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What are we going to cover?

Turning Nuprl into an Intuitionistic Type Theory

§ Verified validity of inference rules

§ Added Intuitionistic axioms (continuity and bar induction)

§ Added named exception

§ Added some sort of choice sequences

Verification of KeYmaera X’s core

§ Verified validity of inference rules

§ Built a proof checker in Coq

§ Enhanced a real analysis library
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Nuprl?
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Nuprl in a Nutshell

Similar to Coq and Agda

Extensional Constructive Type Theory with partial functions

Consistency proof in Coq:
https://github.com/vrahli/NuprlInCoq

Cloud based & virtual machines: http://www.nuprl.org
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Extensional CTT with partial functions?

Extensional

p@a : A. f paq “ gpaq P Bq Ñ f “ g P A Ñ B

Constructive

pA Ñ Aq true because inhabited by pλx .xq

Partial functions

fixpλx .xq inhabits N
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Nuprl Stack
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Nuprl Types—Martin-Löf’s extensional type theory

Equality: a “ b P T

Dependent product: a:A Ñ Bras

Dependent sum: a:Aˆ Bras

Universe: Ui
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Nuprl Types—Less “conventional types”

Partial: A

Disjoint union: A`B

Intersection: Xa:A.Bras

Union: Ya:A.Bras

Subset: ta : A | Brasu

Quotient: T {{E

Domain: Base

Simulation: t1 ď t2

(Void “ 0 ď 1 and Unit “ 0 ď 0)

Bisimulation: t1 „ t2

Image: ImgpA, f q

PER: perpRq
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Nuprl Types—Image type (Nogin & Kopylov)

Subset: ta : A | Brasu fi Imgpa:Aˆ Bras, π1q

Union: Ya:A.Bras fi Imgpa:Aˆ Bras, π2q
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Nuprl Types—PER type (inspired by Allen)

Top “ perpλ_, _.0 ď 0q

haltsptq “ ‹ ď plet x :“ t in ‹q

A[ B “ Xx :Base.X y :haltspxq.isaxiompx , A, Bq

T {{E “ perpλx , y .px P T q [ py P T q [ pE x yqq
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Nuprl Types—Squashing

Proof erasure (1):

ÓT
tUnit | T u

ImgpT , λ_.‹q
perpλx .λy .‹ ď x [ ‹ ď y [ T q

Proof irrelevance:
åT T {{True perpλx .λy .x P T [ y P T q

Proof erasure (2):
ÛT Top{{T perpλ_.λ_.T q
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Nuprl Refinements

Nuprl’s proof engine is called a refiner (TB)

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Example of a rule

H $ a:A Ñ Bras text λx .bu
BY [lambdaFormation]

H , x : A $ Brx s text bu
H $ A P Ui text ‹u
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Nuprl PER Semantics Implemented in Coq
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The More Inference Rules the Better!

All verified

Expose more of the metatheory

Encode Mathematical knowledge
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Let’s now see how far we got towards

turning Nuprl into an intuitionistic

type theory
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Intuitionism

§ First act: Intuitionistic logic is based
on our inner consciousness of time,
which gives rise to the two-ity.

§ As opposed to Platonism, it’s about
constructions in the mind and not
objects that exist independently of us.
There are no mathematical truths
outside human thought.

§ A statement is true when we have an
appropriate construction, and false
when no construction is possible.
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Intuitionism

§ Second act: New mathematical
entities can be created through more
or less freely proceeding sequences
of mathematical entities.

§ Also by defining new mathematical
species (types, sets) that respect
equality of mathematical entities.

§ Gives rise to (never finished) choice
sequences. Could be lawlike or lawless.
Laws can be 1st order, 2nd order. . .

§ The continuum is captured by choice
sequences of nested rational intervals.
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Intuitionism—The creative subject

Brouwer introduced procedures that depend on the mental
activity of an idealized mathematician

CS1 @x .p$x A _  $x Aq

CS2 @x , y .p$x A ñ $x`y Aq

CS3 pDx . $n Aq ðñ A
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Intuitionism—a non-classical logic

1. Take p a predicate on numbers such that ppnq is decidable
for all n but p@n : N. ppnqq is not known, e.g., GC.

2. Define the choice sequence α (real number) as follows:

αp0q αp1q αp2q αp3q αp4q αp5q αp6q αp7q ¨ ¨ ¨
“ 2´0 “ 2´1 “ 2´2 “ 2´3 “ 2´4 “ 2´4 “ 2´4 “ 2´4 ¨ ¨ ¨

pp0q pp1q pp2q pp3q pp4q  pp5q _ _

3. We have α “ 0 ðñ @n : N. ppnq

4. Therefore, α “ 0 is not decidable
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Intuitionism—lawless sequences

“Absolutely free choice sequences”—think of the 2nd order
restriction that forbids 1st order restrictions

We’ll write s for finite sequences and α for lawless sequences.
We write α P s if s is an initial segment of α.

