Bar Induction: The Good, the Bad and the Ugly

Vincent Rahli, Mark Bickford, and Robert L. Constable

June 22, 2017

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017 1/28

イロト 不得下 イヨト イヨト 二日

Bar induction?

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

イロト イポト イヨト イヨト 二日

What bar induction is **not** about?

(source: https://get.taphunter.com/blog/4-ways-to-ensure-your-bar-rocks/)

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

Intuitionism

- First act: Intuitionistic logic is based on our inner consciousness of time, which gives rise to the two-ity.
- As opposed to Platonism, it's about constructions in the mind and not objects that exist independently of us. There are no mathematical truths outside human thought: "all mathematical truths are experienced truths" (Brouwer)
- A statement is true when we have an appropriate construction, and false when no construction is possible.

(ロト (間下 (目下 (日下

Intuitionism

- Second act: New mathematical entities can be created through more or less freely proceeding sequences of mathematical entities.
- Also by defining new mathematical species (types, sets) that respect equality of mathematical entities.
- Gives rise to (never finished) choice sequences. Could be lawlike or lawless. Laws can be 1st order, 2nd order...
- The continuum is captured by choice sequences of nested rational intervals.

ヘロト ヘ戸ト ヘヨト ヘヨト

Intuitionism—Continuity

What can we do with these never finished sequences?

Brouwer's answer: one never needs the whole sequence.

His continuity axiom for numbers says that functions from sequences to numbers only need initial segments

 $\forall F : \mathbb{N}^{\mathcal{B}}. \ \forall \alpha : \mathcal{B}. \ \exists n : \mathbb{N}. \ \forall \beta : \mathcal{B}. \ \alpha =_{\mathcal{B}_n} \beta \to F(\alpha) =_{\mathbb{N}} F(\beta)$

From which his **uniform continuity theorem** follows: Let f be of type $[\alpha, \beta] \to \mathbb{R}$, then $\forall \epsilon > 0. \exists \delta > 0. \forall x, y : [\alpha, \beta]. |x - y| \leq \delta \rightarrow |f(x) - f(y)| \leq \epsilon$

 $(\mathcal{B} = \mathbb{N}^{\mathbb{N}} \& \mathcal{B}_n = \mathbb{N}^{\mathbb{N}_n})$

Vincent Rahli

Bar Induction: The Good, the Bad and the Ugly June 22, 2017

Intuitionism—Continuity

False (Kreisel 62, Troelstra 77, Escardó & Xu 2015):

 $\neg \Pi F: \mathbb{N}^{\mathcal{B}}.\Pi \alpha: \mathcal{B}.\Sigma n: \mathbb{N}.\Pi \beta: \mathcal{B}.\alpha =_{\mathcal{B}_n} \beta \to F(\alpha) =_{\mathbb{N}} F(\beta)$

(no continuous way of finding a modulus of continuity of a given function F at a point α)

 $(\exists F = G : \mathbb{N}^{\mathcal{B}}. F \text{ and } G \text{ have different moduli of continuity})$

True in Nuprl (see our CPP 2016 paper):

 $\Pi F: \mathcal{B} \to \mathbb{N}. \Pi \alpha: \mathcal{B}. \mathbf{\Sigma} n: \mathbb{N}. \Pi \beta: \mathcal{B}. \alpha =_{\mathcal{B}_n} \beta \to F(\alpha) =_{\mathbb{N}} F(\beta)$

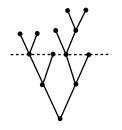
イロト 不得下 イヨト イヨト 二日

Intuitionism—Bar induction

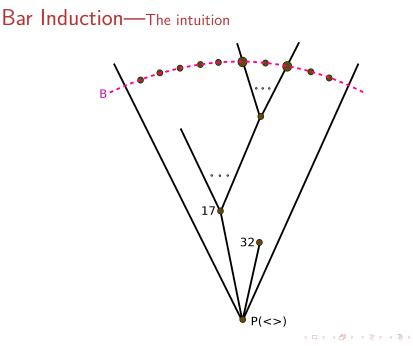
To prove his **uniform continuity theorem**, Brouwer also used the **Fan theorem**.

