example, when learning to fly a helicopter [1;

50], the space of potential actions in which the exploration takes place, while four-dimensional

(resulting from the four degrees of freedom of the helicopter), can be discretized and taken to

47

be finite. Thus, if we explore by examining the potential actions uniformly at random, then

for each state s, D(1, t, s) is constant for all t, and hence
∑∞

t=1 D(1, t, s) = ∞. Indeed, in this

case
∑T

t=1 D(1, t, s) is O(T), so it follows from Corollary 2.5.5 below that we can learn to fly

the helicopter near-optimally in time polynomial in the size of the state and action space. The

same is true in any situation where the action space can be methodically explored.

We assume throughout this section that
∑∞

t=1 D(1, t, s) = ∞ for all s ∈ S . We would like

to use an RMAX-like algorithm to learn to play near-optimally in our setting too, but there are

two major problems in doing so. The first is that we do not want to assume that the DM knows

|S |, |A|, or R∗max. We deal with the fact that |S | and |A| are unknown by using essentially the

same idea as Kearns and Singh use for dealing with the fact that the true ε-mixing time T is

unknown: we start with an estimate of the value of |S | and |A|, and keep increasing the estimate.

Eventually, we get to the right values, and we can compensate for the fact that the reward may

have been too low up to that point by playing the policy sufficiently often. The idea for dealing

with the fact that R∗max is not known is similar. (We remark that our approach for dealing with

the case where Rmax is unknown can also be applied to RMAX.) The second problem is more

serious: we need to deal with the fact that not all actions are known, and that we have a special

explore action. Specifically, we need to come up with an analogue of H1(T) that describes how

many times we should play the explore action a0 in a state s, with a goal of discovering all the

actions in s. Clearly this value will depend on the discovery probability (it turns out that it

depends only on D(1, t, s) for all t and s) in addition to all the parameters that H1(T) depends

on.

We now describe the algorithm URMAX(K0,N, k,Rmax,T, ε, δ, s0). Intuitively, in this al-

gorithm, N is an upper bound on the size of the state space S , k is an upper bound on the

size of the action space A, Rmax is an upper bound on the maximum reward R∗max, T is an up-

48

per bound on the ε-return mixing time, and K0 is such that
∑K0

t=1 D(1, t, s) ≥ ln(4Nk/δ) for

all s. While URMAX(K0,N, k,Rmax,T, ε, δ, s0) is defined for all values of the parameters, it

does the right thing only if the parameters have the “right” values. We later show how to de-

fine URMAX(ε, δ, s0), a variant where these parameter values are not needed. In particular, an

agent running URMAX(ε, δ, s0) does not need to know D(1, t, s), or bounds on |S |, |A|, or R∗max.

Roughly speaking, in URMAX(ε, δ, s0), all the parameter values are tried until the right one is

found.

Define

• K1(T) = max(d(4NTRmax
ε

)3e, d 1
8 (ln 8N2k

δ
)3e) + 1;

• K2(T,K0) = max(16Rmax
ε

Nk(K1(T) + K0), 1
2 (16Rmax

ε
)2 ln 4

δ
);

• K3 = max((2Rmax
ε

)3, 8(ln 4
δ
)3);

• K4(T,K0) = max((2Rmax
ε

)K2(T,K0),K2(T,K0) + K3).

Just as H1(T) in RMAX, K1(T) is a bound on how many times a state-action pair (s, a) has to

be played in order to learn a good estimate of the transition probabilities for action a at state s,

given that T is the ε-mixing time. More precisely, it is the number of times a state-action pair

must be played so that, with probability at least 1 − δ
4Nk , the estimated transition probabilities

are within ε
4NTRmax

of the actual transition probabilities. (K1(T) differs slightly from H1(T): it

has a coefficient of 8 in the second argument to max, rather than 6; the difference turns out to

be needed to allow for the fact that we do not know all the actions.)

Like RMAX, URMAX proceeds in iterations. Each iteration of URMAX goes through the

outer loop in Figure 2.4 once. Just as for RMAX, we can divide URMAX iterations into ex-

ploration iterations and exploitation iterations. If the policy π′i played in the ith iteration is

49

(ε,T)-optimal for the underlying MDP M, then i is an exploitation iteration, otherwise, i is an

exploration iteration. Of course, the DM does not in general know whether an iteration is an

exploration or exploitation, since she doesn’t know the underlying MDP.

We now explain K2, K3, and K4. Just as H2(T) in RMAX, K2(T,K0) is the number of

exploration iterations required so that, with probability at least 1 − δ/4 (instead of 1 − δ/3 in

RMAX; we need a tighter bound here because the DM may not know all the actions), after

K2(T,K0) exploration iterations, all remaining iterations become exploitation iterations; just

as H3 in RMAX, K3 is the minimum number of exploitation iterations required in a run so

that, with probability at least 1 − δ/4 (instead of 1 − δ/3 in RMAX), the average reward of all

exploitation iterations is at least Opt(M, ε,T) − 3ε/2; like H4 in RMAX, K4 is the total number

of iterations required to ensure that, with probability at least 1 − δ, the expected reward of a

URMAX run is within 2ε of optimal. We take a pair (s, a) for a , a0 to be known if it is played

K1(T) times; we take a pair (s, a0) to be known if it is played kK0 times.

URMAX(K0,N, k,Rmax,T, ε, δ, s0) is just like RMAX(N, k,Rmax,T, ε, δ, s0), except for the

following modifications:

• The initial approximation: In M0, the initial approximation to the actual MDP M, the

state space S 0 has N + 1 states, one of which is the dummy state sd. Recall that N is

an upper bound on the number of states in M, so the state space of M0 is a superset

of the state space of M. We take P0(s, s′, a) = P(s, s′, a) and R0(s, s′, a) = R(s, s′, a)

if (s, s′, a) ∈ G0. For (s, s′, a) < G0, take R(s, s′, a) = Rmax. The remaining transition

probabilities are a little complicated to define, because we must have
∑

s′′ P0(s, s′′, a) = 1,

but it may be possible that (s, s1, a) ∈ G0 and (s, s2, a) < G0. For example, the DM may

know that playing action a at s transitions to s1 with probability 0.4, but is uncertain of

what happens for the remaining 0.6 cases. Let ps,a =
∑
{s′′:(s,s′′,a)∈G0}

P(s, s′′, a); that is,

50

ps,a is the sum of the known transition probabilities. In the example, ps,a = 0.4. Now

take P0(s, sd, a) = 1 − ps,a, and take P0(s, s′, a) = 0 for all (s, s′, a) < G0 and s′ , sd. In

the example, s1 transitions to the default state sd with the remaining 0.6 probability, and

transitions to all other states with probability 0. As usual, we have P0(s, s, a0) = 1 for all

s ∈ S 0; we take R0(s, s, a0) = Rmax.

• Updating the approximation: If (s, a0) has just become known, then we set the reward

for playing a0 in state s to be −Rmax. (This ensures that a0 does not affect the reward of

the optimal policy, since 0 is the lowest reward. In fact, the choice of reward here does

not matter as long as it is negative.)

If a new action a is discovered at state s, then a new state-action pair (s, a) is created,

with P(s, sd, a) = 1 and R(s, s′, a) = Rmax for all s′ ∈ S . (Intuitively, if a is discovered

at state s, then the DM gets high reward for playing a at s, in order to learn the right

transition probability and actual reward.)

(Please see the RMAX algorithm in Section 2.2 for the case of updating when (s, a) with

a , a0 becomes known.)

• Becoming known: A state-action pair (s, a) with a , a0 becomes known when it has

been played K1(T) times, and a state-action pair (s, a0) becomes known when it has been

played kK0 times.

• Termination: The algorithm terminates after at most K4(T,K0) iterations (whereas

RMAX terminates after exactly H4(T) iterations).

The algorithm also terminates if it discovers a reward greater than Rmax, more than k

actions, or more than N states (N, k, and Rmax can be viewed as the current guesses for

these values; if the guess is discovered to be incorrect, the algorithm is restarted with

better guesses).

51

We say that an inconsistency is discovered if the algorithm discovers a reward greater than

Rmax, more than k actions, or more than N states; a state-action pair (s, a) with a , a0 becomes

known if it is played K1(T) times; a state-action pair (s, a0) becomes known if it is played kK0

times.

URMAX(K0,N, k,Rmax,T, ε, δ, s0):

sc := s0

M′ := M0 (the initial approximation described in the main text)
Compute an optimal T -step policy π′ for M′ starting at sc

Repeat K4(T,K0) times or until an inconsistency is discovered:
Play π′ starting at sc for T steps
sc := the DM’s current state
for each (s, a) that becomes known during the T steps such that a , a0

update M′ so that the transition probabilities for (s, a) are the observed
frequencies and the rewards for (s, a) are the observed rewards

for each (s, a0) that becomes known during the T steps
update M′ so that P(s, s, a0) = 1, and R(s, s′, a0) = −Rmax for all s′ ∈ S

for each new action a discovered at some state s in the T steps,
create a new state-action pair (s, a) in M′, with P(s, sd, a) = 1 and R(s, s′, a) = Rmax for all s′ ∈ S

Compute an optimal T -step policy π′ for M′ starting at sc

Return π′

Figure 2.4: The URMAX algorithm.

Note that an execution of the URMAX algorithm generates an MDPU run, since each tran-

sition made is a transition of the underlying MDP. Define a URMAX run to be an MDPU run

that is generated by URMAX.

We now prove the correctness of URMAX. Note that in URMAX, K4(T,K0) iterations are

executed if no inconsistency is found. Instead of proving the correctness of URMAX directly,

we prove a more general version of the result. We show that if the algorithm executes at least

K4(T,K0) iterations (instead of exactly K4(T,K0) iterations) and no inconsistency is found,

then it achieves a near-optimal expected reward in polynomial time. (We use the more gen-

52

eral result in our proof of Theorem 2.5.3 below.) Define URMAXK(K0,N, k,Rmax,T, ε, δ, s0)

to be exactly the same algorithm as URMAX(K0,N, k, Rmax,T, ε, δ, s0), except that it runs for

K iterations instead of K4(T,K0) iterations if no inconsistency is found. A URMAXK run is

an MDPU run that is generated by URMAXK . Note that URMAX(K0,N, k,Rmax,T, ε, δ, s0) =

URMAXK4(T,K0)(K0,N, k,Rmax,T, ε, δ, s0).

The next lemma shows that if s ∈ S , 0 < δ < 1, K0 ≥ min{H :
∑H

t=1 D(1, t, s) ≥ ln(4Nk/δ)},

u ≥ 0, ~n = (n1, n2, . . . , ni) is a strictly increasing sequence of integers where i ≥ 0,8 and initially

more than i actions have not been discovered at s, then conditional on the set of runs starting

at s0 where the jth new action at state s is discovered the n jth time that a0 is played at s for

j = 1, . . . , i, and a0 is played at s at least ni + u times at s, with probability at least 1 − δ
4Nk , one

of the following happens: either (1) l ∈ Ls0 − Γ
()
s,−1,ni+K0

(which means a0 is played fewer than

ni + K0 times at s in l), or (2) l ∈
⋃K0

j=1 Γ
~n·(ni+ j)
s,−1,u (which means a new action at s is discovered

on or before the K0th time that a0 is played at s after the ith new action is discovered). In the

special case where i = 0, so that ~n = (), we Recall that in the special case where i = 0, so that

~n = (), we take Γ
~n·(ni+ j)
s,−1 to be Γ

(j)
s,−1. This convention allows us to treat the case i = 0 and i > 0

in a uniform way, and simplifies the exposition. The probability Pr here (and in all the later

results) is with respect to the probability distribution on the runs in Ls0 that is determined by

the MDPU and the policy π being used. To further simplify the exposition, for the remainder

of this section, we take Pr(A | B) to be 1 if Pr(B) = 0 (rather than being undefined).

Lemma 2.5.1: Let M = (S , A, S 0, a0, gA, g0,D, P,R,G0) be an MDPU where |S | = N and

|A| = k. Fix s, s0 ∈ S , and let Pr be a probability on Ls0 determined by M and a policy π. If

0 < δ < 1, K0 ≥ min{H :
∑H

t=1 D(1, t, s) ≥ ln(4Nk/δ)}, and u ≥ 0, then for all strictly increasing

sequence of integers ~n = (n1, n2, . . . , ni) where 0 ≤ i < |gA(s)− g0(s)|, Pr(
⋃K0

t′=1 Γ
(~n·(ni+t′)
s,−1 ∪ (Ls0 −

8A sequence (n1, n2, . . . , ni) is strictly increasing if 0 < n1 < n2 < . . . < ni.

53

Γ
()
s,−1,ni+K0

) | Γ~ns,−1,u ∩ Ls0) ≥ 1 − δ
4Nk . (In the special case that i = 0, so that ~n = (), we take

Γ
~n·(ni+t′)
s,−1 to be Γ

(t′)
s,−1, and ni = 0, so Pr(

⋃K0
t′=1 Γ

(t′)
s,−1 ∪ (Ls0 − Γ

()
s,−1,K0

) | Γ()
s,−1,u ∩ Ls0) ≥ 1 − δ

4Nk .)

Proof: Let E =
⋃K0

t′=1 Γ
~n·(ni+t′)
s,−1 ∪ (Ls0 − Γ

()
s,−1,ni+K0

). We want to show that Pr(E | Γ~ns,−1,u ∩ Ls0) ≥

1 − δ
4Nk .

We partition Ls0 into two disjoint subsets: L1 = Ls0 − Γ
()
s,−1,ni+K0

(so that, in a run in L1, a0

is played fewer than ni + K0 times at s); and L2 = Ls0 ∩ Γ
()
s,−1,ni+K0

(so that, in a run in L2, a0

is played at least ni + K0 times at s). Clearly, Pr(E | Γ~ns,−1,u ∩ L1) = 1 ≥ 1 − δ/4Nk. It thus

suffices to prove that Pr(E | Γ~ns,−1,u ∩ L2) ≥ 1 − δ/4Nk. Let j = |gA(s) − g0(s)| − i (so that after

discovering i new actions at s, there are j more to discover), and let v = max(u,K0),

Pr(E | Γ~ns,−1,u ∩ L2)

≥ Pr(
⋃K0

t′=1 Γ
~n·(ni+t′)
s,−1 | Γ~ns,−1,u ∩ L2) [by the definition of E]

= Pr(
⋃K0

t′=1 Γ
~n·(ni+t′)
s,−1 | Γ~ns,−1,u ∩ Γ

()
s,−1,ni+K0

∩ Ls0) [by the definition of L2]

= Pr(
⋃K0

t′=1 Γ
~n·(ni+t′)
s,−1 | Γ~ns,−1,max(K0,u) ∩ Ls0)

= Pr(
⋃K0

t′=1 Γ
~n·(ni+t′)
s,−1 | Γ~ns,−1,v ∩ Ls0)

= Pr(
⋃K0

t′=1 Γ
~n·(ni+t′)
s,−1,v−t′ | Γ

~n
s,−1,v ∩ Ls0)

[since Γ
~n·(ni+t′)
s,−1 ∩ Γ~ns,−1,v = Γ

~n·(ni+t′)
s,−1,v−t′]

= 1 − Pr(Γ~ns,K0,v
| Γ~ns,−1,v ∩ Ls0) [see below]

= 1 −
∏K0

t′=1(1 − D(j, t′, s)) [see below]

≥ 1 −
∏K0

t′=1(1 − D(1, t′, s)).

The third last line holds since Γ~ns,K0,v
is the subset of runs in Γ~ns,−1,v where the (i+1)st new action

is not discovered the first K0 times that a0 is played at s after the ith new action is discovered at

s, and
⋃K0

n=1 Γ
~n·(ni+n)
s,−1,v−n is the subset of runs in Γ~ns,−1,v where the (i + 1)st new action is discovered

the first K0 times that a0 is played at s after the ith new action is discovered at s, so these two

54

sets form a disjoint partition of Γ~ns,−1,v. The second last line holds since

Pr(Γ~ns,K0,v | Γ
~n
s,−1,v ∩ Ls0) =

K0∏
n=1

(1 − D(j, n, s)).

This can be proved using similar techniques that we used to prove (2.2) in Example 2.4.1;

we leave the details to the reader.9 The last inequality follows since we have assumed that

D(j, t, s) ≥ D(1, t, s) for j ≥ 1; with more actions available, it is easier to find a new one.

We show below that 1 − D(1, t′, s) ≤ e−D(1,t′,s). It follows that

Pr(E | Γ~ns,−1,u ∩ L2) ≥ 1 −
∏K0

t′=1 e−D(1,t′,s)

≥ 1 − e−
∑K0

t′=1 D(1,t′,s).

The choice of K0 guarantees that
∑K0

t=1 D(1, t, s) ≥ ln(4Nk/δ). Thus,

Pr(E | Γ~ns,−1,u ∩ L2) ≥ 1 − e− ln(4Nk/δ) = δ
4Nk .

It remains to show that 1 − D(1, t′, s) ≤ e−D(1,t′,s).

Since D(1, t′, s) ≥ 0, it suffices to show that 1− x ≤ e−x for x ≥ 0. Let g(x) = 1− x−e−x. We

want to show that g(x) ≤ 0 for x ≥ 0. An easy substitution shows that g(0) = 0. Differentiating

g, we get that g′(x) = −1 + e−x ≤ 0 when x ≥ 0. Since g(0) = 0 and g is nonincreasing when

x ≥ 0, we must have g(x) ≤ 0 for x ≥ 0, as desired.

The next theorem shows that for all K ≥ K4(T,K0), URMAXK(K0,N, k,Rmax,T, ε, δ, s0)

obtains an expected reward that is near-optimal with high probability if the parameter values

are sufficiently large.

Theorem 2.5.2: Let M′ = (S ′, A′, S 0, a0, g′A, g0,D, P′,R′,G0) be an MDPU where |S ′| = N,

|A′| = k, and max(R′(s, s′, a) : s, s′ ∈ S ′, a ∈ A′) = Rmax. If 0 < δ < 1, ε > 0, K0 ≥ min{H :
9Note that since we have assumed that |gA(s)− g0(s)| > i, there are still new actions to be discovered in runs in

Γ~ns,K0,v
, that is, after the first i new actions have been discovered at s. This assumption was critical in the argument

in Example 2.4.1.

55

∑H
t=1 D(1, t, s) ≥ ln(4Nk/δ)}, and K ≥ K4(T,K0), then for all MDPs M = (S M, AM, gM, PM,RM)

compatible with S 0, g0, G0, N, k, Rmax, and T (i.e., S M ⊇ S 0, gM(s) ⊇ g0(s) for all s ∈

S 0, |S M | ≤ N, |AM | ≤ k, RM(s, s′, a) ≤ Rmax for all s, s′ ∈ S M and a ∈ AM, and the ε-

return mixing time TM of M is ≤ T), and all states s0 ∈ S 0, with probability at least 1 − δ,

URMAXK(K0,N, k,Rmax,T, ε, δ, s0) running on M obtains an expected average reward that is

at least Opt(M, ε,TM) − 2ε in time polynomial in N, k, T , and K.

Proof: See Appendix A.

Since the proof of this theorem involves several steps, and the is similar to the proof in [4],

we defer it to appendix.

Note that the running time of URMAX is polynomial in N, k, T , 1
ε
, 1
δ
, Rmax, and K0, since

URMAX(K0, N, k,Rmax,T, ε, δ, s0) = URMAXK4(T,K0)(K0,N, k,Rmax,T, ε, δ, s0) and K4(T,K0) is

polynomial in N, k, T , 1
ε
, 1
δ
, Rmax, and K0.

We get URMAX(ε, δ, s0) by running URMAX(K0,N, k,Rmax,T, ε, δ, s0) using larger and

larger values for N, k, Rmax, T and K0.

URMAX(ε, δ, s0):

T := 1
Repeat forever:

URMAXK5(T)(T, |S 0| + T − 1, |A0| + T − 1,T,T, ε, δ, s0), where
K5(T) = K4(T + 1,T + 1)2(T+1)

ε

T := T + 1
Algorithm 3

Eventually the parameters in URMAX(ε, δ, s0) become at least as large as their actual values

(i.e., |S 0| + T − 1 ≥ |S |, |A0| + T − 1 ≥ |A|, T ≥ R∗max, T ≥ TM, the ε-return mixing time

56

of the underlying MDP, and T ≥ minn1{n1 :
∑n1

t=1 D(1, t, s) ≥ ln(4Nk/δ)} for all s). Once

that happens, by the proof of Theorem 2.5.2, with high probability, URMAX(T, |S 0| + T −

1, |A0|+ T −1,T,T, ε, δ, s0) obtains an expected reward of at least Opt(M, ε,TM)−2ε in all later

iterations. However, since we do not know when that will happen, we need to continue running

URMAX(ε, δ, s0). We must thus ensure that, if the parameters have become sufficiently large

(which they will be, eventually), then the average reward stays within 3ε of optimal while we

are testing higher values of these parameters.

For example, suppose that the actual values of these parameters are all 100,

and |S 0| = |A0| = 1. Then, with high probability, the expected reward of

URMAX(100, 100, 100, 100, 100, ε, δ, s0) is at least Opt(M, ε,TM) − 2ε. Nevertheless,

URMAX(ε, δ, s0) then sets these parameters to 101 and runs URMAX(101, 101, 101, 101, 101, ε, δ, s0).

This requires a recomputation of the optimal policy. While this recomputation is go-

ing on, the DM may get a low reward. We need to ensure that this period of low

rewards does not affect the average reward significantly. This is ensured by running

URMAX(100, 100, 100, 100, 100, ε, δ, s0) for a longer time after it has obtained a near-optimal

expected reward with high probability.

In the T th iteration of URMAX(ε, δ, s0), URMAX(T, |S 0| + T − 1, |A0| + T − 1,T,T, ε, δ, s0)

is run; this algorithm computes an optimal policy π′ for the current approximation to the MDP

(and runs π′ for T steps) K4(T,T) times if no inconsistency is found. For sufficiently large

values of the parameters, no inconsistency will be found. In URMAX(ε, δ, s0), this is done

K5(T) = K4(T + 1,T + 1)2(T+1)
ε

times, instead of K4(T,T) times. The extra K5(T) − K4(T,T)

times compensate for the low reward obtained in the next iteration of URMAX(ε, δ, s0) while

the optimal policy is being recomputed.

The following theorem shows that URMAX(ε, δ, s0) has the required properties.

57

Theorem 2.5.3: For all MDPs M = (S , A, g, P,R) compatible with S 0, g0 and G0, if 0 < δ < 1,

ε > 0, the maximum possible reward in M is R∗max, and the ε-return mixing time of M is

TM, then for all states s0 ∈ S 0, there exists a time t∗ polynomial in |S |, |A|, TM, R∗max, 1/ε,

1/δ, and K∗0 = max{min{n1 :
∑n1

t=1 D(1, t, s) ≥ ln(4|S ||A|/δ)} : s ∈ S }, such that, for all

t ≥ t∗, the expected average reward of running URMAX(ε, δ, s0) on M for t steps is at least

(1 − δ)Opt(M, ε,TM) − 3ε.

Proof: See Appendix B.

Therefore, if
∑∞

t=1 D(1, t, s) = ∞ for all s, the DM can learn to play near-optimally. We now

get running time estimates that essentially match the lower bounds of Theorem 2.4.4.

Proposition 2.5.4: If, for all s ∈ S ,
∑T

t=1 D(1, t, s) ≥ f (T), where f : [1,∞) → IR is an

increasing function whose co-domain includes (0,∞), then K∗0 ≤ f −1(ln(4|S ||A|/δ)), and the

running time of URMAX(ε, δ, s0) is polynomial in f −1(ln(4|S ||A|/δ)), |S |, |A|, TM, 1/ε, 1/δ and

R∗max.

Proof: Immediate from Theorem 2.5.3 and the definition of K∗0 .

Recall from Theorem 2.4.4 that if there exists s such that
∑T

t=1 D(1, t, s) ≤ f (T), then

no algorithm that learns near-optimally can run in time less than f −1(c′ ln(1/δ)) (where c′ =

c/ ln(1/(1 − c))), so we have proved an upper bound that essentially matches the lower bound

of Theorem 2.5.2.

Corollary 2.5.5: If
∑T

t=1 D(1, t, s) ≥ m1 ln(T)+m2 (resp.,
∑T

t=1 D(1, t, s) ≥ m1 ln(ln(T)+1)+m2)

for all s ∈ S for some constants m1 > 0 and m2, then the DM can learn to play near-optimally

in polynomial time (resp., exponential time) in |S |, |A|, TM, 1/ε, 1/δ and R∗max.

58

Proof: If
∑T

t=1 D(1, t, s) ≥ m1 ln(T) + m2, then we can take f (t) = m1 ln(T) + m2 in Proposi-

tion 2.5.4. As we have observed, f −1(t) = e(t−m2)/m1 , so f −1(ln(4|S ||A|/δ)) = e−m2/m1(4|S ||A|)1/m1 ·

(1/δ)1/m1 . Thus, f −1(ln(4|S ||A|/δ)) has the form a(|S ||A|/δ)1/m1 where a is a constant, and is

polynomial in |S |, |A|, and 1/δ. The result now follows from Proposition 2.5.4. The argument

is similar if for all s we have
∑T

t=1 D(1, t, s) ≥ m1 ln(ln(T) + 1) + m2; we leave details to the

reader.

2.6 An Application: Learning Bipedal Walking Using MDPUs

In order to test the applicability of the MDPU model on real problems, we applied it to a

humanoid robot walking problem, in which we require the robot to move from the center of

an arena to its boundary; we take any reasonable motion to be “walking”. This is describe in

detail in Chapter 3.

2.7 Conclusion

We have defined an extension of MDPs that we call MDPUs, MDPs with unawareness, to

deal with the possibility that a DM may not be aware of all possible actions. We provided a

complete characterization of when a DM can learn to play near-optimally in an MDPU, and

an algorithm that learns to play near-optimally when it is possible to do so, as efficiently as

possible. Our methods and results thus provide principles for guiding the design of complex

systems.

