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Applications

Incentivizing “crowdsourced exploration”

E.g. online product recommendations, citizen science.



Preview of this lecture

Scope

Mechanisms with monetary transfers

Bayesian models of exploration

Risk-neutral, quasi-linear utility

Key abstraction: joint Markov scheduling

Generalizes multi-armed bandits, Weitzman’s “box problem”

A simple “index-based” policy is optimal.

Proof introduces a key quantity: deferred value. [Weber, 1992]

Aids in adapting analysis to strategic settings.

Role similar to virtual values in optimal auction design.



Application 1: Job Search

One applicant

n firms

Firm i has interview cost ci , match value vi ∼ Fi

Special case of the “box problem”. [Weitzman, 1979]



Application 2: Multi-Armed Bandit

One planner

n choices (“arms”)

Arm i has random payoff sequence drawn from Fi

Pull an arm: receive next element of payoff sequence.

Maximize geometric discounted reward,
∑∞

t=0(1− δ)trt .



Strategic issues

Firms compete to hire → inefficient investment in interviews.

Competition → sunk cost.

Anticipating sunk cost → too few interviews.

Social learning → inefficient investment in exploration.
Each individual is myopic, prefers exploiting to exploring.
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Strategic issues

“Arms” are strategic.

Time steps are strategic.



Joint Markov Scheduling

Given n Markov chains, each with . . .

state set Si , terminal states Ti ⊂ Si
transition probabilities

reward function Ri : Si → R
Design policy π that, in any state-tuple (s1, . . . , sn),

chooses one Markov chain, i , to undergo state transition,

receives reward R(si )

Stop the first time a MC enters a terminal state.

Maximize expected total reward.1

1Dumitriu, Tetali, & Winkler, On Playing Golf with Two Balls.



Interview Markov Chain
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Multi-Stage Interview Markov Chain
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Multi-Armed Bandit as Markov Scheduling

Markov chain interpretation

State of an arm represents Bayesian posterior, given observations.
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Part 2:

Solving Joint Markov Scheduling



Näıve Greedy Methods Fail

An example due to Weitzman (1979) . . .

ci = 15

vi =

{
100 w. prob 1

2

55 otherwise

ci = 20

vi =

{
240 w. prob 1

5

0 otherwise

Red is better in expectation and in worst case, less costly.

Nevertheless, optimal policy starts by trying blue.



Solution to The Box Problem

For each box i , let σi be the (unique, if ci > 0) solution to

E
[
(vi − σi )+

]
= ci

where (·)+ denotes max{·, 0}.
Interpretation: for an asset with value vi ∼ Fi , the fair value of a
call option with strike price σi is ci .

Optimal policy: Descending Strike Price (DSP)

1 Maintain priority queue, initially ordered by strike price.

2 Repeatedly extract highest-priority box from queue.

3 If closed, open it and reinsert into queue with priority vi .

4 If open, choose it and terminate the search.



Solution to The Box Problem

For each box i , let σi be the (unique, if ci > 0) solution to

E
[
(vi − σi )+

]
= ci

Cost = 15

Prize =

{
100 w. prob 1

2

55 otherwise

σred = 70

Cost = 20

Prize =

{
240 w. prob 1

5

0 otherwise

σblue = 140



Non-Exposed Stopping Rules

Recall: Markov chain corresponding to Box i has three types of
states.

-1

510 10 25

Terminal: payoff vi − ci

Intermediate:
vi known, payoff −ci

Initial: vi unknown

Non-exposed stopping rules

A stopping rule is non-exposed if it never stops in an intermediate
state with vi > σi .
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Amortization Lemma

Covered call value (of box i)

The covered call value is the random variable κi = min{vi , σi}.

Proof sketch: If you already hold the asset, adopting the covered
call position (selling the call option at price ci ) is:

risk-neutral

strictly beneficial if the buyer of the option sometimes forgets
to “exercise in the money”.
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Covered call value (of box i)

The covered call value is the random variable κi = min{vi , σi}.

For a stopping rule τ let

Ii (τ) =

{
1 if τ > 1

0 otherwise,
Ai (τ) =

{
1 if sτ ∈ T
0 otherwise.

Inspect Acquire

Abbreviate as Ii , Ai , when τ is clear from context.
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call position (selling the call option at price ci ) is:
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strictly beneficial if the buyer of the option sometimes forgets
to “exercise in the money”.
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Proof of Amortization

Amortization Lemma

For every stopping rule τ , E [Aivi − Iici ] ≤ E [Aiκi ] with equality if
and only if the stopping rule is non-exposed.

