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Abstract. We address the problem of computing the 3-dimensional
shape of an arbitrary scene from a set of images taken at known view-
points. Multi-camera scene reconstruction is a natural generalization of
the stereo matching problem. However, it is much more difficult than
stereo, primarily due to the difficulty of reasoning about visibility. In
this paper, we take an approach that has yielded excellent results for
stereo, namely energy minimization via graph cuts. We first give an en-
ergy minimization formulation of the multi-camera scene reconstruction
problem. The energy that we minimize treats the input images symmet-
rically, handles visibility properly, and imposes spatial smoothness while
preserving discontinuities. As the energy function is NP-hard to minimize
exactly, we give a graph cut algorithm that computes a local minimum
in a strong sense. We handle all camera configurations where voxel col-
oring can be used, which is a large and natural class. Experimental data
demonstrates the effectiveness of our approach.

1 Introduction

Reconstructing an object’s 3-dimensional shape from a set of cameras is a classic
vision problem. In the last few years, it has attracted a great deal of interest,
partly due to a number of new applications both in vision and in graphics that
require good reconstructions. While the problem can be viewed as a natural gen-
eralization of stereo, it is considerably harder. The major reason for this is the
difficulty of reasoning about visibility. In stereo matching, most scene elements
are visible from both cameras, and it is possible to obtain good results without
addressing visibility constraints. In the more general scene reconstruction prob-
lem, however, very few scene elements are visible from every camera, so the issue
of visibility cannot be ignored.

In this paper, we approach the scene reconstruction problem from the point
of view of energy minimization. Energy minimization has several theoretical
advantages, but has generally been viewed as too slow for early vision to be
practical. Our approach is motivated by some recent work in early vision, where
fast energy minimization algorithms have been developed based on graph cuts
[6,7,12,14,20,21]. These methods give strong experimental results in practice,
as documented in two recent evaluations of stereo algorithms using real imagery
with dense ground truth [22,27].

The energy that we minimize has three important properties:



— it treats the input images symmetrically,
— it handles visibility properly, and
— it imposes spatial smoothness while also preserving discontinuities.

We begin with a review of related work. In section 3 we give a precise definition of
the problem that we wish to solve, and define the energy that we will minimize.
Section 4 describes how we use graph cuts to compute a strong local minimum
of this energy. Experimental data is presented in section 5. Some details of the
graph cut construction are deferred to the appendix, along with a proof that
computing the global minimum of the energy is NP-hard.

2 Related work

The problem of reconstructing a scene from multiple cameras has received a
great deal of attention in the last few years. One extensively-explored approach
to this problem is voxel occupancy. In voxel occupancy [18,25] the scene is
represented as a set of 3-dimensional voxels, and the task is to label the individual
voxels as filled or empty. Voxel occupancy is typically solved using silhouette
intersection, usually from multiple cameras but sometimes from a single camera
with the object placed on a turntable [8]. It is known that the output of silhouette
intersection even without noise is not the actual 3-dimensional shape, but rather
an approximation called the visual hull [17].

2.1 Voxel coloring and space carving

Voxel occupancy, however, fails to exploit the consistent appearance of a scene
element between different cameras. This constraint, called photo-consistency,
is obviously quite powerful. Two well-known recent algorithms that have used
photo-consistency are voxel coloring [23] and space carving [16].

Voxel coloring makes a single pass through voxel space, first computing the
visibility of each voxel and then its color. There is a constraint on the camera
geometry, namely that no scene point is allowed to be within the convex hull
of the camera centers. As we will see in section 3, our approach handles all
the camera configurations where voxel coloring can be used. Space carving is
another voxel-oriented approach that uses the photo-consistency constraint to
prune away empty voxels from the volume. Space carving has the advantage of
allowing arbitrary camera geometry.