As we hope that our examples make clear, MDPUs should be widely applicable. In cases

59

that the agent is unaware of certain actions (and unsure of the potential action space), we

cannot easily model the problem as an MDP, while modeling it as an MDPU is relatively

straightforward. We applied MDPUs to the humanoid robot walking problem; using URMAX,

the robot was able to learn a number of useful walking gaits . This shows that MDPUs can

also be quite useful when the potential action space is known but it is large, and only a small

subset of potential actions are actually useful. In such cases, thinking in terms of MDPUs can

lead to much faster algorithms for finding near-optimal policies. We will discuss this in detail

in Chapter 3.

We have also shown that there are situations when an agent cannot hope to learn to play

near-optimally. In this case, an obvious question to ask is what the agent should do. Work on

budgeted learning has been done in the MDP setting [15; 18; 38]; we extend this to MDPUs in

Chapter 4.

60

CHAPTER 3

MDPS WITH UNAWARENESS IN ROBOTICS

“Can a robot write a symphony? Can a robot turn a canvas into a beautiful mas-

terpiece?” –(I, Robot)

3.1 Introduction

Markov decision processes (MDPs) are widely used for modeling decision making problems

in robotics and automated control. Traditional MDPs assume that the decision maker (DM)

knows all states and actions. However, in many robotics applications, the space of states and

actions is continuous. To find appropriate policies, we typically discretize both states and

actions. However, we do not know in advance what level of discretization is good enough for

getting a good policy. Moreover, in the discretized space, the set of actions is huge. However,

relatively few of the actions are “interesting”. For example, when flying a robotic helicopter,

only a small set of actions lead to useful flying techniques; an autonomous helicopter must

learn these techniques. Similarly, a humanoid robot needs to learn various maneuvers (e.g.,

walking or running) that enable it to move around, but the space of potential actions that it

must search to find a successful gait is huge, while most actions result in the robot losing

control and falling down.

In Chapter 2, we defined MDPs with unawareness (MDPUs), where a decision-maker (DM)

can be unaware of the actions in an MDP. In the robotics applications in which we are inter-

ested, we can think of the DM (e.g., a humanoid robot) as being unaware of which actions are

the useful actions, and thus can model what is going on using an MDPU.

61

In this paper, we apply MDPUs to continuous problems. We model such problems using

continuous MDPs, where actions are performed over a continuous duration of time. Although

many problems fit naturally in our continuous MDP framework, and there has been a great deal

of work on continuous-time MDPs, our approach seems new, and of independent interest. (See

the discussion in Section 3.4.) It is hard to find near-optimal policies in continuous MDPs.

A standard approach is to use discretization. We use discretization as well, but our discrete

models are MDPUs, rather than MDPs, which allows us both to use relatively few actions (the

“interesting actions”), while taking into account the possibility of there being interesting ac-

tions that the DM has not yet discovered. We would like to find a discretization level for which

the optimal policy in the MDP underlying the approximating MDPU provides a good approxi-

mation to the optimal policy in the continuous MDP that accurately describes the problem, and

then find a near-optimal policy in that discretized MDPU.

We gave a complete characterization of when it is possible to learn to play near-optimally

in an MDPU, extending earlier work [4; 31] showing that it is always possible to learn to

play near-optimally in an MDP. We extend and generalize these results so as to apply them to

the continuous problems of interest to us. We characterize when brute-force exploration can

be used to find a near-optimal policy in our setting, and show that a variant of the URMAX

algorithm presented in Chapter 2 can find a near-optimal policy. We also characterize the com-

plexity of learning to play near-optimally in continuous problems, when more “guided” explo-

ration is used. Finally, we discuss how MDPUs can be used to solve a real robotic problem:

to enable a humanoid robot to learn walking on its own. In our experiment, the robot learned

various gaits at multiple discretization levels, including both forward and backward gaits; both

efficient and inefficient gaits; and both gaits that resemble human walking, and those that do

not.

62

3.2 Analyzing robotic problems as MDPUs

As we said in the introduction, we apply the MDPU framework to robotic problems such as

having a humanoid robot learn to walk. For such problems, we typically have a continuous

space of states and actions, where actions take place in continuous time, and actions have a

nontrivial duration.

Suppose that the original continuous problem can be characterized by a continuous MDP

M∞ (defined formally below). We would like to find a “good” discretization M of M∞. “Good”

in this setting means that an optimal policy for M is ε-optimal for M∞, for some appropriate ε.1

Clearly the level of discretization matters. Too coarse a discretization results in an MDP whose

optimal policy is not ε-optimal for M∞; on the other hand, too fine a discretization results in the

problem size becoming unmanageably large. For example, in order to turn a car on a smooth

curve (without drifting), the optimal policy is to slowly turn the steering wheel to the left and

back, in which the action varies smoothly over time. This can be simulated using a relatively

coarse discretization of time. However, in order to make a sharp turn using advanced driving

techniques like drifting, the steering wheel needs to be turned at precise points in time, or else

the car will go into an uncontrollable spin. In this case, a fine discretization in time is needed.

Unfortunately, it is often not clear what discretization level to use in a specific problem.

Part of the DM’s problem is to find the “right” level of discretization. Thus, we describe the

problem in terms of a continuous MDP M∞ and a sequence ((M1,M′
1), (M2,M′

2), . . .), where Mi

is an MDPU with underlying MDP M′
i , for i = 1, 2, Intuitively, (M′

1,M
′
2,M

′
3, . . .) represents

a sequence of finer and finer approximations to M∞.

1A policy π is ε-optimal for an MDP M if the expected average reward for a policy for M is no more than ε
greater than the expected average reward of π.

63

Continuous Time MDP with Continuous Actions over Time: To make this precise, we

start by defining our model of continuous MDPs. Let M∞ = (S∞, A∞, g∞, P∞,R∞). S∞ is a

continuous state space, which we identify with a compact subset of IRn for some integer n > 0;

that is, each state can be represented by a vector (s1, · · · , sn) of real numbers. For example,

for a humanoid robot, the state space can be described by a vector which includes the robot’s

(x, y, z) position, and the current positions of its movable joints.

Actions: Describing A∞ requires a little care. We assume that there is an underlying set

of basic actions AB, which can be identified with a compact subset of IRm for some m > 0;

that is, each basic action can be represented by a vector (a1, · · · , am) of real numbers. For

example, for a humanoid robot, the basic actions can be characterized by a tuple that contains

the targeted positions for its movable joints. However, we do not take A∞ to consist of basic

actions. Rather, an action is a path of basic actions over time. Formally, an action in A∞ is a

piecewise continuous function from a domain of the form (0, t] for some t > 0 to basic actions.

Thus, there exist time points t0 < t1 < . . . < tk with t0 = 0 and tk = t such that a is continuous

in the interval (t j, t j+1] for all j < k. The number t is the length of the action a, denoted |a|.

We use left-open right-closed intervals here; we think of the action in the interval (t j, t j+1] as

describing what the DM does right after time t j until time t j+1. By analogy with the finite case,

g∞(s) is the set of actions in A∞ available at s.

Reward and Transition Functions: We now define R∞ and P∞, the reward and transition

functions. In a discrete MDP, the transition function P and reward function R take as arguments

a pair of states and an action. Thus, for example, P(s1, s2, a) is the probability of transitioning

from s1 to s2 using action a, and R(s1, s2, a) is the reward the agent gets if a transition from

s1 to s2 is taken using action a. In our setting, what matters is the path taken by a transition

according to a. Thus, we take the arguments to P∞ and R∞ to be tuples of the form (s1, sc, a),

64

where s1 is a state, a is an action in A∞ of length t, and sc is a piecewise continuous function

from (0, t] to S∞. Intuitively, sc describes a possible path of states that the DM goes through

when performing action a, such that before a starts, the DM was at s1.2 Note that we do not

require that limt→0+ sc(t) = s1. Intuitively, this means that there can be a discrete change in

state at the beginning of an interval. This allows us to capture the types of discrete changes

considered in semi-MDPs [43].

We think of R∞(s1, sc, a) as the reward for transitioning from s1 according to state path sc

via action a. We assume that R∞ is bounded: specifically, there exists a constant c such that

R∞(s1, sc, a) < c · |a|. For state s1 ∈ S∞ and action a ∈ A∞, we take P∞(s1, ·, a) to be a

probability density function over state paths of length |a| starting at s1. P∞ is not defined for

transitions starting at terminal states.

We require R∞ and P∞ to be continuous functions, so that if (si, si
c, ai) approaches (s, sc, a)

(where all the state sequences and actions have the same length t), then R∞(si, si
c, ai) approaches

R∞(s, sc, a) and P∞(si, si
c, ai) approaches P∞(s, sc, a). To make the notion of “approaches” pre-

cise, we need to consider the distance between state paths and the distance between actions.

Since we have identified both states (resp., basic actions) with subsets of IRn (resp., IRm), this

is straightforward. For definiteness, we define the distance between two vectors in IRn using

the L1 norm, so that d(~p, ~q) =
∑n

1 |pi − qi|. For actions a and a′ in A∞ of the same length,

define d(a, a′) =
∫ |a|

t=0
d(a(t), a′(t))dt. For state paths sc and s′c of the same length, define

d(sc, s′c) =
∫ |sc |

t=0
d(sc(t), s′c(t))dt. Finally, define d((sc, a), (s′c, a

′)) = d(sc, s′c) + d(a, a′). This

definition of distance allows us to formalize the notion of continuity for R∞ and P∞. The key

point of the continuity assumption is that it allows us to work with discretizations, knowing

that they really do approximate the continuous MDP.

2We are thus implicitly assuming that the result of performing a piecewise continuous action must be a piece-
wise continuous state path.

65

Constraints on Actions: We typically do not want to take A∞ to consist of all possible

piecewise continuous functions. For one thing, some hardware and software restrictions will

make certain functions infeasible. For example, turning a steering wheel back and forth 1020

times in one second can certainly be described by a continuous function, but is obviously

infeasible in practice. But we may want to impose further constraints on A∞ and g∞(s).

In the discussion above, we did not place any constraints on the length of actions. When

we analyze problems of interest, there is typically an upper bound on the length of actions of

interest. For example, when playing table tennis using a robotic arm, the basic actions can be

viewed as tuples, describing the direction of movement of the racket, the rotation of the racket,

and the force being applied to the racket; actions are intuitively all possible control sequences of

racket movements that are feasible according to the robot’s hardware and software constraints;

this includes slight movements of the racket, strokes, and prefixes of strokes. An example of

a piecewise continuous action here would be to move the racket forward with a fixed force for

some amount of time, and then to suddenly stop applying the force when the racket is close to

the ball. We can bound the length of actions of interest to the time that a ball can be in the air

between consecutive turns.

Awareness: Even with the constraints discussed above, A∞ is typically extremely large. Of

course, not all actions in A∞ are “useful”. For instance, in the helicopter example, most actions

would crash the helicopter. We thus consider potentially useful actions. (We sometimes call

them just useful actions.) Informally, an action is potentially useful if it is not useless. A

useless action is one that either destroys the robot, or leaves it in an uncontrollable state, or

does not change the state. For example, when flying a helicopter, actions that lead to a crash

are useless, as are actions that make the helicopter lose control. More formally, given a state

s, the set of useful actions at state s are the actions that transit to a different state in which the

66

robot is neither destroyed nor uncontrollable. Note that an action that crashes the helicopter

in one state may not cause a crash in a different state. For robotics applications, we say that

a robot is aware of an action if it identifies that action as a potentially useful action, either

because it has been preprogrammed with the action (we are implicitly assuming that the robot

understands all actions with which it has been programmed) or it has simulated the action. For

example, a humanoid robot that has been pre-programmed with only simple walking actions,

and has never tried running or simulated running before, would be unaware of running actions.

Let Ā∞ denote the useful actions in A∞, and let Ā∞0 denote the useful actions that the robot

is initially aware of. (These are usually the actions that the robot has been pre-programmed

with.)

Discretization: We now consider the discretization of M∞. We assume that, for each

discretization level i, S∞ is discretized into a finite state space S i and AB is discretized into

a finite basic action space ABi, where |S 1| ≤ |S 2| ≤ . . . and |AB1| ≤ |AB2| ≤ We further

assume that, for all i, there exists di > 0, with di → 0, such that for all states s ∈ S∞ and basic

actions aB ∈ AB, there exists a state s′ ∈ S i and a basic action aB′ ∈ ABi such that d(s, s′) ≤ di,

and d(aB, a′B) ≤ di. Thus, we are assuming that the discretizations can give closer and closer

approximations to all states and basic actions. At level i, we also discretize time into time

slices of length ti, where T ≥ t1 > t2 >Thus, actions at discretization level i are sequences

of constant actions of length ti, where a constant action is a constant function from (0, ti] to a

single basic action.3 In other words, the action lengths at discretization level i are multiples of

ti. Thus, at discretization level i, there are
∑bT/tic

l=1 |ABi|
l possible actions. To see why, there are

|ABi| discrete actions at level i, and action lengths must be multiples of ti. Thus, action lengths

must have the form lti for some l ≤ bT/tic. There are |ABi|
l actions of length l × ti at level i, and

thus
∑bT/tic

l=1 |ABi|
l actions at level i. Let A′i consist of this set of actions. (Note that some actions

3Note that we are not assuming that the action space Ai+1 is a refinement of Ai (which would further require
ti+1 to be a multiple of ti).

67

in A′i may not be in A∞, since certain action sequences might be infeasible due to hardware and

software constraints.) Let Ai ⊆ A′i be the set of useful actions at level i.

Let Mi be the MDPU where S i and Ai are defined above; A∞0 is the set of useful actions that

the DM is initially aware of; g(s) is the set of useful actions at state s; g0(s) is the set of useful

actions that the DM is aware of at state s; and the reward function Ri is just the restriction of

R∞ to Ai and S i. For s1 ∈ S i and a ∈ Ai, we take Pi(s1, ·, a) to be a probability distribution over

Q|a|i , the set of state paths of length |a| that are piecewise constant and each constant section

has a length that is a multiple of ti. For a state path sc ∈ Q|a|i , let Pi(s1, sc, a) be the normalized

probability of traversing a state sequence that is within distance di of state sequence sc when

playing action a starting from state s1. Formally, Pi(s1, sc, a) = (
∫
{s′c:d(sc,s′c)≤di}

dP∞(s1, ·, a))/c,

where c =
∑

sc∈Q|a|i

∫
{s′c:d(sc,s′c)≤di}

dP∞(s1, ·, a) is a normalization constant. Since the robot is not

assumed to know all useful actions at any specific discretization level, it needs to explore for

the useful actions it wasn’t aware of. Finally, given a specific exploration strategy, Di(j, t)

describes the probability of discovering a new useful action at discretization level i, given that

there are j undiscovered useful actions at level i, and the robot has explored t times without

finding a useful action. We model exploration using a0; every time the robot explores, it is

playing a0.

It remains to define the discretization of an action in A0. In order to do this, for a ∈ A∞,

define ai ∈ Ai to be a best approximation to a in level i if |ai| is the largest multiple of ti that

is less than or equal to |a|, and
∫ (|ai |)

0
d(a(t), ai(t))dt is minimal among actions a′ ∈ A of length

|ai|. Intuitively, ai is an action in Ai whose length is as close as possible to that of a and, among

actions of that length, is closest in distance to a. The action ai is not unique. For a ∈ A0, define

its discretization at level i to be a best approximation to a at that level. When there are several

best approximations, we choose any one of them.

68

Policies: As usual, a policy π in Mi is a function from S i to Ai. We want to com-

pute UMi(s, π, t), the expected average reward over time t of π started in state s ∈ S i.

Let a j ∈ Ai and sc j be a state sequence in Q|a j |

i , for j = 0, . . . , l. Say that a sequence

((a0, sc0), (a1, sc1), · · · , (al, scl)) is a path compatible with policy π starting at s if π(s) = a0 and

π(sc j(|a j|)) = a j+1 for all 0 ≤ j ≤ l−1. Let Iπs,t consist of all paths ((a0, sc0), (a1, sc1), · · · , (al, scl))

starting at s compatible with π such that
∑l

j=0 |a j| ≤ t <
∑l+1

j=0 |a j|, where al+1 = π(scl(|al|)).

Essentially, when computing UMi(s, π, t), we consider the expected reward over all maxi-

mally long paths that have total length at most t. Thus, UMi(s, π, t) =
∑

p∈Iπs,t P∗i (p)R∗i (p)
t ,

where, given a path p = ((a0, sc0), (a1, sc1), · · · , (al, scl)), P∗i (p) = Πl
j=0Pi(sc j(0), sc j, a j), and

R∗i (p) =
∑l

j=0 Ri(sc j(0), sc j, a j).

Now that we have defined the average reward of a policy at discretization level i, we can

define the average reward of a policy in M∞. Given a discretization level i, let πi be a projection

of π∞ at level i, defined as follows: for each si ∈ S i, define πi(si) to be an action ai ∈ Ai such

that ai is a best approximation to π(si) at level i, as defined above. As mentioned, there might be

several best approximations; ai is not unique. Thus, the projection is not unique. Nevertheless,

we define UM∞(s, π∞, t) to be limi→∞UMi(s, πi, t), where πi is a projection of π to discretization

level i. The continuity of the transition and reward functions guarantees that the limit exists

and is independent of the choice of projections.

We now consider how the URMAX algorithm of Chapter 2 can be applied to learn near-

optimal policies. We use URMAX at each discretization level. Note that URMAX never

terminates; however, it eventually learns to play near-optimally (although we may not know

exactly when). The time it takes to learn to play near-optimally depends on the exploration

strategy. The next theorem consider brute-force searching, where, at discretization level i, at

each discretization level i, all actions in A′i are exhaustively examined to find useful actions.

69

(The proof of this and all other theorems can be found in the supplementary material.)

Theorem 3.2.1: Using brute-force exploration, given α > 0 and 0 < δ < 1, we can find an

α-optimal policy in M∞ with probability at least 1 − δ in time polynomial in l, |A′l |, |S l|, 1/α,

1/δ, Rl
max, and T l, where l is the least i such that the optimal policy for M′

i is (α/2)-optimal

for M∞, Rl
max is the maximum reward that can be obtained by a transition in M′

l , and T l is the

ε-return mixing time for M′
l .

Although brute-force exploration always learns a near-optimal policy, the method can be

very inefficient, since it exhaustively checks all possible actions to find the useful ones. Thus,

at discretization level i, it needs to check
∑bT/tic

l=1 |ABi|
l actions, and as i grows, the method soon

becomes impractical. On the other hand, the result is of some interest, since it shows that

even when there are infinitely many possible levels of discretizations, a method as simple as

brute-force exploration suffices.

When the number of possible actions is huge, the probability of finding a potentially useful

action can be very low. In this case, making use of an expert’s knowledge or imitating a

teacher’s demonstration can often greatly increase the probability of finding a useful action.

We abstract the presence of an expert or a teacher by assuming that there is some constant β > 0

such that D(1, t) ≥ β for all t. Intuitively, the presence of a teacher or an expert guarantees that

there is a minimal probability β such that, if there is a new action to be found at all, then the

probability of finding it is at least β, no matter how many earlier failed attempts there have been

at finding a useful action. For example, Abbeel and Ng (2005) study the problem of robotic

helicopter flying. They assume that they have a teacher that will help demonstrate how to fly.

Their assumptions imply that there is a constant β > 0 such that D(1, t) ≥ β.4

4Specifically, if we take a flight with reward ε-close to the flight demonstrated by the teacher to be a useful

70

Using apprentice learning lets us improve Theorem 3.2.1 by replacing the |A′l | component

of the running time by |Al|; thus, with apprentice learning, the running time depends only on

the number of useful actions, not the total number of potential actions. The savings can be

huge.

Theorem 3.2.2: Using an exploration method where Di(1, t) ≥ β for all i, t > 0 (where β ∈

(0, 1) is a constant), for all α > 0 and 0 < δ < 1, we can find an α-optimal policy in M∞ with

probability at least 1−δ in time polynomial in l, |Al|, |S l|, 1/β, 1/α, 1/δ, Rmax, and T l, where l is

the smallest i such that the optimal policy for M′
i is (α/2)-optimal to M∞, Rl

max is the maximum

reward that can be obtained by a transition in M′
l , and T l is the ε-return mixing time for M′

l .

3.3 Humanoid Robot Walking

We consider the problem of a humanoid robot with 20 joint motors (which we sometimes call

just “joints”) learning to walk on its own. More precisely, we require the robot to move from the

center of an arena to its boundary; we take any reasonable motion to be “walking”. (Figure 3.1

shows the robot and the arena in which it must walk.)

3.3.1 The continuous MDP

We start by defining a continuous M∞ for the robot problem. A state s ∈ S∞ is of the form

s = (w1, · · · ,w23) ∈ IR23, where (w1,w2,w3) give the position of the robot’s center of mass and

action, and take a0 be the process of performing h iterations of the main loop in their algorithm, where h =
64HRmax

ε
(2 + c log 64H2Rmax |S |3 |A|

ε
), then the probability of finding a useful action is at least 1 − e

ε
(1+c)32HRmax , where

c =
162H2R2

max |S |
3 |A|

4ε2 ; H is the horizon, so that the procedure must terminate after H steps; Rmax is the maximum
reward; |S | is the number of states; and |A| is the number of actions.

71

Figure 3.1: The arena with the robot at the center; and the robot.

(w4, · · · ,w23) are the current positions of the robot’s 20 joint motors. We define the domain of

each dimension as follows: Since the radius of the arena is 5 meters, w1,w2 ∈ [−5, 5]; since

the robot’s height is 0.454 meters, w3 ∈ [0, 0.4] (we do not expect the robot’s center of mass

to be higher than 0.4). Each joint motor has its specific range of mobility, which determines

the domain of the corresponding dimension. For example, w5 ∈ [−3.14, 2.85] represents the

current position of the robot’s left shoulder. The mobility range for all joint motors are intervals

in [−π, π].

The basic actions a ∈ AB are of the form a = (v1, · · · , v20) ∈ IR20, where vi is the target

position for the robot’s ith joint motor. The domain of each dimension is the mobility range

for the corresponding joint motor. For example, v2, which corresponds to the left shoulder, has

mobility range [−3.14, 2.85]; v2 = 2.85 means to move the robot’s left shoulder forward as

far as possible. Since walking is composed of repeated short movements that are typically not

much longer than 0.5 seconds, we set T = 0.512 seconds. Thus, A∞, the set of useful actions,

consists of piecewise continuous functions that map from time to basic actions and comply

with the robot’s hardware and software limitations, of length t ≤ 0.512 seconds.

We now define R∞ and P∞. Intuitively, the robot obtains a reward for gaining dis-

tance from the center of the arena. If the coordinates of the center of the arena are given

by s0 = (s0[1], s0[2]), then R∞(s1, sc, a) = dis(s0, sc(|a|)) − dis(s0, s1), where dis(s0, s1) =

72

√
(s0[1] − s1[1])2 + (s0[2] − s1[2])2 is the L2-norm distance between s0 and s1 on the (x, y)-

plane. The reward could be negative, for example, if the robot moves back towards the center

of the arena.

By definition, P∞(s1, ·, a) is a probability distribution over state sequences of length |a|

starting at s1. For example, if the robot slowly moves its right leg forward while staying

balanced, the state path taken by the robot is a deterministic path. On the other hand, if a is the

action of turning around quickly, P∞(s, ·, a) is distribution over various ways of falling down.

3.3.2 Discretizations

We now define Mi and M′
i . In our experiments we considered only levels 2 and 3 (level 1 is

uninteresting since it has just one state and one action), so these are the only levels that we

describe in detail here. (These turn out to suffice to get interesting walking behaviors.) At

these levels, we discretized more finely the joints corresponding to the left and right upper and

lower leg joints and the left and right ankle joints, since these turn out to be more critical for

walking. (These are components (w14, · · · ,w19) in the state tuples and (v11, · · · , v16) in basic-

actions tuples.) We call these the relevant dimensions. We assume that the six relevant state

and actions components have i possible values at level i, for i = 2, 3, as does w3, since this

describes how high off the ground the robot is (and thus, whether or not it has fallen). All other

dimensions take just one value. We took t2 = t3 to be 128ms. Since T = 0.512s, an action

contains at most bT/tic = 4 basic actions.

A∞0 is the set of preprogrammed actions. We preprogram the robot with a simple sitting

action that lets the robot slowly return to its initial sitting gesture. When we consider appren-

ticeship learning, we also assume that the robot is preprogrammed with a “stand-up” action,

73

that enables it to stand up from its initial sitting position. (Intuitively, we are assuming that the

expert taught the robot how to stand up, since this is useful after it has fallen.)

A′i is the set of potential actions at level i. Given our assumptions, for i = 2, 3, at level

i, there are (i6)4 potential actions (there are i possible values for each of the six relevant di-

mensions, and each action is a sequence of four basic actions). Thus, at level 3, there are

(36)4 =282,429,536,481 potential actions. As we mentioned, a useful action is an action that

moves the robot without making it lose control. Here, an action is useful if it moves the robot

without resulting in the robot falling down. At both levels 2 and 3, more than 80 useful actions

were found in our experiments. The most efficient action found at level 3 was one where the

right leg moves backwards, immediately followed by the left leg, in such a way that the robot

maintains its balance at all times. By way of contrast, turning the body quickly makes the robot

lose control and fall down, so is useless.

For s1 ∈ S i, a ∈ Ai, and sc ∈ Q|a|i , Pi(s1, sc, a) is the normalized probability of traversing a

state sequence that is di close to sc, a sequence of states in S i, where we define di = 12π
i + 28π+

20.4. So di decreases as i increases, and discretizations at a higher level better approximate the

continuous problem. All basic actions in AB are within distance di of a basic action in ABi and

all states in S are within di of a state in S i. Let s ∈ S , and let si be the closest state to s in S i. It

is easy to check that d(s, si) ≤ di for i = 2, 3.

The Di function depends on the exploration method used to discover new actions. In our

experiment, we used two exploration methods: brute-force exploration and apprenticeship-

learning exploration.