Proof.

E [Aivi − Iici ] = E
[
Aivi − Ii (vi − σi )+

]
(1)

≤ E
[
Ai

(
vi − (vi − σi )+

)]
(2)

= E [Aiκi ] . (3)

Inequality (2) is justified because (Ii − Ai )(vi − σi )+ ≥ 0.
Equality holds if and only if τ is non-exposed.



Optimality of Descending Strike Price Policy

Any policy induces an n-tuple of stopping rules, one for each box.
Let

τ∗1 , . . . , τ
∗
n = {stopping rules for OPT}

τ1, . . . , τn = {stopping rules for DSP}

Then

E [OPT] ≤
∑
i

E [Ai (τ
∗
i )κi ] ≤ E

[
max

i
κi

]
E [DSP] =

∑
i

E [Ai (τi )κi ] = E
[

max
i
κi

]
because DSP is non-exposed and always selects the maximum κi .



Gittins Index and Deferred Value

Consider one Markov chain (arm) in isolation.

Stopping game Γ(M, s, σ)

Markov chain M starts in state s.

In a non-terminal state s ′, you may continue or stop.

Continue: Receive payoff R(s ′). Move to next state.

Stop: game ends.

In a terminal state, game ends and you pay penalty σ.

Gittins index

The Gittins index of (non-terminal) state s is the maximum σ such
that the game Γ(M, s, σ) has an optimal policy with positive
probability of stopping in a terminal state.
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σ(s) = vi

σ(s) = σi

κ = min{vi , σi}

Gittins index

The Gittins index of (non-terminal) state s is the maximum σ such
that the game Γ(M, s, σ) has an optimal policy with positive
probability of stopping in a terminal state.
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The deferred value of Markov chain M is the random variable

κ = min1≤t<T{σ(st)}

where T is the time when the Markov chain enters a terminal state.
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General Amortization Lemma

Non-exposed stopping rules

A stopping rule for Markov chain M is non-exposed if it never
stops in a state with σ(sτ ) > min{σ(st) | t < τ}.

For a stopping rule τ , define A(τ) (abbreviated A) by

A(τ) =

{
1 if sτ ∈ T
0 otherwise.

Assume Markov chain M satisfies

1 Almost sure termination (AST): With probability 1, the
chain eventually enters a terminal state.

2 No free lunch (NFL): In any state s with R(s) > 0, the
probability of transitioning to a terminal state is positive.



General Amortization Lemma

Amortization Lemma

If Markov chain M satisfies AST and NFL, then every stopping
rule τ satisfies E

[∑
0<t<τ R(st)

]
≤ E[Aκ], with equality if the

stopping rule is non-exposed.

Proof Sketch.

1 Time step t is non-exposed if σ(st) = min{σ(s1), . . . , σ(st)}.
2 Break time into “episodes”: subintervals consisting of one

non-exposed step followed by zero or more exposed steps.

3 Prove the inequality by summing over episodes.



Gittins Index Theorem

Gittins Index Theorem

A joint Markov scheduling policy is optimal if and only if, in each
state-tuple (s1, . . . , sn), it advances a Markov chain whose state si
has maximum Gittins index, or if all Gittins indices are negative
then it stops.

Proof Sketch. Gittins index policy induces a non-exposed
stopping rule for each Mi and always advances i∗ = argmaxi{κi}
into a terminal state unless κi∗ < 0. Hence

E[Gittins] = E[max
i

(κi )
+]

whereas amortization lemma implies

E[OPT] ≤ E[max
i

(κi )
+].



Joint Markov Scheduling, General Case

Feasibility constraint I: a collection of subsets of [n].

Joint Markov scheduling w.r.t. I: when the policy stops, the set
of Markov chains in terminal states must belong to I.2

Theorem (Gittins Index Theorem for Matroids)

Let I be a matroid. A policy for joint Markov scheduling w.r.t. I
is optimal iff, in each state-tuple (s1, . . . , sn), the policy advances
Mi whose state si has maximum Gittins index, among those i such
that {i} ∪ {j | sj is a terminal state} ∈ I, or stops if σ(si ) < 0.

Proof sketch: Same proof as before. The policy described is non-
exposed and simulates the greedy algorithm for choosing a max-
weight independent set w.r.t. weights {κi}.

