### **Proven-Correct Provers**

Vincent Rahli

(in collaboration with Mark Bickford (Cornell), Robert L. Constable (Cornell), Liron Cohen (Cornell), Ivana Vukotic (SnT), Marcus Völp (SnT), Brandon Bohrer (CMU), Ándre Platzer (CMU))

May 22, 2017

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得下 イヨト イヨト 二日

# What are we going to cover?

### Turning Nuprl into an Intuitionistic Type Theory

- Verified validity of inference rules
- Added Intuitionistic axioms (continuity and bar induction)
- Added named exception
- Added some sort of choice sequences

#### Verification of KeYmaera X's core

- Verified validity of inference rules
- Built a proof checker in Coq
- Enhanced a real analysis library

Proven-Correct Provers

# Nuprl?

Vincent Rahli

Proven-Correct Provers

< □ > < □ > < □ > < ≥ > < ≥ > < ≥ > ≥
 May 22, 2017

### Nuprl in a Nutshell

Similar to Coq and Agda

Extensional Constructive Type Theory with partial functions

Consistency proof in Coq: https://github.com/vrahli/NuprlInCoq

Cloud based & virtual machines: http://www.nuprl.org

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

# Extensional CTT with partial functions?

Extensional

$$(\forall a : A. f(a) = g(a) \in B) \rightarrow f = g \in A \rightarrow B$$

Constructive

 $(A \rightarrow A)$  true because inhabited by  $(\lambda x.x)$ 

Partial functions

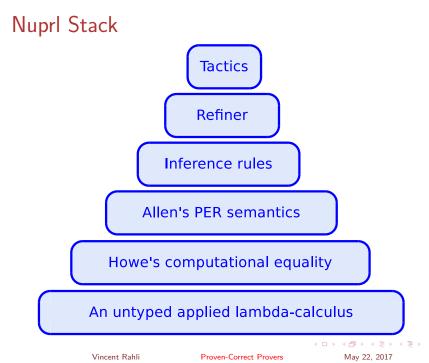
 $fix(\lambda x.x)$  inhabits  $\overline{\mathbb{N}}$ 

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得 トイラト イラト 二日



э

Nuprl Types—Martin-Löf's extensional type theory

**Equality**:  $a = b \in T$ 

**Dependent product**:  $a: A \rightarrow B[a]$ 

**Dependent sum**:  $a:A \times B[a]$ 

**Universe**:  $\mathbb{U}_i$ 

Proven-Correct Provers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 のへで

Nuprl Types—Less "conventional types"

**Partial**:  $\overline{A}$ 

**Disjoint union**: *A*+*B* 

**Intersection**:  $\cap a: A.B[a]$ 

**Union**:  $\cup a: A.B[a]$ 

**Subset**: {*a* : *A* | *B*[*a*]}

**Quotient**: T//E

Domain: Base

Simulation:  $t_1 \leqslant t_2$ (Void = 0  $\leqslant$  1 and Unit = 0  $\leqslant$  0)

**Bisimulation**:  $t_1 \sim t_2$ 

**Image**: Img(A, f)

**PER**: per(R)

Proven-Correct Provers

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

Nuprl Types—Image type (Nogin & Kopylov)

**Subset:** 
$$\{a : A \mid B[a]\} \triangleq \operatorname{Img}(a:A \times B[a], \pi_1)$$

**Union:**  $\cup a: A.B[a] \triangleq \operatorname{Img}(a: A \times B[a], \pi_2)$ 

Vincent Rahli

Proven-Correct Provers

May 22, 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Nuprl Types—PER type (inspired by Allen)

$$\texttt{Top}=\texttt{per}(\lambda\_,\_.0\leqslant 0)$$

$$halts(t) = \star \leq (let \ x := t \ in \ \star)$$

 $A \sqcap B = \cap x$ :Base.  $\cap y$ :halts(x).isaxiom(x, A, B)

$$T//E = \operatorname{per}(\lambda x, y.(x \in T) \sqcap (y \in T) \sqcap (E \times y))$$