At discretization level i, using brute-force exploration, we have Di(|Ai|, t) = |Ai |

|A′i |
, since there

are |Ai| useful actions and |A′i | potential actions, and we test an action at random. With ap-

74

Brute-force
(level 2)

Brute-force
(level 3)

Apprenticeship
learning (level 2)

|S i| 130 1460 3200
|ABi| 64 729 1600
|Ai| 16777216 282429536481 6553600000000
ti (ms) 124 124 124
Length of
action (ms) 496 496 496

Execution
time (hours) 24 24 24

Best avg rwd
(m/action) 0.043486 0.067599 0.083711

Num of useful
actions found 131 89 180

Table 3.1: Performance comparisons.

prenticeship learning, we used following hints from a human expert to increase the probability

of discovering new actions: (a) a sequence of moving directions that, according to the human

expert, resembles human walking;5 (b) a preprogrammed stand-up action; (c) the information

that an action that is symmetric to a useful action is also likely to be useful (two actions are

symmetric if they are exactly the same except that the target values for the left joints and those

for the right joints are switched). We also use a different discretization: the ankle joint was

discretized into 10 values. The human expert suggests more values in the ankle joints because

whether or not the robot falls depends critically on the exact ankle joint position. These hints

were provided before the policy starts running; the discretization levels are set then too. There

were no further human-robot interactions.

75

Figure 3.2: A backward gait (from left to right).

Figure 3.3: A forward gait (from left to right).

3.3.3 Experiments

For our experiments, we simulated DARwIn OP, a commercially available humanoid robot.

The simulations were conducted on Webots PRO platform 8.2.1 using a MacBook Pro with

2.8GHz Intel Core i7 Processor, 16GB 1600 MHz DDR3 memory, 0.5TB Flash Storage Mac

HD, on OS X Yosemite 10.10.5. We modeled the robot walking problem as an MDPU, and

implemented the URMAX algorithm to solve the problem using programming language Python

2.7.7.

As we said, given the number of actions involved, we conducted experiments only for dis-

5The sequence gives directions only for certain joints, without specific target values, leaving the movement
remaining joints open for experimentation.

76

cretization level 2 and 3. Both sufficed to enable the robot to learn to walk, using a generous

notion of “walk”—more precisely, they sufficed to enable the robot to learn to locomote to

the boundary of the arena. As mentioned, two exploration methods were used: brute-force

exploration and apprenticeship-learning exploration. One trial was run for brute-force explo-

ration at each of levels 2 and 3, and one trial was run for apprenticeship learning at level 2.

Each trial took 24 hours. More than 15 stable gaits were found in total, where a gait is stable

if it enables the robot to move from the center of the arena to the boundary without falling.

In addition, more than 400 useful actions were found. The best gait among all stable gaits

achieved a velocity of 0.084m/s, which seems reasonable, given that the best known walking

speed of DARwIn-OP is 0.341m/s [6]. Given more time to experiment, we would expect the

performance to improve further.

The robot successfully learned gaits of various styles, including both forward and back-

ward gaits (see Figures 3.2 and 3.3), both efficient and inefficient gaits, gaits that resemble

human walking and the ones that do not. Somewhat surprisingly, the best gait actually walks

backwards. (Videos of some of the gaits and a demo of the learning process can be found at

https://youtu.be/qW51iInpdV0.) As shown in Table 3.3.3, as the discretization level increases,

both the velocity of the best gait and the number of useful actions found increase. This agrees

with the expectation that finer discretization better approximates the continuous problem, and

thus gets an expected reward closer to the optimal reward of the continuous problem. Appren-

ticeship learning resulted in more useful actions than the brute-force exploration and in gaits

with a higher average reward. Again, this is hardly surprising; the hints provided by the human

expert increases the probability of finding useful actions. On the other hand, when the expert

gives “bad” hints, the robot performs worse than with brute-force exploration.

Our approach, using MDPUs, requires no knowledge on the kinematics of the robot other

77

than the number of joints and the moving range of each joint. Moreover, it makes no assump-

tions about the moving pattern of the resulting gait; for example, we do not assume that a gait

must be cyclic, or symmetric between left and right joints, nor do we specify the length of a

gait. Although we do specify the length of a useful action, a gait could be composed of a single

or multiple useful actions. Given the few assumptions and little prior knowledge assumed, the

performance of the robot seems quite reasonable. More importantly, the experiment proves

that the use of MDPUs enables the robot to learn useful new maneuvers (walking, in this case)

by itself, with minimum human input.

3.4 Related Work

There has been work on optimal policy learning in MDPs using computational resources.

Kearns and Singh’s [31] E3 algorithm guarantees polynomial bounds on the resources required

to achieve near-optimal return in general MDPs; variants and extensions of this work can be

found in [4; 29; 30]. However, algorithms such as E3 usually require the exploration of the

entire MDP state/action space. This becomes impractical in our setting, where the number of

actions is extremely large. In such cases, several exploration methods have been employed to

help find useful actions. For example, Abbeel and Ng [1] utilize a teacher demonstration of

the desired task to guide the exploration; Dearden et al. [10] utilize the value of information

to determine the sequence of exploration. Guestrin et al. [17] make use of approximate lin-

ear programming, and focus on exploring states that directly affect the results of the planner;

Kakade et al. [29] proved that in certain situations, the amount of time required to compute a

near-optimal policy depends on the covering number of the state space, where, informally, the

covering number is the number of neighborhoods required for accurate local modeling; Other

papers (e.g., [9; 23]) consider MDPs with large action spaces.

78

We are far from the first to consider MDPs with continuous time. For example, semi-MDPs

(SMPDs) and continuous-time MDPs have continuous time [43]. However, these models have

discrete actions that can be taken instantaneously, and do not consider continuous actions taken

over some duration of time. In Markov decision drift processes [25], the state does not have to

stay constant between successive actions (unlike an SMDP), and can evolve in a deterministic

way according to what is called a drift function. But Markov decision drift processes do not

have actions with probabilistic outcomes that take place over an interval of time. Hordijk

and van der Duyn Schouten [25] make significant use of discrete approximations to compute

optimal policies, just as we do. There has also been work on MDPs with continuous state space

and action space (e.g., [2; 14]), but with discrete time. For our applications, we need time,

space, and actions to be continuous; this adds new complications. In control theory, there are

methods for controlling continuous time systems where system transitions are linear function of

state and time [55]. These can be extended to non-linear systems [32]. However, the transitions

in these systems are usually deterministic, and they do not deal with rewards or policies. Sutton,

Precup, and Singh [52] consider high-level actions (which they call options) that are taken

over a duration of time (such as “opening a door”), but they view time as discrete, which

significantly simplifies the model. Rachelson, Garcia, and Fabiani [44] consider continuous

actions over some time interval, however, they assume there are decision epochs, which are the

only time points where rewards are considered. In our model, the rewards depend on the entire

state sequence that the system traverses through while an action is taken. While this makes the

model more complicated, it seems more appropriate for the problems of interest to us.

There has also been a great deal of work on bipedal robot walking, since it is a fundamental

motor task for which biological systems significantly outperform current robotic systems [53].

There have been three main approaches for solving the task:

79

• The first approach describes the kinematics of the robot in detail using non-linear and

linear equation systems, then solves these systems to obtain desirable trajectories. See,

for example, [27; 16; 28; 33; 51; 54].

• The second approach uses genetic algorithms [7; 22; 42]. The traits describing a gait

are taken to be the genes in a genetic algorithm. Different gaits (i.e., settings of the

parameters) are evaluated in terms of features such as stability and velocity; The most

successful gaits are retained, and used to produce the next generation of gaits through

selection, mutation, inversion, and crossover of their genes. This approach can also be

used for to learn quadrupedal and nine-legged walking. See, for example, [8; 40; 41;

56].

• The third approach uses gradient learning, which starts with either a working gait or

a randomly initialized gait. It then improves the gait’s performance by changing its

parameters, using machine-learning methods (such as neural networks) to find the most

profitable set of changes in the parameters. See, for example, [6; 34; 49; 53]. this

approach is also used in quadrupedal walking [35].

Since the first approach requires a full description of the robot’s kinematics, as well as

composing and solving a non-linear system, it requires a great deal of human input. Moreover,

its application is limited to walking problems. The approach is unable to produce gaits other

than those specified by human (e.g., to walk forward by stepping forward the left and the

right legs in turn under a specific speed). Both the second and the third approach require little

human input (when starting from random gaits), and may produce a variety of gaits. Both

also have the potential to be generalized to problems other than bipedal walking. However,

both are heuristic search algorithms, and have no theoretical guarantee on their performance.

In contrast, our method produces a variety of gaits, provides a general framework for solving

robotic problems, and produces a near-optimal policy in the limit. Moreover, our method

80

requires minimum human input, although, as the experiments show, it does better with more

human input.

A comparison of our method and the genetic algorithm may provide insights into both

methods. Although the two approaches seem different, the searching process made possible by

selection, mutation, inversion, and crossover in a genetic algorithm can be viewed as a special

case of the explore action in an MDPU. Conversely, the explore action in an MDPU for the

robot can be roughly viewed as searching for a set of genes of unknown length (since a gait

can be understood as a continuous action over an uncertain amount of time, composed of one

or more shorter actions, where each shorter action is described by a set of parameters). Our

approach can be viewed as being more flexible than a genetic algorithm; in a genetic algorithm,

the length of the chromosome (i.e., the number of parameters that describe the gait) is fixed;

only their values that give the best performance are unknown.

The recent work of Mordatch et al [39] also provides a general approach for reinforcement

learning in robot tasks. Like us, they require prior knowledge only of the mobility range of

each of the robot’s joints, and not their kinematics; they also model the problem as an MDP.

Their goal is to find an optimal trajectory (i.e., a sequence of states), such that when followed,

performs a desired task (such as reaching out the robot’s hand to a desired position) with

minimal cost. They use neural networks to solve the cost-minimization problem. Thus, their

approach does not have any guarantees of (approximate) optimality. Moreover, the complexity

of their approach grows quickly as the length of the trajectory grows (while ours is polynomial

in the number of useful actions, states visited, and the difficulty of discovering new actions,

and thus is not significantly affected by the length of the trajectory). That said, Mordatch et

al.’s method has successfully learned a few relatively simple tasks on a physical DARwIn OP2

robot, including hand reaching and leaning the robot’s torso to a desired position [39], although

81

it has not yet been applied to walking.

3.5 Conclusion

We have provided a general approach that allows robots to learn new tasks on their own. We

make no assumptions on the structure of the tasks to be learned. We proved that in the limit,

the method gives a near-optimal policy. The approach can be easily applied to various robotic

tasks. We illustrated this by applying it to the problem of bipedal walking. Using the approach,

a humanoid robot, DARwIn OP, was able to learn various walking gaits via simulations (see

https://youtu.be/qW51iInpdV0 for a video). We plan to apply our approach to more robotic

tasks, such as learning to run and to walk up and down stairs. We believe the process will be

quite instructive in terms of adding useful learning heuristics to our approach, both specific

to these tasks and to more general robotic tasks. We are also interested in having the robot

simulate learning to walk in the same way a baby does, for example, by limiting the robot’s

abilities initially, so that it must crawl before it walks. Part of our interest lies in seeing if such

initial limitations actually make learning more efficient.

82

CHAPTER 4

BUDGETED LEARNING WITH UNAWARENESS

Lose no time; be always employed in something useful; cut off all unnecessary

actions. –Benjamin Franklin

4.1 Introduction

In the last Chapter, we considered how to apply MDPUs to robotic problems; in this Chapter,

we consider cases in which the DM has a limited time to learn a near-optimal policy. Recall

that in Chapter 2, we completely characterized when a near-optimal policy can be learned

for an MDPU in polynomial time; when this can be done in exponential time; and when it

is impossible to learn a near-optimal policy. We also provided an algorithm that whenever

possible, learns a near-optimal policy for an MDPU in polynomial time.

However, even if the DM can learn to play optimally in polynomial time, this is not helpful

if the DM can make only 10 moves. Notice that all the examples given in the previous chapters

remain of interest if we are given a budget (i.e., a bound on the number of moves that can

be made). Indeed, they are arguably of even more practical interest: the mathematician has

a limited working time to solve the math problem; the insurance buyer has a limited time to

decide; and the project that develops the robot might have a tight timeline.

There has been work on budgeted learning without unawareness (i.e., where all actions are

known in advance) [15; 18; 37; 38]. Madani et al. [38] first defined the budgeted learning

problem: the problem of learning to play nearly optimally, given a budget. Much of the work

on this problem has been done in the context of multi-armed bandits. But now the meaning of

83

“near optimal” is somewhat different than in the context of MDPUs. Rather than there being

an underlying “true” multi-armed bandit problem (with a probability of success for each arm),

in which case the goal would be to learn an arm with the highest expected reward (to the extent

possible, given the budget), it is assumed that the DM has a prior probability on the expected

reward of each arm. Moreover, it is assumed that each arm pays off either 1 (“success”) or

0 (“failure”), so the expected reward is just the expected success probability. If the budget

is limited, it is clearly unreasonable to expect optimal performance. Thus, given a budget h,

the goal is to find a policy whose expected reward is the best among all policies that use only

h steps, where the expectation is taken with respect to the DM’s beliefs. Madani et al. [38]

proved that the problem of finding an optimal policy is NP-hard. Guha and Munagala [18] and

Goel et al. [15] each gave a polynomial-time algorithm for the budgeted learning problem that,

given a budgeted learning problem B, returns an approximately optimal policy for B, that is, a

policy whose expected reward is within a constant factor of that of the optimal policy for B.

As we observed above, in many cases of interest, not all the relevant actions are known

in advance. In this paper, we consider the budgeted learning problem in the presence of un-

awareness. We define this formally by considering a variant of MDPUs. There are two key

differences: we add a budget and, rather than assuming that there is a “true” underlying MDP,

we assume a prior distribution over possible MDPs to get what we call MDPs with unaware-

ness, a prior, and a budget (MDPUBs). We now take an optimal policy in an MDPUB with

budget h to be a policy that gives the highest expected reward among all policies that run in

h steps, where the expected reward of a policy π is taken over the probability on the possible

outcomes of running π for h steps (see Section 4.3 for a discussion).

There are a number of subtleties involved with making this precise. For example, what

exactly does it mean for a DM to put a positive probability on an MDP that involves actions

84

that the DM is not aware of? The DM can consider an MDP that includes such actions possible,

but cannot play such actions. Because we allow such actions, the notion of optimal policy used

in [20] is different from that used here, even in the special case of an MDPUB M′ that places

probability 1 on a single MDP M (which we can think of as the “true” MDP) and has an infinite

budget.

In this paper, like the earlier literature on budgeted learning, we focus on multi-armed

bandits. Moreover, like the earlier literature, we assume that the DM’s beliefs about the success

probability of each arm is given by an (α, β) prior (also known as a beta density) [11] and that

the success probability of the arms are independent. Without unawareness, given a policy

π, this is enough to determine the probability on the outcomes of π, and hence the expected

reward of π. In our setting, we need more information. Specifically, we need to know (a) the

probability of there being a new arm; (b) the success probability of new arms, if a new arm is

discovered; and (c) the terms D(1, t) described above, which give the probability of discovering

a new arm if there is a new arm to be discovered after having played explore t times since an

arm was last discovered. We call this restricted class of MDPUBs budgeted learning problems

with unawareness (BLPUs).

The main contribution of our paper is to define MDPUBs and to give an algorithm that,

given a BLPU B returns a policy π that is approximately optimal for B.

4.2 Preliminaries

In this section, we briefly review (α, β)-distribution and the budgeted learning problem.

85

4.2.1 The (α, β) distribution

Following [15; 18; 37; 38], we use the (α, β) distribution [11] to represent the probability of the

probability of success of a bandit-arm. We now describe the (α, β) distribution in more detail.

Let random variable p define the probability of success of a bandit arm. That is, p = x

means the bandit arm succeeds with probability x, and fails with probability 1 − x. Consider

the probability Prα,β (where α, β ∈ R+) on the probability of p being x whose density function

is defined as follows:

Prα,β(p = x) =
xα−1(1 − x)β−1

K
,

where K =
∫ 1

x=0
xα−1(1 − x)β−1dx is a normalization factor.1 As is well known [11], (1) if a suc-

cess (resp., failure) is observed, then after updating using Bayes’ rule, the posterior probability

of a success is given by Prα+1,β (resp., Prα,β+1). and (2) the expected probability of success with

respect to Prα,β is α/(α + β); that is, EPrα,β[p] = α/(α + β).

4.2.2 The budgeted learning problem

Previous work on budgeted learning [15; 18; 37; 38] focused on budgeted learning in multi-

armed bandits. In this setting, a budgeted learning problem (BLP) can be described by a

tuple (〈v1, . . . , vn〉, h). Here there are n arms, vi is a second-order probability on the success

probability of arm i, and h ∈ N+ is the budget. Like the rest of the literature, we assume for

ease of exposition that the payoff associated with success is 1 and the payoff associated with

failure is 0. The BLPs considered in [15; 18; 37; 38] are a special case of the BLPs defined

above, where the second-order probabilities are given by (α, β) distributions.

1We follow the convention of taking N to be the set of natural numbers, R to be the set of real numbers, N+

to be the set of positive natural numbers, and R+ to be the set of positive real numbers.

86

Goel et al. observe that, ignoring the initial state, the play of a BLP B can be defined by

an MDP MB = (S , A, gA, P,R). We describe the MDP in the special case considered by Goel

et al., where vi is an (α, β) distribution, since that makes the state space and transition prob-

ability function particularly easy to describe, but the approach works for an arbitrary second-

order prior. We explain the elements in order: The state space S = {(R+ × R+)n × N , sfin};

a state s ∈ S is a tuple (〈us
1, u

s
2, . . . , u

s
n〉, h

s), where us
i ∈ R

+ × R+ represents an (α, β) dis-

tribution (intuitively, the DM’s current second-order probability on the probability of arm i

returning 1), hs ∈ N+ is the budget remaining in state s, and sfin is the final state; when the

MDP reaches this state, it makes no further moves. We call us
i the arm-state of arm i in s,

denoted s(i). The action space A = {test1, . . . , testn, exploit1, . . . , exploitn}, where testi is the

action of testing arm i (i.e., playing arm i once); exploiti is the action of returning arm i as

the winner. To see which actions can be played at each state, define gA(s) = A if hs ≥ 1,

gA(s) = {exploit1, . . . , exploitn} if hs = 0, and gA(sfin) = ∅. That is, we assume that in a state

where the budget is 0, only exploiti can be played for some i ∈ {1, . . . , n} and that no actions can

be played in the final state sfin. The transition probability function P reflects how an (α, β) dis-

tribution changes when a success/failure is observed. Given state s = (〈us
1, . . . , u

s
n〉, h

s) where

us
j = (α j, β j), let u+

j = (α j + 1, β j), u−j = (α j, β j + 1), s+
j = (〈us

1, . . . , u
s
j−1, u

+
j , u

s
j+1, . . . , u

s
n〉, h

s − 1)

and s−j = (〈us
1, . . . , u

s
j−1, u

−
j , u

s
j+1, . . . , u

s
n〉, h

s − 1). Then, when hs > 0,

P(s, s+
j , test j) =

α j

α j + β j
, P(s, s−j , test j) =

β j

α j + β j
.

P(s, sfin, exploiti) = 1; exploiting an arm terminates the MDP.

To define the reward function R, we first define Rw(u), the expected reward of arm-state

u = (α, β), to be α
α+β

(i.e., the expected success probability of that arm). Define R(s, exploiti) =

Rw(s(i)) and R(s, testi) = 0.

A policy for MB is a function that maps each state to an action (in the case of a deterministic

87

policy) or a distribution over actions (in the case of a probabilistic policy). If π is a probabilistic

policy, we write π(s)[a] to denote the probability that π plays action a in reduced state s. We

are interested in finding a policy whose reward is highest when the budget runs out.

4.3 MDPUBs and BLPUs

As we said in the introduction, our goal in this paper is to extend the work on unawareness

to the setting of budgeted learning, with a focus on multi-armed bandit problems where there

may be arms that the DM is unaware of. As the examples in the introduction show, this setting

arises often in practice. Our first step is to consider a variant of MDPUs that allows for a budget

and uncertainty regarding the underlying MDP. For ease of exposition, we associate with every

MDP an initial state. This lets us more directly deal with multi-armed bandit problems, where

there is an initial state.

Formally, an MDPUB is a tuple Q = (A0, a0,D, h, s0, µ), where A0 is a set of actions; a0 is

the special explore action; D is a discovery probability function (as in an MDPU); h ∈ N+ is a

budget, µ is a distribution over MDPs; and s0 is the initial state in all the MDPs in the support

of Q (i.e., all MDPs that have non-zero probability in µ). For each MDP M in the support of

µ, we assume that each state s in the state space of M includes actions other than those in A0

that the DM is aware of, in the order that they were discovered, and the number of times that

a0 has been played since the last time an action was discovered (or since the initial state, if no

new action has yet been discovered). We call this the action component of state s. Thus, in s0,

the action component is (〈 〉, 0). In general, the action component has the form (〈b1, . . . , bk〉, t).

The action component serves a number of useful purposes. Suppose that there is some

MDP M that the DM considers possible where there are two actions that she is not aware

88

of, say b and c. If she plays a0 (the special explore action) in a state (〈 〉, t) and discovers a

new action, she will not in general know which of b or c she has discovered. If she in fact

discovers b, she will move to a state where the action component is (〈b〉, 0); if she discovers c,

the action component will be (〈c〉, 0). Since in an MDP an agent is always assumed to know

the current state, rather than having the uncertainty be described by the transition function in

M, we assume that rather than M, the DM considers two MDPs, Mb and Mc, possible; in Mb,

it is b that is discovered (if an action is discovered at all); in Mc it is c. The DM’s uncertainty

over which action is discovered is then described by the relative probabilities of Mb and Mc.

More generally, we assume that, for each state s in an MDP M, there is a unique action as not

in the action component of s such that if an action is discovered in state s after playing a0, it is

necessarily as.

We can now describe the transition probability function for the action a0. In a state s =

(s′, (〈b1, . . . , bk〉, t)) in an MDP M where there are no further actions to be discovered, after a0

is played, the DM transitions to state (s′, (〈b1, . . . , bk〉, t + 1)) with probability 1. If there are m

actions to be discovered in the MDP, then the DM transitions to (s′, (〈b1, . . . , bk〉, t + 1)) with

probability 1 − D(m, t + 1) and to (s′, (〈b1, . . . , bk, as〉, 0)) with probability D(m, t + 1).2

Another way to think about what is going on here is that we really have a POMDP (partially

observable MDP). We assume that the DM knows everything about the state except for the

action component. To make this precise, let the reduced state be the result of replacing the

action component (〈a1, . . . , ak〉, t)) in a state s with (k, t) (i.e., k is the number of new actions

discovered). We assume that all the states that a DM considers possible after playing a0 at s

have the same reduced state; the DM knows how many actions she has discovered and how

long it has been since she last discovered an action. Since a DM’s policy can depend only

on what the DM knows, the policy must depend only on the reduced state. That is, in an
2Thus, unlike [20], here, after playing explore, the agent always moves to a different state.

89

MDPUB, a probabilistic policy is a function from reduced states to distributions over actions.

In a state where the action component in the reduced state is (k, t), the DM can either play an

action a ∈ A0 (i.e., one of the actions of which she was originally aware) or she can play the

jth newly-discovered action, for 1 ≤ j ≤ k. That is, the policy can refer to a new action in

terms of the order in which new actions were discovered. Playing the first new action in the

example above would result in playing either b or c, depending on which was in fact the action

discovered.

Just as in the case of a budgeted learning problem without unawareness, playing a policy π

induces a distribution over final states (i.e., the states reached after the budget has run out). For

each final reduced state, we can (at least in principle) compute the policy with the best expected

return, and then take the expected return of π to be the expected return of these optimal policies,

where this expectation is taken with respect to the distribution over final reduced states induced

by π.

This model greatly simplifies if we consider bandit problems and make some reasonable

assumptions. Then we can characterize the probability µ using two features: (1) the probability

of there being an undiscovered arm (which we take to be a fixed probability γ, independent of

how many arms have been discovered) and (2) a second-order probability v on the probability

of success of a new arm, if one is discovered. We take this second-order probability to be an

(α, β) probability. Thus, we take a budgeted learning problem with unawareness (BLPU) to

be a tuple B = (s0, h,D, γ, v0), where s0 = (v1, . . . , vn) (i.e., there are initially n known arms)

and, just as in the case with complete awareness, vi is a second-order (α, β) probability on

the probability of success of arm i, h is the budget, D is the discovery probability function,

0 ≤ γ < 1 is the probability of there being an undiscovered arm, and v is an (α, β) probability

on the success probability of each new arm, if there is one. There may be more than one new

90

arm. The probabilities are taken to be independent, so that the probability of there being at

least two additional arms is γ2, the probability of there being exactly two additional arms is

γ2(1 − γ), and so on. Every time an additional arm is discovered, the second-order probability

on the probability of success is initially taken to be v0.

A BLPU B = (s0, h,D, γ, v0) can be viewed as describing an MDPUB MB =

(A0, a0,D, h, s+
0 , µ), where A0 = {test1, . . . , testn, exploit1, . . . , exploitn}, s+

0 is the initial state

(described in more detail below), and µ puts probability γk(1 − γ) on the MDP Mk in which

there are exactly n + k arms, where initially arms a1, . . . , an have a second-order probability of

success characterized by s+
0 , and the remaining k arms have a second-order probability of suc-

cess characterized by v0. The states s in Mk have the form (〈us
1, . . . , u

s
n+ j〉, h

s, 〈bs
1, . . . , b

s
j〉, t

s),

where 0 ≤ j ≤ k. Intuitively, 〈bs
1, . . . , b

s
j〉 represents the arms not in A0 that have been discov-

ered, 〈us
1, . . . , u

s
n+ j〉 gives the second-order probability of (the probability of) success for the n

arms in A0 and the j new arms, hs is the remaining budget, and t is the number of times that

explore has been played since the last time an arm was discovered. All the arms in Mk not

explicitly listed in the state are assumed to have second-order probability of success v0; since

they have not been discovered, they have not been played, so this probability has not changed.

The initial state s+
0 is just 〈s0, h, 〈 〉, 0). The transition probability function in Mk is as discussed

above.

By the symmetry of the situation, we can make one further simplifying assumption: we

assume without loss of generality that arms are discovered in the same order in all the MDPs.

Thus, for example, in all the MDPs that have at least two arms b1 and b2 beyond those in A0, b1

is always the first new arm discovered and b2 is always the second new arm discovered. Thus,

we can in fact reconstruct the state from the reduced state. Unlike general MDPUBs, there is

no uncertainty about which arm was discovered.