Which follows from **bar induction**.

The fan theorem says that if for each branch α of a binary tree T, a property A is true about some initial segment of α , then **there is a uniform bound** on the depth at which A is met.



8/28



э

What is this talk about?

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017 10

<ロト < 目 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

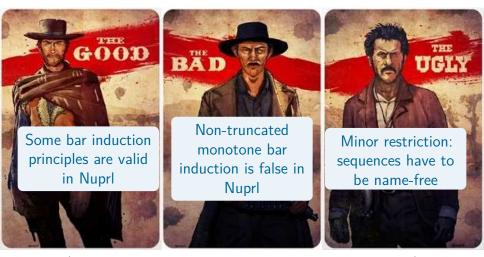
What this talk is not about

Not about the philosophical foundations of intuitionism Not about which foundation is best **About useful constructions**

(source: https://sententiaeantiquae.com/2014/10/23)

11/28

What is this talk about?



(source: http://cinetropolis.net/scene-is-believing-the-good-the-bad-and-the-ugly/)

Vincent Rahli

Bar Induction: The Good, the Bad and the Ugly Ju

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶
Ugly June 22, 2017

12/28

э

Nuprl?

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017 13

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

3

Nuprl in a Nutshell

Became operational in 1984 (Constable & Bates)

Similar to Coq and Agda

Extensional Constructive Type Theory with partial functions

Types are interpreted as Partial Equivalence Relations on terms (PERs)

Consistency proof in Coq (see our ITP 2014): https://github.com/vrahli/NuprlInCoq

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

イロト 不得 トイヨト イヨト

Extensional CTT with partial functions?

Extensional

$$(\forall a : A. f(a) = g(a) \in B) \rightarrow f = g \in A \rightarrow B$$

Constructive

 $(A \rightarrow A)$ true because inhabited by $(\lambda x.x)$

Partial functions

 $fix(\lambda x.x)$ inhabits $\overline{\mathbb{N}}$

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

イロト 不得下 イヨト イヨト 二日

Nuprl Types—Martin-Löf's extensional type theory Equality

$$a = b \in T$$

Dependent product

$$a: A \to B[a]$$
 or $\Pi a: A.B[a]$

Dependent sum

 $a:A \times B[a]$ or $\Sigma a:A.B[a]$

Universe

▲ロト ▲課 ト ▲ 臣 ト ▲ 臣 ト 一臣 - のへで

Nuprl Types—Less "conventional types"

Partial: \overline{A}

Disjoint union: *A*+*B*

Intersection: $\cap a: A.B[a]$

Union: $\cup a: A.B[a]$

Set: {*a* : *A* | *B*[*a*]}

Quotient: T//E

Domain: Base

Simulation: $t_1 \leqslant t_2$ (Void = 0 \leqslant 1 and Unit = 0 \leqslant 0)

Bisimulation: $t_1 \sim t_2$

Image: Img(A, f)

PER: per(R)

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017 17/28

Nuprl Types - Squashing / Truncation

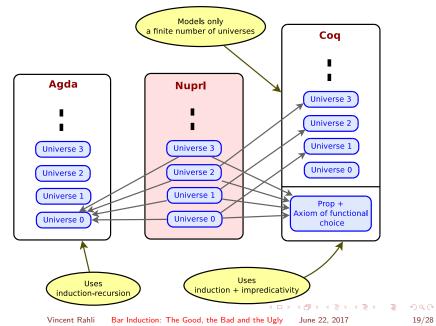
Proof irrelevance: T = T//True

For example:
$$\begin{array}{|c|c|c|c|c|c|c|c|} \Pi P: \mathbb{P}.(P \lor \neg P) & \checkmark \\ \Pi P: \mathbb{P}. \downarrow (P \lor \neg P) & \checkmark \\ \Pi P: \mathbb{P}. \downarrow (P \lor \neg P) & \checkmark \end{array}$$