Vincent Rahli

Proven-Correct Provers

May 22, 2017

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

Nuprl Types—Squashing

Proof erasure (1):  

$$\{\text{Unit} \mid T\}$$

$$\downarrow T \qquad per(\lambda x.\lambda y.\star \leq x \sqcap \star \leq y \sqcap T)$$

$$Img(T, \lambda\_.\star)$$

Proof irrelevance:TTT

 $per(\lambda x.\lambda y.x \in T \sqcap y \in T)$ 

**Proof erasure (2):**  $\Downarrow T$  Top//*T* 

 $per(\lambda . \lambda . T)$ 

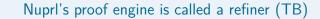
Vincent Rahli

Proven-Correct Provers

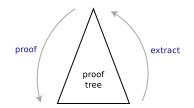
May 22, 2017

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

# Nuprl Refinements



- A generic goal directed reasoner:
  - **C** a rule interpreter
  - **C** a proof manager



Example of a rule

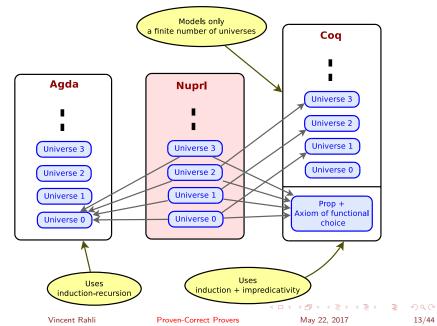
$$\begin{array}{l} H \vdash a: A \rightarrow B[a] \; \lfloor \texttt{ext} \; \lambda x. b \rfloor \\ \texttt{BY [lambdaFormation]} \\ H, x : A \vdash B[x] \; \lfloor \texttt{ext} \; b \rfloor \\ H \vdash A \in \mathbb{U}_i \; \lfloor \texttt{ext} \; \star \rfloor \end{array}$$

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

# Nuprl PER Semantics Implemented in Coq



13/44

### The More Inference Rules the Better!

#### All verified

### Expose more of the metatheory

#### Encode Mathematical knowledge

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

э

# Let's now see how far we got towards turning Nuprl into an intuitionistic type theory

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得 トイラト イラト 二日

### Intuitionism



- First act: Intuitionistic logic is based on our inner consciousness of time, which gives rise to the two-ity.
- As opposed to Platonism, it's about constructions in the mind and not objects that exist independently of us. There are no mathematical truths outside human thought.
- A statement is true when we have an appropriate construction, and false when no construction is possible.

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### Intuitionism



- Second act: New mathematical entities can be created through more or less freely proceeding sequences of mathematical entities.
- Also by defining new mathematical species (types, sets) that respect equality of mathematical entities.
- Gives rise to (never finished) choice sequences. Could be lawlike or lawless.
   Laws can be 1st order, 2nd order...
- The continuum is captured by choice sequences of nested rational intervals.

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### Intuitionism—The creative subject

Brouwer introduced procedures that depend on the mental activity of an idealized mathematician

$$\mathsf{CS}_1 \qquad \forall x. (\vdash_x A \lor \neg \vdash_x A)$$

$$\mathsf{CS}_2 \qquad \forall x, y. (\vdash_x A \implies \vdash_{x+y} A)$$

$$\mathsf{CS}_3 \qquad (\exists x. \vdash_n A) \iff A$$

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得下 イヨト イヨト 二日

### Intuitionism—a non-classical logic

- 1. Take p a predicate on numbers such that p(n) is decidable for all n but  $(\forall n : \mathbb{N}. p(n))$  is not known, e.g., GC.
- 2. Define the choice sequence  $\alpha$  (real number) as follows:

- 3. We have  $\alpha = 0 \iff \forall n : \mathbb{N}$ . p(n)
- 4. Therefore,  $\alpha = 0$  is not decidable

Proven-Correct Provers

May 22, 2017

イロト (過) (ヨト (ヨト) ヨー つくつ

### Intuitionism—lawless sequences

"Absolutely free choice sequences"—think of the 2nd order restriction that forbids 1st order restrictions

We'll write s for finite sequences and  $\alpha$  for lawless sequences. We write  $\alpha \in s$  if s is an initial segment of  $\alpha$ .  $\equiv$  stands for intensional equality. We write  $\overline{\alpha}x$  for the initial segment of  $\alpha$  of length x.

 $\mathsf{LS}_1 \qquad \forall s. \exists \alpha. \alpha \in s$ 

 $\mathsf{LS}_2 \qquad \forall \alpha, \beta. (\alpha \equiv \beta \lor \neg \alpha \equiv \beta)$ 

 $\mathsf{LS}_3 \qquad \mathsf{A}(\alpha) \ \Rightarrow \ \exists x. \forall \beta. (\overline{\alpha}x = \overline{\beta}x \ \Rightarrow \ \mathsf{A}(\beta))$ 

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### Intuitionism—continuity

What can we do with these sequences if they are never finished?