91

While there are quite a few assumptions at play here, we would argue that they are all in the

spirit of assumptions that have been made earlier. In particular, the fact that all undiscovered

arms have the same second-order probability on success probabilities just says that, a priori,

the DM has no way of distinguishing one new arm from another, so she treats them all the same

way.

These assumptions allow us to compute the expected profit of a policy π in B in a straight-

forward way. We simply compute the expected reward of π in each MDP Mk, multiply it by

the probability of Mk (i.e., γk(1 − γ)), and sum over all k.

4.4 An approximately optimal policy for BLPUs

Given a BLPU B, we now provide a way of computing an approximately optimal policy that

we denote πεB. Since the number of reduced states in B is exponential in the number number of

arms initially known in B and the budget h, we cannot explicitly define a policy in B. Rather,

what we do is, given B as input, generate an algorithm in polynomial time that takes as input

a reduced state s and, in polynomial time, computes a distribution over actions to be played

at s. (For reasons that will become clear in the course of the proof, the algorithm also takes a

parameter ε > 0 as an input.) We then argue that the algorithm represents an approximately

optimal policy.

Let Rπ
B be the expected reward obtained by policy π starting at the initial state s of B, and

let R∗B be the expected reward obtained by an optimal policy for B.

Theorem 4.4.1: Given ε > 0 and a BLPU B = (s0, h,D, γ, v0) in which the discovery probabil-

ity function D(j, t) is a decreasing function of t, there exists a policy πεB that can be computed

92

in time polynomial in n (the number of initially known arms in B), h, log 1
ε
, log 1

D(1,1) , log 1
Rw(v0)

and log 1
γ(1−γ) , such that RπεB

B ≥ (δh−1
4γ − ε)R

∗
B where δh−1 =

∑∞
i=1 γ

i(1−D(i,1))...(1−D(i,h−1))D(i,h)∑∞
i=0 γ

i(1−D(i,1))...(1−D(i,h−1)) .

Proof: The proof is somewhat long and complicated. To help the reader navigate the proof,

we have structured the proof into sections.

Representing reduced states: Before going into the details of the construction of πεB, we

need to establish some notation.

Recall that a policy in the BPLU B gets as input a reduced state. Given our as-

sumptions about BLPUs, we can represent a reduced state in a simpler form: as a tuple

(〈us
1, . . . , u

s
n, . . . , u

s
n+k, (t

s, undisc)〉, hs). The interpretation is that k new arms have been dis-

covered; us
1, . . . , u

s
n, . . . , u

s
n+k are the (α, β) distributions describing the success probability of

the original n arms and the k new arms; hs is the remaining budget; and ts is the number of

times that a0 has been played since the last time a new arm was discovered (or since the be-

ginning, if no new arms have been discovered). We can think of (ts, undisc) as representing the

state of the next undiscovered arm (if there is one). Let s0 be the initial state of B and let RS be

the set of reduced states of B, represented as above.

Constraints on reaching arm states: In order to describe the optimal policy, it is useful to

understand the probabilities of reaching various arm-states in a reduced state. Note that if the

budget of B is h, there are O(h2) arm-states for an arm i that can be reached from the initial

state of arm i, since an arm-state for i is determined by the number of successes and failures of

the arm if i has been discovered, and is determined by the number of time a0 has been played if

i undiscovered. As suggested above, if i is the next arm to be discovered in s, then we define i’s

93

arm-state to be (ts, undisc); that is, a0 has been played ts times without arm i being discovered.

Given a policy π, we will be interested in the probability of transitioning from one arm-state

u for arm i to another. In the case where i is an arm that has already been discovered and its

arm-state is u = (α, β), then this is straightforward. To describe these transition probabilities,

we need some notation.

Given s ∈ RS, we can compute the probability that s is reached from s0 in the MDPU

Mk (where there are exactly k undiscovered actions) by a policy π, denoted Prπ,ks0
(s), using

the transition probabilities of Mk, in a straightforward way. (If more than k arms have been

discovered in s, this probability is 0.) The probability that s is reached by π in BLPU B,

denoted Prπs0
(s), is just

∑∞
k=0 γ

k(1 − γ) Prπ,ks0
(s).

Let Visitπ(u, i) be the probability of π reaching arm-state u of arm i (from s0);

Visitπ(u, i) =
∑

{s∈RS:us
i =u}

Prπs0
(s).

Note that if u has the form (0, undisc), then we take Visitπ(u, i) to be the probability of reaching

a reduced state where i is the next undiscovered arm, but a0 has not been played since the last

arm was discovered (or a0 has not been played at all, if i is the first undiscovered arm). Let

Testπi (u, i) be the expected probability that π reaches arm-state u of arm i and plays testi:

Testπi (u, i) =
∑

{s∈RS:us
i =u}

π(s)[testi]Prπs0
(s).

(Recall the π[s](a) denotes the probability that policy π plays action a in state s.) Finally,

overloading our earlier notation, if u and v are arm-states of an arm i that has been discovered,

if u = (α, β) and v = (α + 1, β), define Pπ(u, v, testi) = α/(α + β), while if v = (α, β + 1),

define Pπ(u, v, testi) = β/(α + β). If i is initially known and s0(i) = (α, β), then define Uh
i =

{(α + j, β + k) : j + k ≤ h}; if i is an initially undiscovered arm and v0 (the arm state after an

initially undiscovered arm is discovered) is (α0, β0), then Uh
i = {(t, undisc) : t ∈ {0, . . . , h −

94

1}} ∪ {(α0 + j, β0 + k) : j + k ≤ h − 1}. Uh
i can be thought of as the set of arm-states of arm i

that can be reached from s0 in at at most h steps. This is true if i is an initially known arm. If

i is an initially undiscovered arm, then Uh
i is actually a superset of the arm-states that can be

reached in h steps from s0. For suppose that i is the second undiscovered arm. Then the first

undiscovered arm must be discovered before i can be played, which means that a0 must have

been played at least once before i can be played. This, in turn, means that the budget is at most

h − 2 once i is discovered, so, for example, (α0 + h − 1, β0) cannot be reached although it is in

Uh
i . It is useful for our proofs to have Uh

i be defined in the same way for all undiscovered arms.

It is easy to check that if v ∈ Uh
i is a non-initial arm-state of an arm i that has been discov-

ered, then we have

Visitπ(v, i) =
∑
u∈Uh

i

P(u, v, testi)Testπi (u, i). (4.1)

(Note that the only arm-states u ones that contribute to this sum are the two possible predeces-

sors of v.) The equality (4.1) holds for each MDPU Mk, so it holds for B.

We want to compute the analogous transition probabilities if i is an initially undiscovered

arm. We claim that

Visitπ((t + 1, undisc), i) = (1 − δt)Exploreπ((undisc, t), i), (4.2)

where

Exploreπ(u, i) =
∑

{s∈RS:us
i =u}

π(s)[a0]Prπs0
(s)

is the expected probability of π reaching arm-state u for i and playing a0 (and thus is the obvious

analogue of Testπi (u, i)) and

δt =

∑∞
i=1 γ

i(1 − D(i, 1)) . . . (1 − D(i, t))D(i, t + 1)∑∞
i=0 γ

i(1 − D(i, 1)) . . . (1 − D(i, t))
(4.3)

is the probability of discovering a new arm the (t + 1)st time that a0 is played after the last

new arm was discovered, conditional on not discovering a new arm the previous t times that

95

a0 was played (we prove this below), assuming that the budget does not run out. (We take

δ0 = (1 − γ)
∑∞

i=1 γ
iD(i, 1), since we take the empty product (1 − D(i, 1)) . . . , (1 − D(i, 0)) to be

1.) Similarly,

Visitπ(v0, i) =

h−1∑
t=0

δtExploreπ((t, undisc), i), (4.4)

where v0 is the arm-state of i when it is first discovered.

We now prove (4.3). Let Edis(m, t + 1) be the event of discovering the mth new arm the

(t + 1)st time that a0 is played after discovering the (m − 1)st arm (or the (t + 1)st time that

a0 is played, if m = 1). Let Eundis(m, t) be the event that the mth arm is not discovered after

playing a0 t times after discovering the (m − 1)st action. Note that Edis(m, t + 1) ⊆ Eundis(m, t);

in order to discover the mth arm the (t + 1)st time that a0 is played, the arm must not have

been discovered earlier. The probability of these events depends on the underlying MDP. The

probability of Eundis(m, t) is 0 in the MDP M j for j < m, and the probability of Edis(m, t) is 0 in

M j for j ≤ m. By definition, δt = Prπs0
(Edis(m, t + 1) | Eundis(m, t)).

A straightforward computation shows that

Prπs0
(Edis(m, t + 1))

=
∑∞

j=m Prπ, js0
(Edis(m, t + 1))γ j(1 − γ) [since Prπ, js0

(Edis(m, t + 1)) = 0 if j < m]

=
∑∞

j=m(
∏t

j′=1(1 − D(j − (m − 1), j′)))D(j − (m − 1), t + 1) · γ j(1 − γ)

= γm−1(1 − γ)
∑∞

i=1 γ
i(
∏t

j′=1(1 − D(i, j′)))D(i, t + 1).

The second equality follows from the observation that Prπ, js0
(Edis(m, t + 1)) =

∏t
j′=1(1 − D(j −

(m − 1), j′)))D(j − (m − 1), t + 1), which in turn follows from the fact that in M j, there are

j − (m − 1) undiscovered actions after m − 1 actions have been discovered, so the probability

of discovering the mth action the j′th time that a0 is played is D(j − (m − 1), j′).

96

Similarly,

Prπs0
(Eundis(m, t))

=
∑∞

j=m−1 Prπ, js0
(Eundis(m, t))γ j(1 − γ)

=
∑∞

j=m−1(
∏t

j′=1(1 − D(j − (m − 1), j′)))γ j(1 − γ)

= γm−1(1 − γ)
∑∞

i=0 γ
i(
∏t

j′=1(1 − D(i, j′))).

Since Edis(m, t + 1) ⊆ Eundis(m, t), we have

δt = Prπs0
(Edis(m, t + 1) | (Eundis(m, t))

=
Prπs0

(Edis(m,t+1)

Prπs0
(Eundis(m,t))

=
γm−1(1−γ)

∑∞
i=1 γ

i(
∏t

j′=1(1−D(i, j′)))D(i,t+1)

γm−1(1−γ)
∑∞

i=0 γ
i(
∏t

j′=1(1−D(i, j′)))

=

∑∞
i=1 γ

i(
∏t

j′=1(1−D(i, j′)))D(i,t+1)∑∞
i=0 γ

i(
∏t

j′=1(1−D(i, j′))) ,

as desired.

Note that the expression for δt involves infinite sums. In order to compute an approximation

to the optimal policy in B in polynomial time, we will have to approximate δt. We show how

to approximate δt efficiently later; for now, we work with δt.

Equation (4.2) follows from the definition of δt; for (4.4), note that arm i reaches v0 exactly

if it reaches (t, undisc) for some 0 ≤ t ≤ h − 1 and then arm i is discovered when a0 is played,

which happens with probability δt.

Lemma 4.4.2: δt ≥ δt′ for all 0 ≤ t < t′.

Proof: We prove this by showing that δt ≥ δt+1 for all t ≥ 0. Let f (i, t) = (1 − D(i, 1)) . . . (1 −

D(i, t)), and let f ′(l, t) =

∑l
j=1 γ

j f (j,t+1)D(j,t+2)+ f (l+1,t+1)
f (l+1,t)

∑∞
j=l+1 γ

j f (j,t)D(j,t+2)∑l
j=0 γ

j f (j,t+1)+ f (l+1,t+1)
f (l+1,t)

∑∞
j=l+1 γ

j f (j,t)
, so f ′(∞, t) = δt+1. We show

that f ′(0, t) ≤
∑∞

j=1 γ
j f (j,t)D(j,t+2)∑∞

j=0 γ
j f (j,t) and that f ′(l, t) decreases in l. Since D(j, t) decreases in t, it then

97

follows that
δt+1 = f ′(∞, t) ≤ f ′(0, t) =

∑∞
j=1 γ

j f (j,t)D(j,t+2)∑∞
j=0 γ

j f (j,t)

≤

∑∞
j=1 γ

j f (j,t)D(j,t+1)∑∞
j=0 γ

j f (j,t) = δt,

as desired.

To see that f ′(l, t) decreases in l, for l ≥ 0, let c1 =
∑l

j=1 γ
j f (j, t + 1)D(j, t + 2) + (1 − D(l +

1, t + 1))γl+1 f (l + 1, t)D(l + 1, t + 2); c2 =
∑∞

j=l+2 γ
j f (j, t)D(j, t + 2); c3 =

∑l
j=0 γ

j f (j, t + 1) +

(1 − D(l + 1, t + 1))γl+1 f (l + 1, t); c4 =
∑∞

j=l+2 γ
j f (j, t). So

f ′(l, t) − f ′(l + 1, t)

=
c1+(1−D(l+1,t+1))c2
c3+(1−D(l+1,t+1))c4

−
c1+(1−D(l+2,t+1))c2
c3+(1−D(l+2,t+1))c4

[since f (j,t+1)
f (j,t) = 1 − D(j, t + 1)]

=
(c2c3−c1c4)(D(l+2,t+1)−D(l+1,t+1))

(c3+(1−D(l+1,t+1))c4)(c3+(1−D(l+2,t+1))c4)

≥ 0, [see below]

as desired. For the last inequality, note that D(l+2, t +1) ≥ D(l +1, t +1) since D(l, t) increases

in l, so we just need to show that c2c3 − c1c4 ≥ 0. To see this, first observe that

c2 =
∑∞

j=l+2 γ
j f (j, t)D(j, t + 2)

≥
∑∞

j=l+2 γ
j f (j, t)D(l + 2, t + 2)

= D(l + 2, t + 2)c4 [since D(j, t) increases in j];

similarly,

c1 =
∑l

j=1 γ
j f (j, t + 1)D(j, t + 2) + γl+1 f (l + 1, t + 1)D(l + 1, t + 2)

≤
∑l

j=1 γ
j f (j, t + 1)D(l + 2, t + 2) + γl+1 f (l + 1, t + 1)D(l + 2, t + 2)

= D(l + 2, t + 2)c3.

Thus,

c2c3 − c1c4 ≥ D(l + 2, t + 2)c4c3 − D(l + 2, t + 2)c3c4 = 0.

The fact that f ′(0, t) ≤
∑∞

j=1 γ
j f (j,t)D(j,t+2)∑∞

j=0 γ
j f (j,t) is almost immediate from the definition; we leave

details to the reader.

98

A system of linear inequalities: Following Guha and Munagala [18], we construct a system

of linear inequalities that describes some of the constraints on policies. To do so, we need just

a little more notation. Suppose that initially there are n known arms in the BLPU B. With a

budget of h, at most h more arms can be discovered. Let IB = {1, . . . , n + h}; these are the

arms that can potentially be played by π. Let Exploitπi (u, i) denote the probability of π reaching

arm-state u for arm i and playing exploiti. Recall that Uh
i is the set of possible arm states for

arm i ∈ IB reachable from the initial state in at most h steps. It is clear that the expected reward

of π is just
∑

i∈IB
∑

u∈Uh
i

Exploitπi (u)Rw(u).

The system involves variables Exploiti(u, i), Testi(u, i), Visit(u, i), Explore(u, i) for i ∈ IB

and u ∈ Uh
i . Roughly speaking, the intention is that a solution of the system will suggest a

policy π such that for each variable X, Xπ will have the value of X in the solution of the system.

(For example, Testπi (u, i) will have the value of the variable Testi(u, i) in an optimal solution to

(4.5).) Let Uh
i (r) consist of all arm-states for i that have the form (α, β); these are the arm-states

for i after i has been discovered.

Maximize
∑
i∈IB

∑
u∈Uh

i

Exploiti(u, i)Rw(u) (4.5)

99

subject to: ∑
i∈IB

∑
u∈Uh

i
(Testi(u, i) + Explore(u, i)) ≤ h∑

i∈IB
∑

u∈Uh
i

Exploiti(u, i) ≤ 1∑
u∈Uh

i (r) Testi(u, i)P(u, v, testi) = Visit(v, i)

if v ∈ Uh
i (r) − U0

i (r) and v , v0 if i is initially undiscovered

Exploiti(u, i) + Testi(u, i) + Explore(u, i) ≤ Visit(u, i)

Visit((t + 1, undisc), i) = (1 − δt)Explore((t, undisc), i)

Visit(v0, i) =
∑h−1

t=0 δtExplore((t, undisc), i)

Exploiti(u, i) = Testi(u, i) = 0 if u ∈ Uh
i − Uh

i (r)

Explore(u, i) = 0 if u ∈ Uh
i (r)

Testi(u, i) = Explore(u, i) = 0 if u ∈ Uh
i − Uh−1

i

Visit(u, i) = 1 if u ∈ U0
i

0 ≤ Explore(u, i),Exploiti(u, i),Testi(u, i),Visit(u, i) ≤ 1.

We explain the constraints in order: (i) the total expected number of tests and a0 played does

not exceed the budget h; (ii) the total probability of exploitation is at most 1; (iii) the probability

of reaching arm i in an arm-state of the form (α, β), which is not the initial state of i, and is

not v0 if i is initially undiscovered, is determined by equation (4.1); (iv) the total probability of

playing testi, a0 or exploiti at an arm-state u does not exceed the probability of visiting u; (v)

the probability of visiting a state of the form ((t + 1), undisc) is determined by (4.2), (vi) the

probability of discovering an initially undiscovered arm is given by (4.4); (vii) exploiti or testi

are not played if i is undiscovered; (viii) a0 is not played at an arm-state of i where i is already

discovered; (ix) testi and a0 are not played after the budget is exhausted; (x) the probability of

visiting the initial arm-state of an arm is 1; and (xi) all the probabilities are between 0 and 1.

Clearly, all the constraints in the linear program are satisfied by a legal policy. Thus, the value

R̂ given by an optimal solution for (4.5) is at least as large as the maximum expected reward

R∗B among all legal policies. That is, R̂ ≥ R∗B.

100

Suppose that we have an optimal solution ~x to the linear program (4.5); let xX denote the

value of the variable X in this solution (so that, for example, xTesti(u,i) is the value of Testi(u, i) in

the vector ~x). Note that there is a solution to the variables where, for all initially undiscovered

arms i and j, we have xTesti(u,i) = xTest j(u,i), xExploiti(u,i) = xExploit j(u,i), and xExplore(u,i) = xExplore(u, j).

Lemma 4.4.3: There is an optimal solution ~x to the system (4.5) such that for all initially

undiscovered arms i and j, we have xTesti(u,i) = xTest j(u, j), xexploiti(u,i) = xExploit j(u, j), and xExplore(u,i) =

xExplore(u, j) for u ∈ Uh
i .

Proof: Note that all the undiscovered arms satisfy exactly the same equations in the system

(4.5). Let ~x′ be an optimal solution to (4.5). For all initially undiscovered arms i and all u ∈ Uh
i ,

let

xTesti(u,i) =

∑
n+1≤ j≤n+h x′Test j(u, j)

h
,

xExploiti(u,i) =

∑
n+1≤ j≤n+h x′Exploit j(u, j)

h
,

xExplore(u,i) =

∑
n+1≤ j≤n+h x′Explore(u, j)

h
,

xVisit(u,i) =

∑
n+1≤ j≤n+h x′Visit(u, j)

h
.

For all other variables xk ∈ ~x, let xk = x′k. It is easy to check that ~x satisfies (4.5), and it is

an optimal solution (since it has the same value as ~x′). It also satisfies the requirements of the

lemma.

Approximating the optimal policy: We now use a solution of the linear system satisfying

the conditions of Lemma 4.4.3 of inequalities to construct an approximation to the optimal

policy. The first step is to construct a policy πi for each arm i ∈ IB such that the expected reward

of πi is the expected reward that arm i contributes in (4.5) (i.e.,
∑

u∈Uh
i

Exploiti(u, i)Rw(u)).

101

The policies πi are actually not policies in the BLPU B, but in a related MDP MB, where we

essentially ignore the budget constraints. That is, now moves can be made even if hs = 0, and

the transition probabilities are just those that would be obtained if hs > 0 (even if hs = 0. We

omit the formal details here. Moreover, in MB, an additional action abandon can be played

in every state; if abandon is played, then the policy terminates (i.e., transitions to the state sfin

with probability 1) and gets reward 0. (We do not use abandon in policies for the BLPU; it is

just an auxiliary construct used here.)

The policy πi always plays one of the actions testi, exploiti, a0, or abandon; its action

depends at a state s depends only on s(i), i’s arm-state in s.

Definition 4.4.4: Let ~x be an optimal solution to (4.5). Policy πi proceeds as follows: In state

s , sfin,

• If s(i) is defined (i.e., either arm i has been discovered in s or i is the next undiscovered

arm, so s(i) = (0, undisc), s(i) = u, and xVisiti(u) > 0, then πi(s)

– plays testi with probability ti(u) =
xTesti(u)

xVisiti(u)
;

– plays exploiti with probability ei(u) =
xExploiti(u)

xVisiti(u)
;

– plays a0 with probability zi(u) =
xExplore(u,i)

xVisiti(u)
;

– and plays abandon with probability bi(u) = 1 − xTesti(u)+xExploiti(u)+xExplore(u,i)

xVisiti(u)
.

• If s(i) is undefined or s(i) = u and xVisiti(u) = 0, then πi(s) plays abandon with probability

bi(u) = 1.

ut

102

Let ri be the expected reward of πi starting from si
0, where si

0 = s0 if i is initially known,

and si
0 is a state where i is the next arm to be discovered and s(i) = (0, undisc) if i is initially

undiscovered. (There are many states s where arm i is the next arm to be discovered and

s(i) = (0, undisc). Since πi acts the same starting from all of these states, ri is independent of

which one is chosen.) Similarly, let ei be the expected number of times that exploiti is played

by πi starting from si
0, and let ci be the expected number of times that testi or a0 is played by πi

starting from si
0. Note for future reference that

ri =
∑

u∈Uh
i

xExploiti(u,i)Rw(u)

ei =
∑

u∈Uh
i

xExploiti(u,i), and

ci =
∑

u∈Uh
i
(xTesti(u,i) + xExplore(u,i)).

(4.6)

Define the ratio index of arm i to be ri

ei+
ci
h

.3 (If xExploiti(u,i) = xTesti(u,i) = xExplore(u,i) = 0 for all

arm-states u of arm i, then we take the ratio index of i to be 0.) Let i1, . . . , in+h be an ordering

of the arms according to decreasing ratio index. Since we are using a solution to (4.5) that

satisfies the conditions of Lemma 4.4.3, we can assume without loss of generality that the

ordering starts with a (possibly empty) sequence of initially known arms, followed by the h

initially undiscovered arms, followed by the remaining initially known arms.

We now define policies πi j , where 1 ≤ j ≤ n + h + 1, for the BLPU B Although there is no

arm in+h+1, for ease of exposition, we define πin+h+1 to be the policy that, on all inputs s, plays

exploiti∗ , where i∗ is the index of an arm that has the best expected payoff in s. We define the

remaining policies by backward induction, starting with j′ = n + h and working backwards.

Very roughly speaking, πi j(s) plays πi j(s(i j)), except that instead of playing abandon, it plays

πi j+1 . We give more intuition for these policies below.

3The ratio index was originally defined by Goel et al. [15]. We had originally hoped to use the Goel et
al. approach in our proof, but we discovered a serious flaw in their argument, which does not at this point seem
fixable [A. Goel, private communication, 2016].

103

The policy πi j proceeds as follows for j ≤ n + h. If s = sfin, then πi j(s) does nothing (no

actions are possible). If s , sfin,

1. if either hs = 0, s[i j] is undefined (i.e., i j is undiscovered, but is not the current undis-

covered arm), or s[i j] < Uh
i j
, then play πin+h+1(s). (We remark that the last two cases do

not arise in our analysis; we include them here only for completeness.)

2. if hs > 0, s[i j] ∈ Uh
i j
, and s[i j] has the form (α, β), then play testi j with probabil-

ity ti j(s[i j]), play exploiti j
with probability ei j(s[i j]), and play πi j+1(s) with probability

bi j(s[i j]).

3. if hs > 0, s[i j] ∈ Uh
i j
, and s[i j] has the form (t, undisc), then play a0.

Finally, we define policy π0
B as follows. Let ilast(s) be the last arm played in s , sfin; formally,

last(s) = 1 if s = s0 and last(s) = max{l ≤ n + h + 1 : s(il) , s0(il)} otherwise. If s = sfin, then

π0
B(s) does nothing; if s , sfin, and i = last(s), then π0

B(s) plays πi(s).

Roughly speaking, π0
B starts in state s0 by playing πi1 , except that if πi1 would have played

abandon, it switches to πi2; if πi2 would have played abandon, it switches to πi3; and so on.

The previous sentence holds until an undiscovered arm is reached. Recall that in the ordering

of i1, . . . , in+h, the h undiscovered arms are grouped together. So once an undiscovered arm is

reached, the next h arms are all undiscovered. If last(s) is an undiscovered arm il, then π(s)

plays a0 until il is discovered (or the budget runs out). After that, it plays πil , except that if

πil would have played abandon, it moves to the next arm il+1, which is also undiscovered, and

keeps playing a0 until il+1 is discovered, and so on. Note that once an undiscovered arm is

reached, π0
B continues to play initially undiscovered arms until the budget runs out, since there

are h undiscovered arms in the sequence, and each one must be played at least once. It is easy

to check that in every run (execution) of π0
B, once we start playing arm il, we never play arm

104

il′ for l′ < l again. The policy π0
B agrees with Guha and Munagala’s [18] GREEDY-ORDER

policy if there are no undiscovered arms (specifically, if we remove the third clause in the

definition of πi j , then π0
B is equivalent to GREEDY-ORDER, although our presentation of it is

quite different from that of Guha and Munagala.) Unfortunately, dealing with undiscovered

arms adds considerable complexity to the analysis.