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017 18/28

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - ののべ

Nuprl PER Semantics Implemented in Coq



19/28

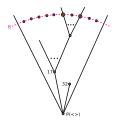
Bar Induction in Nuprl

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017 20/28

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bar Induction—Non-intuitionistic

in Coq



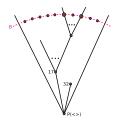
Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bar Induction—On decidable bars

in Nuprl

$$\begin{array}{l} H \vdash P(0, \bot L) \\ & \mathsf{BY} \ [\mathsf{BID}] \\ & (\mathsf{dec}) \quad H, n : \mathbb{N}, s : \mathcal{B}_n \vdash \mathcal{B}(n, s) \lor \neg \mathcal{B}(n, s) \\ & (\mathsf{bar}) \quad H, s : \mathcal{B} \vdash \bigcup \exists n : \mathbb{N}. \ \mathcal{B}(n, s) \\ & (\mathsf{imp}) \quad H, n : \mathbb{N}, s : \mathcal{B}_n, m : \mathcal{B}(n, s) \vdash P(n, s) \\ & (\mathsf{ind}) \quad H, n : \mathbb{N}, s : \mathcal{B}_n, x : (\forall m : \mathbb{N}. \ P((n+1), s \oplus_n m)) \vdash P(n, s) \end{array}$$



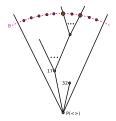
Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

3

・ロト ・聞 ト ・ ヨト ・ ヨト

Bar Induction—On monotone bars

in Nuprl



3

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト …

Bar Induction—Why the squashing operator?

Continuity is false in Martin-Löf-like type theories when not ↓-squashed

 $(A) \, \Pi F : \mathbb{N}^{\mathcal{B}} \cdot \Pi f : \mathcal{B} \cdot \bigcup \mathbf{\Sigma} n : \mathbb{N} \cdot \Pi g : \mathcal{B} \cdot f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$

 $(B) \neg \Pi F: \mathbb{N}^{\mathcal{B}}. \Pi f: \mathcal{B}. \Sigma n: \mathbb{N}. \Pi g: \mathcal{B}. f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$

From which we derived: BIM is false when not J-squashed

otherwise we could derive

 $\Pi F: \mathbb{N}^{\mathcal{B}}. \Pi f: \mathcal{B}. \Sigma n: \mathbb{N}. \Pi g: \mathcal{B}. f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$ from BIM & (A)

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

Bar Induction—Sequences of numbers

We derived BID/BIM for sequences of numbers (easy)

We added "choice sequences" of numbers to Nuprl's model: all Coq functions from $\mathbb N$ to $\mathbb N$

What about sequences of terms?

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

イロト 不得 トイヨト イヨト

Bar Induction—Sequences of terms

We derived BID for sequences of closed name-free terms

Harder because we turned our terms into a big W type: Coq functions from \mathbb{N} to terms are now terms!

Why without names?

u picks fresh names and we can't compute the collection of all names anymore

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Bar Induction—Questions

Can we prove continuity for sequences of terms instead of \mathcal{B} ?

What does that give us? + proof-theoretic strength?

Can we hope to prove BID/BIM in Coq without LEM/AC?

We're working on this:

Can we derive BID/BIM for sequences of terms with names?

