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Abstract
Device drivers typically execute in supervisor mode and
thus must be fully trusted. This paper describes how to
move them out of the trusted computing base, by running
them without supervisor privileges and constraining their
interactions with hardware devices. An implementation
of this approach in the Nexus operating system executes
drivers in user space, leveraging hardware isolation and
checking their behavior against a safety specification.
These Nexus drivers have performance comparable to in-
kernel, trusted drivers, with a level of CPU overhead ac-
ceptable for most applications. For example, the moni-
tored driver for an Intel e1000 Ethernet card has through-
put comparable to a trusted driver for the same hardware
under Linux. And a monitored driver for the Intel i810
sound card provides continuous playback. Drivers for a
disk and a USB mouse have also been moved success-
fully to operate in user space with safety specifications.

1 Introduction

Device drivers constitute over half of the source code of
many operating system kernels, with a bug rate up to
seven times higher than other kernel code [10]. They
are often written by outside developers, and they are less
rigorously examined and tested than the rest of the kernel
code. Yet device drivers are part of the trusted computing
base (TCB) of every application, because the monolithic
architecture of mainstream operating systems forces de-
vice drivers to be executed inside the kernel, with high
privilege. Some microkernels and other research operat-
ing systems [2, 9, 21, 24] run device drivers in user space
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to isolate the operating system from accidental driver
faults, but these drivers retain sufficient I/O privileges
that they must still be trusted.

This paper introduces a practical mechanism for exe-
cuting device drivers in user space and without privilege.
Specifically, device drivers are isolated using hardware
protection boundaries. Each device driver is given ac-
cess only to the minimum resources and operations nec-
essary to support the devices it controls (least privilege),
thereby shrinking the TCB.1 A system in which device
drivers have minimal privileges is easier to audit and less
susceptible to Trojans in third-party device drivers.

Even in user space, device drivers execute hardware
I/O operations and handle interrupts. These operations
can cause device behavior that compromises the integrity
or availability of the kernel or other programs. There-
fore, our driver architecture introduces a global, trusted
reference validation mechanism (RVM) [3] that mediates
all interaction between device drivers and devices. The
RVM invokes a device-specific reference monitor to val-
idate interactions between a driver and its associated de-
vice, thereby ensuring the driver conforms to a device
safety specification (DSS), which defines allowed and,
by extension, prohibited behaviors.

The DSS is expressed in a domain-specific language
and defines a state machine that accepts permissible tran-
sitions by a monitored device driver. We provide a com-
piler to translate a DSS into a reference monitor that im-
plements the state machine. Every operation by the de-
vice driver is vetted by the reference monitor, and oper-
ations that would cause an illegal transition are blocked.
The entire architecture is depicted in Figure 1.

The RVM protects the integrity, confidentiality, and
availability of the system, by preventing:

• Illegal reads and writes: Drivers cannot read or
modify memory they do not own.
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Figure 1: Safe user-space device driver architecture.

• Priority escalation: Drivers cannot escalate their
scheduling priority.
• Processor starvation: Drivers cannot hold the

CPU for more than a pre-specified number of time
slices.
• Device-specific attacks: Drivers cannot exhaust

device resources or cause physical damage to de-
vices.

In addition, given a suitable DSS, an RVM can enforce
site-specific policies to govern how devices are used. For
example, administrators at confidentiality-sensitive or-
ganizations might wish to disallow the use of attached
microphones or cameras; or administrators of trusted
networks might wish to disallow promiscuous (sniffing)
mode on network cards.

One alternative to our approach for monitoring and
constraining device driver behavior is to use hardware
capable of blocking illegal operations. Hardware-based
approaches, however, are necessarily limited to policies
expressed in terms of hardware events and abstractions.
An IOMMU [1, 4, 14, 23], for example, can limit the
ability of devices to perform DMA transfers to or from
physical addresses the associated drivers cannot read or
write directly. IOMMUs, however, do not mediate as-
pects of driver and system safety that go beyond the
memory access interface [7]; for example, an IOMMU
cannot prevent interrupt livelock, limit excessively long
interrupt processing, protect devices from physical harm
by drivers, or enforce site-specific policies. As IOMMUs
become prevalent, our approach could leverage them as
hardware accelerators for memory protection.

In sum, this paper shows how to augment common
memory protection techniques with device-specific ref-
erence monitors to execute drivers with limited privilege
and in user space. The requisite infrastructure is small,
easy to audit, and shared across all devices. Our pro-

totype implementation demonstrates that this approach
can defend against malicious drivers and that the perfor-
mance costs of this enhanced security are not prohibitive.

2 Device I/O Model

Device drivers send commands to devices, check de-
vice status using registers, receive notification of status
changes through interrupts, and initiate bulk data trans-
fers using direct memory access (DMA). How they do so
constitutes a platform’s I/O model. Our work is targeted
to the x86 architecture and PCI buses; what follows is a
brief overview of the I/O model on that platform. Similar
features are found on other processors and buses.

Modern buses implement device enumeration and
endpoint identification. Each device on a PCI bus is iden-
tified by a 16-bit vendor identifier and a 16-bit model
number; the resulting 32-bit device identifier identifies
the device.2 Some devices with different model num-
bers may nonetheless be similar enough to share a single
driver and a single DSS. Device enumeration is a pro-
cess for identifying all devices attached to a bus; end-
point identification is the process of querying a device
for its type, capabilities, and resource requirements.

Device enumeration and endpoint identification typi-
cally occur at boot time. Interrupt lines and I/O regis-
ters are assigned, according to device requests, to all de-
vices discovered. Device identifiers govern which device
drivers to load. Unrecognized devices, for which no DSS
is available, are ignored and are not available to drivers.

Devices have registers, which are read and written by
drivers to get status, send commands, and transfer data.
The registers comprise I/O ports (accessed using instruc-
tions like inb and outb), memory-mapped I/O, and
PCI-configuration registers. Each register is identified
by a type and an address. Contiguous sets of registers
constitute a range, identified by type, base address, and
limit (the number of addresses in the range). For all reg-
ister types, accesses are parameterized by an address, a
size, and, for writes, a value of the given size. Write
operations elicit no response; read operations produce a
value of the given size as a response. Both operations
can cause side effects on a device.

