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Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?
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Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

◮ Proofs mostly carried out on paper.

◮ Not carried out in full detail.

◮ Spread over several papers/PhD theses.

◮ Precise metatheory, precise account of Nuprl.

◮ No better way than using a proof assistant.
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Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker.
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Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,

◮ Mendler’s recursive type,

◮ LEM is inconsistent with Base

How can we be sure that these rules are valid?

Nuprl’s PER semantics in Coq (and Agda).
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Mechanization and Experimentation!

Mechanization

{ Less error prone

{ Easier to propagate changes

{ Positive feedback loop

{ Additive

Experimentation

{ Adding new computations

{ Adding new types

{ Exploring type theory

{ Changing the theory
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What do we cover?

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Nuprl — Stack
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Nuprl — Environment

Distributed

Structure editor

Tactic language: Classic ML

Runs in the cloud

Shared library
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Nuprl — Types

Equality: a = b ∈ T

Dependent function: a:A → B[a]

Dependent product: a:A× B[a]

Universe: Ui
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Nuprl — Types

Partial: A

Intersection: ∩a:A.B[a]

Subset: {a : A | B[a]}

Computational equivalence: t1 ∼ t2

Image: Img(A, f )

PER: per(R), with R a partial equivalence relation.
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Nuprl — Types

{ Rich type language facilitates specification

{ Makes type checking harder

Inductive types?

{ Using W types.

{ In Nuprl, we used to define inductive types using Mendler’s
recursive types. PER semantics?

{ We now use Brouwer’s bar induction rule to define W types.
Validity?

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 15/47



Nuprl — Trusted core

Nuprl’s proof engine is called a refiner.

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager
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Nuprl — Trusted core

Nuprl’s proof engine is called a refiner.

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Parameterized by a collection of rules

{We proved that Nuprl’s rules are valid

{ Next step is to build a verified refiner
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What we implemented in Coq
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What we implemented in Coq

{
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An untyped lambda-calculus

A “nominal” approach:

Inductive NTerm : Set :=
| vterm: NVar → NTerm
| oterm: Opid → list BTerm → NTerm
with BTerm : Set :=

| bterm: list NVar → NTerm → BTerm.

For example:

oterm (Can NLambda) [bterm [nvar 0] (vterm (nvar 0))]

represents a λ-term of the form λx .x .
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An untyped lambda-calculus

We have the usual computation rules

with a β-reduction rule, pair and injection destructors, a
call-by-value operator, a fix operator, exceptions, . . .

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style

{ See Abhishek’s LFMTP talk on Thursday
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What we have to implement

{
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Howe’s computational equality

One can think of approx as the greatest fixpoint of the
following operator on binary relations:

Definition close compute

(R : NTerm→ NTerm →Type)
(a b : NTerm) : Type :=

programs [ a, b ]

× ∀ (c : CanonicalOp) (as : list BTerm),
a ⇓ oterm (Can c) as
→ {bs : list BTerm

& (b ⇓ oterm (Can c) bs)
× lblift (olift R) as bs }.
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Howe’s computational equality

One would like to define

CoInductive approx (a b : NTerm) : Type :=
| approx fold: close compute approx a b → approx a b.

Unfortunately, because of cofix’s conservative productivity
checking, we had to use parametrized coinduction.

Definition cequiv a b := approx a b × approx b a.

approx (�) and cequiv (∼) are congruences
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Constructive domain theory (Crary)

Let ⊥ be fix(λx .x).
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Constructive domain theory (Crary)

Let ⊥ be fix(λx .x).

Least element

∀t. approx ⊥ t.

Least upper bound principle

∀G f . G (fix(f )) is the lub of the (approx) chain G (f n(⊥))
for n ∈ N.

Compactness

if G (fix(f )) converges, then there exists a natural number n
such that G (f n(⊥)) converges.
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What we have to implement

{
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Allen’s PER semantics
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Allen’s PER semantics

f1≡f2∈x :A → B

type((x :A → B)) ∧ ∀a1, a2. a1≡a2∈A ⇒
f1(a1)≡f2(a2)∈B[x\a1]
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Allen’s PER semantics

f1≡f2∈x :A → B

type((x :A → B)) ∧ ∀a1, a2. a1≡a2∈A ⇒
f1(a1)≡f2(a2)∈B[x\a1]

t1≡t2∈Base

t1 ∼ t2

Ax≡Ax∈(a = b ∈ A)

type((a = b ∈ A)) ∧ a≡b∈A

t1≡t2∈A

type((A)) ∧ (t1⇓ ⇐⇒ t2⇓) ∧ (t1⇓ ⇒ t1≡t2∈A)
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Allen’s PER semantics

x1:A1 → B1≡x2:A2 → B2

A1≡A2 ∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]

Base≡Base

(a1 = a2 ∈ A)≡(b1 = b2 ∈ B)

A≡B ∧ (a1≡b1∈A ∨ a1 ∼ b1) ∧ (a2≡b2∈A ∨ a2 ∼ b2)

A≡B

A≡B ∧ (∀a. a∈A ⇒ a⇓)
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Allen’s PER semantics

This definition can be made formal using induction-recursion

Simple induction mechanisms such as in Coq are not enough

{ Definition is non-strictly-positive

Allen suggests that the definition should be valid because it is
“half-positive” (achieved by induction-recursion)

Instead of using induction-recursion, Allen defines ternary
relations between types and equalities

{ Translation of a mutually inductive-recursive definition to a
single inductive definition (Capretta).
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Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ
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Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Closure

Inductive close (ts : cts) : cts := . . .
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Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Closure

Inductive close (ts : cts) : cts := . . .

Universes

Fixpoint univi (i : nat) : cts := . . .
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Allen’s PER semantics

Fixpoint univi (i : nat) (T T’ : CTerm) (eq : per) : Prop :=
match i with

| 0 ⇒ False
| S n ⇒
. . .
eq ⇐2⇒ (fun A A’ ⇒ {eqa : per, close (univi n) A A’ eqa})
. . .

end.

Has to be in Prop, otherwise we can only define a finite
number of universes
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Allen’s PER semantics

Definition univ T T’ eq := {i : nat , univi i T T’ eq}.

Definition nuprl := close univ.

t1≡t2∈T = {eq : per , nuprl T T eq × eq t1 t2}

T≡T ′ = {eq : per , nuprl T T ′ eq}

Interesting fact: n:N → U(n) is a Nuprl type
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What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 44/47



What we have to implement
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Inference rules

We verified over 70 rules

The more rules the better

{ Expose more of the metatheory

{ Encode Mathematical knowledge

Gives us the basis to formally define a refiner
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What next?

Adding new types

Adding new computations

Write a parser

Build a proof assistant

What about Mendler’s
recursive types?

Extend our formalization with
a library of definitions

Build a verified refiner

Type checker/type inferencer?

Implement Allen’s semantics
of Atoms

What can you do with it?
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