Vincent Rahli Bar Induction: The Good, the Bad and the Ugly June 22, 2017

イロト 不得 トイヨト イヨト

Name	Formula	Where	Comments
WCP1,0	$\neg \Pi F: \mathbb{N}^{\mathcal{B}}.\Pi f: \mathcal{B}. \Sigma n: \mathbb{N}.\Pi g: \mathcal{B}. f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$	Nuprl	
WCP1,0	$\Pi F:\mathbb{N}^{\mathcal{B}}.\Pi f:\mathcal{B}.\downarrow \mathbf{\Sigma} n:\mathbb{N}. \ \Pi g:\mathcal{B}.f =_{\mathcal{B}_{\mathcal{B}}} g \to F(f) =_{\mathbb{N}} F(g)$	Coq	uses named exceptions
WCP1,0	$\Pi F: \mathbb{N}^{\mathcal{B}}.\Pi f: \mathcal{B}.\downarrow \mathbf{\Sigma} n: \mathbb{N}.\Pi g: \mathcal{B}.f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$	Coq	uses ⊥
WCP _{1,1}	$\neg \Pi P: \mathcal{B} \to \mathbb{P}^{\mathcal{B}}.(\Pi a: \mathcal{B}. \Sigma b: \mathcal{B}. P(a, b)) \to \Sigma c: \mathbb{N}^{\mathcal{B}}. \texttt{CONT}(c) \land \Pi a: \mathcal{B}.\texttt{shift}(c, a)$	Nuprl	
WCP1,1	$ \exists \neg \Pi P: \mathcal{B} \to \mathbb{P}^{\mathcal{B}}.(\Pi a: \mathcal{B}. \Sigma b: \mathcal{B}. P(a, b)) \to \exists \Sigma c: \mathbb{N}^{\mathcal{B}}. \ \texttt{CONT}(c) \downarrow \land \ \Pi a: \mathcal{B}.\texttt{shift}(c, a) $?	
WCP1,11	$\widehat{\gamma} \sqcap P: \mathcal{B} \to \mathbb{P}^{\mathcal{B}}.(\Pi_{a}: \mathcal{B}. \boldsymbol{\Sigma}_{b}: \mathcal{B}. P(a, b)) \to \boldsymbol{\downarrow} \boldsymbol{\Sigma}_{c}: \mathbb{N}^{\mathcal{B}}. \texttt{CONT}(c)_{\boldsymbol{\downarrow}} \land \Pi_{a}: \mathcal{B}.\texttt{shift}(c, a)$?	
AC _{0,0}	$\Pi P:\mathbb{N} \to \mathbb{P}^{\mathbb{N}}.(\Pi n:\mathbb{N}.\boldsymbol{\Sigma} m:\mathbb{N}.P(n,m)) \to \boldsymbol{\Sigma} f:\mathcal{B}.\Pi n:\mathcal{B}.P(n,f(n))$	Nuprl	
AC _{0,01}	$ \Pi P: \mathbb{N} \to \mathbb{P}^{\mathbb{N}}.(\Pi n: \mathbb{N}. \downarrow \Sigma m: \mathbb{N}. P(n, m)) \to \downarrow \Sigma f: \mathcal{B}. \Pi n: \mathcal{B}. P(n, f(n)) $	Nuprl	
AC0,01	$ \Pi P: \mathbb{N} \to \mathbb{P}^{\mathbb{N}}.(\Pi n: \mathbb{N}, \downarrow \mathbf{\Sigma} m: \mathbb{N}. P(n, m)) \to \downarrow \mathbf{\Sigma} f: \mathcal{B}. \Pi n: \mathcal{B}. P(n, f(n)) $	Coq	uses classical logic
AC1.0	$ \Pi P: \mathcal{B} \to \mathbb{P}^{\mathbb{N}}.(\Pi f: \mathcal{B}. \mathbf{\Sigma} n: \mathbb{N}. P(f, n)) \to \mathbf{\Sigma} F: \mathbb{N}^{\mathcal{B}}. \Pi f: \mathcal{B}. P(f, F(f)) $	Nuprl	
AC1,0 J	$ \Pi P: \mathcal{B} \to \mathbb{P}^{\mathbb{N}}.(\Pi f: \mathcal{B}. \downarrow \Sigma n: \mathbb{N}. P(f, n)) \to \downarrow \Sigma F: \mathbb{N}^{\mathcal{B}}. \Pi f: \mathcal{B}. P(f, F(f)) $	Nuprl	