2Sahil Singla, The Price of Information in Combinatorial Optimization,
contains further generalizations.



Joint Markov Scheduling, General Case

Feasibility constraint I: a collection of subsets of [n].

Joint Markov scheduling w.r.t. I: when the policy stops, the set
of Markov chains in terminal states must belong to I.2

Box Problem for Matchings

Put “Weitzman boxes” on the edges of a bipartite graph, and
allow picking any set of boxes that forms a matching.

Simulating greedy max-weight matching with weights {κi} yields a
2-approximation to the optimum policy.

Simulating exact max-weight matching yields no approximation
guarantee. (Violates the non-exposure property, because an aug-
menting path may eliminate an open box with vi > σi .)

2Sahil Singla, The Price of Information in Combinatorial Optimization,
contains further generalizations.



Exogenous Box Order

Suppose boxes are presented in order 1, . . . , n. We only choose
whether to open box i , not when to open it.

Theorem

There exists a policy for the box problem with exogenous order,
whose expected value is at least half that of the optimal policy
with endogenous order.

Proof sketch. κ1, . . . , κn are independent random variables.
Prophet inequality ⇒ threshold stop rule τ such that

E[κτ ] ≥ 1
2E[max

i
κi ].

Threshold stop rules are non-exposed: open box if σi ≥ θ, select it
if vi ≥ θ.



Part 3:

Information Acquisition in Markets



Auctions with Costly Information Acquisition

m heterogeneous items for sale

n bidders: unit demand, risk neutral, quasi-linear utility



Auctions with Costly Information Acquisition

m heterogeneous items for sale

n bidders: unit demand, risk neutral, quasi-linear utility

Bidder i has private type θi ∈ Θi .

Value of item j to bidder i given θ = θi is vij ∼ Fθj .

Inspection: bidder i must pay cost cij(θi ) ≥ 0 to learn vij .
Unobservable. Cannot acquire item without inspecting.

Types may be correlated

{vij} are conditionally independent given types, costs.

Extension

Inspection happens in stages indexed by k ∈ N. Each reveals a new
signal about vij . Cost to observe first k signals is ckij (θi ).
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Simultaneous Auctions (Single-item Case)

If inspections must happen before auction begins, 2nd-price auction
maximizes expected welfare. [Bergemann & Välimäki, 2002]

May be arbitrarily inefficient relative to best sequential procedure.

n identical bidders: cost c = 1−δ, value

{
H with prob. 1

H

0 otherwise.

Take limit as H →∞, n
H →∞, δ → 0.

First-best procedure gets H(1− c) = H · δ.

For any simultaneous-inspection procedure . . .

Let pi = Pr(i inspects), x =
∑n

i=1 pi .
Cost is cx . Benefit is . H

(
1− e−x/H

)
.

Difference is maximized at x ∼= H ln(1/c) ∼= H · δ.
Welfare . H · δ2.



Efficient Dynamic Auctions

If a dynamic auction is efficient, it must

Implement the first-best policy. (DSP or Gittins index)

Charge agents using Groves payments.

Seminal papers on dynamic auctions [Cavallo, Parkes, & Singh
2006; Crémer, Spiegel, & Zheng, 2009; Bergemann & Välimäki
2010; Athey & Segal 2013] specify how to do this.

(Varying information structures and participation constraints.)

Any such mechanism requires either:

agents communicate their entire value distribution

the center knows agents’ value distributions without having to
be told.

Efficient dynamic auctions rarely seen in practice.
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Descending Auction

Descending-Price Mechanism

Descending clock represents uniform price for all items. Bidders
may claim any remaining item at the current price.

Intuition: parallels descending strike price policy.
Bidders with high “option value” can inspect early. If value is high,
can claim item immediately to avoid competition.

Theorem

For single-item auctions, any n-tuple of bidders has an n-tuple of
“counterparts” who know their valuations. Equilibria of
descending-price auction correspond to equilibria of 1st-price
auction among counterparts.
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Descending Auction

Descending-Price Mechanism

Descending clock represents uniform price for all items. Bidders
may claim any remaining item at the current price.

Intuition: parallels descending strike price policy.
Bidders with high “option value” can inspect early. If value is high,
can claim item immediately to avoid competition.

Theorem

For multi-item auctions with unit-demand bidders, every
descending-price auction equilibrium achieves at least 43% of
first-best welfare.