One major limitation of voxel coloring and space carving is that they lack
a way of imposing spatial coherence. This is particularly problematic because
the image data is almost always ambiguous. Another (related) limitation comes
from the fact that these methods traverse the volume making “hard” decisions
concerning the occupancy of each voxel they analyze. Because the data is am-
biguous, such a decision can easily be incorrect, and there is no easy way to undo
such a decision later on.



2.2 Energy minimization approaches

Our approach to the scene reconstruction problem is to generalize some recently
developed techniques that give strong results for stereo matching. It is well known
that stereo, like many problems in early vision, can be elegantly stated in terms
of energy minimization [19]. The energy minimization problem has traditionally
been solved via simulated annealing [2,11], which is extremely slow in practice.

In the last few years powerful energy minimization algorithms have been
developed based on graph cuts [6,7,12,14,21]. These methods are fast enough
to be practical, and yield quite promising experimental results for stereo [22,
27]. Unlike simulated annealing, graph cut methods cannot be applied to an
arbitrary energy function; instead, for each energy function to be minimized, a
careful graph construction must be developed. In this paper, instead of building
a special purpose graph we will use some recent results [15] that give graph
constructions for a quite general class of energy functions.

While energy minimization has been widely used for stereo, only a few pa-
pers [13, 20, 24] have used it for scene reconstruction. The energy minimization
formalism has several advantages. It allows a clean specification of the problem
to be solved, as opposed to the algorithm used to solve it. In addition, energy
minimization naturally allows the use of soft constraints, such as spatial coher-
ence. In an energy minimization framework, it is possible to cause ambiguities to
be resolved in a manner that leads to a spatially smooth answer. Finally, energy
minimization avoids being trapped by early hard decisions.

Although [20] and [24] use energy minimization via graph cuts, their focus is
quite different from ours. [20] uses an energy function whose global minimum can
be computed efficiently via graph cuts; however, the spatial smoothness term is
not discontinuity preserving, and so the results tend to be oversmoothed. Visi-
bility constraints are not used. [24] computes the global minimum of a different
energy function as an alternative to silhouette intersection (i.e., to determine
voxel occupancy). Their approach does not deal with photoconsistency at all,
nor do they reason about visibility.

Our method is perhaps closest to the work of [13], which also relies on graph
cuts. They extend the work of [7], which focused on traditional stereo matching,
to allow an explicit label for occluded pixels. While the energy function that
they use is of a similar general form to ours, they do not treat the input images
symmetrically. While we effectively compute a disparity map with respect to each
camera, they compute a disparity map only with respect to a single camera.

[26] also proposed the use of disparity maps for each camera, in an energy
minimization framework. Their optimization scheme did not rely on graph cuts,
and their emphasis was on the two-camera stereo problem. They also focused on
handling transparency, which is an issue that we do not address.

Another approach is to formulate the problem in terms of level sets, and
to solve a system of partial differential equations using numerical techniques
[9]. The major distinction between this approach and our work is that their
problem formulation is continuous while ours is discrete. The discrete energy



minimization approach is known to lead to strong results for two-camera stereo
[22,27], and is therefore worth investigating for multiple cameras.

In [14] we proposed a (two camera) stereo algorithm that shares a number of
properties with the present work. That method treats the input images symmet-
rically, and is based on graph cuts for energy minimization. It properly handles
the limited form of visibility constraint that arises with two cameras (namely, oc-
clusions). The major difference is that [14] is limited to the case of two cameras,
while the multi-camera problem is much more difficult.

3 Problem formulation

Suppose we are given n calibrated images of the same scene taken from different
viewpoints (or at different moments of time). Let P; be the set of pixels in the
camera i, and let P = Py U...U P, be the set of all pixels. A pixel p € P
corresponds to a ray in 3D-space. Consider the point of the first intersection of
this ray with an object in the scene. Our goal is to find the depth of this point
for all pixels in all images. Thus, we want to find a labeling f : P — £ where
L is a discrete set of labels corresponding to different depths. In the current
implementation of our method, labels correspond to increasing depth from a
fixed camera.