Devices that transfer large amounts of data typically
employ DMA rather than requiring a device driver to
transfer each word of data individually through device
registers. Before initiating a DMA transfer, the device
driver typically sets a control register on the device to
point to a buffer in memory. Some devices can perform
DMA to or from multiple memory locations; in this case,
a control register might contain a pointer to a list, ring,



or tree structure with pointers to many buffers. Device
drivers using DMA transfers must first obtain from the
kernel one or more memory regions with known, fixed,
physical addresses.

Devices can be synchronous or asynchronous. Drivers
must poll synchronous devices for completed operations
or changes in status. In contrast, when a driver submits
an operation to an asynchronous device, the driver yields
the CPU until the device later signals its response (or
other status change) by interrupting the processor. When
that interrupt occurs, the operating system invokes code
specified by the driver. In most cases, an interrupt must
be acknowledged by a driver, or the device will continue
to send the same interrupt. Interrupts can be prioritized
relative to each other, but they generally occur with a
high priority, preempting most other tasks.

Each device signals interrupts using a pre-assigned in-
terrupt line. On some architectures, including the x86,
interrupt lines can be shared by multiple devices. Drivers
must read status registers for each of these devices to de-
termine which specific device caused the interrupt.

Devices are assumed to be in an unknown state when
an operating system boots or when a driver is loaded or
reloaded. When a driver is unloaded, it unregisters its
interrupt handler and releases its DMA memory. At that
point, the device must be placed in a state that does not
generate interrupts or use DMA.

Devices are typically forgiving about device driver
timing, and device drivers are similarly forgiving about
device timing. This flexibility is a necessity, because a
modern multitasking operating system might be heav-
ily loaded, implement arbitrary scheduling policies, or
at times execute with interrupts disabled. In addition,
devices and their drivers typically work with several pro-
cessor generations, which differ in execution speed. De-
vice registers and interrupts, rather than precise timing,
are used to implement synchronization between the de-
vice and its driver so that devices and drivers behave
safely and predictably despite uncertain delays.

Some drivers are divided into components or hierar-
chies. For example, SCSI, ATA, and USB each have a
controller driver plus additional drivers for peripherals,
like disks, mice, keyboards, etc. In the general case, any
driver in such a driver hierarchy can issue requests and
handle interrupts. Applying a reference monitor in such
a driver hierarchy requires the reference monitor to se-
curely identify attached devices, demultiplex the com-
mands passing through the controller, and recognize the
protocol used with each device—all feasible with our
current language.3 However, in all driver hierarchies we
have examined, only the device driver for the controller

performs low-level I/O operations, handles interrupts, or
initiates DMA transfers, and drivers for peripherals com-
municate with their devices through the controller driver.
Hence, all communication is visible to a single reference
monitor, which suffices to validate the operations of all
drivers in the hierarchy.

Some devices, particularly high-performance network
cards and 3-D graphics cards, support loading and exe-
cuting programs (e.g., for TCP offload or vertex shad-
ing) on a processor on the device. Other devices may
support loading firmware, either ephemerally or perma-
nently. Such programs and firmware change the way the
device behaves; thus, they must be trustworthy. Pro-
grams and firmware are loaded through I/O operations
or DMA, both of which can be monitored. In princi-
ple, then, an RVM could authenticate device programs
or firmware using signatures or other analysis. Our cur-
rent DSSes do not implement these checks. Doing so
would be straightforward, though designing an analysis
algorithm for such updates might not be.

3 Unprivileged Driver Architecture

In our user-space driver architecture, drivers, like any
other user process, are loaded from a filesystem; once
loaded, they execute and can be unloaded and restarted
at any time. When a driver is first loaded, it executes a
system call to find a compatible device. As part of this
system call execution, the RVM identifies an appropriate
device and reference monitor and returns to the driver a
structure describing the device ID and I/O-resource as-
signments. The driver then uses driver system calls (de-
scribed in Section 4.3) to perform I/O operations and re-
ceive interrupts. Subsequent uses of those calls cause the
RVM to invoke the reference monitor.

Reference monitors are instantiated immediately after
endpoint enumeration, based on device IDs. Reference
monitors persist, even if corresponding drivers are un-
loaded and restarted.

3.1 Security properties
Drivers are not trusted, but the RVM, reference monitors,
and devices are. Moreover, reference monitors are com-
piled from DSSes, so DSSes and the DSS compiler must
be trusted.

Some DSSes will be written by hardware manufactur-
ers; others will be written by independent experts, in-
cluding security firms or OS distributors. But indepen-
dent of the source, a DSS ought to be small and declara-
tive. Further, because they describe devices, not drivers,



there need only be one DSS per device. Hence, they are
conducive to auditing.

We assume devices behave safely if given sufficiently
restricted inputs. Such an assumption is inescapable, be-
cause devices can access any memory, generate arbitrary
interrupts, and starve hardware buses directly.

The two sources of driver misbehavior we consider
are drivers designed by malicious authors (Trojans), and
drivers with bugs that can be subverted by users or re-
mote attackers. Both are dealt with by our RVM.

The RVM prevents drivers from performing invalid
reads and writes using hardware isolation and by check-
ing driver accesses to DMA control registers.

• Hardware isolation works as with other user pro-
cesses, giving each driver process direct access only
to its own memory space.
• By checking that every DMA address sent to the

device is allocated to the driver, the RVM prevents
a device driver from using DMA for illegal reads
and writes.

The RVM must also defend against a device driver
that attempts to escalate its execution priority or that
starves other processes and the kernel by causing large
numbers of interrupts or by spending too much time in
high-priority interrupt handlers. A timer driver might set
too high a timer frequency, or a sound card driver might
set too small a DMA buffer for playback, causing fre-
quent notifications to be generated when the buffer be-
comes empty. Some of these unacceptable behaviors can
be prevented when the driver is setting up the device—
for example, by a reference monitor imposing a lower
bound on the sound card DMA buffer size—but RVMs
provide three additional protection measures. First, the
RVM limits the frequency at which a driver can receive
interrupts, with different limits for different types of de-
vices. Second, the RVM limits the length of time that
an interrupt handler runs. Third, the RVM ensures that
each interrupt handler acknowledges every interrupt, to
prevent devices from issuing additional interrupts for the
same event. (The details of monitoring interrupt han-
dlers in our Nexus implementation are described in Sec-
tion 4.1.)