We want to show that Rπ0
B

B ≥
D(1,h)

4 R∗B. For the remainder of the argument, we need to

do rather careful bookkeeping. It is useful for the bookkeeping to partition runs r of π0
B into

phases. Suppose that il∗ is the first undiscovered arm; that is, il is an initially known arm for

l < l∗, but il∗ is not initially known. For l < l∗, phase l occurs while actions of the form testil or

exploitil are played (i.e., while we are playing arm il). Phase l ends after exploitil is played, if

the budget runs out, or just after the last time testil is played. Note that here the exploit action

played by πn+h+1 is not counted as part of any phase. Phase l for l < l∗ may have length 0 in run

r (if arm il is not played at all) or may not be reached (if run r terminates before reaching phase

l). Phase l begins in the state s immediately after phase l − 1 ends provided that hs > 0 and no

exploit action has been played. For l ≥ l∗, suppose that the first state in phase l is s and il′ is

the current undiscovered arm in s. It easily follows from the construction that phase l always

begins with an action a0. It ends just before a0 is played a second time (so phase l + 1 will

start with a0), if the budget runs out, if exploitil′ is played, or if πil′ plays abandon after arm il′

is discovered. Thus, if l ≥ l∗ and phase l is reached in run r, then phase l lasts for exactly one

round if il′ is not discovered after a0 is played, or it lasts until the last time that arm il′ is played.

For example, suppose that r is a run where, from the point where all the initially known arms

have been played and πil∗ starts to play, a0 is played 3 times, then arm il∗ is discovered, testi∗

is played 5 times, then πil∗+1 starts to play (because πil∗ would have played abandon) and a0 is

played twice more before the budget runs out. In r, phases l∗ and l∗ + 1 last one round each,

phase l∗ + 2 lasts for 6 rounds (the round where the third a0 is played and the five subsequent

105

rounds where testil∗ is played), and phases l∗ + 3 and l∗ + 4 last for one round each.

To analyze π0
B, it is helpful to consider a slight variant of the policy πi, denoted π′i for

i = i1, . . . , in+h. The policy πi(s) is identical to πi(s) if i is an arm that is initially known or if i is

initially undiscovered and s[i] is undefined or s[i] , (0, undisc); π′(s) = a0 if s[i] = (0, undisc).

That is, π′i starting from si
0 is the same as πi except that when i is initially undiscovered, it

plays a0 with probability 1 at the first step (while πi plays a0 with probability zi(0, undisc) and

plays abandon with probability 1− zi(0, undisc)). Define r′i , e′i , c′i for π′i just like ri, ei, ci for πi.

That is, r′i is the expected reward of π′i starting from si
0, e′i is the expected number of times that

exploiti is played by π′i , and c′i is the expected number times that testi and a0 are played by π′i .

Observe that if i j is initially known, then ri j = r′i j
, ei j = e′i j

, ci j = c′i j
(since πi j = π′i j

);

and when i j is initially undiscovered, then ri j = zi j(0, undisc)r′i j
, ei j = zi j(0, undisc)e′i j

, ci j =

zi j(0, undisc)c′i j
. To see this, let pi j = zi j(0, undisc). We abuse notation slightly, and for π of the

form πi j or π′i j
, we take Visitπ(s) (resp., Exploitπi (s), Testπi (s), Exploreπ(s)) to be the probability

of policy π visiting s (resp., visiting s and playing exploiti, testi or a0) starting from si j

0 (rather

than s0). For all states s , si j

0 , it is almost immediate that Visitπi j (s) = pi jVisit
π′i j (s). Moreover,

πi j(s) = π′i j
(s) for all s , s∗0, so Exploit

πi j

i (s) = pi jExploit
π′i j

i (s), Test
πi j

i (s) = pi jTest
π′i j

i (s), and

Exploreπi j (s) = pi jExplore
π′i j (s). Therefore, ri j = pi jr

′
i j
, ei j = pi je

′
i j
, and ci j = pi jc

′
i j
, as desired.

Given this observation, it follows that for all arms i j, the ratio index of πi j and that of π′i j
are

equal (i.e.,
r′i j

e′i j
+c′i j

/h =
ri j

ei j +ci j/h
for all i j ∈ {1, . . . , n + h}).

Let El be a random variable on runs r of policy π0
B started in reduced state s0 (from here

on in, we assume without saying it explicitly that π0
B starts in reduced state s0) that counts the

number of times that exploit j for some j is played during phase l in r. We show below that

E[El] ≤ e′il . Let Wl =
∑l

j=1 E j, so that Wl(r) is the number of times that an exploit action is

played in run r in some phase j ≤ l. Since a run terminates if an exploit action is played,

106

an exploit action can be played at most once in a run, so Wl(r) must be either 0 or 1. Let

wl = E[Wl]. Since E[E j] ≤ e′i j
, we must have wl ≤

∑l
j=1 e′i j

.

To show that E[El] ≤ e′il , first suppose that il is initially known. In that case, we partition

the runs into three sets: R1, the runs where phase l is not reached; R2, the runs where phase l is

reached and r terminates during phase l due to the budget running out; and R3, the runs where

phase l is reached and r does not terminate until at or after the end of phase l. Clearly, if phase

l is not reached in r, then El(r) = 0, so E[El | R1] = 0 ≤ e′il . If r reaches phase l and il is an arm

that is initially known, then we run πil until r terminates or we start to play πil+1 (which happens

if πil would play abandon). So clearly E[El | R2] ≤ eil and E[El | R3] ≤ eil . Since πil = π′il when

il is initially known, eil = e′il . It follows that E[El] ≤ e′il .

Now suppose that il is not initially known. We partition the runs into two sets: R1, the runs

where phase l is not reached; R2, the runs where phase l is reached. Clearly, E[El | R1] = 0 ≤ e′il .

We further partition R2 into sets Rl′,t, where il′ is the currently undiscovered arm at the beginning

of phase l (note that l′ ≤ l) and t is the number of times that a0 has already been played at the

beginning of phase l since the last arm was discovered. Conditional on Rl′,t, the expected value

of El is the probability of discovering a new arm multiplied by the expected number of times

that exploit is played given that a new arm is discovered. Since a0 is only played once in phase

l, the probability of discovering a new arm is just the probability of reaching a reduced state

of the form (u1, . . . , ul′−1, v0) from a reduced state of the form (u1, . . . , ul′−1, (t, undisc)). This is

just δt, independent of l′. Let e∗il′ be the expected number of times that exploit is played by π′il′

once arm il′ is discovered. Note that our assumptions guarantee that e∗il′ = e∗il . Since π0
B may

run out of budget during phase l if arm il′ is discovered, we have that E[El | Rl′,t] ≤ δte∗il .

Let e j
il

be the expected number of times that exploitil is played by π′il if the true MDP is

M j, in which case there are j − (l − l∗) undiscovered arms at sil
0, and il is discovered with

107

probability D(j − (l − l∗), 1) at the first step. We have that e j
il
≥ D(j − (l − l∗), 1)e∗il , and

e′il =
∑∞

j=0 e j
il
γ j(1 − γ) ≥

∑∞
j=0 D(j, 1)e∗ilγ

j(1 − γ) = δ0e∗il .
4 Since δ0 ≥ δt by Lemma 4.4.2,

E[El | Rl′,t] ≤ e′il for all l′, t, so E[El | R2] ≤ e′il , as desired.

Let Cl be a random variable on runs r of π0
B that counts the total number of times test j is

played for some arm j or a0 is played during phase l. Using arguments similar to those in the

previous paragraph, we can show that E[Cl] ≤ c′il . Let Ml =
∑l

j=1
Ci j

h , and let ml = E[Ml]. Thus,

ml = E[Ml] =
∑l

j=1
E[C j]

h ≤
∑l

j=1

c′i j

h . Define m0 = w0 = 0. Let k′ be the least number such that∑k′
l=1(e′il + c′il/h) ≥ 1. By definition, we have

∑k′−1
l=1 (e′il + c′il/h) < 1. Thus, ml + wl < 1 for all

l < k′.

Let Yl be the random variable on runs r of π0
B that is 1 if phase l is reached in r. Clearly,

Pr(Y1 = 1) = 1. It is easy to see that Y j = 1 for j > 1 iff W j−1 = 0 and M j−1 < 1: phase l is

reached in a run r exactly if during r does not use up the budget or play exploit before reaching

phase l. Thus, for i > 1, Yi = 1 iff Wi−1 + Mi−1 < 1. Since E[Wi−1 + Mi−1] ≤ wi−1 + mi−1,

by Markov’s inequality, we have Pr[Yi = 1] = Pr[Wi−1 + Mi−1 < 1] ≥ 1 − wi−1 − mi−1. Since,

as we observed above, wi−1 + mi−i < 1 if i ≤ k′, it follows that π∗ reaches j = l with nonzero

probability if l ≤ k′.

We next need to compute the expected reward obtained by π0
B in phase l conditional on

reaching phase l, except that if π0
B runs out of budget during phase l, we include the reward

obtained by πn+h+1 in this expected reward. If il is among the arms in A0 (so that arm il is

initially known), then we claim that this expected reward is at least r′il . We partition the runs

where phase l is reached into two sets: R1, the runs where phase l terminates due to the budget

4It is here that it is critical that we are using π′i rather than πi. It is not the case that il is discovered with
probability D(j−(l−l∗), 1) at the first step of πil ; rather, it is discovered with probability zil (0, undisc)D(j−(l−l∗), 1),
since πil plays a0 with probability zil (0, undisc) and plays abandon with probability 1 − zil (0, undisc) at the first
step (while π′il plays a0 with probability 1 at the first step).

108

running out; and R2, the runs where phase l is reached and does not terminate due to the budget

running out. In runs in R1, πin+h+1 is called and an arm i∗ with the highest currently known

reward is exploited. It is well known that if πil is run starting in state s except that exploitil

is played instead of abandon, then the expected reward of arm i in state s is just the reward

it would get by playing exploitil in state s. More generally, if a policy π′ that plays only testil

or exploitil is played starting in state s, then its expected reward is just the reward of playing

exploitil in state s. (This is what Goel et al. [15] call the martingale property of the (α, β) prior.)

This means that the reward obtained by πn+h+1 is at least as high. Thus, conditional on R1, the

expected reward of π0
B in phase l is at least ril . Since πil = π′il when il is initially known, ril = r′il

and the expected reward is at least r′il in R1. In runs in R2, πi0(s0) proceeds in phase l just as

πil does (except that it starts phase l + 1 when πil plays abandon). Since the behavior of πil is

independent of the budget, the expected reward conditional on R2 is ril = r′il . The result follows.

We claim that if il is an initially undiscovered arm, then the expected reward obtained by

π0
B in phase l conditional on reaching phase l is at least δh−1r′il/γ. To see this, let r j

il
be the

expected reward of π′il if the true MDP is M j. Since π′il starts in a state where arm il is in state

(0, undisc) (i.e., il is the current undiscovered arm), so that l − l∗ arms have been discovered.

Thus, j ≥ l − l∗, and we have r′il =
∑∞

j=l−l∗ r j
il
γ j−(l−l∗)(1 − γ). Clearly, rl−l∗

il
= 0: if there are no

further arms to be discovered, then arm il will not be discovered, so it will not be exploited.

Moreover, if r∗il is the expected reward that π′il obtains once arm il is discovered (which is the

same for all MDPs M j), we clearly have r j′+(l−l∗)
il

≤ r∗il that π′il obtains once arm il is discovered.

for j′ ≥ 1. Thus, r′il ≤ γr∗il .

Let rl be the expected reward of π0
B in phase l, conditional on reaching phase l. To get a

lower bound on rl, we partition the runs of π0
B where phase l is reached into sets Rl′,t, where

il′ is the currently undiscovered arm at the beginning of phase l and t is the number of times

109

that a0 has been played since the last arm was discovered. In runs of Rl′,t, l′ − l∗ arms have

been discovered so far. Let rl,l′,t denote the expected reward of π0
B in phase l conditional on Rl′,t.

We have that rl,l′,t ≥ δtr∗il′ , since with probability δt, a new arm will be discovered, and once

it is discovered, πi1(s0) plays just like πil′ once arm il′ has been discovered, except that if the

budget runs out, it exploits the best arm available. Since δt decreases in t (by Lemma 4.4.2)

and t ≤ h − 1; moreover, r∗il′ = r∗il , we have that rl,l′,t ≥ δh−1r∗il for all l′ and t, so rl ≥ δh−1r∗il .

Thus, rl ≥ δh−1r′il/γ, as desired.

Let ai j = 1 if i j is an arm in A0 and let ai j = δh−1
γ

if i j is an initially undiscovered arm. Recall

that k′ be the least number such that
∑k′

j=1(e′i j
+ c′i j

/h) ≥ 1. The discussion above shows that

Rπ0
B

B

≥
∑k′

j=1 ai j(1 − w j−1 − m j−1)r′i j

≥
δh−1
γ

∑k′
j=1(1 − w j−1 − m j−1)r′i j

.

(4.7)

Let ρ′ =
1−

∑k′−1
j=1 (e′i j

+c′i j
/h)

e′ik′
+c′ik′

/h . Thus,
∑k′−1

j=1 (e′i j
+ c′i j

/h) + ρ′(e′ik′ + c′ik′/h) = 1. We claim that

k′∑
j=1

(1 − w j−1 − m j−1)r′i j
≥ (

k′−1∑
j=1

r′i j
+ ρ′r′ik′)/2 (4.8)

and
k′−1∑
j=1

r′i j
+ ρ′r′ik′ ≥ R∗B/2. (4.9)

It follows from (4.7), (4.8), and (4.9) that Rπ0
B

B ≥
δh−1
γ

R∗B/4, as desired.

We now prove (4.8) and (4.9). We remark that Guha and Munagala [18] prove analogues

of (4.8) and (4.9) (without the ρ′ term). Our proof is similar in spirit to theirs, but somewhat

more complicated because of the need to deal with undiscovered arms.

110

Figure 4.1:
∑k′

j=1(1 − m j−1 − w j−1)r′i j
.

For (4.8), note that the sum on the left-hand side is just the sum of the areas of k′ rectangles,

where the width of the jth rectangle is r′i j
and its height is 1−m j−1 −w j−1. Consider the dashed

lines shown in Figure 4.1, where the jth line goes from the top left of the jth rectangle to the

top left of the (j + 1)st rectangle, except that the last line goes from the top left of the k′th

rectangle to the point (
∑k′−1

l=1 r′l + ρ′rk′ , 0) (as shown in the figure). The slope of the jth line is

(1−w j−m j)−(1−w j−1−m j−1)
r′i j

= −
(w j−w j−1)+(m j−m j−1)

r′i j

= −
e′i j

+c′i j
/h

r′i j
,

for all j ∈ {1, . . . , k′}. We showed above that
r′i j

e′i j
+c′i j

/h =
ri j

ei j +ci j/h
. Now, by assumption, as j

increases,
ri j

ei j +ci j/h
decreases. Hence, its reciprocal increases, and the negative of its reciprocal

decreases; that is, the slopes of these lines becomes more and more negative, and shown in

Figure 4.1. It easily follows that the piecewise linear curve defined by these lines lies above the

solid line shown in Figure 4.1. The triangle defined by this solid line, the x-axis, and the y-axis

has area (
∑k′−1

j=1 r′i j
+ ρ′r′ik′)/2. The sum of the areas of the rectangles is clearly greater than the

area of the triangle. This gives us (4.8).

For (4.9), let k be the smallest value such that
∑k

l=1(eil +cil/h) ≥ 1, and let ρ =
1−

∑k−1
j=1(ei j +ci j/h)

eik +cik /h
.

Thus,
∑k−1

j=1(ei j + ci j/h) + ρ(eik + cik/h) = 1. We first show that
∑k−1

j=1 ri j + ρrik ≥ R∗B/2, then show

111

that
∑k′−1

j=1 r′i j
+ ρ′r′ik′ ≥

∑k−1
j=1 ri j + ρrik . The desired result follows.

To see why
∑k−1

j=1 ri j + ρrik ≥ R∗B/2, since ci is the expected number of times that πi plays

testi or a0, we have ci =
∑

u∈Uh
i
(xTesti(u) + xExplore(u)), so

∑n+h
j=1 ci j ≤ h. Similarly, ei is the expected

number of times that πi plays exploiti, so we have ei =
∑

u∈Uh
i

xExploiti(u) and
∑n+h

j=1 ei j ≤ 1. Since∑n+h
j=1 ci j

h ≤ 1, we have
∑n+h

j=1(ei j + ci j/h) ≤ 2. Moreover, since
∑k−1

j=1(ei j + ci j/h) + ρ(eik + cik/h) = 1,

it follows that (1−ρ)(eik + cik/h) +
∑n+h

j=k+1(ci j + ei j/h) ≤ 1, and
∑k−1

j=1(ei j + ci j/h) +ρ(eik + cik/h) ≥

(1 − ρ)(eik + cik/h) +
∑n+h

j=k+1(ci j + ei j/h). Thus,

∑k−1
j=1 ri j + ρrik

=
∑k−1

j=1
ri j

ei j +ci j/h
(ei j + ci j/h) + ρrik

≥
∑k−1

j=1
rik

eik +cik /h
(ei j + ci j/h) + ρrik [since

ri j

ei j +ci j/h
decreases with j]

=
rik

eik +cik /h
(
∑k−1

j=1(ei j + ci j/h) + ρ(eik + cik/h))

≥
rik

eik +cik /h
((1 − ρ)(eik + cik/h) +

∑n+h
j=k+1(ei j + ci j/h))

≥ (1 − ρ)rik +
∑n+h

j=k+1
ri j

ei j +ci j/h
(ei j + ci j/h) [since

ri j

ei j +ci j/h
decreases with j]

= (1 − ρ)rik +
∑n+h

j=k+1 ri j .

Since
∑n+h

j=1 ri j ≥ R∗B and
∑k−1

j=1 ri j+ρrik ≥ (1−ρ)rik+
∑n+h

j=k+1 ri j , we must have
∑k−1

j=1 ri j+ρrik ≥ R∗B/2,

as desired.

It now remains to show that
∑k′−1

j=1 r′i j
+ ρ′r′ik′ ≥

∑k−1
j=1 ri j + ρrik . Recall that il∗ is the first

undiscovered arm in the ordering. If k ≤ l∗ − 1, then the first k arms are all initially known, so

ei j = e′i j
and ci j = c′i j

for all j ≤ k. Thus, we must have k′ = k, ρ′ = ρ, and
∑k′−1

j=1 r′i j
+ ρ′r′ik′ =∑k−1

j=1 ri j + ρrik .

If k > l∗ − 1, since
∑l∗−1

j=1 r′i j
=

∑l∗−1
j=1 ri j , it suffices to show that

k′−1∑
j=l∗

r′i j
+ ρ′r′ik′ ≥

k−1∑
j=l∗

ri j + ρrik . (4.10)

112

It is easy to see that k′ ≤ l∗ − 1 + h: Since all policies π′i j
where i j is initially undiscovered

play a0 with probability 1 at the first step,
∑l∗+h−1

j=l∗ c′i j
≥ h. Thus,

∑l∗+h−1
j=1 e′i j

+ c′i j
/h ≥ 1, so

k′ ≤ l∗ + h − 1. It follows that the arms il∗ , . . . , ik′ are all initially undiscovered, so the policies

π′il∗ , . . . , π
′
ik′

all have the same ratio index, say τ∗. Thus, for j ∈ {l∗, . . . , k′}, we have that
ri j

ei j +ci j/h
= τ∗, so ri j = τ∗(ei j + ci j/h); similarly, r′i j

= τ∗(e′i j
+ c′i j

/h). And for j ∈ {k′ + 1, . . . , k},5

ri j

ei j +ci j/h
≤ τ∗, since arms are ordered in decreasing order of ratio index. (Note that we may have

k > l∗ − 1 + h, so not all these arms necessarily have ratio index τ∗.) So ri j ≤ τ
∗(ei j + ci j/h) for

all j ∈ {l∗, . . . , k}. Therefore,∑k−1
j=l∗ ri j + ρrik

≤ (
∑k−1

j=l∗(ei j + ci j/h) + ρ(eik + cik/h))τ∗

= (
∑k′−1

j=l∗ (e
′
i j

+ c′i j
/h) + ρ′(e′ik′ + c′ik′/h))τ∗ [see below]

=
∑k′−1

j=l∗−1 r′i j
+ ρ′r′ik′ ,

as desired. The third line holds since
∑k′−1

j=1 (e′i j
+ c′i j

/h) + ρ′(e′ik′ + c′ik′/h) =
∑k−1

j=1(ei j + ci j/h) +

ρ(eik + cik/h) = 1 and
∑l∗−1

j=1 (e′i j
+ c′i j

/h) =
∑l∗−1

j=1 (ei j + ci j/h). Subtracting the two equations, we

get the third line. This completes the argument.

Dealing with the infinite sum: The policy π0
B is a (δh−1

4γ)-approximation to the optimal policy

for B. It is easy to see that π0
B can be computed in polynomial time modulo the computation

of δt, which is an infinite sum. Fortunately, as we show below, ε-close approximations to δt

can be computed in time O(t log 1
ε
). We make use of this fact and show that an approximately

optimal policy for BLPUs can be computed in polynomial time. The idea is to replace δt in the

linear program by its approximation and construct π0
B just as before. We show that the resulting

policy is still approximately optimal.

Recall that δt =
∑∞

i=1 γ
i(1−D(i,1))...(1−D(i,t))D(i,t+1)

1+
∑∞

i=1 γ
i(1−D(i,1))...(1−D(i,t)) . Let δt, j =

∑ j
i=1 γ

i(1−D(i,1))...(1−D(i,t))D(i,t+1)

1+
∑ j

i=1 γ
i(1−D(i,1))...(1−D(i,t))

. We show

5We take {k′ + 1, . . . , k} to be the empty set if k′ + 1 > k.

113

below that |δt − δt, j| ≤
γ j+1

1−γ . Thus, as j increases, the error decreases exponentially in γ. It is

clear that δt, j can be computed in time O(t j).

To see that |δt−δt, j| ≤
γ j+1

1−γ , let f (i, t) = γi(1−D(i, 1)) . . . (1−D(i, t)), and g(i, t) = f (i, t)D(i, t+

1). Thus,

δt − δt, j

=
∑∞

i=1 g(i,t)
1+

∑∞
i=1 f (i,t) −

∑ j
i=1 g(i,t)

1+
∑ j

i=1 f (i,t)

≤
∑∞

i=1 g(i,t)
1+

∑∞
i=1 f (i,t) −

∑ j
i=1 g(i,t)

1+
∑∞

i=1 f (i,t)

=
∑∞

i= j+1 g(i,t)

1+
∑∞

i=1 f (i,t)

≤

∑∞
i= j+1 γ

i

1 [since g(i, t) ≤ γi]

=
γ j+1

1−γ .

Similarly,

δt − δt, j

=
∑∞

i=1 g(i,t)
1+

∑∞
i=1 f (i,t) −

∑ j
i=1 g(i,t)

1+
∑ j

i=1 f (i,t)

≥
∑∞

i=1 g(i,t)
1+

∑∞
i=1 f (i,t) −

∑∞
i=1 g(i,t)

1+
∑ j

i=1 f (i,t)

=
−

∑∞
i=1 g(i,t)

∑∞
i= j+1 f (i,t)

(1+
∑∞

i=1 f (i,t))(1+
∑ j

i=1 f (i,t))

≥
−

∑∞
i= j+1 f (i,t)

1+
∑ j

i=1 f (i,t)
[

∑∞
i=1 g(i,t)

1+
∑∞

i=1 f (i,t) ≤ 1 since g(i, t) ≤ f (i, t)]

≥
−

∑∞
i= j+1 γ

i

1 [since f (i, t) ≤ γi]

= −
γ j+1

1−γ .

Thus, |δt − δt, j| ≤
γ j+1

1−γ .

Given ε, let θ(ε) =
4εγ2D(1,1)Rw(v0)

h2(h+2)2(n+h) . Let j = dlogγ(θ(ε)(1 − γ))e − 1. By the discussion

above, it follows that |δt, j − δt| ≤ θ(ε) for all t ∈ {0, . . . , h − 1}. Take δεt = δt, j for this choice

of j. As observed above, the values δεt for each t ∈ {0, . . . , h − 1} can be computed in time

O(h logγ
4εγ2D(1,1)Rw(v0)(1−γ)

h2(h+2)2(n+h)) = O(h log h2(h+2)2(n+h)

4εγ2D(1,1)Rw(v0)(1−γ)) (since γ < 1), which is polynomial in

(n + h), log 1
ε
, log 1

D(1,1) , log 1
Rw(v0) and log 1

γ(1−γ) .

114

Define a linear program just as (4.5), except that we replace δt by δεt . Let ~xε be an optimal

solution of the modified linear system that satisfies Lemma 4.4.3. We can define policies πεi

and (πεi)
′ using ~xε , just as πi and π′i were defined using the solution ~x to (4.5). We can also

define rεi , eεi , and cεi using the analogue of (4.6); that is,

rεi =
∑

u∈Uh
i

xεExploiti(u,i)
Rw(u),

eεi =
∑

u∈Uh
i

xεExploiti(u,i)
, and

cεi =
∑

u∈Uh
i
(xεTesti(u,i)

+ xεExplore(u,i)).

We order the policies πεi in decreasing order of rεi
eεi +cεi /h

. Using this order, we can then define

policies πi j,ε as before, and take πεB to be the analogue of π0
B, defined using πi j,ε instead of πi j .

Since δεt can be computed in time polynomial in (n+h), log 1
ε
, log 1

D(1,1) , log 1
Rw(v0) and log 1

γ(1−γ) ,

it is easy to see that πεB can be computed in time polynomial in the desired parameters. We now

show that RπεB
B ≥ (δh−1

4γ − ε)R
∗
B.

The idea is to show that πεB is an almost-optimal policy for an MDP that is “close” to

B, and thus is an almost-optimal policy for B. To make this precise, we associate a BLPU

B with an MDP MB whose state space is the set of reduced states of B. In every (reduced)

state of MB, the same actions can be played as in that reduced state of B, and the transi-

tion probabilities and rewards are the same. Thus, B and Bm have the same set of poli-

cies, and the same maximum expected reward (i.e., R∗B = R∗MB
). Note that if a0 is played

in a reduced state of the form (u1, . . . , um, (t, undisc)), then with probability δt, there is a

transition to (u1, . . . , um, v0, (0, undisc)) and with probability 1 − δt, there is a transition to

(u1, . . . , um, (t + 1, undisc)).