Descending-Price Auction: Single-Item Case

Definition (Covered counterpart)

For each bidder i define their covered counterpart to have zero
inspection cost and value κi .

Equilibrium Correspondence Theorem

For single-item auctions there is an expected-welfare preserving
one-to-one correspondence

{Equilibria of descending price auction with n bidders}
m

{Equilibria of 1st price auction with their covered counterparts}.



Proof of Equilibrium Correspondence

Consider the best responses of bidder i and covered counterpart i ′

when facing any strategy profile b−i .

Suppose counterpart’s best response is to buy item at time b′i (κi ).

Bidder i can emulate this using the following strategy bi :

Inspect at price b′i (σi ).

Buy immediately if vi ≥ σi .
Else buy at price b′i (vi ).

This strategy bi is non-exposed, so E [ui (bi , b−i )] = E [u′i (b
′
i , b−i )] .

No other strategy b̃i is better for i , because

E
[
ui (b̃i , b−i )

]
≤ E [covered call value minus price]

= E
[
u′i (b̃i , b−i )

]
≤ E

[
u′i (b

′
i , b−i )

]
.
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Welfare and Revenue of Descending-Price Auction

Bayes-Nash equilibria of first-price auctions:

are efficient when bidders are symmetric [Myerson, 1981];

achieve ≥ 1− 1
e
∼= 0.63 . . . fraction of best possible welfare in

general. [Syrgkanis, 2012]

Our descending-price auction inherits the same welfare guarantees.



Descending-Price Auction for Multiple Items

Descending clock represents uniform price for all items.

Bidders may claim any remaining item at the current price.

Theorem

Every equilibrium of the descending-price auction achieves at least
one-third of the first-best welfare.

Remarks:

First-best policy not known to be computationally efficient.

Best known polynomial-time algorithm is a 2-approximation,
presented earlier in this lecture.



Descending-Price Auction for Multiple Items

Descending clock represents uniform price for all items.

Bidders may claim any remaining item at the current price.

Theorem

Every equilibrium of the descending-price auction achieves at least
one-third of the first-best welfare.

Proof sketch: via the smoothness framework [Lucier-Borodin ’10,
Roughgarden ’12, Syrgkanis ’12, Syrgkanis-Tardos ’13].

For bidder i , consider “deviation” that inspects each j when price is
at 2

3σij and buys at 2
3κij . (Note this is non-exposed.)

One of three alternatives must hold:

In equilibrium, the price of j is at least 2
3κij .

In equilibrium, i pays at least 2
3κij .

In deviation, expected utility of i is at least 1
3κij .

1
2p

j + 1
2pi + ui ≥ 1

3κij
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In deviation, expected utility of i is at least 1
3κij .

1
2p

j + 1
2pi + ui ≥ 1

3κij



Descending-Price Auction for Multiple Items

Descending clock represents uniform price for all items.

Bidders may claim any remaining item at the current price.

Theorem

Every equilibrium of the descending-price auction achieves at least
one-third of the first-best welfare.

E[welfare of descending price] = E

[∑
i

(ui + pi )

]

= E

∑
i

ui + 1
2

∑
i

pi + 1
2

∑
j

pj


≥ 1

3 E

max
M

∑
(i,j)∈M

κij

 ≥ 1
3 OPT

where M ranges over all matchings.



Part 4:

Social Learning



Crowdsourced investigation “in the wild”

Decentralized exploration suffers from misaligned incentives.

Platform’s goal:

User’s goal:



Crowdsourced investigation “in the wild”

Decentralized exploration suffers from misaligned incentives.

Platform’s goal: Collect data about many alternatives.

User’s goal: Select the best alternative.



Crowdsourced investigation “in the wild”

Decentralized exploration suffers from misaligned incentives.

Platform’s goal: EXPLORE.

User’s goal: EXPLOIT.



A Model Based on Multi-Armed Bandits

k arms have independent random types that govern their
(time-invariant) reward distribution when selected.

arm 1 arm 2 ...... arm k User t: Choose it ; Reward rt  

User t-1 

User t+1 

...

...

Users observe all past rewards before making their selection.

Platform’s goal: maximize
∑∞

t=0(1− δ)trt

User t’s goal: maximize rt
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Incentivized Exploration

Incentive payments

At time t, announce reward ct,i ≥ 0 for each arm i .
User now chooses i to maximize E[ri ,t ] + ci ,t .

Our platform and users have a common posterior at all times, so
platform knows exactly which arm a user will pull, given a reward
vector.