A pair (p,l) where p € P, | € L corresponds to some point in 3D-space. We
will refer to such pairs as 3D-points.

The limitation of our method is that there must exist a function D : R? — R
such that for all scene points P and ), P occludes @) in a camera i only if
D(P) < D(Q). This is exactly the constraint used in voxel coloring [23]. If such
a function exists then labels correspond to level sets of this function. In our
current implementation, we make a slightly more specific assumption, which is
that the cameras must lie in one semiplane looking at the other semiplane. The
interpretation of labels will be as follows: each label corresponds to a plane in
3D-space, and a 3D-point (p,l) is the intersection of the ray corresponding to
the pixel p and the plane [.

Let us introduce the set of interactions I consisting of (unordered) pairs
of 3D-points (p1,11), (p2,l2) “close” to each other in 3D-space. We will discuss
several criteria for “closeness” later. In general, I can be an arbitrary set of pairs
of 3D-points satisfying the following constraint:

— Only 3D-points at the same depth can interact, i.e.if {{p1,l1), (p2,l2)} € T
then l; = I5.

Now we will define the energy function that we minimize. It will consist of
three terms:

E(f) = Edata(f) + Esmootlmess (f) + Evisibility (f) (1)

The data term will impose photo-consistency. It is

Eaata(f) = > D(p.q)

(p,f(p)),(a,f(a))el



where D(p, q) is a non-positive value depending on intensities of pixels p and gq.
It can be, for example,

D(p, q) = min{0, (Intensity(p) — Intensity(q))> — K}

for some constant K > 0.

Since we minimize the energy, terms D(p,q) that we sum will be small.
These terms are required to be non-negative for technical reasons that will be
described in section 4.2. Thus, pairs of pixels p, ¢ which come from the same
scene point according to the configuration f will have similar intensities, which
causes photo-consistency.

The smoothness term involves a notion of neighborhood; we assume that
there is a neighborhood system on pixels

Nc{{pq} | p,aeP}

This can be the usual 4-neighborhood system: pixels p = (pz,py) and ¢ = (¢, qy)
are neighbors if they are in the same image and |p; — ¢z| + [py — ¢y| = 1. We
will write the smoothness term as

Bemoothess(f) = Y Vipp (f(0), £(0)

{p.a}eN

We will require the term V, ;1 to be a metric. This imposes smoothness while
preserving discontinuities, as long as we pick an appropriate robust metric. For
example, we can use the robustified Ly distance V(Iy,l2) = min(|l; — I3, K) for
constant K.

The last term will encode the visibility constraint: it will be zero if this
constraint is satisfied, and infinity otherwise. We can write this using another
set of interactions I,;s which contains pairs of 3D-points violating the visibility
constraint:

Eisivitity (f) = Z 00
(0, f(P)) (a0, f(q))ETvis

We require the set I,,;s to meet following condition:

— Only 3D-points at different depths can interact, i.e. if {{p1, 1), (p2,l2)} € Lyis
then [y # Is.

The visibility constraint says that if a 3D-point (p,l) is present in a config-
uration f (i.e. I = f(p)) then it “blocks” views from other cameras: if a ray
corresponding to a pixel ¢ goes through (or close to) (p,l) then its depth is at
most [. Again, we need a definition of “closeness”. We will use the set I this part
of the construction of I,;s. The set I,;s can then be defined as follows: it will
contain all pairs of 3D-points (p,!), (g,!") such that (p,l) and (g,[) interact (i.e.
they are in I) and I’ > [.

An important issue is the choice of the sets of interactions I. This basi-
cally defines a discretization. It can consist, for example, of pairs of 3D-points
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Fig. 1. Example of pixel interactions. There is a photo-consistency constraint between
the red round point and the blue round point, both of which are at the same depth
(I = 2). The red round point blocks camera C2’s view of the green square point at
depth [ = 3. Color figures are available in the electronic version of this paper.

