
Towards a Formally Verified Proof

Assistant

Abhishek Anand Vincent Rahli

July 10, 2016

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 1/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 2/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

Formalization of air traffic controllers

Formal verification of banking protocols

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 3/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

Formalization of air traffic controllers

Formal verification of banking protocols

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 4/47

Our initial motivation

How do we know that our systems are sound? How do we
safely extend them?

◮ Proofs mostly carried out on paper.

◮ Not carried out in full detail.

◮ Spread over several papers/PhD theses.

◮ Precise metatheory, precise account of Nuprl.

◮ No better way than using a proof assistant.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 5/47

Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 6/47

Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,

◮ Mendler’s recursive type,

◮ LEM is inconsistent with Base

How can we be sure that these rules are valid?

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 7/47

Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker.

Nuprl

Inconsistencies related to types and rules, e.g.,

◮ Mendler’s recursive type,

◮ LEM is inconsistent with Base

How can we be sure that these rules are valid?

Nuprl’s PER semantics in Coq (and Agda).

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 8/47

Mechanization and Experimentation!

Mechanization

{ Less error prone

{ Easier to propagate changes

{ Positive feedback loop

{ Additive

Experimentation

{ Adding new computations

{ Adding new types

{ Exploring type theory

{ Changing the theory

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 9/47

What do we cover?

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 10/47

Nuprl — Stack

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 11/47

Nuprl — Environment

Distributed

Structure editor

Tactic language: Classic ML

Runs in the cloud

Shared library

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 12/47

Nuprl — Types

Equality: a = b ∈ T

Dependent function: a:A → B[a]

Dependent product: a:A× B[a]

Universe: Ui

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 13/47

Nuprl — Types

Partial: A

Intersection: ∩a:A.B[a]

Subset: {a : A | B[a]}

Computational equivalence: t1 ∼ t2

Image: Img(A, f)

PER: per(R), with R a partial equivalence relation.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 14/47

Nuprl — Types

{ Rich type language facilitates specification

{ Makes type checking harder

Inductive types?

{ Using W types.

{ In Nuprl, we used to define inductive types using Mendler’s
recursive types. PER semantics?

{ We now use Brouwer’s bar induction rule to define W types.
Validity?

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 15/47

Nuprl — Trusted core

Nuprl’s proof engine is called a refiner.

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 16/47

Nuprl — Trusted core

Nuprl’s proof engine is called a refiner.

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Parameterized by a collection of rules

{We proved that Nuprl’s rules are valid

{ Next step is to build a verified refiner

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 17/47

What we implemented in Coq

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 18/47

What we implemented in Coq

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 19/47

An untyped lambda-calculus

A “nominal” approach:

Inductive NTerm : Set :=
| vterm: NVar → NTerm
| oterm: Opid → list BTerm → NTerm
with BTerm : Set :=

| bterm: list NVar → NTerm → BTerm.

For example:

oterm (Can NLambda) [bterm [nvar 0] (vterm (nvar 0))]

represents a λ-term of the form λx .x .

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 20/47

An untyped lambda-calculus

We have the usual computation rules

with a β-reduction rule, pair and injection destructors, a
call-by-value operator, a fix operator, exceptions, . . .

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style

{ See Abhishek’s LFMTP talk on Thursday

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 21/47

What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 22/47

What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 23/47

Howe’s computational equality

One can think of approx as the greatest fixpoint of the
following operator on binary relations:

Definition close compute

(R : NTerm→ NTerm →Type)
(a b : NTerm) : Type :=

programs [a, b]

× ∀ (c : CanonicalOp) (as : list BTerm),
a ⇓ oterm (Can c) as
→ {bs : list BTerm

& (b ⇓ oterm (Can c) bs)
× lblift (olift R) as bs }.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 24/47

Howe’s computational equality

One would like to define

CoInductive approx (a b : NTerm) : Type :=
| approx fold: close compute approx a b → approx a b.

Unfortunately, because of cofix’s conservative productivity
checking, we had to use parametrized coinduction.

Definition cequiv a b := approx a b × approx b a.

approx (�) and cequiv (∼) are congruences

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 25/47

Constructive domain theory (Crary)

Let ⊥ be fix(λx .x).

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 26/47

Constructive domain theory (Crary)

Let ⊥ be fix(λx .x).