Brouwer's answer: one never needs the whole sequence.

His **continuity axiom for numbers** says that functions from sequences to numbers only need initial segments

$$\forall F : \mathbb{N}^{\mathcal{B}}. \ \forall f : \mathcal{B}. \ \exists n : \mathbb{N}. \ \forall g : \mathcal{B}. \ f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$$

From which his **uniform continuity theorem** follows: Let f be of type  $[\alpha, \beta] \to \mathbb{R}$ , then

 $CONT(f, \alpha, \beta) = \forall \epsilon > 0. \exists \delta > 0. \forall x, y : [\alpha, \beta]. |x - y| \leq \delta \rightarrow |f(x) - f(y)| \leq \epsilon$ 

Proven-Correct Provers

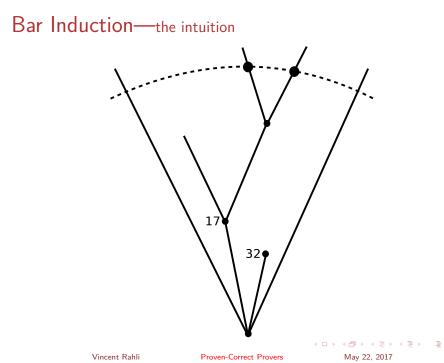
To prove his **uniform continuity theorem**, Brouwer also used the **Fan theorem**.

The fan theorem says that if for each branch  $\alpha$  of a binary tree T, a property A is true about some initial segment of  $\alpha$ , then **there is a uniform bound** on the depth at which A is met.

The fan theorem follows from bar induction.

Proven-Correct Provers

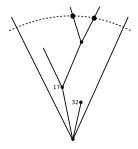
イロト 不得 トイラト イラト 二日



23/44

### Bar Induction—on decidable bars

$$\begin{array}{ll} H \vdash P(0,c) \\ & \text{BY [BID]} \\ & (\text{dec}) & H, n : \mathbb{N}, s : \mathbb{N}^{\mathbb{N}_n} \vdash B(n,s) \lor \neg B(n,s) \\ & (\text{bar}) & H, s : \mathbb{N}^{\mathbb{N}} \vdash \exists n : \mathbb{N}. \ B(n,s) \\ & (\text{imp}) & H, n : \mathbb{N}, s : \mathbb{N}^{\mathbb{N}_n}, m : B(n,s) \vdash P(n,s) \\ & (\text{ind}) & H, n : \mathbb{N}, s : \mathbb{N}^{\mathbb{N}_n}, x : (\forall m : \mathbb{N}. \ P((n+1), s \oplus_n m)) \vdash P(n,s) \end{array}$$



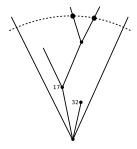
Proven-Correct Provers

May 22, 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

### Bar Induction—on monotone bars

$$\begin{array}{l} H \vdash \ensuremath{\mid} P(0,c) \\ & \mbox{BY [BIM]} \\ (\mbox{mon}) & H,n: \mathbb{N}, s: \mathbb{N}^{\mathbb{N}_n} \vdash \forall m: \mathbb{N}. \ B(n,s) \ \Rightarrow \ B(n+1,s\oplus_n m) \\ (\mbox{bar}) & H,s: \mathbb{N}^{\mathbb{N}} \vdash \ensuremath{\mid} \exists n: \mathbb{N}. \ B(n,s) \\ (\mbox{imp}) & H,n: \mathbb{N}, s: \mathbb{N}^{\mathbb{N}_n}, m: B(n,s) \vdash P(n,s) \\ (\mbox{ind}) & H,n: \mathbb{N}, s: \mathbb{N}^{\mathbb{N}_n}, x: (\forall m: \mathbb{N}. \ P((n+1), s\oplus_n m)) \vdash P(n,s) \end{array}$$



Proven-Correct Provers

May 22, 2017

<ロト < 回 > < 回 > < 回 > < 三 > - 三

Why the squashing operator?