{{p,1),{q,1)} such that the distance in 3D-space between these points is less
than some threshold. However, with this definition of closeness the number of
interactions per pixel may vary greatly from pixel to pixel. Instead, we chose the
following criterion: if p is a pixel in the image 7, ¢ is a pixel in the image j and
i < j then the 3D-points (p,l), (g,1) interact if the closest pixel to the projec-
tion of (p,l) onto the image j is ¢g. Of course, we can include only interactions
between certain images, for example, taken by neighboring cameras. Note that
it makes sense to include interactions only between different cameras.

An example of our problem formulation in action is shown in figure 1. There
are two cameras C1 and C2. There are 5 labels shown as black vertical lines.
As in our current implementation, labels are distributed by increasing distance
from a fixed camera. Two pixels, p from Cl and ¢ from C2 are shown, along
with the red round 3D-point (g,2) and the blue round 3D-point (p,2). These
points share the same label, and interact (i.e., {(p,2), (q,2)} € I). So there is
a photoconsistency term between them. The green square point (g, 3) is at a
different label (greater depth), but is behind the red round point. The pair of
3D-points {(p,2),(gq,3)} is in L. So if the ray p from camera C1 sees the red
round point (p,2), the ray g from C2 cannot see the green square point (g, 3).

We show in the appendix that minimizing our energy is an NP-hard problem.
Our approach, therefore, is to constuct an approximation algorithm based on
graph cuts that finds a strong local minimum.



4 Graph construction

We now show how to efficiently minimize £ among all configurations using graph
cuts. The output of our method will be a local minimum in a strong sense.
In particular, consider an input configuration f and a disparity «. Another
configuration f’ is defined to be within a single a-ezpansion of f when for all
pixels p € P either f/(p) = f(p) or f'(p) = . This notion of an expansion was
proposed by [7], and forms the basis for several very effective stereo algorithms
[3,7,13,14].

Our algorithm is very straightforward; we simply select (in a fixed order or
at random) a disparity «, and we find the unique configuration within a single
a-expansion move (our local improvement step). If this decreases the energy,
then we go there; if there is no « that decreases the energy, we are done. Except
for the problem formulation and the choice of energy function, this algorithm is
identical to the methods of [7, 14].

One restriction on the algorithm is that the initial configuration must satisfy
the visibility constraint. This will guarantee that all subsequent configurations
will satisfy this constraint as well, since we minimize the energy, and configura-
tions that do not satisfy the visibility constraint have infinite energy.

The critical step in our method is to efficiently compute the a-expansion with
the smallest energy. In this section, we show how to use graph cuts to solve this
problem.

4.1 Graph cuts

Let G = (V,€) be a weighted graph with two distinguished terminal vertices
{s,t} called the source and sink. A cutC = V¥, V! is a partition of the vertices into
two sets such that s € V* and t € V. (Note that a cut can also be equivalently
defined as the set of edges between the two sets.) The cost of the cut, denoted
IC|, equals the sum of the weights of the edges between a vertex in V* and a
vertex in V¢,

The minimum cut problem is to find the cut with the smallest cost. This
problem can be solved very efficiently by computing the maximum flow between
the terminals, according to a theorem due to Ford and Fulkerson [10]. There are
a large number of fast algorithms for this problem (see [1], for example). The
worst case complexity is low-order polynomial; however, in practice the running
time is nearly linear for graphs with many short paths between the source and
the sink, such as the one we will construct.

We will use a result from [15] which says that for energy functions of binary
variables of the form

E(z,... an) =Y E"(2;,2;) (2)
i<j
it is possible to construct a graph for minimizing it if and only if each term E*7
satisfies the following condition:

E(0,0) + E*(1,1) < E*(0,1) + E*(1,0) (3)



If these conditions are satisfied then the graph G is constructed as follows.
We add a node v; for each variable x;. For each term E%J(z;,z;) we add edges
which are given in the appendix.