Finally, an RVM must prevent invocations of opera-
tions known or suspected to harm devices. Examples
include: overclocking processors, sending a monitor an
out-of-range refresh rate, instructing a disk to seek to an
invalid location, or writing invalid data to non-volatile
configuration registers. Other attacks against devices in-
volve exhausting finite resources, such as wearing out
flash memory with excessive writes or wasting battery

power on mobile devices. The RVM prevents many such
attacks by allowing only well-defined operations at rates
presumed to be safe.

While the RVM approach is general enough to enforce
rich safety properties, we do not anticipate that RVMs
will be used to enforce driver semantics expected by ap-
plications. Our reference monitor implementations do
not, for example, ensure that network drivers only send
legal TCP packets. They also do not prevent a malicious
driver from providing incorrect or incomplete access to a
device (i.e. denial of service). Such protections concern
end-to-end properties, hence we believe that they are best
implemented above the driver level.

3.2 Device safety specifications (DSS)

Each DSS describes the states and transitions for a state
machine and is compiled to create a reference monitor.
Inputs to the reference monitor—operations executed by
a driver and events from the corresponding device—are
delivered serially to the reference monitor by the RVM.
When an input does not correspond to an allowable tran-
sition, then the reference monitor deems it illegal, the
RVM terminates the driver for the corresponding device,
and the device is reset.

The state of a DSS state machine records interesting
aspects of the history of operations and events. This state
is defined in terms of state variables, and it often corre-
lates with the state of the I/O device itself. Some of these
state variables are explicitly defined by the program; oth-
ers are implicitly defined by the RVM.

Implicitly defined state variables are given values
by the RVM as a result of registration events (see
Section 4.1). The implicit variables $PORTIO[],
$MMIO[], $PCIREG[], and $INTR[] identify I/O
registers and interrupt lines set during endpoint identifi-
cation. And $MONITORED[] and $UNMONITORED[]
describe two types of memory regions allocated by the
driver, both of which may be used for DMA transfers.
Access to a monitored memory location generates an in-
put to the reference monitor, similar to device registers;
this form of memory is used to store commands or point-
ers to other DMA regions. Access to an unmonitored
memory location is not visible to the RVM, making un-
monitored memory suitable only for DMA buffers con-
taining data irrelevant to the DSS, such as audio samples
from a sound card. Unmonitored reads and writes are
considerably faster than monitored reads and writes.

Each state machine transition is specified with a predi-
cate Pi and an action Ai. Pi is a boolean expression over
events and state variables. Ai is a program fragment that



modifies state variables to produce the new state. A tran-
sition that pairs a predicate Pi and an actionAi is written
using the syntax Pi { Ai }.4

Any operation or event—though this is most useful for
interrupts—can be assigned a rate limit as part of a DSS.
Rate limits can be manually incorporated into transitions
using counters and timers. As a convenience, the nota-
tion Pi <rate,max, start> { Ai } compiles to a tran-
sition with a leaky bucket expressing a rate limit. So, the
associated transition can occur at most rate times per
second; bursts are allowed beyond this rate, up to max
occurrences at once; when the driver starts, it has start
initial capacity.

As an example, an abridged version of our DSS for the
Intel i810 audio device appears in the Appendix.

4 Implementation

We instantiated our user-level device driver architecture
in the Nexus trusted operating system [28], which has
many similarities to traditional microkernels, including
hardware-implemented process isolation. Other operat-
ing systems that support process isolation (e.g., Linux or
Windows) could also host an RVM.

Our implementation of user-space, unprivileged de-
vice drivers in Nexus includes the RVM, an event inter-
face between the RVM and the reference monitor, a sys-
tem call interface by which drivers can request services
from the RVM, and a mechanism for limiting driver ex-
ecution time and the frequency of events. We discuss
each of these below and report on our experience porting
Linux kernel device drivers to Nexus user space.

4.1 Reference monitor interface in Nexus

Reference monitors define functions that the RVM calls
to initialize implicit state variables and to deliver inputs
to be checked. These inputs are sent in response to driver
system calls and device events. Each I/O operation and
event described in Section 2 causes a distinct input.

State-variable setup. After device enumeration and
endpoint identification occur, Nexus initializes one ref-
erence monitor for each device. The implicit state vari-
ables are arrays. The RVM populates them based on
the results of endpoint enumeration by calling the func-
tion register region to set up I/O ports, memory-
mapped I/O, and PCI configuration registers and the
function register intr to set up an interrupt line.

Driver and device events. Device drivers affect the
state of the system and the reference monitor in three
ways: by performing I/O, by allocating memory, or by
exiting. When the driver reads or writes a register or a
monitored memory location, the RVM sends read or
write events to the reference monitor. After a read
operation, the device responds with a value, generating
a read response event. The read operation can be
blocked if it would cause a disallowed side effect. The
read response event is never blocked, and the value
it conveys can be used to change state variables.

A driver can allocate memory to use for DMA, which
causes the RVM to send register region events
with a region type of MONITORED or UNMONITORED.
Finally, if the driver exits or executes an operation not
permitted by the DSS, the RVM sends a reset event.

Devices affect reference monitor state when sending
interrupts, which generate intr events. When an in-
terrupt occurs, the reference monitor sets an interrupt
status flag (each reference monitor maintains one
such flag per interrupt line) to pending, and the RVM
schedules the driver with high execution priority. The
driver then has a configurable amount of time to respond
to the interrupt, by checking if the interrupt was from its
device, and if so, acknowledging it so the device does
not generate more interrupts for the same device event.
This check and acknowledgment are implemented with
I/O device read and write operations; reference mon-
itors recognize them as transitions and reset the inter-
rupt status flag to idle. Then, the RVM lowers the
driver’s execution priority to its default level. If the driver
does not check and acknowledge the interrupt before the
allowed time has elapsed,5 the RVM infers a starvation
attack, terminates the driver, and resets the device.

When an interrupt occurs on a shared line, the RVM
notifies all drivers on that line. The RVM monitors the
handlers to ensure that each driver checks its device’s in-
terrupt status and acknowledges the interrupt if neces-
sary. This approach correctly handles merged interrupts,
where two or more devices generate an interrupt at the
same time, as well as spurious interrupts.

4.2 Rate limiting in Nexus

A device managed by a well-behaved driver should not
exceed rate limits enforced by the reference monitor.
Drivers can call driver get rate limits to learn
such rate limits and can manage interrupts using a throt-
tling mechanism provided by the device or by disabling
interrupt-generating acts by the device when an interrupt
would be disallowed.