An equivalent description of our problem is thus:

Platform can adopt any policy π.

Cost of a policy pulling arm i at time t is rmax
t − ri ,t , where

rmax
t denotes myopically optimal reward.



The Achievable Region

Incentive
Cost

Opportunity Cost

Suppose, for platform’s policy π:

reward ≥ (1− a) · OPT.

payment ≤ b · OPT.

We say π achieves loss pair (a, b).

Definition

(a, b) is achievable if for every
multi-armed bandit instance, ∃
policy achieving loss pair (a, b).

Main Theorem

Loss pair (a, b) is achievable if and only if
√
a +
√
b ≥
√

1− δ.
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The Achievable Region

Incentive
Cost

Opportunity Cost

Achievable region is convex,
closed, upward monotone.

Set-wise increasing in δ.

(0.25,0.25) and (0.1,0.5)
achievable for all δ.

You can always get 0.9 · OPT
while paying out only 0.5 · OPT.
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Diamonds in the Rough

ϕ ? ? ?

M

0

A Hard Instance

Infinitely many “collapsing” arms
M with prob. 1

M δ
2, else 0.

(Type fully revealed when pulled.)

One
arm whose payoff is always φ · δ.

Extreme points of achievable region
correspond to:

OPT:

MYO:



Diamonds in the Rough

ϕ ? ? ?

M

0

A Hard Instance

Infinitely many “collapsing” arms
M with prob. 1

M δ
2, else 0.

One arm whose payoff is always φ · δ.

Extreme points of achievable region
correspond to:

OPT: pick a fresh collapsing arm until high payoff is found.

MYO: always play the safe arm.
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A Hard Instance

Infinitely many “collapsing” arms
M with prob. 1

M δ
2, else 0.

One arm whose payoff is always φ · δ.

Extreme points of achievable region
correspond to:

OPT: reward ≈ 1, cost ≈ φ− δ. (a, b) = (0, φ− δ)

MYO: always play the safe arm.



Diamonds in the Rough

ϕ ? ? ?

M

0

A Hard Instance

Infinitely many “collapsing” arms
M with prob. 1

M δ
2, else 0.

One arm whose payoff is always φ · δ.

Extreme points of achievable region
correspond to:

OPT: reward ≈ 1, cost ≈ φ− δ. (a, b) = (0, φ− δ)

MYO: reward φ, cost 0. (a, b) = (1− φ, 0)



Diamonds in the Rough

ϕ ? ? ?

M

0

A Hard Instance

Infinitely many “collapsing” arms
M with prob. 1

M δ
2, else 0.

One arm whose payoff is always φ · δ.

Extreme points of achievable region
correspond to:

OPT: reward ≈ 1, cost ≈ φ− δ. (a, b) = (0, φ− δ)

MYO: reward φ, cost 0. (a, b) = (1− φ, 0)



Diamonds in the Rough

ϕ ? ? ?

M

0

A Hard Instance

Infinitely many “collapsing” arms
M with prob. 1

M δ
2, else 0.
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Diamonds in the Rough

The line segment joining (0, φ− δ) to
(1− φ, 0) is tangent to the curve√
x +
√
y =
√

1− δ at

x = 1
1−δ (1− φ)2

y = 1
1−δ (φ− δ)2

OPT: reward ≈ 1, cost ≈ φ− δ. (a, b) = (0, φ− δ)

MYO: reward φ, cost 0. (a, b) = (1− φ, 0)
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x +
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Diamonds in the Rough

The inequality

√
x +
√
y ≥
√

1− δ

holds if and only if

∀φ ∈ (δ, 1) x +

(
1− φ
φ− δ

)
y ≥ 1− φ

OPT: reward ≈ 1, cost ≈ φ− δ. (a, b) = (0, φ− δ)

MYO: reward φ, cost 0. (a, b) = (1− φ, 0)



Lagrangean Relaxation

Proof of achievability is by contradiction.

Suppose (a, b) unachievable and
√
a +
√
b ≥
√

1− δ.

Then there is a line through (a, b)
outside the achievable region.

For all achievable x , y ,



Lagrangean Relaxation

Proof of achievability is by contradiction.

Suppose (a, b) unachievable and
√
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Then there is a line through (a, b)
outside the achievable region.

For all achievable x , y ,

(1− p)x + py > (1− p)a + pb

.
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1−pCost(π)], if π achieves loss pair (x , y).