Every cut on such a graph corresponds to some configuration = (z1,...,z,),
and vice versa: if v; € V* then x; = 0, otherwise x; = 1. Edges on a graph were
added in such a way that the cost of any cut is equal to the energy of the corre-
sponding configuration plus a constant. Thus, the minimum cut on G yields the
configuration that minimizes the energy.

4.2 -expansion

In this section we will show how to convert our energy function into the form of
equation 2. Note that it is not necessary to use only terms E%J for which i < j
since we can swap the variables if necessary without affecting condition 3.

Although pixels can have multiple labels and in general cannot be represented
by binary variables, we can do it for the a-expansion operation. Indeed, any
configuration f’ within a single a-expansion of the initial configuration f can be
encoded by a binary vector x = {z,|p € P} where f'(p) = f(p) if z, = 0, and
f'(p) = a if , = 1. Let us denote a configuration defined by a vector z as f*.
Thus, we have the energy of binary variables:

E((E) = Edata ((E) + Esmoothness (CL‘) + Evisibility ((E)

where R
Eqata (J)) = Fdata (fm)v

Esmoothness ((E) - Esmoothness (fx)a

Euisivitity () = Evisipitity (f%)-
Let’s consider each term separately, and show that each satisfies condition (3).
1. Data term.

Bata(w) = > Dp,g)= >, T(*p) =" =1 D)

(p,f=(p)),(a,f=(q)) €T (p,)),(q,1) el

where T'(-) is 1 if its argument is true and 0 otherwise. Let’s consider a single
term EP9(zp, xq) = T(f"(p) = f*(¢) =1) - D(p, q). Two cases are possible:

1A. [ # «. If at least one of the labels f(p), f(q) is not I then EP? = 0.
Suppose that f(p) = f(q) = I. Then E(x,,z4) is equal to D(p,q), if z, =
zg = 0, and is zero otherwise. We assumed that D(p, ¢) is non-positive, thus,
condition (3) holds:

EP4(0,0) + EP9(1,1) = D(p,q) < 0 = EP9(0,1) + EP(1,0)

1B. I = a. If at least one of the labels f(p), f(¢) is « then EP'¢ depends
only on at most one variable so condition (3) holds. (Suppose, for example, that
f(g) = a, then f*(q) = « for any value of z, and, thus, E”9(x,,0) = EP?(xp, 1)
and EP1(0,0) + EP1(1,1) = EP(0,1) + EP9(1,0).)



Now suppose that both labels f(p), f(¢) are not a. Then E(z,,x,) is equal
to D(p,q), if x, = x4 = 1, and is zero otherwise. We assumed that D(p,q) is
non-positive, thus, condition (3) holds:

EP1(0,0) + EP(1,1) = D(p,q) < 0= EP?(0,1) + E”(1,0)
2. Smoothness term.

Esmoothness (CL‘) = Z V{p,q} (fx (p)a fz (Q))

{p,aYeN

Let’s consider a single term EP9(x,,, 24) = Vip o1 (f*(p), f*(q)). We assumed that
Vip,qy is ametric; thus, Vi, oy (o, ) = 0 and Vi, (2 (f(p), f(q)) < Vip,gy (f(p), a)+
Vip.qy (@, f(q)), or EP4(1,1) = 0 and EP9(0,0) < EP9(0,1) + EP9(1,0). There-
fore, condition (3) holds.

3. Visibility term.

Euisivitity () = Z 00

(P, f=(P))»(q,f(q)) ELvis

= Z T(f*(p) =1p A f¥(q) =1g) - 0.

(Polp) (1) Evis

Let’s consider a single term EP9(z,,x,) = T(f*(p) = I, A f7(q) = 1g) - .
EP1(0,0) must be zero since it corresponds to the visibility cost of the initial
configuration and we assumed that the initial configuration satisfies the visibility
constraint. Also EP9(1,1) is zero (if z, = x4 = 1, then f*(p) = f*(q) = « and,
thus, the conditions f*(p) = I, and f*(g) = l; cannot both be true since I,;s
includes only pairs of 3D-points at different depths). Therefore, condition (3)
holds since EP7(0,1) and EP9(1,0) are non-negative.