The RVM could impose rate limits on uncooperative
drivers directly or by terminating a driver when its asso-
ciated device exceeds the limit. We implement the latter
in Nexus. If an RVM can mask interrupts from each de-
vice independently (e.g., as with non-shared interrupts
or edge- or message-signaled interrupts), then the RVM
could limit the interrupt rate by masking interrupts that
would exceed a rate limit. However, for shared, level-
triggered interrupt lines, this approach delays interrupts
for all drivers sharing the line. Since limits cannot be en-
forced by masking these interrupts, the driver associated
with a device that violates rate limits must be terminated.

To ensure that rate limits are applied fairly to inter-
rupts on shared lines, only acknowledged interrupts are
counted. The RVM determines from reference monitor
state how each driver handled an interrupt—by deciding
it was for a different driver, or by acknowledging it.

4.3 System calls in Nexus
Nexus implements system calls for drivers to find a de-
vice, allocate memory, and perform I/O operations:

• driver init pci(pci ids[], &device)
is the main initialization routine. A device driver
calls it to find devices and to find their I/O registers
and interrupt lines. The first parameter is a list
of PCI IDs the driver can manage. The device
parameter returns a structure describing the I/O
registers and interrupt lines for the driver to
communicate with the device.
• driver allocate memory(size,
is monitored, &v addr, &p addr)
allocates kernel memory for DMA buffers and
returns the virtual and physical addresses to the
device driver. The is monitored parameter
indicates if reads and writes should be checked
by the reference monitor. If the allocated region
is unmonitored, then the reference monitor will
not allow pointers to that region to be written to
registers that require monitored memory, such as
DMA indices and command buffers.
• driver wait for intr(intr) blocks the

calling thread in the device driver until an interrupt
arrives on the specified interrupt line. Normally,
one thread in a driver runs a loop that executes this
system call and runs an interrupt handler when the
call returns.
• driver get rate limits() returns rate lim-

its for all transitions as an array of leaky bucket def-
initions. A driver can use this information to de-
lay operations and interrupts so that no behavior ex-

ceeds rate limits.
• driver read(region, addr, len) and
driver write(region, addr, len,
val) read and write port I/O, memory-mapped
I/O, PCI configuration registers, and monitored
DMA memory.

4.4 Driver source compatibility

Rather than write new drivers for Nexus, we used drivers
from Linux 2.4.22.6 Our original goal was source com-
patibility between these Linux drivers and Nexus user
space drivers. However, the Linux drivers did not pro-
vide some of the information necessary to enforce a DSS
efficiently. Moreover, small changes to driver source
code promised to reduce our overall effort in porting
Linux drivers to Nexus and to make the resulting Nexus
drivers more efficient. So we used a hybrid approach, im-
plementing general-purpose compatibility functions for
Linux drivers and also changing Linux driver code to
work better with an RVM. The compatibility functions
provide user-space equivalents of global variables and
functions in the Linux kernel that Linux drivers would
normally access directly.

Linux I/O operations. Linux drivers use functions and
macros for most I/O operations. Port I/O and MMIO
are implemented by macros for reading and writing
each valid word size. PCI register I/O is implemented
using functions. For our Nexus port, we redefined
these macros and functions to call driver read and
driver write.

Linux drivers read and write DMA memory by deref-
erencing pointers or by calling functions like memcpy.
We map monitored DMA memory to invalid pages
so that accessing it causes page faults. A trap han-
dler redirects these page faults to driver read and
driver write system calls. System calls are faster
than page faults (see Section 5.1), so programmers may
change monitored DMA memory operations to explicit
system calls wherever performance is critical.

Linux memory allocation. The Linux kernel pro-
vides a variety of memory allocation functions, which
we redefine to call driver allocate memory,
which implements the subset of memory alloca-
tion functionality needed by our drivers. The
driver allocate memory call provides contiguous
memory with known addresses appropriate for DMA.
Memory without DMA or concurrency requirements is



allocated from the user-space heap. To provide alloca-
tion in an interrupt context without deadlocking, we im-
plemented pre-allocated memory pools.

Memory used for DMA operations must be pinned: it
must have a fixed physical address and cannot be paged
to the disk. Pinned memory is more expensive to main-
tain and has a stricter quota than normal heap memory.
While a driver can allocate DMA memory at any time,
that memory is only freed when the driver exits. To allow
an active driver to free DMA memory, the RVM would
need to ensure the device will not access the memory in
the future. Freeing DMA memory also leads to fragmen-
tation, which makes all subsequent checks of pointers to
DMA memory more expensive. We chose to allow free-
ing DMA memory upon driver exit (after the device has
been reset) for simplicity and performance. Fortunately,
in practice, all the Linux drivers we ported except the
USB controller driver already behave this way; we easily
modified the USB driver to do the same.

Mutual exclusion. Linux drivers synchronize concur-
rent invocations from clients using locks, which Nexus
also provides. However, Linux drivers typically synchro-
nize with devices by disabling interrupts. While inter-
rupts are disabled, the driver cannot be interrupted by
other drivers or by the kernel. But making this same
functionality available for untrusted user-space drivers
allows starvation attacks.

Fortunately, typical drivers need only non-reentrant
code sections, which we implement by deferring the
driver’s interrupts and pausing its other threads. When
a driver thread enters a non-reentrant section, the Nexus
scheduler marks all other threads associated with the
driver as not runnable; the kernel and other processes are
unaffected. Interrupts for this driver are delayed until it
finishes the non-reentrant section, as they would be with
interrupts disabled in hardware.7 In this approach, the
driver does not have exclusive control of the CPU, but it
avoids being called in a reentrant manner by concurrent
invocations or by interrupts.

Our implementation of deferred interrupts may cause
problems for drivers that require precise timing. For ex-
ample, the Linux i810 sound card driver calibrates play-
back speed by measuring playback progress over a fixed-
length period during initiation. Such precise scheduling
can be viewed as a privilege that drivers do not need.
We rewrote the sound driver to measure the interval over
which its calibration routine ran rather than using a fixed-
length period; precisely measuring time in user space re-
quires no special privileges.