Let Mε
B be an MDP that is identical to B except that the transition probabilities δt and

1 − δt when a0 is played in reduced state (u1, . . . , um, (t, undisc)) are replaced by δεt and 1 − δεt ,

respectively. Essentially the same argument as that given in the case of B (replacing very term

115

by the corresponding term with a superscript of ε, so that δt is replaced by δεt , ri is replaced by

rεi , and so on) shows that πεB is a δh−1
4γ -optimal policy for Mε

B.

Say that an MDP M1 is a c-approximation of an MDP M2 if M1 and M2 have the same

state space, action space, and reward function, and |PM1(s, s′, a) − PM2(s, s′, a)| ≤ c for all

states s, s′ and actions a. Note that Mε
B is a θ(ε)-approximation to MB. Moreover, if M1 is a

c-approximation, then M1 and M2 have the same set of policies.

Lemma 4.4.5: If MDP M1 has N states, the maximum reward for a transition in M1 is at most

1, and M2 is a c-approximation of M1, then for all policies π for M1 (and M2) that play at most

h steps, |Rπ
M2
− Rπ

M1
| ≤ cNh2. Moreover, R∗M2

≥ R∗M1
− cNh2.

Proof: The fact that |Rπ
M2
− Rπ

M1
| ≤ cNh2 is a special case of Lemma 4 in [4]. For the second

claim, suppose πM1 is an optimal policy for M1, and πM2 is an optimal policy for M2. Then

R∗M2
= R

πM2
M2
≥ R

πM1
M2
≥ R

πM1
M1
− cNh2 = R∗M1

− θNh2.

Since Mε
B is a θ(ε)-approximation of MB, it follows that R∗Mε

B
≥ R∗MB

− θ(ε)Nh2 = R∗B −

θ(ε)Nh2. Since πεB is a δh−1
4γ -optimal policy for Mε

B, it follows that

RπεB
Mε

B
≥
δh−1

4γ
R∗Mε

B
≥
δh−1

4γ
(R∗B − θ(ε)Nh2).

116

To complete the argument, we simply observe that

δh−1
4γ (R∗B − θ(ε)Nh2)

= δh−1
4γ R∗B −

θ(ε)
4γ Nh2 [since δh−1 ≤ 1]

= δh−1
4γ R∗B − εγD(1, 1)Rw(v0) [since θ(ε) =

4εγ2D(1,1)Rw(v0)
h2(h+2)2(n+h) and N ≤ (h + 2)2(n+h)]

≥
δh−1
4γ R∗B − εR

∗
B [since γD(1, 1)Rw(v0) ≤ R∗B; see below]

= (δh−1
4γ − ε)R

∗
B,

as desired. For the second-last line, consider the simple policy that plays a0 at the first step,

exploits the new arm if a new arm is discovered, and otherwise exploits an arm with the highest

utility. This policy has an expected reward of at least γD(1, 1)Rw(v0), so R∗B ≥ γD(1, 1)Rw(v0).

117

CHAPTER 5

CONCLUSION

In this thesis, we defined a model called MDPUs which captures the scenarios in which the

DM is unaware of certain states and actions of the problem. We completely characterized the

complexity of learning to play near-optimally in MDPUs, and provided an algorithm called

URMAX that learns to play near-optimally in polynomial time whenever it is possible to do

so.

We consider applying MDPUs to robotic problems by first modeling such problems as con-

tinuous MDPs where actions are taken over a continuous period of time, then discretizing them

into a sequence of finer and finer MDPUs. We then solve these MDPUs using the URMAX

algorithm. We proved that using this approach, a near-optimal policy can be learned for robotic

problems in time polynomial in the related parameters.

We applied MDPUs and the URMAX algorithm to a real robotic problem, the bipedal

walking problem which aims to enable a humanoid robot to learn walking on its own. Our

experiment enabled DARwIn-OP, a humanoid robot, to successfully learn various walking gaits

via simulations (see https://youtu.be/qW51iInpdV0 for a video). These results show that our

method provides a general approach that allows robots to learn new tasks on their own. We

make no assumptions on the structure of the tasks to be learned. The approach can be easily

applied to various robotic tasks.

Finally, we considered the problem of learning to play approximately-optimal where the

DM is unaware of certain states and actions, and that the DM has a limited budget. We pro-

posed two mathematical models for such problems: MDPUBs and an interesting subclass of

MDPUBs called BLPUs. We provided an approximately-optimal policy for BLPUs.

118

In the future, we plan to apply our approach to more robotic tasks, such as learning to

run and to walk up and down stairs. We believe the process will be quite instructive in terms

of adding useful learning heuristics to our approach, both specific to these tasks and to more

general robotic tasks. We are also interested in having the robot simulate learning to walk in

the same way a baby does, for example, by limiting the robot’s abilities initially, so that it must

crawl before it walks. Part of our interest lies in seeing if such initial limitations actually make

learning more efficient.

119

APPENDIX A

PROOFS FOR THEOREMS IN CHAPTER 2

A.1 Proof of Theorem 2.5.2

THEOREM 2.5.2. Let M′ = (S ′, A′, S 0, a0, g′A, g0,D, P′,R′,G0) be an MDPU where |S ′| =

N, |A′| = k, and max(R′(s, s′, a) : s, s′ ∈ S ′, a ∈ A′) = Rmax. If 0 < δ < 1, ε > 0, K0 ≥ min{H :∑H
t=1 D(1, t, s) ≥ ln(4Nk/δ)}, and K ≥ K4(T,K0), then for all MDPs M = (S M, gM, AM, PM,RM)

compatible with S 0, g0, G0, N, k, Rmax, and T (i.e., S M ⊇ S 0, gM(s) ⊇ g0(s) for all s ∈

S 0, |S M | ≤ N, |AM | ≤ k, RM(s, s′, a) ≤ Rmax for all s, s′ ∈ S M and a ∈ AM, and the ε-

return mixing time TM of M is ≤ T), and all states s0 ∈ S 0, with probability at least 1 − δ,

URMAXK(K0,N, k,Rmax,T, ε, δ, s0) running on M obtains an expected average reward that is

at least Opt(M, ε,TM) − 2ε in time polynomial in N, k, T , and K.

The basic structure of the proof follows lines similar to the correctness proof of RMAX [4].

(Related results are proved in [1; 29; 30; 31].) We sketch the details here.

Like Brafman and Tennenholtz [4], we first define α-approximation. Our definition is ex-

actly the same as theirs, except that we restrict to MDPs (whereas Brafman and Tennenholtz

defined it for stochastic games).

Definition A.1.1: Let M and M′ be MDPs over the same state and action spaces. M′ is an α-

approximation of M if M and M′ are identical except for their transition probability functions,

and for all states s, t and every action a we have

|PM(s, t, a) − PM′(s, t, a)| ≤ α.

120

ut

We now restate the Simulation Lemma in [4], restricted to MDPs.

Lemma A.1.2: If M and M′ are MDPs with N states, and M′ is an ε
NTRmax

-approximation of

M, then for every state s and policy π, we have that

|UM′(s, π,T) − UM(s, π,T)| ≤ ε.

Proof: This is a special case of the Simulation Lemma (Lemma 4) in [4].

For our proofs, it is useful to define a special class of MDPs.

Definition A.1.3: An a0-MDP is an MDP M = (S , g, A, P,R) such that a0 ∈ A and for all states

s ∈ S , we have that a0 ∈ g(s), P(s, s, a0) = 1, and R(s, s′, a0) = −Rmax for all s′ ∈ S , while

R(s, s′, a) ≥ 0 for all states s, s′ ∈ S and a ∈ A − {a0}. ut

Let M1 be an a0-MDP. An MDP M2 is a mirror of M1 for B ⊆ S × A, Rmax, and state sd if,

roughly speaking, M2 and M1 are identical for all state-action pairs in B, and, for state-action

pairs (s, a) < B, we have PM2(s, sd, a) = 1 and RM2(s, s′, a) = Rmax for all s′ ∈ S . M2 can be

viewed as an optimistic approximation of M1, because the reward associated with each state-

action pair in M2 is either the same as in M1 or is the maximum possible reward Rmax. For

example, in URMAX, M0 is a mirror of the actual MDP for B = ∅, Rmax, and the dummy state

sd. In fact, the M′ in each iteration of URMAX is a mirror of some ε
4NTRmax

-approximation of the

actual MDP. Our definition of mirror is similar to that of Brafman and Tennenholtz [4], except

that we deal only with a0-MDPs rather than general MDPs, and we allow states in a mirror

121

that do not exist in the MDP it is mirroring. Since, unlike Brafman and Tennenholtz [4], we

allow for uncertainty regarding the number of states, the mirror may have up to the estimated

upper bound on the number of states in the underlying MDP. A second difference between our

definition and that of Brafman and Tennenholtz is that we allow mirrors to not include some

actions in the original MDP, since the DM may be unaware of these actions.

Definition A.1.4: Let M1 = (S 1, A1, g1, P1,R1) be an a0-MDP. MDP M2 = (S 2, A2, g2, P2,R2)

is a mirror of M1 for B ⊆ S 1 × A2, Rmax, and sd ∈ S 2 if the following conditions hold:

• S 2 ⊇ S 1 and sd ∈ S 2 − S 1;

• a0 ∈ A2 ⊆ A1;

• g2(s) = {a0} for all s ∈ S 2 − S 1;

• g2(s) = {a0} ∪ g′(s) for all s ∈ S 1, where g′(s) ⊆ g1(s);

• if (s, a0) ∈ B, then g2(s) = g1(s);

• for all (s, a) ∈ B, R2(s, s′, a) = R1(s, s′, a) and P2(s, s′, a) = P1(s, s′, a) if s′ ∈ S 1,

otherwise P2(s, s′, a) = 0 and R2(s, s′, a) = Rmax;

• for all (s, a) < B, P2(s, sd, a) = 1 and R2(s, s′, a) = Rmax for all s′ ∈ S .

M3 is an ε-mirror of M1 for B ∈ S 1 × A3, Rmax, and sd ∈ S 3 if there exists an MDP M2 which

is an ε-approximation of M1 such that M3 is a mirror of M2 for B, Rmax, and sd. ut

Using the notation in Definition A.1.4, if M2 is an ε-mirror of M1 (for B, Rmax, and sd), then

S 1 ⊆ S 2, A2 ⊆ A1, and M1 is an a0-MDP (so that a0 ∈ g(s) for all s ∈ S), so a policy π2 over

M2 can be viewed as a policy over M1 by simply restricting π2 to apply only to states in S 1.

122

Recall that Prπ,sM (ρ) is the probability that a path ρ is taken when policy π is used in MDP

M starting at state s, and UM(ρ) is the undiscounted average reward of taking path ρ in M. We

would like to show that if M1 is an a0-MDP with N states, and M2 is an (ε/NTRmax)-mirror of

M1 for B, Rmax, and sd, then either an optimal T -step policy π2 for M2 is near-optimal for M1,

or by executing π2 in M1 (recall that we can view any policy for M2 as a policy for M1) for T

steps, the probability that the path being taken visits a state-action pair not in B is relatively

high (i.e., if Φ is the set of all T -paths in M1 that contain at least one state-action pair not in

B, then for all s ∈ S 1, we have that Prπ2,s
M1

(Φ) is relatively high). This is shown in the following

lemma, which is similar to the Explore or Exploit Lemma in [4].

Lemma A.1.5: If M1 is an a0-MDP with N states, M2 is a (β/NTRmax)-mirror of M1 for B,

Rmax, and sd, π2 is an optimal T -step policy for M2, π1 is an optimal T -step policy for M1, s

is a state in M1, and 0 < α < 1, then either (a) UM1(s, π2,T) ≥ UM1(s, π1,T) − α − 3β; or

(b) if Φ is the set of T -paths in M1 that contain at least one state-action pair not in B, then

Prπ2,s
M1

(Φ) ≥ α
2Rmax

.

Proof: The proof is similar to the corresponding proof in [4].

We first show that for all s ∈ S 1, we have UM2(s, π2,T) ≥ UM1(s, π1,T) − β. Since M2 is

a (β/NTRmax)-mirror of M1 for B, Rmax, and sd, there exists an MDP M′
1 = (S ′1, A

′
1, g

′
1, P

′
1,R

′
1)

such that M′
1 is a (β/NTRmax)-approximation of M1, and M2 is a mirror of M′

1 for B, Rmax, and

sd. Let π′1 be an optimal T -step policy for M′
1. We claim that UM2(s, π2,T) ≥ UM′1

(s, π′1,T).

We actually prove a more general statement. Let πt
2 be an optimal t-step policy for M2, and

let πt
1 be an optimal t-step policy for M′

1. We now prove by induction on t that UM2(s, πt
2, t) ≥

UM′1
(s, πt

1, t) for all t ≥ 1. The claim is the special case where t = T .

123

Base case: t = 1. If there exists some action a ∈ g2(s) such that (s, a) < B, then

by Definition A.1.4, playing action a at state s in M2 gives reward Rmax, and we have

UM2(s, π1
2, 1) = Rmax ≥ UM′1

(s, π1
1, 1). Otherwise, for all a ∈ g2(s), (s, a) ∈ B. This means

(s, a0) ∈ B, so g2(s) = g′1(s) and R2(s, s′, a) = R′1(s, s′, a) for all s′ ∈ S 1 and a ∈ g2(s) Thus,

UM2(s, π1
2, 1) = UM′1

(s, π1
1, 1).

Induction step: Suppose that UM2(s, πt
2, t) ≥ UM′1

(s, πt
1, t) for all states s ∈ S 1. We show

that UM2(s, πt+1
2 , t + 1) ≥ UM′1

(s, πt+1
1 , t + 1) for all states s ∈ S 1. So consider s ∈ S 1. Just as

in the base case, there are two cases. If there is some action a such that (s, a) < B, then by

Definition A.1.4, playing action a at state s in M2 gives reward Rmax and transits to state sd

with probability 1. Thus, the optimal (t + 1)-step policy is to play a once, and then to play a0

t times. This gives an average reward of Rmax ≥ UM′1
(s, πT

1 , t + 1). Otherwise, we must have

(s, a) ∈ B for all a ∈ g2(s). Thus, (s, a0) ∈ B. This means that g2(s) = g′1(s), thus (s, a) ∈ B

for all a ∈ g′1(s). Let a1 be the first action taken by πt+1
1 in state s. Consider the following

(t + 1)-step policy for M2: first take action a1, then follow an optimal t-step policy for M2. It

is immediate from the induction hypothesis that the average reward of this policy is at least

UM′1
(s, πt+1

1 , t + 1). This completes the proof of the claim.

Since M′
1 is a (β/NTRmax)-approximation of M1, by Lemma A.1.2, it follows that

UM′1
(s, π′1,T) ≥ UM′1

(s, π1,T) ≥ UM1(s, π1,T) − β. Since, as shown above, UM2(s, π2,T) ≥

UM′1
(s, π′1,T), we thus have that UM2(s, π2,T) ≥ UM1(s, π1,T) − β, as claimed.

We now show that the difference between the reward of π2 in M1 and M2 is smaller than

2Rmax Prπ2,s
M1

(Φ) + 2β. This implies that the probability of visiting a state-action pair not in B is

small iff π2 attains a near-optimal reward in M1.

124

We can partition the state-action pairs in M1 and M2 into three sets: (a) the ones in B; (b)

the ones in B′ = S 2 × A2 − B; (c) the ones in B′′ = S 1 × A1 − S 2 × A2. If a path ρ contains

a state-action pair that does not exist in M, then we take Prπ,sM (ρ) = 0 and UM(ρ) = 0. Let L

consist of all T -paths starting at state s that are either in M1 or M2; let L1 consist of all T -paths

ρ starting at s that are in either M1 or M2 such that no state-action pair visited in ρ is in B′ (i.e.,

all state-action pairs in ρ must be in B or B′′); and let L2 consist of all T -paths starting from s

that are in either M1 or M2 that all T -paths starting from s that are in either M1 or M2 and that

@@@ include at least one state-action pair in B′. Thus, L is the disjoint union of L1 and L2, so

that given a policy π for M ∈ {M1,M2}, we have

UM(s, π,T) =
∑
ρ∈L

Prπ,sM (ρ)UM(ρ) =
∑
ρ∈L1

Prπ,sM (ρ)UM(ρ) +
∑
ρ∈L2

Prπ,sM (ρ)UM(ρ).

We now compare the reward of π2 in M2 and M1.

|UM1(s, π2,T) − UM2(s, π2,T)|

= |
∑
ρ∈L

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L

Prπ2,s
M2

(ρ)UM2(ρ)|

= |(
∑
ρ∈L1

Prπ2,s
M1

(ρ)UM1(ρ) +
∑
ρ∈L2

Prπ2,s
M1

(ρ)UM1(ρ)) − (
∑
ρ∈L1

Prπ2,s
M2

(ρ)UM2(ρ) +
∑
ρ∈L2

Prπ2,s
M2

(ρ)UM2(ρ))|

≤ |
∑
ρ∈L1

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L1

Prπ2,s
M2

(ρ)UM2(ρ)| + |
∑
ρ∈L2

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L2

Prπ2,s
M2

(ρ)UM2(ρ)|.

We claim that

|
∑
ρ∈L1

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L1

Prπ2,s
M2

(ρ)UM2(ρ)| ≤ β. (A.1)

Brafman and Tennenholtz [4] have an analogous claim, but we cannot use their argument di-

rectly, since they require M1 and M2 to have the same action space, while in our case, M2 is a

β/NTRmax mirror of M1, and has a different action space than that of M1. We thus need to do a

little extra work so as to apply their techniques.

125

We can further partition the paths in L1 into two sets: L′1, the paths that consist of only

state-action pairs in B, and L′′1 , the paths that have at least one pair from B′′ . Since M2 is a

mirror of M′
1 for B, Rmax, and sd, by the construction of L′1 and the definition of mirror and

T -path, we have that, for all ρ ∈ L′1, Prπ2,s
M2

(ρ) = Prπ2,s
M1′

(ρ). Let L3 be the set of all T -paths in M1.

Thus, we have

∑
ρ∈L′1

|Prπ2,s
M1

(ρ) − Prπ2,s
M2

(ρ)| =
∑
ρ∈L′1

|Prπ2,s
M1

(ρ) − Prπ2,s
M′1

(ρ)|

≤
∑
ρ∈L3

|Prπ2,s
M1

(ρ) − Prπ2,s
M′1

(ρ)|

≤ β/Rmax.

The last inequality follows from Brafman and Tennenholtz’s proof of their Simulation Lemma

(i.e., Lemma 4 in [4]), which also shows that if M′ is a β/NTRmax-approximation of M, π is a

policy for M, and LM is the set of all T -paths in M, then
∑
ρ∈LM
|Prπ,sM (ρ) − Prπ,sM′(ρ)| ≤ β/Rmax.

We can apply their lemma here, since M′
1 is a β/NTRmax- approximation of M1.

Thus,

|
∑
ρ∈L′1

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L′1

Prπ2,s
M2

(ρ)UM2(ρ)| ≤
∑
ρ∈L′1

|Prπ2,s
M1

(ρ) − Prπ2,s
M2

(ρ)|UM1(ρ)

≤ (
∑
ρ∈L′1

|Prπ2,s
M1

(ρ) − Prπ2,s
M2

(ρ)|)Rmax

≤ β.

The first inequality holds since the paths that contain only state-action pairs in B have the same

reward in M1 and M2; the second inequality holds since Rmax is the maximum possible reward;

finally, the last inequality holds since
∑
ρ∈L′1
|Prπ2,s

M1
(ρ) − Prπ2,s

M2
(ρ)| ≤ β/Rmax (as shown above).

On the other hand, if ρ has a state-action pair in B′′, then this state-action pair does not occur

in M2, so π2, which is a policy for M2, cannot generate such a path. Thus, for all ρ ∈ L′′1 , we

must have Prπ2,s
M1

(ρ) = Prπ2,s
M2

(ρ) = 0, so (A.1) holds.

126

It follows that

|UM1(s, π2,T) − UM2(s, π2,T)|

= |
∑
ρ∈L Prπ2,s

M1
(ρ)UM1(ρ) −

∑
ρ∈L Prπ2,s

M2
(ρ)UM2(ρ)|

≤ |
∑
ρ∈L1

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L1

Prπ2,s
M2

(ρ)UM2(ρ)|+

|
∑
ρ∈L2

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L2

Prπ2,s
M2

(ρ)UM2(ρ)|

≤ |
∑
ρ∈L2

Prπ2,s
M1

(ρ)UM1(ρ) −
∑
ρ∈L2

Prπ2,s
M2

(ρ)UM2(ρ)| + β [by (A.1)]

≤ max(
∑
ρ∈L2

Prπ2,s
M1

(ρ)Rmax −
∑
ρ∈L2

Prπ2,s
M2

(ρ)(−Rmax),∑
ρ∈L2

Prπ2,s
M2

(ρ)Rmax −
∑
ρ∈L2

Prπ2,s
M1

(ρ)(−Rmax)) + β

=
∑
ρ∈L2

Prπ2,s
M1

(ρ)Rmax +
∑
ρ∈L2

Prπ2,s
M2

(ρ)Rmax + β

≤
∑
ρ∈L2

Prπ2,s
M1

(ρ)(2Rmax) + 2β [see below].

The third inequality holds since −Rmax ≤ UM1(ρ) ≤ Rmax and −Rmax ≤ UM2(ρ) ≤ Rmax; the last

inequality follows since, as we now show,
∑
ρ∈L2

Prπ2,s
M2

(ρ) ≤
∑
ρ∈L2

Prπ2,s
M1

(ρ)+β/Rmax. Recall that

L is the disjoint union of L1 and L2 and, by construction,
∑
ρ∈L Prπ2,s

M1
(ρ) =

∑
ρ∈L Prπ2,s

M2
(ρ) = 1.

We observed above that, for all ρ ∈ L′′1 , Prπ2,s
M1

(ρ) = Prπ2,s
M2

(ρ) = 0; moreover,
∑
ρ∈L′1
|Prπ2,s

M1
(ρ) −

Prπ2,s
M2

(ρ)| ≤ β/Rmax. Hence,
∑
ρ∈L1
|Prπ2,s

M1
(ρ) − Prπ2,s

M2
(ρ)| ≤ β/Rmax. Thus,

∑
ρ∈L2

Prπ2,s
M2

(ρ) −
∑
ρ∈L2

Prπ2,s
M1

(ρ)

=
∑
ρ∈L1

Prπ2,s
M1

(ρ) −
∑
ρ∈L1

Prπ2,s
M2

(ρ)

≤
∑
ρ∈L1
|Prπ2,s

M1
(ρ) − Prπ2,s

M2
(ρ)|

≤ β/Rmax,

as desired.

Recall that L2 is the set of T -paths that include at least one state-action pair in B′. Since, by

definition, Prπ,sM (ρ) = 0 if ρ contains a state-action pair not in M, Prπ2,s
M1

(L2) = Prπ2,s
M1

(Φ) (recall

that Φ is the set of T -paths in M1 that contain at least one state-action pair not in B). Thus, if

Prπ2,s
M1

(Φ) = Prπ2,s
M1

(L2) ≥ α
2Rmax

, then we are done (since condition (b) of Lemma A.1.5 holds).

127

Suppose that
∑
ρ∈L2

Prπ2,s
M1

(ρ) < α
2Rmax

. This implies that

|UM1(s, π2,T) − UM2(s, π2,T)| ≤ α + 2β.

Since π1 is an optimal T -step policy for M1, we have that UM1(s, π2,T) ≤ UM1(s, π1,T). As

shown above, UM2(s, π2,T) ≥ UM1(s, π1,T) − β. Thus,

|UM1(s, π1,T) − UM1(s, π2,T)|

= UM1(s, π1,T) − UM1(s, π2,T)

≤ UM2(s, π2,T) − UM1(s, π2,T) + β

≤ α + 3β.

Definition A.1.6: Define a URMAXK run l to be (s, a)-good, where s ∈ S M and a ∈ AM, if the

following two conditions hold:

• if a = a0 then, at the first time t that a0 has been played kK0 times in state s, we have that

ht(s) = gA(s) (i.e., the agent knows all the actions at state s);

• if a , a0 then, at all times t in run l after a has been played K1(T) times in state s, the

estimated transition probabilities of (s, a) at time t are all within ε/4NTRmax of the tran-

sition probabilities in the MDP underlying the MDPU on which the URMAX algorithm

is being run (this is the MDPU we work with throughout this section).

ut

Note that the first condition above holds vacuously if (s, a0) is not played kK0 times in run l,

while the second condition holds vacuously if (s, a) is not played K1(T) times.

128

We are now ready to prove Theorem 2.5.2. Again, the argument follows lines similar to

those of the corresponding result in [4], although we must take unawareness into account.

Proof of Theorem 2.5.2: The assumptions of Theorem 2.5.2 guarantee that the parame-

ters of URMAXK (K0,N, k,Rmax,T, ε, δ, s0) are sufficiently large that no inconsistencies will be

found, so URMAXK will run for K iterations. For a URMAXK run l, let π′i(l) be the policy

played in the ith iteration i of l, and let M′
i (l) = (S i, Ai, gi, Pi,Ri) be the approximation of M

at the beginning of the ith iteration of l. By construction, π′i(l) is an optimal T -step policy for

M′
i (l). We now show that if K ≥ K4(T,K0), then with probability at least 1 − δ, the expected

reward of URMAXK is at least Opt(M, ε,TM) − 2ε. Define Ls0 to be the set of URMAXK runs

starting at s0. Let Pr be the probability distribution on Ls0 determined by M′ and URMAXK .

The argument proceeds in four steps.

(a) Let O1 consist of all runs l that are (s, a0)-good for all states s. We show that Pr(O1 |

Ls0) ≥ 1 − δ/4.

(b) Let O2 consist of all runs l that are (s, a)-good for all pairs (s, a) with a , a0. We show

that Pr(O2 | Ls0) ≥ 1 − δ/4.