As proved by Kreisel, Troelstra, and Escardó and Xu, continuity is false in Martin-Löf-like type theories when not ↓-squashed

### From which we derived: BIM is false when not J-squashed

Vincent Rahli

Proven-Correct Provers

May 22, 2017

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

### **Bar Induction**

We proved BID/BIM for sequences of numbers in Coq following Dummett's "standard" classical proof (easy)

We added "choice sequences" of numbers to Nuprl's model: all Coq functions from  $\mathbb N$  to  $\mathbb N$ 

What about sequences of terms?

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### **Bar Induction**

We proved BID/BIM for sequences of closed terms without names (in Coq following "standard" classical proof)

Harder because we had to turn our terms into a big W type: functions from  $\mathbb{N}$  to terms are now terms!

Why without names?

# u picks fresh names and we can't compute the collection of all names anymore

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017



Can we prove continuity for sequences of terms instead of  $\mathcal{B}$ ?

Can we prove BID/BIM on sequences of terms with names?

What does that give us? + proof-theoretic strength?

Can I hope to be able to prove BID in Coq/Agda without LEM/AC?

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### What Axioms Have We Validated So Far?

| Name                | Formula                                                                                                                                                                                                                                                                                                               | Where | Comments               |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------|
| WCP1,0              | $\neg \Pi F: \mathbb{N}^{\mathcal{B}}.\Pi f: \mathcal{B}.\Sigma n: \mathbb{N}.\Pi g: \mathcal{B}.f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$                                                                                                                                                                  | Nuprl |                        |
| WCP1,0              | $\Pi F:\mathbb{N}^{\mathcal{B}}.\Pi f:\mathcal{B}, \downarrow \Sigma n:\mathbb{N}. \ \Pi g:\mathcal{B}.f =_{\mathcal{B}_{n}} g \to F(f) =_{\mathbb{N}} F(g)$                                                                                                                                                          | Coq   | uses named exceptions  |
| WCP <sub>1,0↓</sub> | $\Pi F: \mathbb{N}^{\mathcal{B}}.\Pi f: \mathcal{B}.\downarrow \mathbf{\Sigma} n: \mathbb{N}.\Pi g: \mathcal{B}.f =_{\mathcal{B}_n} g \to F(f) =_{\mathbb{N}} F(g)$                                                                                                                                                   | Coq   | uses ⊥                 |
| WCP <sub>1,1</sub>  | $\neg \Pi P: \mathcal{B} \to \mathbb{P}^{\mathcal{B}}.(\Pi a: \mathcal{B}. \mathbf{\Sigma} b: \mathcal{B}. P(a, b)) \to \mathbf{\Sigma} c: \mathbb{N}^{\mathcal{B}}. \texttt{CONT}(c) \land \Pi a: \mathcal{B}.\texttt{shift}(c, a)$                                                                                  | Nuprl |                        |
| WCP1,1              | $ \exists \neg \Pi P: \mathcal{B} \to \mathbb{P}^{\mathcal{B}}.(\Pi a: \mathcal{B}. \Sigma b: \mathcal{B}. P(a, b)) \to \exists \Sigma c: \mathbb{N}^{\mathcal{B}}. \ \texttt{CONT}(c) \downarrow \land \ \Pi a: \mathcal{B}.\texttt{shift}(c, a) $                                                                   | ?     |                        |
| WCP1,11             | $\widehat{\gamma} \sqcap P: \mathcal{B} \to \mathbb{P}^{\mathcal{B}}.(\Pi_{a}: \mathcal{B}. \boldsymbol{\Sigma}_{b}: \mathcal{B}. P(a, b)) \to \boldsymbol{\downarrow} \boldsymbol{\Sigma}_{c}: \mathbb{N}^{\mathcal{B}}. \texttt{CONT}(c)_{\boldsymbol{\downarrow}} \land \Pi_{a}: \mathcal{B}.\texttt{shift}(c, a)$ | ?     |                        |
| AC <sub>0,0</sub>   | $\Pi P:\mathbb{N} \to \mathbb{P}^{\mathbb{N}}.(\Pi n:\mathbb{N}.\boldsymbol{\Sigma} m:\mathbb{N}.P(n,m)) \to \boldsymbol{\Sigma} f:\mathcal{B}.\Pi n:\mathcal{B}.P(n,f(n))$                                                                                                                                           | Nuprl |                        |
| AC <sub>0,01</sub>  | $ \Pi P: \mathbb{N} \to \mathbb{P}^{\mathbb{N}}.(\Pi n: \mathbb{N}. \downarrow \Sigma m: \mathbb{N}. P(n, m)) \to \downarrow \Sigma f: \mathcal{B}. \Pi n: \mathcal{B}. P(n, f(n)) $                                                                                                                                  | Nuprl |                        |
| AC0,01              | $ \Pi P: \mathbb{N} \to \mathbb{P}^{\mathbb{N}}.(\Pi n: \mathbb{N}, \downarrow \mathbf{\Sigma} m: \mathbb{N}. P(n, m)) \to \downarrow \mathbf{\Sigma} f: \mathcal{B}. \Pi n: \mathcal{B}. P(n, f(n)) $                                                                                                                | Coq   | uses classical logic   |
| AC1.0               | $ \Pi P: \mathcal{B} \to \mathbb{P}^{\mathbb{N}}.(\Pi f: \mathcal{B}. \mathbf{\Sigma} n: \mathbb{N}. P(f, n)) \to \mathbf{\Sigma} F: \mathbb{N}^{\mathcal{B}}. \Pi f: \mathcal{B}. P(f, F(f)) $                                                                                                                       | Nuprl |                        |
| AC1,0 J             | $ \Pi P: \mathcal{B} \to \mathbb{P}^{\mathbb{N}}.(\Pi f: \mathcal{B}. \downarrow \Sigma n: \mathbb{N}. P(f, n)) \to \downarrow \Sigma F: \mathbb{N}^{\mathcal{B}}. \Pi f: \mathcal{B}. P(f, F(f)) $                                                                                                                   | Nuprl |                        |