Linux Lines Lines DSS
Driver LoC changed added LoC

i810 5,500 26 56 149
e1000 11,849 50 3 303

USB UHCI 13,328 169 525 508
USB mouse 650 6 16 -

USB disk 19,767 29 121 -

Figure 2: Lines of code in each ported Linux driver and
DSS. USB mouse and disk drivers are monitored by the
UHCI DSS.

5 Results

We implemented user-space device drivers for the i810
sound card, e1000 network card, USB UHCI controllers,
USB mice, and USB disks in Nexus. Here, we quan-
tify the performance, robustness, and complexity of these
drivers, their DSSes, and the Nexus RVM.

We quantify the ease of driver porting and the au-
ditability of DSSes by counting the number of lines of
code in each DSS and the number of lines changed to
port each Linux driver to Nexus. These counts are given
in Figure 2. We distinguish between lines we modified
in the Linux driver files and lines we added in new files.
The number of changed and added lines was small, and
as expected, each DSS is dramatically smaller than the
corresponding driver. Our DSSes are similar in size to
descriptions of network devices in Devil [25] and to the
safety annotations applied to drivers in Spec# [8].

We wrote each DSS by referring to the manufacturer’s
documentation about device behavior and to existing
drivers. The DSS for USB UHCI was derived entirely
from the documentation. The i810 and e1000 DSSes
are based on documentation that describes features our
drivers actually use; other features are disallowed by the
DSS. Writing a DSS based on an existing driver is tempt-
ing, but risks disqualifying other drivers that attempt dif-
ferent (but safe) behavior. Writing a DSS based on all
features described in published documentation is more
time-consuming, but in theory, it admits any legal driver.
Based on our experience, we estimate the time to develop
a DSS, given a working driver, manufacturer’s documen-
tation, and familiarity with the DSS language but not
with the device, as one to five days.

5.1 Driver performance
To gain insight into the performance of our user-space
device drivers, we tested each at idle and under load.
Our test system was a 3.0 GHz Pentium 4 system dual-
booting Nexus and Linux 2.4.22. For network tests, the
remote host was a 2.4 GHz Athlon 64 X2 system running



Linux 2.6.22, connected over a switched, lightly loaded
1 Gbps network.

To obtain a detailed breakdown of the sources of over-
head, we instrumented several versions of the e1000 net-
work driver and the i810 sound driver:

• Linux: An in-kernel Linux driver.
• Kernel: An in-kernel Nexus driver.
• Unsafe: A Nexus user-space driver, but with no ref-

erence monitor. This driver has direct access to I/O
and DMA.
• Nullspec: A monitored Nexus user-space driver but

with the trivial reference monitor, which is satisfied
by any sequence of events.
• Safe: A driver with a full reference monitor.

These driver versions specifically quantify the costs of
running under Nexus (Kernel), running in user space
(Unsafe), monitoring I/O and DMA operations (Null-
spec), and checking operations against a specification
(Safe). Overall, these drivers permit us to apportion the
costs of safe user-space drivers to the various mecha-
nisms needed to support them.

The Unsafe, Nullspec, and Safe drivers for the e1000
include some simple optimizations:

• We changed monitored DMA memory accesses
from dereferences (i.e., page faults) to explicit sys-
tem calls.
• We combined sequences of unconditional reads or

writes into a single system call. The driver writes
between 8 and 2,048 bytes in a logical operation.
Normally, these are written 4 bytes at a time; we
added a system call to handle a sequence as one op-
eration.
• We stored in the driver the result of reads from a sta-

tus register. The driver reads the register repeatedly
to check several bits. It does not need (and is not ex-
pecting) fresh values each time. Thus, we combined
several nearby reads into a single system call.

We determined where to apply these techniques by iden-
tifying code in the driver that most often called read and
write system calls and caused page faults. We changed
39 lines of driver code (in less than half a day), with
dramatic results: we nearly doubled the receive band-
width and nearly tripled the packet processing rate. Fig-
ure 3 shows the effect of the optimizations when receiv-
ing 1470-byte packets. All of the measurements below
also include these optimizations.

To test bulk data throughput of the e1000 driver, we
sent UDP packets at 1 Gbps to and from a Linux host run-
ning Iperf [32]. We varied the size of each packet from

Optimizations Packets/sec Throughput
Page faults 43,203 511.6 Mbps
Syscalls 65,074 753.5 Mbps
Syscalls+batching+caching 123,328 947.7 Mbps

Figure 3: Performance effects of replacing page faults
with system calls, then batching and caching groups of
operations.

100 bytes to 1470, in order to find the limits of packet-
processing rate and data rate. Figures 4 and 5 show the
performance, in Mbps and in thousands of packets per
second, for all versions of the e1000 driver. All five ver-
sions of the e1000 driver performed identically when re-
ceiving packets. The three user-space drivers—Unsafe,
Nullspec, and Safe—show somewhat degraded perfor-
mance when sending packets smaller than 800 bytes. The
user-space drivers take longer to handle interrupts, and
sending generates more interrupts than receiving because
the e1000 driver receives (but does not send) many pack-
ets per interrupt under heavy load.

To measure interrupt handling times, we instrumented
the interrupt handler for the i810 driver. This test uses
the CPU cycle counter for nanosecond timing, with in-
strumentation added to the kernel’s trap function (where
an interrupt is first visible to software) and to the exit
point of the interrupt handler. Average interrupt pro-
cessing time, over 120 samples, was 5.3 ± 0.2µs for
Linux, 8.5± 0.2µs for Kernel, 22.1± 1.5µs for Unsafe,
37.9±2.4µs for Nullspec, and 46.9±3.8µs for Safe. So,
the user-space interrupt handlers took three to five times
as long as the in-kernel Nexus drivers. This slowdown
is not unexpected, because user-space handlers require a
scheduler invocation and two or more context switches.

A macrobenchmark for network round-trip time,
which includes driver response time, is the ping com-
mand, which sends an ICMP echo request packet and re-
ceives an ICMP echo reply packet in return. The replies
are normally generated by the remote kernel, resulting
in low latencies. The elapsed time between sending the
request and receiving the reply is the network round-trip
time plus the time required for the remote host to pro-
cess the request. We measured ping times from a Linux
box to a Nexus box running each of the four test e1000
drivers. The average round-trip time, over 100 pack-
ets, was 103± 35µs for Kernel, 139± 41µs for Unsafe,
158± 55µs for Nullspec, and 156± 54µs for Safe.