(c) Let O3 consist of all runs l that contain at most K2(T,K0) exploration iterations. (Recall

that an exploration iteration is one in which the policy being used is not an (ε,T)-optimal

policy, and an exploitation iteration is one in which the policy is (ε,T)-optimal.) We

show that Pr(O3 | O1 ∩ O2 ∩ Ls0) ≥ 1 − δ/4.

(d) Let O4 consist of all runs l such that, if l contains at least K3 exploitation iterations, then

the average reward over all exploitation iterations in l is at least Opt(M, ε,TM) − 3ε/2.

We show that Pr(O4 | Ls0) ≥ 1 − δ/4.

129

Part (a): To prove (a), recall that Γ~ns,−1,u where ~n = (n1, n2, . . . , ni), is the set of MDPU runs

where the i′th new action at s is discovered the ni′th time that a0 is played at s, for i′ ∈ {1, . . . , i},

and a0 is played at least ni + u times at s. Let Φs,t be the subset of runs in Ls0 such that if a0 is

played at least t times at s, then all actions at s are eventually discovered. (Runs where a0 is

not played t times at s are vacuously in Φs,t.) We prove by induction on j that, for all strictly

increasing sequences of integers ~n = (n1, n2, . . . , ni) where i ≥ 0 and |gA(s) − g0(s)| − j ≤ i ≤

|gA(s) − g0(s)|, and all u ≥ 0, if we take t = ni when i > 0, and t = 0 when i = 0, then

Pr(Φs,t+ jK0 | Γ
~n
s,−1,u ∩ Ls0) ≥ 1 − jδ/4Nk. As we show later, (a) follows easily from the special

cases of the claim where i = 0, u = 0, and j = k.

Base case: j = 0. This case is straightforward: Since |gA(s)−g0(s)| − j ≤ i ≤ |gA(s)−g0(s)|,

we must have i = |gA(s)− g0(s)|. If i = 0, there are initially no actions to discover at s; thus, for

all u ≥ 0, Pr(Φs,0 | Γ
()
s,−1,u∩Ls0) = 1. In general, since i = |gA(s)−g0(s)| is the number of actions

that initially can be discovered at state s, after the ith new action is discovered at s, there are

no more actions to discover at s. Thus, for all strictly increasing sequences ~n = (n1, n2, . . . , ni)

of integers, and all u ≥ 0, we must have Pr(Φs,ni | Γ
~n
s,−1,u ∩ Ls0) = 1.

Induction step: Suppose that the claim holds for j. We now show that the claim holds

for j + 1. That is, for all strictly increasing sequences ~n = (n1, n2, . . . , ni) where i ≥ 0 and

|gA(s)− g0(s)| − j− 1 ≤ i ≤ |gA(s)− g0(s)|, and all u ≥ 0, if we take t = ni when i > 0, and t = 0

when i = 0, then

Pr(Φs,t+(j+1)K0 | Γ
~n
s,−1,u ∩ Ls0) ≥ 1 − (j + 1)δ/4Nk. (A.2)

There are two cases: (i) i = |gA(s) − g0(s)| and (ii) i < |gA(s) − g0(s)|. We show that, in both

cases, inequality (A.2) holds.

If i = |gA(s) − g0(s)|, then Pr(Φs,t+(j+1)K0 | Γ
~n
s,−1,u ∩ Ls0) = 1, so inequality (A.2) holds. If

i < |gA(s)− g0(s)|, let E =
⋃K0

n=1 Γ
~n·(ni+n)
s,−1 ∪ (Ls0 − Γ

()
s,−1,ni+K0

). (Recall that in the special case that

130

i = 0, we have taken Γ
~n·(ni+n)
s,−1 = Γ

(n)
s,−1, so E =

⋃K0
n=1 Γ

(n)
s,−1 ∪ (Ls0 − Γ

()
s,−1,K0

).) By Theorem 2.5.1,

we have

Pr(E | Γ~ns,−1,u ∩ Ls0) ≥ 1 −
δ

4Nk
. (A.3)

We now show that

Pr(Φs,ni+(j+1)K0 | E ∩ Γ~ns,−1,u ∩ Ls0) ≥ 1 −
jδ

4Nk
. (A.4)

We partition Ls0 into two disjoint subsets: L1 = Ls0−Γ
()
s,−1,ni+K0

, in which runs a0 is played fewer

than ni + K0 times at s, and L2 = Ls0 ∩ Γ
()
s,−1,ni+K0

, in which runs a0 is played at least ni + K0

times at s. Clearly, Pr(Φs,ni+(j+1)K0 | E ∩ Γ~ns,−1,u ∩ L1) = 1 ≥ 1 − jδ
4Nk (since runs in which a0 is

played less than ni + (j + 1)K0 times at s are vacuously in Φs,ni+(j+1)K0). Thus, in order to prove

(A.4), it suffices to prove that

Pr(Φs,ni+(j+1)K0 | E ∩ Γ~ns,−1,u ∩ L2) ≥ 1 −
jδ

4Nk
. (A.5)

Let v = max(u,K0). Note that

E ∩ Γ~ns,−1,u ∩ L2 = (
⋃K0

n=1 Γ
~n·(ni+n)
s,−1) ∩ Γ~ns,−1,u ∩ (Ls0 ∩ Γ

()
s,−1,ni+K0

)

=
⋃K0

n=1 Γ
~n·(ni+n)
s,−1,max(K0,u)−n ∩ Ls0

=
⋃K0

n=1 Γ
~n·(ni+n)
s,−1,v−n ∩ Ls0 .

Thus, in order to prove (A.5), it is sufficient to prove that

Pr(Φs,ni+(j+1)K0 |

K0⋃
n=1

Γ
~n·(ni+n)
s,−1,v−n ∩ Ls0) ≥ 1 −

jδ
4Nk

.

Since, by assumption, i < |gA(s) − g0(s)| and |gA(s) − g0(s)| − j − 1 ≤ i, it follows that |gA(s) −

g0(s)| − j ≤ i + 1 ≤ |gA(s) − g0(s)|. Thus, by the induction hypothesis,

Pr(Φs,ni+n+ jK0 | Γ
~n·(ni+n)
s,−1,v−n ∩ Ls0) ≥ 1 − jδ/4Nk

for all n ∈ [1,K0]. Moreover, for all n ∈ [1,K0], we have Φs,ni+n+ jK0 ⊆ Φs,ni+(j+1)K0 , so

Pr(Φs,ni+(j+1)K0 | Γ
~n·(ni+n)
s,−1,v−n ∩ Ls0) ≥ 1− jδ/4Nk. Therefore, Pr(Φs,ni+(j+1)K0 |

⋃K0
n=1 Γ

~n·(ni+n)
s,−1,v−n ∩ Ls0) ≥

1 − jδ
4Nk , and (A.5) holds. It then follows that (A.4) holds.

131

Therefore,

Pr(Φs,ni+(j+1)K0 | Γ
~n
s,−1,u ∩ Ls0)

≥ Pr(Φs,ni+(j+1)K0 | E ∩ Γ~ns,−1,u ∩ Ls0) · Pr(E | Γ~ns,−1,u ∩ Ls0)

≥ (1 − jδ
4Nk)(1 − δ

4Nk) [by (A.3) and (A.4)]

≥ 1 − (j+1)δ
4Nk ,

as desired. This completes the induction.

To prove (a), let i = 0, u = 0, and j = k. Note that Γ
()
s,−1,0 ∩ Ls0 = Ls0 . Thus, Pr(Φs,kK0 |

Ls0) = Pr(Φs,kK0 | Γ
()
s,−1,0 ∩ Ls0) ≥ 1 − kδ

4Nk = 1 − δ
4N . In other words, we just proved that for a

state s, conditional on Ls0 , with probability at least 1 − δ
4N , if a0 is played at least kK0 times at

s, then all actions at s are discovered. Thus, the probability that not all actions are discovered

at state s is at most δ
4N . Since there are at most N states, if a is played at least kK0 time at each

state, the probability that not all actions are discovered at some state is at most δ
4 . Thus, if a

is played at least kK0 times at all states, then with probability at least 1 − N(δ
4N) = 1 − δ

4 , all

actions will be discovered at all states. By the definition of (s, a0)-good, Pr(O1 | Ls0) ≥ 1 − δ
4 ,

as desired.

Part (b): For part (b), we first show that for all state-action pairs (s, a) where a , a0, if (s, a)

is played K1(T) times, then its estimated transition probabilities are within ε/4NTRmax of the

real transition probabilities with high probability. More precisely, fix a state-action pair (s, a).

Let Cs,a consist of runs in Ls0 in which action a is performed in s at least K1(T) times. In a

URMAXK run l, let Pl(s, s′, a) denote the estimated probability of transitioning from state s to

s′ when playing action a. We show that, conditional on Cs,a, for each state s′, with probability

at least 1 − δ
4N2k ,

|Pl(s, s′, a) − PM(s, s′, a)| ≤
ε

4NTRmax
.

132

For each state s′, let Xs,a,s′

i be an indicator random variable such that, for a run l ∈ Ls0 , Xs,a,s′

i (l) =

1 if, on the ith time that a was performed in state s in run l, a transition was taken to s′, and

is 0 otherwise. If a was performed less than i times in state s in l, define Xs,a,s′

i (l) = 1. Let

Z s,a,s′(l) = (
∑K1(T)

i=1 Xs,a,s′

i (l))/K1(T). Note that for l ∈ Cs,a, we have Z s,a,s′(l) = Pl(s, s′, a). By

assumption, E(Z s,a,s′ | Cs,a) = PM(s, s′, a). By the Hoeffding-Chernoff bound, Pr(|Z s,a,s′ −

PM(s, s′, a)| > t | Cs,a) ≤ 2e−2t2K1(T). Let t = K1(T)−1/3. Since K1(T) ≥ (4NTRmax/ε)3, it

follows that t ≤ ε/4NTRmax. Thus,

Pr(|Z s,a,s′ − PM(s, s′, a)| > ε/4NTRmax | Cs,a) ≤ 2e−2K1(T)1/3
.

Since K1(T) ≥ 1
8 (ln 8N2k

δ
)3, it follows that K1(T)1/3 ≥ 1

2 (ln 8N2k
δ

). Thus, 2e−2K1(T)1/3
≤ δ/4N2k.

To conclude, we have that

Pr(|Z s,a,s′ − PM(s, s′, a)| > ε/4NTRmax | Cs,a) ≤
δ

4N2k
.

Since there are at most N2k triples of the form (s, a, s′), by the union bound, with probability at

least 1 − δ/4, in runs l in Cs,a, |Z s,a,s′ − PM(s, s′, a)| ≤ ε/4NTRmax holds simultaneously for all

s′, s and a. By the definition of (s, a)-good, we have that Pr(O2 | Ls0) ≥ 1 − δ/4, and (b) holds.

Part (c): We now prove part (c). Recall that M′
i (l) = (S ′i , A

′
i , g
′
i , P

′
i ,R

′
i) is the approximation

of M in iteration i of URMAXK in run l. Let l be a URMAXK run in Ls0 that is (s, a)-good

for all state-action pairs in M (including pairs with a = a0). By the definition of (s, a)-good,

this means that if, at the end of iteration i, the state-action pair (s, a) with a , a0 is marked

as known (i.e., has been visited K1(T) times), then |P′i(s, s′, a) − PM(s, s′, a)| ≤ ε/4NTRmax,

and if (s, a0) is marked as known (i.e., has been visited kK0 times), then g′i(s) = g(s). The

definition of URMAXK guarantees that if a state-action pair (s, a) is marked as unknown, then

P′i(s, sd, a) = 1 and R′i(s, s′, a) = Rmax for all s′; and if a state-action pair (s, a0) is marked as

known, then P′i(s, s, a0) = 1 and R′i(s, s′, a0) = −Rmax for all s′. Thus, in each iteration of the

133

execution, M′
i (l) is an ε/4NTRmax-mirror of M for B, the set of state-action pairs marked as

known in M′
i (l), Rmax, and the dummy state sd in the algorithm. Let π∗ be the optimal T -step

policy for M, and π′i(l) be the optimal T -step policy for M′
i (l). Applying Lemma A.1.5 to M′

i (l)

and M with α = ε/4 and β = ε/4 (since M′
i (l) is a ε/4NTRmax-mirror of M), we either have

UM(π′i(l),T) ≥ UM(π∗,T) − α − 3β = UM(π∗,T) − ε,

or, taking Φ to be the set of T -paths in M that contain at least one state-action pair not in B, we

have

Prπ
′
i (l),s

M (Φ) ≥
ε

8Rmax
.

Let F = O1∩O2∩Ls0; that is, F is the subset of Ls0 consisting of the runs that are (s, a)-good

for all pairs (s, a) (including ones where a = a0). Let F≤K2 be the subset of F consisting of the

runs with at most K2(T,K0) exploration iterations; let F<K2 be the subset of F consisting of the

runs with less than K2(T,K0) exploration iterations; let F≥K2 be the subset of F consisting of the

runs with at least K2(T,K0) exploration iterations; lastly, let FK2 be the subset of F consisting of

runs with exactly K2(T,K0) exploration iterations. We want to show that Pr(F≤K2 | F) ≥ 1−δ/4.

We actually show that Pr(FK2 | F≥K2) ≥ 1 − δ/4. It then follows that Pr(F≤K2 | F≥K2) ≥ 1 − δ/4.

Since {F≥K2 , F<K2} is a disjoint partition of F, and Pr(F≤K2 | F<K2) = 1, it immediately follows

that Pr(F≤K2 | F) ≥ 1 − δ/4.

We start by proving that, conditional on F≥K2 , at the end of the K2(T,K0)th exploration

iteration of a run l, with probability at least 1 − δ/4, all state-action pairs in M are known. Let

Xi be an indicator random variable such that, for l ∈ Ls0 , Xi(l) = 1 if, during the ith iteration,

an unknown state-action pair is visited, and Xi(l) = 0 otherwise.

Let i > 0, let Qi be the set of URMAXK runs l such that the ith iteration of l is an exploration

iteration (which means that π′i(l) is not (ε,T)-optimal), and let Oi be the set of URMAXK runs

134

that visit an unknown state-action pair in their ith iterations. We show that E(Xi(l) | Qi) ≥ ε
8Rmax

.

In order to show this, we show that for all histories x of length (i − 1)T (i.e., the time required

for i− 1 iterations), if sx is the state that the DM is in at time (i− 1)T in history x, and Qi
x is the

subset of runs in Qi with prefix x, then E(Xi(l) | Qi
x) ≥

ε
8Rmax

; it then follows immediately that

E(Xi(l) | Qi) ≥ ε
8Rmax

. By the definition of URMAXK , π′i(l) only depends on the prefix x. Fix i

and x, so that π′i(l) is fixed. The actions taken during the ith iteration of URMAXK in run l are

determined by π′i(l). Thus, the set of runs in Oi with prefix x corresponds to the set of paths in

Φ starting at sx that are generated by π′i(l), and Prπ
′
i (l),sx

M (Φ) = Pr(Oi | Qi
x). As observed above,

if π′i(l) is not (ε,T)-optimal, we must have Prπ
′
i (l),s

M (Φ) ≥ ε
8Rmax

for all s ∈ S M. By the definition

of Qi
x, π

′
i(l) is not (ε,T)-optimal. Thus, Pr(Oi | Qi

x) ≥
ε

8Rmax
, and E(Xi(l) | Qi

x) = Pr(Xi(l) = 1 |

Qi
x) = Pr(Oi | Qi

x) ≥
ε

8Rmax
, as desired.

If run l has at least K2(T,K0) exploration iterations, and the first K2(T,K0) exploration iter-

ations in l occur in iterations j1, j2, . . ., jK2(T,K0), then define Z(l) = (
∑K2(T,K0)

i=1 X ji(l))/K2(T,K0);

If l has fewer than K2(T,K0) exploration iterations, then define Z(l) = 1. Note that Z(l) is an

estimate of the probability of visiting an unknown state-action pair during the first K2(T,K0)

exploration iterations in a URMAXK run l. Since we proved above that E(Xi(l) | Qi) ≥ ε
8Rmax

for

all i, we must have E(Z(l) | F≥K2) ≥
ε

8Rmax
. By the Hoeffding-Chernoff bound, we have that

Pr(E(Z(l)) − Z(l) > t | F≥K2) ≤ e−2t2K2(T,K0).

Let t = ε
16Rmax

. Since E(Z(l) | F≥K2) ≥ ε/8Rmax, it follows that Pr(Z(l) < ε
16Rmax

| F≥K2) ≤

e−2(ε
16Rmax

)2K2(T,K0). Equivalently, Pr(Z(l)K2(T,K0) < ε
16Rmax

K2(T,K0) | F≥K2) ≤ e−2(ε
16Rmax

)2K2(T,K0).

Note that Z(l)K2(T,K0) =
∑K2(T,K0)

i=1 Xi j is a lower bound on the number of times that an un-

known state-action pair is visited during the first K2(T,K0) exploration iterations in a run.

Since K2(T,K0) ≥ 16Rmax
ε

Nk(K1(T) + K0), we have that

Pr(Z(l)K2(T,K0) < Nk(K1(T) + K0) | F≥K2) ≤ e−2(ε
16Rmax

)2K2(T,K0).

135

Moreover, since K2(T,K0) ≥ 1
2 (16Rmax

ε
)2 ln 4

δ
, we have that e−2(ε

16Rmax
)2K2(T,K0)

≤ δ/4. Thus, we

have that

Pr(Z(l)K2(T,K0) < Nk(K1(T) + K0) | F≥K2) ≤ δ/4.

This shows that, conditional on F≥K2 , at the end of the K2(T,K0)th exploration iteration in

a run l, with probability at least 1 − δ/4, the algorithm has visited unknown state-action pairs

at least Nk(K1(T) + K0) times. It immediately follows that all state-action pairs become known

at that point. This is because we can visit each unknown state-action pair (s, a) where a , a0 at

most K1(T) times (after K1(T) visits, it becomes known), and visit each unknown state-action

pair for a0 at most kK0(T) times (after kK0 visits, it becomes known). Moreover, there are at

most Nk state-action pairs (s, a) where a , a0, and there are at most N state-action pairs of the

form (s, a0).

We now show that for a run l ∈ F, if all state-action pairs become known in iteration i, then

j must be an exploitation iteration for all j > i. Recall that all runs in F are (s, a)-good for

all (s, a) pairs. By the definition of (s, a)-good, M′
j(l) must be an ε

4NTRmax
-approximation to M.

Thus, by Theorem A.1.2, we have that

UM′j(l)(s, π′j(l),T) − UM(s, π′j(l),T) ≤
ε

4
(A.6)

and

UM(s, π∗,T) − UM′j(l)(s, π∗,T) ≤
ε

4
.

Furthermore, UM′j(l)(s, π′j(l),T) ≥ UM′j(l)(s, π∗,T), since π′j is the optimal policy for M′
j. So we

must have that

UM(s, π∗,T) − UM′j(l)(s, π′j(l),T) ≤
ε

4
. (A.7)

Adding (A.6) and (A.7), we get

UM(s, π∗,T) − UM(s, π′j(l),T) ≤
ε

2
.

136

Therefore, for all runs l ∈ F, after all state-action pairs become known, all policies used in

later iterations must be (ε,T)-optimal for M, and thus all later iterations must be exploitation

iterations. Since we proved above that, conditional on F≥K2 , with probability at least 1− δ/4, at

the end of the K2(T,K0)th exploration iteration, all state-action pairs in M are known, we must

have that Pr(FK2 | F≥K2) ≥ 1 − δ/4, and it immediately follows that Pr(F≤K2 | F) ≥ 1 − δ/4.

That is, Pr(O3 | O1 ∩ O2 ∩ Ls0) ≥ 1 − δ/4, as desired. Thus, (c) holds.

Part (d): We now prove (d). We want to show that conditional on Ls0 , with probability at

least 1 − δ/4, if a URMAXK run l contains at least K3 exploitation iterations, then the average

reward over these exploitation iterations is at least Opt(M, ε,T)− 3ε/2. Although the expected

reward of an exploitation iteration is (T, ε)-optimal, the actual average reward could be lower.

We again make use of the Hoeffding-Chernoff bound, and the fact that the standard deviation

of the expected reward in an exploitation iteration is bounded, because the maximum reward

is bounded by Rmax. Let j be the number of exploitation iterations in run l. Let the expected

reward of the ith exploitation iteration in l be µi(l), and let Xi(l) be a random variable defined

on Ls0 that gives the average reward in iteration i of run l (if l contains less than i exploitation

iterations, then define Xi(l) = 0). Let Yi(l) =
Xi(l)
Rmax

. Note that the range of Yi is [−1, 1]. Let

Z(l) = (
∑ j

i=1 Y j(l))/ j, that is, the average reward of all exploitation iterations in l, divided by

Rmax. Let µ(l) =
∑ j

i=1 µi(l)
j .

We have that E(Z(l)) =
∑ j

i=1 µi(l)
jRmax

=
µ(l)
Rmax

. The Hoeffding-Chernoff bound implies that Pr(µ(l)
Rmax
−

Z(l) ≥ t) < e
−t2 j

2 . Let t = j−1/3. If j ≥ K3, then j ≥ K3 ≥ (2Rmax
ε

)3. It follows that t ≤ ε
2Rmax

. Thus,

Pr(µ(l)
Rmax
− Z(l) ≥ ε

2Rmax
) < e

− j
1
3

2 . Equivalently,

Pr(µ(l) − Z(l)Rmax ≥
ε

2
) < e

− j
1
3

2 .

Since j ≥ K3 ≥ 8(ln 4
δ
)3, it follows that e

− j
1
3

2 ≤ δ/4. This implies that with probability at

137

least 1 − δ/4, if l contains at least K3 exploitation iterations, then the average reward of these

exploitation iterations is at most ε/2 lower than µ(l), where µ(l) is at least Opt(M, ε,T) − ε

(since µi ≥ Opt(M, ε,T) − ε for all i ∈ [1,K3] by the definition of exploitation iteration). That

is, Pr(O4 | Ls0) ≥ 1 − δ/4, and (d) holds.

Putting everything together: We now put everything together. By parts (a) and (b) above

and the union bound, we have that

Pr(O1 ∩ O2 | Ls0) ≥ 1 − δ/4 − δ/4 = 1 − δ/2.

Moreover, by part (c) above, we have that

Pr(O3 | O1 ∩ O2 ∩ Ls0) ≥ 1 − δ/4.

Therefore,

Pr(O3 | Ls0) = Pr(O3 | O1 ∩ O2 ∩ Ls0) Pr(O1 ∩ O2 | Ls0)

≥ (1 − δ/2)(1 − δ/4)

> 1 − 3δ/4.

Now by part (d) and the union bound, we must have that

Pr(O3 ∩ O4 | Ls0) ≥ 1 − 3δ/4 − δ/4 = 1 − δ.

We now show that, for all l ∈ O3 ∩ O4 ∩ Ls0 , run l has an expected reward of at least

Opt(M, ε,TM) − 2ε. The assumptions of Theorem 2.5.2 guarantee that the parameters of

URMAXK(K0,N, k,Rmax,T, ε, δ, s0) are sufficiently large that no inconsistencies will be found,

so a URMAXK run contains exactly K iterations. Since K ≥ K4(T,K0) ≥ K2(T,K0) + K3, and

l ∈ O3 (which means that l contains at most K2(T,K0) exploration iterations), l must contain

138

at least K3 exploitation iterations. Moreover, l ∈ O4 (which means that if l contains at least

K3 exploitation iterations, then the expected reward of the exploitation iterations in l is at least

Opt(M, ε,TM) − 3ε/2), thus the average reward of the exploitation iterations in l is at least

Opt(M, ε,TM) − 3ε/2. Finally, the minimum reward is 0, and all iterations in l have T steps, so

the average reward of all iterations in l is at least

(Opt(M, ε,TM) − 3ε/2)(K − K2(T,K0))
K

. (A.8)

Since simple calculus shows that (A.8) is increasing in K, the average reward is at least as large

as the result of replacing K in (A.8) by K4(T,K0) = 2Rmax
ε

K2(T,K0), namely

(Opt(M,ε,TM)−3ε/2)(2Rmax
ε K2(T,K0)−K2(T,K0))

2Rmax
ε K2(T,K0)

=
(Opt(M,ε,TM)−3ε/2)(2Rmax

ε −1)
2Rmax
ε

=
(Opt(M,ε,TM)−3ε/2)(2Rmax−ε)

2Rmax

=
2RmaxOpt(M,ε,TM)−3Rmaxε−Opt(M,ε,TM)ε+ 3

2 ε
2

2Rmax

=
2Rmax(Opt(M,ε,TM)−2ε)+(Rmaxε−Opt(M,ε,TM)ε+ 3

2 ε
2)

2Rmax

≥
2Rmax(Opt(M,ε,TM)−2ε)

2Rmax
[since Rmax ≥ Opt(M, ε,TM]

= Opt(M, ε,TM) − 2ε.

Thus, all runs l ∈ O3 ∩ O4 ∩ Ls0 have an expected reward of at least Opt(M, ε,TM) − 2ε.

Since we proved above that Pr(O3∩O4 | Ls0) ≥ 1−δ, with probability at least 1−δ, the average

reward of URMAXK running on M is at least Opt(M, ε,TM) − 2ε. Again, since the parameters

are sufficiently large, the URMAXK algorithm runs exactly K iterations. Moreover, it is obvious

that the complexity of each iteration is polynomial in N, k, and T . Thus, the running time of

the algorithm is polynomial in K, N, k, and T .

139

A.2 Proof for Theorem 2.5.3

THEOREM 2.5.3. For all MDPs M = (S , A, g, P,R) compatible with S 0, g0, and G0, if 0 <

δ < 1, ε > 0, the maximum possible reward in M is R∗max, and the ε-return mixing time of

M is TM, then for all states s0 ∈ S 0, there exists a time t∗ polynomial in |S |, |A|, TM, R∗max,

1/ε, 1/δ, and K∗0 = max{min{n1 :
∑n1

t=1 D(1, t, s) ≥ ln(4|S ||A|/δ)} : s ∈ S }, such that, for all

t ≥ t∗, the expected average reward of running URMAX(ε, δ, s0) on M for t steps is at least

(1 − δ)Opt(M, ε,TM) − 3ε.