| AC1,01              | $\widehat{\gamma} \Pi P: \mathcal{B} \to \mathbb{P}^{\mathbb{N}}.(\Pi f: \mathcal{B}.\downarrow \Sigma n: \mathbb{N}.P(f, n)) \to \downarrow \Sigma F: \mathbb{N}^{\mathcal{B}}.\Pi f: \mathcal{B}.P(f, F(f))$                                                                                                        | ?     |                        |
| AC2,0               | $\mathbf{\Pi} P: \mathbb{N}^{\mathcal{B}} \to \mathbb{P}^{\mathbb{N}}.(\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}.\boldsymbol{\Sigma} n; T.P(f, n)) \to \boldsymbol{\Sigma} F: T^{(\mathbb{N}^{\mathcal{B}})}.\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}.P(f, F(f))$                                                      | Nuprl |                        |
| AC2,0               | $\neg (\mathbf{\Pi} P: \mathbb{N}^{\mathcal{B}} \to \mathbb{P}^{T}. (\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. \downarrow \mathbf{\Sigma} n: T. P(f, n)) \to \downarrow \mathbf{\Sigma} F: T^{(\mathbb{N}^{\mathcal{B}})}. \mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. P(f, F(f)))$                                     | Nuprl | contradicts continuity |
| AC2,01              | $\neg (\mathbf{\Pi} P: \mathbb{N}^{\mathcal{B}} \to \mathbb{P}^{\mathcal{T}}.(\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. \downarrow \mathbf{\Sigma} n: \mathcal{T}. P(f, n)) \to \downarrow \mathbf{\Sigma} F: \mathcal{T}^{(\mathbb{N}^{\mathcal{B}})}.\mathbf{\Pi} f: \mathbb{N}^{\mathcal{B}}. P(f, F(f)))$         | Nuprl | contradicts continuity |
| LEM                 | $\neg \Pi P : \mathbb{P} . P \lor \neg P$                                                                                                                                                                                                                                                                             | Nuprl |                        |
| LEM                 | $\neg \mathbf{\Pi} P : \mathbb{P} . \downarrow (P \lor \neg P)$                                                                                                                                                                                                                                                       | Nuprl |                        |
| LEM↓                | $\Pi P:\mathbb{P}.\downarrow(P \lor \neg P)$                                                                                                                                                                                                                                                                          | Coq   | uses classical logic   |
| MP                  | $ \Pi P: \mathbb{P}^{\mathbb{N}}.(\Pi n: \mathbb{N}.P(n) \lor \neg P(n)) \to (\neg \Pi n: \mathbb{N}.\neg P(n)) \to \mathbf{\Sigma} n: \mathbb{N}.P(n) $                                                                                                                                                              | Nuprl | uses LEM               |
| KS                  | $\neg \Pi A: \mathbb{P}. \mathbf{\Sigma} a: \mathcal{B}. ((\mathbf{\Sigma} x: \mathbb{N}. a(x) =_{\mathbb{N}} 1) \iff A)$                                                                                                                                                                                             | Nuprl | uses MP                |
| KSJ                 | $\neg \Pi A: \mathbb{P}. \downarrow \mathbf{\Sigma} a: \mathcal{B}. ((\mathbf{\Sigma} x: \mathbb{N}. a(x) =_{\mathbb{N}} 1) \iff A)$                                                                                                                                                                                  | Nuprl | uses MP                |
| KS↓                 | $ \Pi A: \mathbb{P}, \forall \boldsymbol{\Sigma} a: \mathcal{B}. ((\boldsymbol{\Sigma} x: \mathbb{N}, a(x) =_{\mathbb{N}} 1) \iff A ) $                                                                                                                                                                               | Coq   | uses classical logic   |
| BI                  | $WF(B) \to BAR_{\perp}(B) \to BASE(B, P) \to IND(P) \to \downarrow P(0, \bot)$                                                                                                                                                                                                                                        | Coq   | uses classical logic   |
| BIĎ                 | $WF(B) \to BAR_{\perp}(B) \to DEC(B) \to BASE(B, P) \to IND(P) \to P(0, \bot)$                                                                                                                                                                                                                                        | Nuprl | uses BI <sub>1</sub>   |
| BIM                 | $WF(B) \to BAR_{\downarrow}(B) \to MON(B) \to BASE(B, P) \to IND(P) \to \downarrow P(0, \bot)$                                                                                                                                                                                                                        | Nuprl | uses BI                |
| BIM                 | $\neg \Pi B, P: (\Pi n: \mathbb{N}.\mathbb{P}^{\mathcal{B}_n}).BAR_{\downarrow}(B) \to MON(B) \to BASE(B, P) \to IND(P) \to P(0, \bot)$                                                                                                                                                                               | Nuprl | contradicts continuity |