Another important driver performance metric is the
CPU time spent in drivers while performing a high-level
task. To quantify this, we streamed video (with audio)
over HTTP and played it using mplayer. The video
averaged 1071 Kbps and lasted for 30 seconds. The re-
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Figure 4: Throughput (Mbps) sent and received by all versions of the e1000 driver using Iperf.
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Figure 6: CPU time apportionment when streaming
video over the network.

sulting CPU time spent in the network driver, the audio
driver, and the kernel is shown in Figure 6. The CPU
time spent in the Safe driver was about 2.5x the CPU time
spent in the Kernel driver, which could be a limiting fac-
tor on more heavily loaded systems. A fair comparison
of the CPU time of the Linux and Nexus kernel drivers
was not possible, because TCP/IP time is included in the
kernel in Linux and in a library in Nexus and cannot be
factored out in either case. We believe that the CPU cost

in Linux, ignoring the cost of TCP/IP, would be compa-
rable to the CPU cost in the Nexus kernel.

We measured how often each driver executes basic op-
erations and what each basic operation costs. The fre-
quencies of memory, port I/O, MMIO, and interrupts are
shown for each driver in Figure 7. All figures are the
average rate per second when the driver is idle or under
load, as indicated. For this test, the network load was a
flood ping. Counting unmonitored memory operations
(by making them monitored) makes the e1000 too slow
for our tests. Hence, we estimated the rate of unmoni-
tored memory operations for the e1000 by measuring a
heavily instrumented driver under partial load, scaling its
results up to what they would have been given full load.

Unmonitored memory operations are anywhere from
two to 100 times more frequent than monitored mem-
ory operations, depending on the driver. We measured
the average cost, over 100,000 tests, of an unmonitored
memory operation as 0.59ns, a monitored memory oper-
ation executed as a system call as 0.84µs, and a mon-
itored memory operation that causes a page fault as
1.53µs. Page faults are more expensive because they
must save more state and because the page fault handler
must disassemble and interpret the faulting instruction.

The cost of each basic I/O operation varies relatively
little. However, the cost of checking operations against



Audio (playback) Network (idle) Network (load) USB (idle) USB (mouse) USB (disk)
Unmonitored mem 8018 0 4578113* 8535 19159 223346
Monitored mem 78.3 5.6 42459 0 1930 103374
Port I/O 279 0 0 267 764 956
Interrupts 15.7 1.1 2079 0 124 138
MMIO 0 139 10586 0 0 0

Figure 7: Average rate (per second) of read and write operations during steady-state operation. (* estimated result)
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the reference monitor can vary dramatically. Figure 8
shows the cost of checking USB port I/O operations (for
disk I/O) against the reference monitor. We found that
80% of the time, the cost is under 2µs. The other 20% of
the time, the cost is 190µs or more. The expensive opera-
tion is a safety check, required when the value read from
a certain register changes (“value changed” in Figure 8),
which happens once per millisecond. Without signifi-
cant optimization, this level of overhead is likely to be
too high for EHCI (high-speed USB 2.0) devices, which
support nominal data rates 40 times higher than UHCI.

5.2 Driver robustness
Accepted quantitative metrics for the security of a sys-
tem do not exist. Nevertheless, to establish the security
of our RVM and reference monitors, we used two ap-
proaches others have used. First, we simulated unan-
ticipated malicious drivers by randomly perturbing the
interactions between drivers and the RVM, resulting in
potentially invalid operations being submitted to the ref-
erence monitor and possibly to the device. Second, we
built specific drivers that perpetrate known attacks on the
kernel using interrupt and DMA capabilities.

We simulated unanticipated malicious drivers by
changing operations and operands in a layer interposed
between a legal driver and the RVM. This layer modified
each operation according to an independent probability
of 1 in 16,384.8 Each operation was a read or a write;
our modifications involved replacing either the address,

Driver
Failure type Nullspec Safe
No failure 7 (23%) 7 (1%)
Driver exits 7 (23%) 16 (1%)
RVM terminates driver — 1132 (94%)
Driver out of sync 16 (52%) 45 (4%)
Hardware damaged 1 (3%) 0 (0%)
Total perturbation tests 31 (100%) 1200 (100%)

Figure 9: Perturbation testing results: how the Nullspec
and Safe drivers failed, if at all, in repeated tests. Null-
spec testing was aborted when it damaged the device.

the length, or the value (at random) with another value
in the appropriate range. So, a write to an I/O port was
replaced with a write to a port in the same range, a write
of a different length, or a write of another value. Reads
were perturbed similarly. Note, this approach does not
produce repeatable experiments, because driver behavior
depends on external factors like the OS scheduler and the
arrival times of packets, which are not under our control.

This perturbation testing is similar to fuzz testing [26,
31], except that our code perturbed only I/O operations—
not source or machine code. Fuzz testing emphasizes
isolation properties, whereas we tested only properties
enforced by the RVM and the reference monitor.

We applied perturbation testing to the e1000 driver.
When the modifications were benign, the driver showed
no apparent failures. Sometimes, the driver itself de-
tected an error (e.g., a status register read failed a sanity
check) and exited cleanly. Often, the reference monitor
detected an illegal operation, and the RVM terminated
the driver. Finally, our perturbations sometimes caused
the driver to get out of sync with the device, after which
no further packets were sent or received. This does not
compromise the integrity or availability of the kernel or
the device, so the RVM has no obligation here.9 Fig-
ure 9 summarizes the different cases encountered in our
experiments. The Nullspec driver completed more tests
with no apparent failure than the Safe driver did, because
the reference monitor used for the Safe driver blocks all
unknown behavior—even if it might be benign.

We hoped the perturbed Nullspec driver would cause
kernel livelock, starvation, or a crash. In practice, how-



ever, the likelihood of causing driver crashes and stalls is
much higher. The 31st run of the Nullspec test rendered
the device unusable: neither the Linux nor the Nexus
driver could thereafter initialize the card.10 We replaced
the card, but we do not plan further perturbation testing.