5 Experimental results

Some details of our implementation are below. The planes for labels were chosen
to be orthogonal to the main axis of the middle camera, and to increase with
depth. The labels are distributed so that disparities depend on labels approxi-
mately linearly. The depth difference between planes was chosen in such a way
that a label change by one results in disparity change by at most one both in x
and y directions.

We selected the labels « in random order, and kept this order for all iterations.
We performed three iterations. (The number of iterations until convergence was
at most five but the result was practically the same). We started with an initial
solution in which all pixels are assigned to the label having the largest depth.

For our data term D we made use of the method of Birchfield and Tomasi
[4] to handle sampling artifacts, with a slight variation: we compute intensity
intervals for each band (R,G,B) using four neighbors, and then take the average



data penalty. (We used color images; results for grayscale images are slightly
worse). The constant K for the data term was chosen to be 30.
We used a simple Potts model for the smoothness term:

U if I, #1

Vi Iy, lg) = { {p,a} p q 4

.y p: o) 0 otherwise (4)

The choice of Uy, 41 was designed to make it more likely that a pair of ad-

jacent pixels in one image with similar intensities would end up with similar

disparities. For pixels {p, q} € N the term U{p,qy Was implemented as an empir-
ically selected decreasing function of AI(p,q) as follows:

_ 33X if Al(p,q) <5
U = ’ 5
{p.a} { A otherwise (5)

where AI(p, q) is the average of values |Intensity(p) — Intensity(q)| for all three
bands (R,G,B). Thus, the energy depends only on one parameter A. For different
images we picked A empirically.

We performed experiments on three datasets: the ’head and lamp’ image
from Tsukuba University, the flower garden sequence and the Dayton sequence.
We used 5 images for the Tsukuba dataset (center, left, right, top, bottom), 8
images for the flower garden sequence and 5 images for the Dayton sequence. For
the Tsukuba dataset we performed two experiments: in the first one we used four
pairs of interacting cameras (center-left, center-right, center-top, center-bottom),
and in the second one we used all 10 possible pairs. For the flower garden and
Dayton sequences we used 7 and 4 interacting pairs, respectively (only adjacent
cameras interact). The table below show image dimensions and running times
obtained on 450MHz UltraSPARC II processor. We used the max flow algorithm
of [5], which is specifically designed for the kinds of graphs that arise in vision.
Source code for this algorithm is available on the web from
http://www.cs.cornell.edu/People/vnk.

dataset number of number of image number of running
images  interactions  size labels time
Tsukuba 5 4 384 x 288 16 369 secs
Tsukuba 5 10 384 x 288 16 837 secs
Flower garden 8 7 352 x 240 16 693 secs
Dayton 5 4 384 x 256 16 702 secs

We have computed the error statistics for the Tsukuba dataset, which are
shown in the table below. We determined the percentage of the pixels where
the algorithm did not compute the correct disparity (the “Errors” column), or
a disparity within 41 of the correct disparity (“Gross errors”). For comparison,
we have included the results from the best known algorithm for stereo reported
in [27], which is the method of [7].

The images are shown in 2, along with the areas where we differ from ground
truth (black is no difference, gray is a difference of +1, and white is a larger
difference). Inspecting the image shows that we in general achieve greater accu-
racy at discontinuities; for example, the camera in the background and the lamp
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are more accurate. The major weakness of our output is in the top right corner,
which is an area of low texture. The behavior of our method in the presence of
low texture needs further investigation.

|Errors Gross errors
4 interactions 6.13%  2.75%
10 interactions 4.53%  2.30%
Boykov-Veksler-Zabih [7](9.76%  3.99%

We have also experimented with the parameter sensitivity of our method for
the Tsukuba dataset using 10 interactions. Since there is only one parameter,
namely A in equation 5, it is easy to experimentally determine the algorithm’s
sensitivity. The table below shows that our method is relatively insensitive to
the exact choice of A.