Lagrangean Relaxation

Proof of achievability is by contradiction.

Suppose (a, b) unachievable and
√
a +
√
b ≥
√

1− δ.

To reach a contradiction, must show that for all 0 < p < 1, if
φ = 1− (1− δ)p, there exists policy π such that

E[Payoff(π)− p
1−pCost(π)] ≥ φ.

For all achievable x , y ,

(1− x)−
(

p
1−p

)
y < φ

LHS = E[Payoff(π)− p
1−pCost(π)], if π achieves loss pair (x , y).



Time-Expanded Policy

We want a policy that makes E[Payoff(π)− p
1−pCost(π)] large.

The difficulty is Cost(π). Cost of pulling an arm depends on its
state and on the state of the myopically optimal arm.

Game plan. Use randomization to bring about a cancellation that
eliminates the dependence on the myopically optimal arm.

Example. At time 0, suppose myopically optimal arm i has reward
ri and OPT wants arm j with reward rj < ri .

Pull i with probability p, j with probability 1− p.

E[Reward− p
1−pCost] = pri + (1− p)[rj − p

1−p (ri − rj)] = rj

Keep going like this?
Hard to analyze OPT with unplanned state changes.
Instead, treat unplanned state changes as “no-ops”.
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Time-Expanded Policy

The time-expansion of policy π with parameter p; TE(π, p)

Maintain a FIFO queue of states for each arm, tail is current state.
At each time t, toss a coin with bias p.
Heads: Offer no incentive payments.

User plays myopically. Push new state into tail of queue.
Tails: Apply π to heads of queues to select arm.

Push that arm’s new state into tail of queue, remove head.
Pay user the difference vs. myopic.
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Time-Expanded Policy

The time-expansion of policy π with parameter p; TE(π, p)

Maintain a FIFO queue of states for each arm, tail is current state.
At each time t, toss a coin with bias p.
Heads: Offer no incentive payments.

User plays myopically. Push new state into tail of queue.
Tails: Apply π to heads of queues to select arm.

Push that arm’s new state into tail of queue, remove head.
Pay user the difference vs. myopic.

Lagrangean payoff analysis. In a state where MYO would pick i
and π would pick j , expected Lagrangean payoff is

pri ,t + (1− p)
[
rj ,t −

(
p

1−p

)
(ri ,t − rj ,t)

]
= rj ,t .

If s is at the head of j ’s queue at time t, then E[rj ,t |s] = Rj(s).



Stuttering Arms

The “no-op” steps modify the Markov chain to have self-loops in
every state with transition probability (1− δ)p = 1− φ.

1
21− φ

1
3

2
3

1
4

1
2

3
4

δ

δ δ

δ δ δ



Gittins Index of Stuttering Arms

Lemma

Letting σ̃(s) denote the Gittins index of state s in the modified
Markov chain, we have σ̃(s) ≥ φ · σ(s) for every s.



Gittins Index of Stuttering Arms

Lemma

Letting σ̃(s) denote the Gittins index of state s in the modified
Markov chain, we have σ̃(s) ≥ φ · σ(s) for every s.

If true, this implies . . .

1 κ̃i ≥ φ · κi
2 Gittins index policy π for modified Markov chains has

expected payoff E[maxi κ̃i ] ≥ φ · E[maxi κi ] = φ.

3 Policy TE(π, p) achieves

E[Payoff− p
1−pCost] ≥ φ.

. . . which completes the proof of the main theorem.



Gittins Index of Stuttering Arms

Lemma

Letting σ̃(s) denote the Gittins index of state s in the modified
Markov chain, we have σ̃(s) ≥ φ · σ(s) for every s.

By definition of Gittins index, M has a stopping rule τ such that

E

[ ∑
0<t<τ

R(st)

]
≥ σ(s) · Pr(sτ ∈ T ) > 0.

Let τ ′ be the equivalent stopping rule for M̃, i.e. τ ′ simulates τ on
the subset of time steps that are not self-loops.



Gittins Index of Stuttering Arms

Lemma

Letting σ̃(s) denote the Gittins index of state s in the modified
Markov chain, we have σ̃(s) ≥ φ · σ(s) for every s.

The proof will show

E

[ ∑
0<t<τ ′

R(s̃t)

]
≥ E

[ ∑
0<t<τ

R(st)

]
≥ σ(s) · Pr(sτ ∈ T )

≥ φ · σ(s) · Pr(s̃τ ′ ∈ T ) > 0.