・ロト・西ト・モン・モー シック

# We verified the core of another prover: KeYmaera X

(some of that material comes from http://symbolaris.com/)
 (thanks to lvana for some of the material)

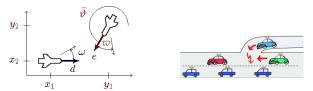
Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得 トイラト イラト 二日

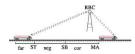
# KeYmaera—a theorem prover for hybrid systems



CPSs combine digital and physical components

Hybrid systems model discrete and continuous effects of CPSs

Combination of computation and control





Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

33/44

### KeYmaera—a theorem prover for hybrid systems

discrete dynamics specified using assignments

a := 1 (set acceleration to 1)

continuous dynamic specified using differential equations

x' = v, v' = a(derivative of position = velocity, derivative of velocity = acceleration)

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得 トイラト イラト 二日

### KeYmaera—example 1

| Example<br>uous car m | 1 Safety property of an uncontrolled<br>nodel   | contin- |
|-----------------------|-------------------------------------------------|---------|
|                       | init $\rightarrow$ [plant] (req)                | (5)     |
|                       | $init \equiv v \ge 0 \land A > 0$               | (6)     |
|                       | $plant \equiv p' = v, v' = A$                   | (7)     |
|                       | $req \equiv v \ge 0$                            | (8)     |
| - ev                  | $init \equiv v \ge 0 \land A > 0 \land p_0 = p$ | (9)     |
| alter-<br>native      | $\operatorname{req} \equiv p \ge p_0$           | (10)    |
|                       |                                                 |         |

| 35 - |     | Veloc<br>Positi |   |   |   |   | / |                 |
|------|-----|-----------------|---|---|---|---|---|-----------------|
| 30 - |     |                 |   | 1 |   |   | / |                 |
| 25 - |     |                 |   |   |   | / |   |                 |
| 20 - |     |                 |   |   | / |   |   |                 |
| 15 - |     |                 |   | / |   |   |   |                 |
| 10 - |     |                 | / |   |   |   |   |                 |
| 5 -  |     | /               |   |   |   |   |   |                 |
| 0    |     |                 | + |   | + |   |   | $\rightarrow t$ |
| 0    | 1 2 | 3               | 4 | 5 | 6 | 7 | 8 | 9               |