A 2 5 10 20 40

Error 4.67% 4.53% 5.28% 5.78% 8.27%
Gross errors|2.43% 2.30% 2.30% 2.23% 2.86%

6 Extensions

It would be interesting to extend our approach to more general camera geome-
tries, for example the case when cameras look at the object in the center from all
directions. Labels could then correspond to spheres. More precisely, there would
be two labels per sphere corresponding to the closest and farthest intersection
points.
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Appendix: Edges for terms E%J

In this section we show how to add edges for a term E%7 in the equation 2 assum-
ing that condition (3) holds. This is a special case of a more general construction
given in [15].
— if E(1,0) > E(0,0) then we add an edge (s,v;) with the weight E(1,0) —
E(0,0), otherwise we add an edge (v;,t) with the weight F(0,0) — E(1,0);
— if E(1,0) > E(1,1) then we add an edge (vj,t) with the weight E(1
)i

E(1,1), otherwise we add an edge (s,v;) with the weight E(1,1) — E(1
— the last edge that we add is (v;,v;) with the weight E(0,1) + E(1,
E(0,0) — E(1,1).

.0
0)
)

We have omitted indices 4, j in E%J for simplicity of notation.

Of course it is not necessary to add edges with zero weights. Also, when
several edges are added from one node to another, it is possible to replace them
with one edge with the weight equal to the sum of weights of individiual edges.
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Fig. 2. Results on Tsukuba dataset.
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Middle image Our results

Fig. 3. Results on the flower garden sequence.

Middle image Our results

Fig. 4. Results on the Dayton sequence.
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Appendix: Minimizing our energy function is NP-hard

It is shown in [7] that the following problem, referred to as Potts energy mini-
mization, is NP-hard. We are given as input a set of pixels S with a neighbor-
hood system N' C S x S, and a set of label values £ and a non-negative function
C: S x L+ RT. We seek the labeling f : S — £ that minimizes

Ep(f)=Y_Cl.fo)+ >, T(f(p)# f(a). (6)

peP {p,a}eN

We now sketch a proof that an arbitrary instance of the Potts energy minimiza-
tion problem can be encoded as a problem minimizing the energy E defined in
equation 1. This shows that the problem of minimizing E is also NP-hard.

We start with a Potts energy minimization problem consisting of S, V, N/
and C. We will create a new instance of our energy minimization problem as
follows. There will be |£]| + 1 images. The first one will be the original image S,
and for each each label [ € L there will be an image P;. For each pixel p € S
there will be a pixel in P; which we will denote as p;; thus, |P;| = |S] for all
labels [ € L.

The set of labels £, the neighborhood system N and the smoothness function
Vip,qy Will be the same as in the Potts energy minimization problem:

V{p,q} (lpa Zq) = T(lp a lq)7 {p,q} € N

The set of interactions I will include all pairs {(p,1), (p;,1)}, where p € S,
[ € L. The corresponding cost will be

D(p,pi1) = C(p,l) — K,

where K, is a constant which ensures that all costs D(p, p;) are non-positive (for
example, K, = maxje,s C(p,1)). There will be no visibility term (i.e. the set of
interactions I,;s will be empty). The instance of our minimization problem is
now completely specified.

Any labeling f : S — £ can be extended to the labeling f : P — L if we set
f(p) =1, pi € Py. Tt is easy to check that

E(f)=FEp(f) - K

where K = ZpES K, is a constant. Moreover, there is no labeling ff:P—L

with the smaller value of the energy E such that f'(p) = f(p) for all pixels p € S.
Thus, the global minimum f of the energy E will yield the global minimum of
the Potts energy Ep (we need to take the restriction of f on S).
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