Least element

∀t. approx ⊥ t.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 27/47

Constructive domain theory (Crary)

Let ⊥ be fix(λx .x).

Least element

∀t. approx ⊥ t.

Least upper bound principle

∀G f . G (fix(f)) is the lub of the (approx) chain G (f n(⊥))
for n ∈ N.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 28/47

Constructive domain theory (Crary)

Let ⊥ be fix(λx .x).

Least element

∀t. approx ⊥ t.

Least upper bound principle

∀G f . G (fix(f)) is the lub of the (approx) chain G (f n(⊥))
for n ∈ N.

Compactness

if G (fix(f)) converges, then there exists a natural number n
such that G (f n(⊥)) converges.

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 29/47

What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 30/47

What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 31/47

Allen’s PER semantics

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 32/47

Allen’s PER semantics

f1≡f2∈x :A → B

type((x :A → B)) ∧ ∀a1, a2. a1≡a2∈A ⇒
f1(a1)≡f2(a2)∈B[x\a1]

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 33/47

Allen’s PER semantics

f1≡f2∈x :A → B

type((x :A → B)) ∧ ∀a1, a2. a1≡a2∈A ⇒
f1(a1)≡f2(a2)∈B[x\a1]

t1≡t2∈Base

t1 ∼ t2

Ax≡Ax∈(a = b ∈ A)

type((a = b ∈ A)) ∧ a≡b∈A

t1≡t2∈A

type((A)) ∧ (t1⇓ ⇐⇒ t2⇓) ∧ (t1⇓ ⇒ t1≡t2∈A)

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 34/47

Allen’s PER semantics

x1:A1 → B1≡x2:A2 → B2

A1≡A2 ∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 35/47

Allen’s PER semantics

x1:A1 → B1≡x2:A2 → B2

A1≡A2 ∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]

Base≡Base

(a1 = a2 ∈ A)≡(b1 = b2 ∈ B)

A≡B ∧ (a1≡b1∈A ∨ a1 ∼ b1) ∧ (a2≡b2∈A ∨ a2 ∼ b2)

A≡B

A≡B ∧ (∀a. a∈A ⇒ a⇓)

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 36/47

Allen’s PER semantics

This definition can be made formal using induction-recursion

Simple induction mechanisms such as in Coq are not enough

{ Definition is non-strictly-positive

Allen suggests that the definition should be valid because it is
“half-positive” (achieved by induction-recursion)

Instead of using induction-recursion, Allen defines ternary
relations between types and equalities

{ Translation of a mutually inductive-recursive definition to a
single inductive definition (Capretta).

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 37/47

Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 38/47

Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 39/47

Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Closure

Inductive close (ts : cts) : cts := . . .

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 40/47

Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Closure

Inductive close (ts : cts) : cts := . . .

Universes

Fixpoint univi (i : nat) : cts := . . .
Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 41/47

Allen’s PER semantics

Fixpoint univi (i : nat) (T T’ : CTerm) (eq : per) : Prop :=
match i with

| 0 ⇒ False
| S n ⇒
. . .
eq ⇐2⇒ (fun A A’ ⇒ {eqa : per, close (univi n) A A’ eqa})
. . .

end.

Has to be in Prop, otherwise we can only define a finite
number of universes

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 42/47

Allen’s PER semantics

Definition univ T T’ eq := {i : nat , univi i T T’ eq}.

Definition nuprl := close univ.

t1≡t2∈T = {eq : per , nuprl T T eq × eq t1 t2}

T≡T ′ = {eq : per , nuprl T T ′ eq}

Interesting fact: n:N → U(n) is a Nuprl type

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 43/47

What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 44/47

What we have to implement

{

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 45/47

Inference rules

We verified over 70 rules

The more rules the better

{ Expose more of the metatheory

{ Encode Mathematical knowledge

Gives us the basis to formally define a refiner

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 46/47

What next?

Adding new types

Adding new computations

Write a parser

Build a proof assistant

What about Mendler’s
recursive types?

Extend our formalization with
a library of definitions

Build a verified refiner

Type checker/type inferencer?

Implement Allen’s semantics
of Atoms

What can you do with it?

Vincent Rahli Towards a Formally Verified Proof Assistant July 10, 2016 47/47