In addition to perturbation testing, we wrote several
malicious drivers to execute specific attacks on the kernel
using the e1000’s interrupt and DMA capabilities:

• Livelock: The driver never acknowledges inter-
rupts, resulting in a flood of interrupt activity and
starvation for all other processes.
• DMA kernel crash: The driver uses the device to

write to kernel memory, resulting in a system crash.
• DMA kernel read: The driver sends a sensitive

page (e.g., containing a secret key) to a remote host.
• Direct kernel read/write: The driver constructs a

pointer and reads or writes sensitive data directly.
• DMA kernel code injection: The driver points a

DMA buffer pointer at system call code, then pings
a remote machine with attack code.11 The response
is written over the target system call implementa-
tion. The attacking driver then invokes the system
call to gain control of the kernel.
• DMA read/write to other device: The driver uses

a ping to overwrite video memory, resulting in an
image appearing on the screen.

Not surprisingly, the livelock and DMA attacks succeed
when run as Unsafe or Nullspec drivers, all the attacks
succeed as Kernel drivers, and they are all are caught by
the RVM when run in Safe mode. The livelock attack is
prevented by the RVM terminating any driver that does
not acknowledge the interrupt by reading the interrupt
control register. The DMA attacks are prevented by the
RVM terminating any driver that attempts to transmit or
receive packets with any invalid addresses in the trans-
mit or receive buffer lists. Finally, any direct attempt to
read or write the memory of other drivers is blocked by
hardware isolation in all modes except Kernel.

6 Related Work

Several existing operating systems implement device
drivers in user space for isolation or modularity, but with-
out monitoring I/O and DMA operations. Hence, these
systems do not defend against malicious operations by
drivers. The Michigan Terminal System [9] on the IBM
360 architecture seems to be the earliest operating sys-
tem to implement device drivers as user programs. Dijk-
stra’s THE multiprogramming system [11] is organized
into levels. Level 3 contains device drivers; level 0

implements a scheduler and the interrupt dispatch rou-
tine; level 2 implements semaphores, which are used to
convey interrupts to device drivers. THE ran on hard-
ware without memory protection, achieving modularity
but not isolation. The SUE separation kernel [27] or-
ganizes components, including device drivers, into iso-
lated domains akin to hosts in a distributed system. SUE
uses memory protection to restrict each driver’s access
to I/O ports, but it provides no DMA or interrupt protec-
tion: DMA is excluded completely, and components are
trusted to yield control after each interrupt or task switch.

L3 [24], MINIX 3 [19], and a modified Linux by
Leslie et al. [22] all implement at least some drivers in
user space, allowing each driver access to a limited set of
I/O ports. This approach protects against naive attacks
and at least some bugs. However, all three systems allow
DMA, meaning that drivers remain trusted. Leslie in-
cludes performance results, which are comparable to the
throughput and CPU overhead of our Unsafe (unmoni-
tored) drivers.

Nooks [31] and Shadow Drivers [30] provide
hardware-based isolation and fail-over operation for
drivers within the Linux kernel, to prevent accidental
overwriting of kernel structures. Nooks protects against
common bugs, like accidental writes to memory struc-
tures belonging to another kernel component. Program
rewriting techniques, such as Software-based Fault Iso-
lation (SFI) and its successors [12, 13], implement simi-
lar isolation properties in software. SafeDrive [33] uses
program annotations and lightweight run-time checks to
enforce type safety and bounds checking, but is explic-
itly not designed to handle malicious drivers. None of
these techniques restricts what I/O operations are sent to
devices, though SFI could; we are pursuing this approach
as future work.

Microdrivers [16, 17] are a hybrid implementation
of Linux device drivers, with up to 65% of the driver
running in user space and only the most performance-
sensitive code remaining in the kernel. Microdrivers
handle network interrupts in the kernel, so they are not
secure. Their performance is comparable to the perfor-
mance of Nexus Unsafe drivers.

Some operating systems take steps to prevent mali-
cious drivers from misusing I/O ports or DMA trans-
fers. Mungi [23] (on Alpha and Itanium platforms) and
Scomp [14] (on custom hardware) use an IOMMU for
DMA protection. Singularity [21, 29] enforces type-safe
interactions between drivers and devices. Originally, this
type safety meant unmediated access to a restricted set
of ports and memory. Singularity now relies on IOM-
MUs to validate DMA operations, and it does not limit



interrupt rates. DROPS [18] anticipated the need for
device-specific DMA monitoring prior to IOMMUs on
commodity hardware.

Some safety properties can be checked statically, given
rich enough rule sets or program annotations. SLAM [5]
uses static rules to detect incorrect calls to the Windows
driver API, but it does not enforce properties specific to
any particular device. In contrast, Bierhoff and Haw-
blitzel extend Singularity to enforce stateful properties
in SPEC# [8] much like the DMA checks in our DSSes.
Static verification cannot enforce some properties a ref-
erence monitor can, especially timing properties.

Virtual machine monitors (VMMs) sometimes use
drivers running in a guest operating system to control
devices, instead of virtualizing all devices with drivers
in the VMM. These pass-through drivers are inherently
safe for some devices, such as USB peripherals, but
not for other devices, such as disks or network cards.
Xen [6, 15] puts some device drivers in driver domains,
which are protected against most crashes but not against
malicious behavior; hence, driver domains are trusted.

7 Conclusion

In traditional monolithic and microkernel operating sys-
tems, every flaw in a device driver is a potential secu-
rity hole given the absence of mechanisms to contain
the (mis)behavior of device drivers. We have applied
the principle of least privilege to Nexus device drivers
by creating an infrastructure to run these drivers in user
space and by filtering their I/O operations through a ref-
erence validation mechanism (RVM). The RVM is inde-
pendent of drivers and devices; device-specific informa-
tion is gathered into a device safety specification (DSS)
that we compile into a reference monitor. The RVM con-
sults the reference monitor before allowing each I/O op-
eration; any disallowed operation results in the offending
driver being terminated.

An obvious question is whether or not the attacks our
RVM prevents are realistic. We do not know of mali-
cious drivers “in the wild” that use a device to escalate
their privileges, although we have built several of them.
The reason such drivers are not yet a real threat is prob-
ably that production systems run most drivers in the ker-
nel and in the TCB, where violating security properties
can be done directly. Systems with drivers in user space
are increasingly common and will inspire attacks through
devices. Our RVM and DSS can prevent these attacks.
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[12] Ú. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula.
XFI: Software guards for system address spaces. In Proceedings
of OSDI, Seattle, WA, Nov. 2006.
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Notes
1 Some drivers, such as the clock, provide functionality needed for

defining or enforcing security policies. These device drivers remain
part of the TCB no matter where they execute.