- Acceleration

40 ↑

Proven-Correct Provers

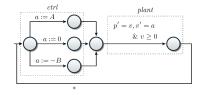
May 22, 2017

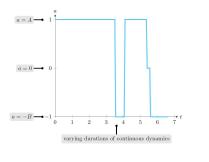
<ロト < 回 > < 回 > < 回 > < 三 > - 三

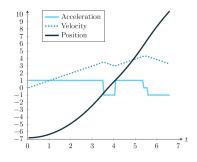
1

### KeYmaera—example 2

| Example 2 Safety property of a hybrid car mo         | del  |
|------------------------------------------------------|------|
| init $\rightarrow [(ctrl; plant)^*]$ (req)           | (11) |
| $\text{init} \equiv v \ge 0 \land A > 0 \land B > 0$ | (12) |
| $ctrl \equiv a := A \cup a := 0 \cup a := -B$        | (13) |
| $plant \equiv p' = v, v' = a \& v \ge 0$             | (14) |
| $req \equiv v \ge 0$                                 | (15) |







Vincent Rahli

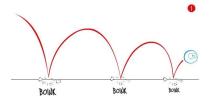
Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

36/44

э

### KeYmaera—example 3



 $(h' = v, v' = -g\&h \ge 0; if (h = 0) then v := -cv fi)*$ (g: gravity force; c: damping factor)

Vincent Rahli

Proven-Correct Provers

May 22, 2017

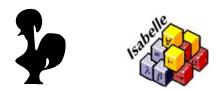
イロト 不得 トイラト イラト 二日

### KeYmaera—verified cores

Core implemented in Scala

- ► dL
- Axioms
- Uniform substitution
- Renaming

### Verified using Coq and Isabelle



Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

3

### KeYmaera—uniform substitution?

concrete axioms instead of schemata

$$[x := e]p(x) \iff p(e)$$

instantiated using substitutions

$$[x := e] x \ge 0 \iff e \ge 0$$

# all side conditions are handled by a **uniform admissibility condition** on substitutions

#### e.g., x shouldn't get captured

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得 トイラト イラト 二日

### KeYmaera—verified cores

### We formalized in Coq:

- dL's syntax
- dL's static and dynamic semantics
- dL's axioms
- uniform substitution
- renaming
- proof checker

# Brandon Bohrer found a bug in the implementation of renaming!

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### KeYmaera—Picard-Lindelöf

1 gap: The real analysis library we used doesn't provide the Picard-Lindelöf theorem

Existence and uniqueness of solutions to first-order equations with initial condition

$$\begin{cases} y'(t) = f(t, y(t)) \\ y(0) = y_0 \end{cases}$$

where f is Lipschitz continuous

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

### KeYmaera—Faà di Bruno

We thought we would have to compute the  $n^{th}$ -derivatives of standard operations, such as **composition** 

Chain rule for 1st derivative:

$$(f \circ g)' = (f' \circ g) \cdot g'$$

Faà di Bruno generalizes the chain rule (1855–1857):

$$(f \circ g)^{(n)} = \sum_{n=1k_1 + \dots + nk_n} \frac{n!}{k_1! \cdots k_n!} \cdot f^{(k_1 + \dots + k_n)}(g) \cdot \prod_{j=1}^n (\frac{g^{(j)}}{j!})^{k_j}$$

Vincent Rahli

Proven-Correct Provers

May 22, 2017

### KeYmaera—Faà di Bruno

Faà di Bruno generalizes the chain rule:

$$(f \circ g)^{(n)} = \sum_{n=1 k_1 + \dots + n k_n} \frac{n!}{k_1! \cdots k_n!} \cdot f^{(k_1 + \dots + k_n)}(g) \cdot \prod_{j=1}^n (\frac{g^{(j)}}{j!})^{k_j}$$

So far, we only proved **McKiernan's formula** (see: "On the nth Derivative of Composite Functions"):

$$(f \circ g)^{(n)} = \sum_{r=1}^{n} f^{(r)}(g) \cdot \sum_{s=0}^{r} \frac{(-1)^{r-s}}{s!(r-s)!} g^{r-s} (g^{s})^{(n)}$$

Vincent Rahli

Proven-Correct Provers

May 22, 2017

イロト 不得下 イヨト イヨト 二日

### KeYmaera—Faà di Bruno

Many hand-written proofs

### See Johnson's "The Curious History of Faà di Bruno's Formula"

Formally verified?

Vincent Rahli

Proven-Correct Provers

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶</li>
 May 22, 2017

э