AC1,01	$\widehat{\gamma} \Pi P: \mathcal{B} \to \mathbb{P}^{\mathbb{N}}.(\Pi f: \mathcal{B}.\downarrow \Sigma n: \mathbb{N}.P(f, n)) \to \downarrow \Sigma F: \mathbb{N}^{\mathcal{B}}.\Pi f: \mathcal{B}.P(f, F(f))$?	
AC2,0	$\mathbf{\Pi} P: \mathbb{N}^{\mathcal{B}} \to \mathbb{P}^{\mathbb{N}}.(\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}.\boldsymbol{\Sigma} n; T.P(f, n)) \to \boldsymbol{\Sigma} F: T^{(\mathbb{N}^{\mathcal{B}})}.\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}.P(f, F(f))$	Nuprl	
AC2,0	$\neg (\mathbf{\Pi} P: \mathbb{N}^{\mathcal{B}} \to \mathbb{P}^{T}. (\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. \downarrow \mathbf{\Sigma} n: T. P(f, n)) \to \downarrow \mathbf{\Sigma} F: T^{(\mathbb{N}^{\mathcal{B}})}. \mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. P(f, F(f)))$	Nuprl	contradicts continuity
AC2,01	$\neg (\mathbf{\Pi} P: \mathbb{N}^{\mathcal{B}} \to \mathbb{P}^{\mathcal{T}}.(\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. \downarrow \mathbf{\Sigma} n: \mathcal{T}. P(f, n)) \to \downarrow \mathbf{\Sigma} F: \mathcal{T}^{(\mathbb{N}^{\mathcal{B}})}.\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. P(f, F(f)))$	Nuprl	contradicts continuity
LEM	$\neg \Pi P : \mathbb{P} \cdot \mathbb{P} \lor \neg P$	Nuprl	
LEM	$\neg \Pi P : \mathbb{P} . \downarrow (P \lor \neg P)$	Nuprl	
LEM↓	$\Pi P:\mathbb{P}.\downarrow(P \lor \neg P)$	Coq	uses classical logic
MP	$ \Pi P: \mathbb{P}^{\mathbb{N}}.(\Pi n: \mathbb{N}.P(n) \lor \neg P(n)) \to (\neg \Pi n: \mathbb{N}.\neg P(n)) \to \mathbf{\Sigma} n: \mathbb{N}.P(n) $	Nuprl	uses LEM↓
KS	$\neg \Pi A: \mathbb{P}. \boldsymbol{\Sigma} a: \mathcal{B}. ((\boldsymbol{\Sigma} x: \mathbb{N}. a(x) =_{\mathbb{N}} 1) \iff A)$	Nuprl	uses MP
KS↓	$\neg \Pi A: \mathbb{P}, \forall \mathbf{\Sigma} a: \mathcal{B}. ((\mathbf{\Sigma} x: \mathbb{N}, a(x) =_{\mathbb{N}} 1) \iff A)$	Nuprl	uses MP
KS↓	$ \Pi A: \mathbb{P}. \downarrow \mathbf{\Sigma} a: \mathcal{B}. ((\mathbf{\Sigma} x: \mathbb{N}. a(x) =_{\mathbb{N}} 1) \iff A) $	Coq	uses classical logic
BI	$WF(B) \to BAR_{\downarrow}(B) \to BASE(B, P) \to IND(P) \to \downarrow P(0, \bot)$	Coq	uses classical logic
BID	$WF(B) \to BAR_{\downarrow}(B) \to DEC(B) \to BASE(B, P) \to IND(P) \to P(0, \bot)$	Nuprl	uses BI _J
BIM	$WF(B) \to BAR_{\downarrow}(B) \to MON(B) \to BASE(B, P) \to IND(P) \to \downarrow P(0, \bot)$	Nuprl	uses Bl↓
BIM	$\neg \Pi B, P: (\Pi n: \mathbb{N}. \mathbb{P}^{\mathcal{B}_n}). \text{BAR}_{\downarrow}(B) \to \text{MON}(B) \to \text{BASE}(B, P) \to \text{IND}(P) \to P(0, \bot)$	Nuprl	contradicts continuity

Vincent Rahli

Bar Induction: The Good, the Bad and the Ugly June 22, 2017