2In our experience, these identifiers are sufficient. Three additional
PCI ID fields are available, but our DSS selection code does not depend
on them.

3As an extension to our work, we have considered a composite ap-
proach to writing DSSes: the composite DSS is derived from the con-
troller DSS and an auxiliary DSS for each attached device.

4 Some predicates and actions are too complex to write in terms
of the simple syntax currently supported by our DSS language, where
user-defined state variables must be scalars, and predicates cannot be
recursive. The DSS compiler therefore supports embedded blocks of
C, coded as C:{. . .}, appearing in predicates and in actions. Within
an embedded C block, it is possible to nest an embedded block of DSS
code, e.g., to use an identifier or an operator not available in C. Our
syntax was inspired by Java and C nesting in Jeannie [20].

5This timeout is the only input to the reference monitor that does
not come from either the driver or the device. It comes from the kernel.

6Linux 2.4.22, though not current, is the version on which parts of
Nexus are based. We used drivers from this version of Linux to simplify
implementation.

7This technique would be both correct and efficient on multiproces-
sor systems, although Nexus does not yet run on multiprocessors.

8We also tried higher and lower probabilities, resulting in more and
fewer errors than reported here.

9The RVM does not attempt to prevent incorrect or incomplete ser-
vice (see Section 3.1).

10Would the reference monitor have prevented the damage if it had
been enabled for that test? We cannot be sure due to the inherent non-
determinism of peripheral devices, but we believe it would have. We
ran 1200 reference-monitored tests with no damage to the device.

11 The e1000 can retrieve any physical memory location by DMA
and send it as a network packet, or it can overwrite any physical mem-
ory location with the contents of incoming packets. It cannot directly
transfer one memory page to another. To get around this, we use ping
packets; most other hosts will echo a packet with arbitrary contents,
which enables us to copy from one local memory location to another
by way of a remote host.

Appendix: DSS Example

The following is an abridged version of our DSS for the
Intel i810 audio device. It defines the device ID, followed
by the state variables and a reset routine. A NAMES sec-
tion then introduces labels for the various events associ-
ated with I/O register operations and interrupts. Finally,
a TRANSITIONS section defines the allowed transitions
for the state machine. By default, upon receipt of an in-
put, all transitions are checked, and actions are applied
(in unspecified order) for each satisfied predicate. Inside
an ordered block, transitions are checked sequentially
only until a predicate is matched; at most one action is
applied inside the block. Several transitions in this DSS
have empty actions—they accept an input without chang-
ing the state of the state machine.



hardware: “PCI:8086:24d5”;
monitored region $RING DMA; // Define a monitored region to contain DMA descriptors.
const $RING LEN = 8 * 32;
var $DMA ENABLED = 0; // Define a state variable: true when device DMA is active.
reset: C:{ // Restore device to state with no DMA or interrupts.

outb(0, $PORTIO[1].base + $CONTROL OFFSET); // Turn off playback DMA.
while(inb($PORTIO[1].base + $CONTROL OFFSET) != 0) ; // Wait for acknowledgment.
$DMA ENABLED = 0;

}

//**************** NAMES *******************
// Each line maps write, read, and read response operations on a register (address, size) to a logical name.
// Syntax: <offset, length> --> write name, read name, read response name;
names for $PORTIO[1], $MMIO[1]:
// Writes to base+0x10 with size=4 are known as write playback dma base.
<0x10, 4> --> write playback dma base($VAL), safe, safe;
<0x16, 1> --> write status($VAL), safe, read response status($VAL);
<0x1b, 1> --> write control($VAL), safe, safe; // Reading the control register is always allowed.
names for $RING DMA mod 8: // Define names for writes to DMA descriptors.
<0x00, 4> --> write descriptor base($ADDR, $VAL), safe, safe; // offsets 0, 8, 16, ...
<0x04, 4> --> write descriptor len($ADDR, $VAL), safe, safe; // offsets 4, 12, 20, ...
names for $INTR[0]:
* --> i810 intr; // The only interrupt is named i810 intr.

//*************** TRANSITIONS **************
// Syntax: Pi { Ai }
// Modifying the DMA base register is only allowed if DMA is not running and the address points to monitored memory.
write playback dma base(val) && $DMA ENABLED == 0 && exists($MONITORED[i]) suchthat

range(val, $RING LEN) in $MONITORED[i] { $RING DMA = range(val, $RING LEN); }

// Starting DMA is allowed only when the DMA base register points to 32 pointers to pinned, unmonitored memory.
write control(val) && (val & 0x01) == 1 && $RING DMA != null && (forall(k) = 0..31 (exists($UNMONITORED[j])

suchthat range(fetch($RING DMA.base + 8*k, 4), fetch($RING DMA.base + 8*k+4, 2)) in $UNMONITORED[j]))
{ $DMA ENABLED = 1; }

write control(val) && (val & 0x01) == 0 { $DMA ENABLED = 0; }

// Changing DMA descriptors is legal if DMA is inactive, or if the modified entry points to pinned, unmonitored memory.
write descriptor base(addr, val) && ($DMA ENABLED == 0) {}
write descriptor base(addr, val) && ($DMA ENABLED != 0) &&

(exists($UNMONITORED[j]) suchthat range(val, fetch(addr + 4, 2)) in $UNMONITORED[j]);
write descriptor len(addr, val) && ($DMA ENABLED == 0) {}
write descriptor len(addr, val) && ($DMA ENABLED != 0) &&

(exists($UNMONITORED[k]) suchthat range(fetch(addr - 4, 4), bits(val, 0..15)) in $UNMONITORED[k]);

// The i810 interrupt acknowledgment protocol: first, the driver checks if the interrupt came from i810 by reading status bits 2..4;
// then, if so, acknowledges it by writing status bits 2..4.
ordered { // In an “ordered” block, transitions are checked only until the first match.

read response status(val) && bits(val, 2..4) == 0 { $INTR[0].status = idle; } // i810 is not asserting an interrupt.
read response status(val) {} // Otherwise interrupt is still pending.

}
write status(val) && bits(val, 2..4) != 0 { $INTR[0].status = idle; } // Acknowledging interrupts is legal.

i810 intr <16, 1, 1> {} // Interrupt is rate-limited to 16 per second, no bursts.