By definition of Gittins index, this means σ̃(s) ≥ φ · σ(s).

Second line holds by assumption. Prove first, third by coupling.



Gittins Index of Stuttering Arms

φ− δ δ

1− φ

E
[∑

0<t<τ ′ R(s̃t)
]
≥ E

[∑
0<t<τ R(st)

]
Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T )



Gittins Index of Stuttering Arms

φ− δ δ

1− φ

E
[∑

0<t<τ ′ R(s̃t)
]
≥ E

[∑
0<t<τ R(st)

]
Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T )

For t ∈ N sample color green vs. red with probability 1− δ vs. δ.
Independently, sample light vs. dark with probability 1− p vs. p.

State transitions of M̃ are:

terminal on red

self-loop on dark green

non-terminal M-step on light green.

The light time-steps simulate M.
Let f = monotonic bijection from N to light time-steps.



Gittins Index of Stuttering Arms

φ− δ δ

1− φ

E
[∑

0<t<τ ′ R(s̃t)
]
≥ E

[∑
0<t<τ R(st)

]
Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T )

At any light green time,

Pr(light red before next light green) = δ

Pr(red before next light green) = δ/φ.

So for all m, conditioned onM running m steps without terminating,

Pr(M̃ enters terminal state between f (m) and f (m + 1))

= φ · Pr(M enters terminal state between m and m + 1)

implying Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T ).



Gittins Index of Stuttering Arms

φ− δ δ

1− φ

E
[∑

0<t<τ ′ R(s̃t)
]
≥ E

[∑
0<t<τ R(st)

]
Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T )

Let t1= first red step, t2 = first light red step

t3 = first green step when τ ′ stops

Then τ = min{t2, t3}, f (τ ′) = min{t1, t3}.



Gittins Index of Stuttering Arms

φ− δ δ

1− φ

E
[∑

0<t<τ ′ R(s̃t)
]
≥ E

[∑
0<t<τ R(st)

]
Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T )

To prove: E[
∑

0<t<τ ′ R(s̃t)] ≥ E[
∑

0<t<τ R(st)]∑
0<t<τ ′

R(s̃t) =
∑

0<t<t1

R(s̃t) −
∑

t3≤t<t1

R(s̃t)∑
0<t<τ

R(st) =
∑

0<f (t)<t2

R(s̃f (t)) −
∑

t3≤f (t)<t2

R(s̃f (t))

First terms on RHS have same expectation, R(s̃1) · δ−1.
Compare second terms by case analysis on ordering of t1, t2, t3.



Gittins Index of Stuttering Arms

φ− δ δ

1− φ

E
[∑

0<t<τ ′ R(s̃t)
]
≥ E

[∑
0<t<τ R(st)

]
Pr(sτ ∈ T ) ≥ φ · Pr(s̃τ ′ ∈ T )

To prove: E
[∑

t3≤t≤t1 R(s̃t)
]
≤ E

[∑
t3≤f (t)≤t2 R(s̃f (t))

]
1 t1 ≤ t2 < t3: Both sides are zero.

2 t1 < t3 < t2: Left side is zero, right side is non-negative.

3 t3 < t1 ≤ t2: Conditioned on s = st3 , both sides have
expectation R(s) · δ−1.



Conclusion

Joint Markov scheduling: versatile model of information
acquisition in Bayesian settings.

. . . when alternatives (“arms”) are strategic

. . . when time steps are strategic.

First-best policy: Gittins index policy.

Analysis tool: deferred value and amortization lemma.

Akin to virtual values in optimal mechanism design . . .
Interfaces cleanly with equilibrium analysis of simple
mechanisms, smoothness arguments, prophet inequalities, etc.
Beautiful but fragile: usefulness vanishes rapidly as you vary
the assumptions.



Open questions

Algorithmic.

Correlated arms (cf. ongoing work of Anupam Gupta, Ziv
Scully, Sahil Singla)

More than one way to inspect an alternative (i.e., arms are
MDPs rather than Markov chains; cf. [Glazebrook, 1979;
Cavallo & Parkes, 2008])

Bayesian contextual bandits

Computational hardness of any of the above?

Game-theoretic.

Strategic arms (“exploration in markets”)

Revenue guarantees (cf. [K.-Waggoner-Weyl, 2016])
Two-sided markets (patent applic. by K.-Weyl, no theory yet!)

Strategic time steps (“incentivizing exploration”)

Agents who persist over time.
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