Proof: For convenience, we call an iteration of the loop in Algorithm 2, where

URMAX(T, |S 0| + T − 1, |A0| + T − 1,T,T, ε, δ, s0) is executed for some values of T , a long

iteration, and call an iteration of the loop in Algorithm 3, where the current best guess for the

optimal policy is executed for T steps, a short iteration.

Since K5(T) is polynomial in T , 1
ε
, and 1

δ
, by the definition of URMAXK , it is immediate

that URMAX(ε, δ, s0) takes time polynomial in |S |, |A|, TM, R∗max, 1/ε, 1/δ, and K∗0 to reach the

earliest long iteration in which all the relevant parameters of URMAX(T, |S 0| + T − 1, |A0| +

T − 1,T,T, ε, δ, s0) are all at least as large as their actual values (i.e., |S 0| + T − 1 ≥ |S |,

|A0| + T − 1 ≥ |A|, T ≥ TM, T ≥ R∗max, and T ≥ K∗0). Call this long iteration the icebreaker

iteration.

Like H4(T) in RMAX, which includes extra iterations that compensate for the low-reward

period, K5(T) also includes short iterations that are intended to compensate for low-reward

periods. However, in RMAX, those extra iterations compensate for the low-reward period in

the past, while here, the extra short iterations compensate for the low-reward period in the next

long iteration. That is, each long iteration that occurs after the icebreaker iteration compensates

for the low reward period in the next long iteration. Using this compensation mechanism, we

140

show below that the expected average reward of URMAX over any time interval that starts at

the beginning of the icebreaker iteration and ends after the end of the icebreaker iteration is

above Opt(M, ε,TM) − 5
2ε − Opt(M, ε,TM)δ.

Let the icebreaker iteration be the (T ∗)th long iteration. Let B(i) be the time that the (T ∗+i)th

long iteration begins (and the (T ∗ + i− 1)st long iteration ends). B(i) may depend on the run; it

is a random variable. However, B(i + 1)− B(i) is independent of the run; since in long iteration

T ∗ + i, all the parameters have values at least as large as their actual values, it follows that

B(i + 1) − B(i) = (T ∗ + i)K5(T ∗ + i). Let A[B(i), B(j)] for j > i (resp. A[B(i), B(i) + t]) denote

the average reward in the interval [B(i), B(j)] (resp. [B(i), B(i) + t]). Again, the average reward

is a random variable; it depends on the run. We want to show that E(A[B(0), B(0) + t]) ≥

Opt(M, ε,TM) − 5
2ε − Opt(M, ε,TM)δ as long as t ≥ B(1) − B(0).

We first prove that E(A[B(i), B(j)]) ≥ Opt(M, ε,TM) − 2ε −Opt(M, ε,TM)δ if 0 ≤ i < j. By

the definition of the icebreaker iteration, the parameters used in the icebreaker iteration T ∗ and

any later long iteration are sufficiently large. Thus, by Theorem 2.5.2, with probability at least

1 − δ, A[B(i), B(i + 1)] ≥ Opt(M, ε,TM) − 2ε. Since the minimum reward in M is 0,

E(A[B(i), B(i + 1)]) ≥ (Opt(M, ε,TM) − 2ε)(1 − δ) ≥ Opt(M, ε,TM) − 2ε − Opt(M, ε,TM)δ.

The desired result easily follows.

Now consider an arbitrary t ≥ B(1)− B(0). Suppose that t occurs during the (T ∗ + i)th long

interval; that is, B(i) − B(0) ≤ t < B(i + 1) − B(0), where i ≥ 1. Let t′ = B(0) + t − B(i),

so that B(0) + t = B(i) + t′. We consider two cases. First suppose that t ≥ B(i) − B(0) +

K4(T ∗ + i,T ∗ + i)(T ∗ + i). Consider the interval [B(i), B(i) + t′]. For this interval the same

arguments as above, using Theorem 2.5.2, show that E(A[B(i), B(i) + t′]) ≥ Opt(M, ε,TM) −

2ε − Opt(M, ε,TM)δ. Since E(A[B(0), B(i)]) ≥ Opt(M, ε,TM) − 2ε − Opt(M, ε,TM)δ, it easily

141

follows that E(A[B(0), B(0) + t]) ≥ Opt(M, ε,TM) − 2ε − Opt(M, ε,TM)δ.

If t < B(i) − B(0) + K4(T ∗ + i,T ∗ + i)(T ∗ + i), note that B(0) + t = B(i) + t′, where

t′ < K4(T ∗ + i,T ∗ + i)(T ∗ + i). Consider the interval [B(i − 1), B(i) + t′]. Let TOT [I] represent

the total reward in the interval I. Clearly TOT [B(i−1), B(i)+t′] ≥ TOT [B(i−1), B(i)], and with

probability at least 1− δ, TOT [B(i− 1), B(i)] ≥ (Opt(M, ε,TM)− 2ε)K5(T ∗ + i− 1)(T ∗ + i− 1).

Thus, with probability at least 1 − δ,

A[B(i − 1), B(i) + t′] ≥
(Opt(M, ε,TM) − 2ε)K5(T ∗ + i − 1)(T ∗ + i − 1)

B(i) − B(i − 1) + t′
.

Note that

B(i) − B(i − 1) + t′ = K5(T ∗ + i − 1)(T ∗ + i − 1) + t′

≤ K4(T ∗ + i,T ∗ + i)2(T ∗+i)
ε

(T ∗ + i − 1) + K4(T ∗ + i,T ∗ + i)(T ∗ + i)

≤ K4(T ∗ + i,T ∗ + i)(T ∗ + i)(2(T ∗+i−1)
ε

+ 1).

It follows that, with probability at least 1 − δ,

A[B(i − 1), B(i) + t′] ≥ (Opt(M,ε,TM)−2ε)K4(T ∗+i,T ∗+i) 2(T∗+i)
ε (T ∗+i−1)

K4(T ∗+i,T ∗+i)(T ∗+i)(2(T∗+i−1)
ε +1)

=
2(Opt(M,ε,TM)−2ε)(T ∗+i−1)

2(T ∗+i−1)+ε .
(A.9)

Easy algebraic manipulations show that

2(Opt(M, ε,TM) − 2ε)(T ∗ + i − 1)

= (Opt(M, ε,TM) − 5
2ε)(2(T ∗ + i − 1) + ε) + ε(T ∗ + i − 1) − εOpt(M, ε,TM) + 5

2ε
2.

Since the (T ∗)th long iteration is the icebreaker iteration, we must have T ∗ ≥ R∗max ≥

Opt(M, ε,TM). Moreover, by assumption, i ≥ 1. Thus, ε(T ∗ + i − 1) ≥ εOpt(M, ε,TM), so

2(Opt(M, ε,TM) − 2ε)(T ∗ + i − 1) ≥ (Opt(M, ε,TM) −
5
2
ε)(2(T ∗ + i − 1) + ε).

142

It now follows from (A.9) that, with probability at least 1 − δ,

A[B(i − 1), B(i) + t′] ≥ Opt(M, ε,TM) −
5
2
ε.

Thus, E(A[B(i−1), B(i)+ t′]) ≥ Opt(M, ε,TM)− 5
2ε−Opt(M, ε,TM)δ. Since, as we have shown,

if i > 1, E(A[B(0), B(i − 1)]) > Opt(M, ε,TM) − 2ε − Opt(M, ε,TM)δ, it easily follows that

E(A[B(0), B(i) + t′]) ≥ Opt(M, ε,TM) −
5
2
ε − Opt(M, ε,TM)δ.

Thus, we have shown that the expected average reward of URMAX(ε, δ, s0) over any time

interval that starts at the beginning of the icebreaker iteration and ends after the end of the

icebreaker iteration is at least Opt(M, ε,TM) − 5
2ε − Opt(M, ε,TM)δ. We want to find a time t∗

such that, for all t ≥ t∗, the expected average reward of URMAX(ε, δ, s0) in the interval [0, t] is

at least Opt(M, ε,TM)−3ε −Opt(M, ε,TM)δ. Let t∗ = B(0)(2R∗max
ε

+ 1). Since B(0) is polynomial

in |S |, |A|, TM, 1/ε, 1/δ, R∗max, and K∗0 , so is t∗. Suppose that t ≥ t∗. Then

E(A[0, t]) ≥ (t−B(0))E(A[B(0),t])
t

≥
(t−B(0))(Opt(M,ε,TM)− 5

2 ε−Opt(M,ε,TM)δ)
t .

Easy calculus shows that a function f (t) = (t − a)b/t is increasing as a function of t if ab > 0,

so it follows that

E(A[0, t]) ≥ (t∗−B(0))(Opt(M,ε,TM)− 5
2 ε−Opt(M,ε,TM)δ)

t∗

=
(t∗−B(0))(Opt(M,ε,TM)−3ε−Opt(M,ε,TM)δ)+ ε

2 (t∗−B(0))
t∗

=
(t∗−B(0))(Opt(M,ε,TM)−3ε−Opt(M,ε,TM)δ)+ ε

2 (B(0)(2R∗max
ε +1)−B(0))

t∗

=
(t∗−B(0))(Opt(M,ε,TM)−3ε−Opt(M,ε,TM)δ)+B(0)R∗max

t∗

≥
(t∗−B(0))(Opt(M,ε,TM)−3ε−Opt(M,ε,TM)δ)+B(0)Opt(M,ε,TM)

t∗

≥
t∗(Opt(M,ε,TM)−3ε−Opt(M,ε,TM)δ)

t∗

= Opt(M, ε,TM) − 3ε − Opt(M, ε,TM)δ.

143

APPENDIX B

PROOFS FOR THEOREMS IN CHAPTER 3

In this chapter, we provide proofs of Theorems 3.2.2 and 3.2.1. We start with Theorem 3.2.2.

We repeat the statement of the theorem for the reader’s convenience.

B.1 Proof for Theorem 3.2.2

Theorem 3.2.2: Using an exploration method where Di(1, t) ≥ β for all i, t > 0 where

β ∈ (0, 1) is a constant, for any α > 0 and 0 < δ < 1, the robot can obtain an α-optimal policy

to M∞ with probability at least 1 − δ in time polynomial in l, |Al|, |S l|, 1/β, 1/α, 1/δ, Rmax and

T l, where l is the smallest i such that the optimal policy for M′
i is (α/2)-optimal to M∞, Rl

max

is the maximum reward (that a transition can obtain) in M′
l , and T l is the ε-return mixing time

for M′
l .

Proof: Since Di(1, t) ≥ β for i ≥ 1, for all levels i ≥ 1, we have Ψ(t) ≥ β · t ≥ β ln(t) for all

t ≥ 1. By Theorem 2.5.5, for each level i, with probability at least 1− δ, we can obtain a policy

πi that is (α/2)-optimal for M′
i in time polynomial in |Ai|, |S i|, 1/β, 2/α, 1/δ, Ri

max, and T i using

the URMAX algorithm, where Ri
max is the maximum reward in M′

i and T i is the (α/2)-return

mixing time for M′
i .

However, we are not interested in obtaining a near-optimal policy for M′
i ; we want a near-

optimal policy for M∞. Let l be the smallest i such that the optimal policy for M′
i is (α/2)-

optimal for M∞. Such a level l must exist, due to the continuity of the reward and transition

functions of M∞. For suppose that π is the optimal policy in M∞. By continuity, there exists a

144

Figure B.1: The diagonal execution of URMAX.

level l and a policy π′ at level l such that the expected reward of π′ is within α/2 of that of π.

But then the optimal policy at level l must have expected reward within α/2 of that of π.1 Since

πl is (α/2)-optimal for M′
l , and the optimal policy for M′

l is (α/2)-optimal for M∞, πl must be

α-optimal for M∞.

Thus, if we knew l and the values of all the relevant parameters, then by running URMAX

at each level from 1 to l, we could obtain an α-optimal policy for M∞ in time polynomial in l,

|S l|, 1/k, 2/ε, 1/δ, R j
max, |A j| and T j for all j ∈ [1, l]. Note that we include |A j| and T j for all

j ∈ [1, l] here. This is because we did not assume each discretization level j + 1 is a refinement

of the discretization level j; thus, it could happen that Rl
max < R j

max for some j < l, or |Al| < |A j|

for some j < l, or that T l < T j for some j < l. However, we show below that we actually need

only Rl
max, |Al|, and T l (instead of all R j

max, |A j|, and T j).

The problem with the approach described in the previous paragraph is that we do not know

l nor the values |S l, |A j|, T j and R j
max for j ∈ [1, l]. We solve this problem just as how we solved

1Actually, there may not be an optimal policy in M∞. That is, there may be a reward γ such that no policy
in M∞ has a reward of γ or greater, and a sequence of policies π1, π2, . . . such that the expected reward of the
π j approaches γ, although no policy in the sequence actually has expected reward γ. But essentially the same
argument still applies: We take a policy π in M∞ that has a reward greater than γ − α/4 and and choose a level l
that has a policy approximating π within α/4.

145

the analogous problem when running the URMAX algorithm (see Chapter 2): we diagonalize.

Specifically, we start running URMAX at discretization level 1 under the assumption that the

parameters (|A1|, |S 1|, R1
max, |S 1|) all have value 1. level 2 with the parameters set to 1, and run

URMAX at level 1 with parameters set to 2; and so on. The process is described in Figure B.1.

A similar approach is used in Chapter 2 to increase the value of unknown parameters. We call

running URMAX at a specific particular discretization level using a particular setting of the

parameters an iteration of URMAX. For example, running URMAX at discretization level 3

with the parameters set to 4 is one iteration of URMAX.

To deal with the fact that we do not know l, we always keep track of the current candidate

for best policy. (That is, the policy that is optimal given the current set of assumptions about

values of the parameters, given the actions that have been discovered and our current estimate

of the transition probabilities.) At the end of each iteration of URMAX we run the current

candidate optimal policy a sufficient number of times so as to guarantee that the average payoff

of URMAX is close to optimal, if the current candidate optimal policy is indeed α-optimal.2

Eventually, URMAX will reach a stage where it is exploring discretization level l using values

for the parameters |Al|, |S l|, Rl
max and T l that are at least as high as the actual values. At that

point, the candidate for optimal policy is almost certain to be α-optimal for M∞. (Recall that

l is defined to be the discretization level at which the optimal policy is α/2-optimal for M∞.)

After this point, we always run a policy that is at least α-optimal to M∞. Note that this happens

even if we do not know the value of l or any of the relevant parameters.

Thus, although URMAX runs forever, from some point in time it has discovered an α-

optimal algorithm. Moreover, due to the “diagonal” manner in which URMAX is run, the

candidate optimal policy is (with probability 1 − δ) α-optimal after time polynomial in l, |Al|,

|S l|, T l, Rl
max, k, 1/δ, and 2/α. From that point on, we are guaranteed to run policies that are

2The number of times that we need to run the policy is computed in Chapter 2.

146

α-optimal for M∞.

B.2 Proof for Theorem 3.2.1

Theorem 3.2.1: Using brute-force exploration, for any α > 0 and 0 < δ < 1, a DM can find

an α-optimal policy in M∞ with probability at least 1− δ in time polynomial in l, |A′l |, |S l|, 1/α,

1/δ, Rl
max and T l, where l is the least i such that the optimal policy for M′

i is (α/2)-optimal for

M∞, Rl
max is the maximum reward (that a transition can obtain) in M′

l , and T l is the ε-return

mixing time for M′
l .

Proof: At any discretization level, there are only finitely many possible actions. Since the

brute force exploration examines all possible actions at each level, it is guaranteed to find all

useful actions, and thus the near-optimal policy for that level.

We apply the URMAX algorithm diagonally as described in the Proof for Theorem 3.2.2,

so that sooner or later, we will reach the discretization level i such that the optimal policy for

M′
i is ε-close to P∗, and run URMAX in that level with parameters values no less than the real

values of |Ai|, |S i|, Ti and Ri
max. Thus, we are guaranteed to obtain an ε-near-optimal policy.

147

BIBLIOGRAPHY

[1] P. Abbeel and A. Y. Ng. Exploration and apprenticeship learning in reinforcement learn-

ing. In Proc. 22nd Int. Conf. on Machine Learning (ICML ’05), pages 1–8, 2005.

[2] A. Antos and R. Munos. Fitted Q-iteration in continuous action-space MDPs. In Advances

in Neural Information Processing Systems 20 (Proc. of NIPS 2007), pages 9–16, 2007.

[3] R. Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,

6:679–684, 1957.

[4] R. I. Brafman and M. Tennenholtz. R-MAX: A general polynomial time algorithm for

near-optimal reinforcement learning. Journal of Machine Learning Research, 3:213–

231, 2002.

[5] D. Brown, L. Cantillo, and G. Webster. Nasa confirms evidence that liquid water flows on

today?s mars, 2015.

[6] D. Budden, J. Walker, M. Flannery, and A. Mendes. Probabilistic gradient ascent with

applications to bipedal robot locomotion. In Australasian Conference on Robotics

and Automation (ACRA 2013), pages 37–45, 2013.

[7] M.-Y. Cheng and C.-S. Lin. Genetic algorithm for control design of biped locomotion.

Journal of Robotic Systems, 14(5):365–373, 1997.

[8] S. Chernova and M. Veloso. An evolutionary approach to gait learning for four-legged

robots. In Proc. International Conference on Intelligent Robots and Systems (IROS

2004) Vol. 3, pages 2562 – 2567, 2004.

[9] T. Dean, K. Kim, and R. Givan. Solving stochastic planning problems with large state

and action spaces. In Proc. 4th Int. Conf. on Artificial Intelligence Planning Systems,

pages 102–110, 1998.

[10] R. Dearden, N. Friedman, and D. Andre. Model based bayesian exploration. In Proc. 15th

Conf. on Uncertainty in AI (UAI ’99), pages 150–159, 1999.

148

[11] J. DeVore. Probability and Statistics for Engineering and The Sciences. Duxbury Press,

1995.

[12] Y. Feinberg. Subjective reasoning—games with unawareness. Technical Report Research

Paper Series #1875, Stanford Graduate School of Business, 2004.

[13] Y. Feinberg. Games with unawareness. http://www.stanford.edu/ yossi/Files/Games With

Unawareness.pdf, 2009.

[14] Z. Feng, R. Dearden, N. Meuleau, and R. Washington. Dynamic programming for struc-

tured continuous Markov decision problems. In In Proc. 20th Conf. on Uncertainty in

Artificial Intelligence, pages 154–161, 2004.

[15] A. Goel, S. Khanna, and B. Null. The ratio index for budgeted learning, with applications.

In Proc. 9th Symp. on Discrete Algorithms (SODA ’09), pages 18–27, 2009.

[16] J. B. Gonalves and D. E. Zampieri. An integrated control for a biped walking robot.

Journal of the Brazilian Society of Mechanical Sciences and Engineering, 28:453 –

460, 12 2006.

[17] C. Guestrin, R. Patrascu, and D. Schuurmans. Algorithm-directed exploration for model-

based reinforcement learning in factored mdps. In Proc. International Conference on

Machine Learning (ICML 2002), pages 235–242, 2002.

[18] S. Guha and K. Munagala. Approximation algorithms for budgeted learning problems. In

Proc. 39th Symp. on Theory of Computing (STOC ’07), pages 104–113, 2007.

[19] J. Y. Halpern and L. C. Rêgo. Extensive games with possibly unaware players. In

Proc. Fifth International Joint Conference on Autonomous Agents and Multiagent

Systems, pages 744–751, 2006. Full version available at arxiv.org/abs/0704.2014.

[20] J. Y. Halpern, N. Rong, and A. Saxena. Mdps with unawareness. In Proc. 26th Conf. on

Uncertainty in AI (UAI’10), 2010.

[21] J. Y. Halpern, N. Rong, and A. Saxena. MDPs with unawareness. CoRR, abs/1006.2204,

2010.

149

[22] Y. Hasegawa, T. Arakawa, and T. Fukuda. Trajectory generation for biped locomotion

robot. Mechatronics, 10:67–89, 2000.

[23] M. Hauskrecht, N. Meuleau, L.P. Kaelbling, T. Dean, and C. Boutilier. Hierarchical so-

lution of Markov decision processes using macro-actions. In Proc. 14th Conf. on Un-

certainty in AI (UAI ’98), pages 220–229, 1998.

[24] A. Heifetz, M. Meier, and B. Schipper. Unawareness, beliefs and games.

In Theoretical Aspects of Rationality and Knowledge: Proc. Eleventh

Conference (TARK 2007), pages 183–192, 2007. Full paper available at

www.econ.ucdavis.edu/faculty/schipper/unawprob.pdf.

[25] A. Hordijk and F. A. Van der Duyn Schouten. Discretization and weak convergence in

Markov decision drift processes. Mathematics of Operations Research, 9:112–141,

1984.

[26] R.A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

[27] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, and K. Tanie. Planning

walking patterns for a biped robot. IEEE Transactions on Robotics and Automation,

17:280–289, 2001.

[28] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa.

Biped walking pattern generation by using preview control of zero-moment point.

In Proc. International Conference on Robotics and Automation (ICRA 2003), Vol. 2,

pages 1620 – 1626, 2003.

[29] S. Kakade, M. Kearns, and J. Langford. Exploration in metric state spaces. In Proc. 20th

Int. Conf. on Machine Learning (ICML ’03), pages 306–312, 2003.

[30] M. Kearns and D. Koller. Efficient reinforcement learning in factored MDPs. In Proc. Six-

teenth Int. Joint Conf. on Artificial Intelligence (IJCAI ’99), pages 740–747, 1999.

[31] M. Kearns and S. Singh. Near-optimal reinforcement learning in polynomial time. Ma-

chine Learning, 49(2-3):209–232, 2002.

150

[32] H. K. Khalil. Nonlinear Systems. Prentice-Hall, 2002.

[33] J. Kim, I. Park, and J. Oh. Walking control algorithm of biped humanoid robot on uneven

and inclined floor. Journal of Intelligent and Robotic Systems, 48(4):457–484, 2007.

[34] M. S. Kim and W. Uther. Automatic gait optimisation for quadruped robots. In Proc. Aus-

tralasian Conference on Robotics and Automation (ACRA), 2003.

[35] N. Kohl and P. Stone. Policy gradient reinforcement learning for fast quadrupedal loco-

motion. In Proc. IEEE International Conference on Robotics and Automation (ICRA

2004), pages 2619–2624, 2004.

[36] M.L. Littman, T.L. Dean, and L.P. Kaelbling. On the complexity of solving Markov de-

cision problems. In Proc. 11th Conf. on Uncertainty in AI (UAI ’95), pages 394–402,

1995.

[37] D. J. Lizotte, O. Madani, and R. Greiner. Budgeted learning of naive-Bayes classifiers. In

Proc. 19th Conf. on Uncertainty in AI (UAI’03), pages 378–385, 2003.

[38] O. Madani, D.J. Lizotte, and R. Greiner. Active model selection. In Proc. 20th Conf. on

Uncertainty in AI (UAI ’04), pages 357–365, 2004.

[39] I. Mordatch, N. Mishra, C. Eppner, and P. Abbeel. Combining model-based policy

search with online model learning for control of physical humanoids. Preprint,

http://www.eecs.berkeley.edu/ igor.mordatch/darwin/paper.pdf, 2016.

[40] G. Parker and W. Tarimo. Using cyclic genetic algorithms to learn gaits for an actual

quadruped robot. In Proc. IEEE International Conference on Systems, Man, and Cy-

bernetics (SMC 2011), pages 1938 – 1943, 2011.

[41] G. B. Parker, W. T. Tarimo, and M. Cantor. Quadruped gait learning using cyclic genetic

algorithms. In Proc. IEEE Congress on Evolutionary Computation (CEC 2011), pages

1529 – 1534, 2011.

[42] H. Picado, M. Gestal, N. Lau, L. P. Reis, and A. M. Tome. Automatic generation of biped

walk behavior using genetic algorithms. In Proc. 10th International Work-Conference

151

on Artificial Neural Networks, pages 805–812, 2009.

[43] M. L. Puterman. Markov Decision Processes. John Wiley and Sons, Inc., 1994.

[44] E. Rachelson, F. Garcia, and P. Fabiani. Extending the bellman equation for MDPs to

continuous actions and continuous time in the discounted case. In 10th Int. Symp. on

Artificial Intelligence and Mathematics, 2008.

[45] N. Rong and J. Y. Halpern. Budgeted learning with unawareness. Unpublished

manuscript, 2016.

[46] N. Rong, J. Y. Halpern, and A. Saxena. Mdps with unawareness in robotics. Unpublished

manuscript, 2016.

[47] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010.

[48] Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura. The

intelligent ASIMO: system overview and integration. In Proc. IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2011), volume 3, pages 2478–

2483, 2002.

[49] J. Schulman, S. Levine, P. Moritz, M. Jordan, and P. Abbeel. Trust region policy opti-

mization. In Proc. 31st International Conference on Machine Learning (ICML ’15),

pages 1889–1897, 2015.

[50] S. P. Soundararaj, A. Sujeeth, and A. Saxena. Autonomous indoor helicopter flight using

a single onboard camera. In Proc. IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2009), pages 5307–5314, 2009.

[51] J. Strom, G. Slavov, and E. Chown. Omnidirectional walking using ZMP and preview

control for the nao humanoid robot. In RoboCup 2009: Robot Soccer World Cup XIII,

pages 378–389, 2010.

[52] R. Sutton, D. Precup, and S. Singh. Between MDPs and semi-MDPs: A framework for

temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211,

1999.

152

[53] R. Tedrake, T. W. Zhang, and H. S. Seung. Learning to walk in 20 minutes. In Proc. Four-

teenth Yale Workshop on Adaptive and Learning Systems, 2005.

[54] F. Xue, X. Chen, J. Liu, and D. Nardi. Real time biped walking gait pattern generator for

a real robot. In T. Röfer, N. M. Mayer, J. Savage, and U. Saranlı, editors, RoboCup

2011: Robot Soccer World Cup XV, pages 210–221. Springer, 2012.

[55] A. S. Zinober. Deterministic control of uncertain systems. In Proc. Int. Conf. on Control

and Applications (ICCON ’89), pages 645–650, 1989.

[56] V. Zykov, J. Bongard, and H. Lipson. Evolving dynamic gaits on a physical robot.

In Proc. Genetic and Evolutionary Computation Conference, Late Breaking Paper

(GECCO’04), 2004.

153