” stands for intensional equality.
We write αx for the initial segment of α of length x .

LS1 @s.Dα.α P s

LS2 @α, β.pα ” β _  α ” βq

LS3 Apαq ñ Dx .@β.pαx “ βx ñ Apβqq
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Intuitionism—continuity

What can we do with these sequences
if they are never finished?

Brouwer’s answer: one never needs the whole sequence.

His continuity axiom for numbers says that functions from
sequences to numbers only need initial segments

@F : NB. @f : B. Dn : N. @g : B. f “Bn
g Ñ F pf q “N F pgq

From which his uniform continuity theorem follows: Let f

be of type rα, βs Ñ R, then

CONTpf , α, βq
“ @ǫ ą 0.Dδ ą 0.@x , y : rα, βs. |x ´ y | ď δ Ñ |f pxq ´ f pyq| ď ǫ
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Intuitionism—bar induction

To prove his uniform continuity theorem, Brouwer also used
the Fan theorem.

The fan theorem says that if for each branch α of a binary tree
T , a property A is true about some initial segment of α, then
there is a uniform bound on the depth at which A is met.

The fan theorem follows from bar induction.
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Bar Induction—the intuition
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Bar Induction—on decidable bars

H $ Pp0, cq
BY [BID]

pdecq H, n : N, s : NNn $ Bpn, sq _  Bpn, sq
pbarq H, s : NN $ ÓDn : N. Bpn, sq
pimpq H, n : N, s : NNn , m : Bpn, sq $ Ppn, sq
pindq H, n : N, s : NNn , x : p@m : N. Pppn ` 1q, s ‘n mqq $ Ppn, sq
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Bar Induction—on monotone bars

H $ åPp0, cq
BY [BIM]

pmonq H, n : N, s : NNn $ @m : N. Bpn, sq ñ Bpn ` 1, s ‘n mq
pbarq H, s : NN $ åDn : N. Bpn, sq
pimpq H, n : N, s : NNn , m : Bpn, sq $ Ppn, sq
pindq H, n : N, s : NNn , x : p@m : N. Pppn ` 1q, s ‘n mqq $ Ppn, sq
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Why the squashing operator?

As proved by Kreisel, Troelstra, and Escardó and Xu,
continuity is false in Martin-Löf-like type theories

when not å-squashed

ΠF :NB.Πf :B.åDn : N. Πg :B.f “Bn
g Ñ F pf q “N F pgq

 ΠF :NB.Πf :B.Dn : N. Πg :B.f “Bn
g Ñ F pf q “N F pgq

From which we derived:
BIM is false when not å-squashed
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Bar Induction

We proved BID/BIM for sequences of numbers in Coq
following Dummett’s “standard” classical proof (easy)

We added “choice sequences” of numbers to Nuprl’s model:
all Coq functions from N to N

What about sequences of terms?
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Bar Induction

We proved BID/BIM for sequences of closed terms without
names (in Coq following “standard” classical proof)

Harder because we had to turn our terms into a big W type:
functions from N to terms are now terms!

Why without names?

ν picks fresh names and we can’t compute the collection of all
names anymore
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Questions

Can we prove continuity for sequences of terms instead of B?

Can we prove BID/BIM on sequences of terms with names?

What does that give us? “ proof-theoretic strength?

Can I hope to be able to prove BID in Coq/Agda without
LEM/AC?
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What Axioms Have We Validated So Far?
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Name Formula Where Comments

WCP1,0  ΠF :NB
.Πf :B.Σn:N.Πg :B.f “Bn

g Ñ Fpf q “N Fpgq Nuprl

WCP1,0å
ΠF :NB

.Πf :B.åΣn:N. Πg :B.f “Bn
g Ñ Fpf q “N Fpgq Coq uses named exceptions

WCP1,0Ó
ΠF :NB

.Πf :B.ÓΣn:N.Πg :B.f “Bn
g Ñ Fpf q “N Fpgq Coq uses K

WCP1,1  ΠP:B Ñ P
B

.pΠa:B.Σb:B.Ppa, bqq Ñ Σc:NB
.CONTpcq ^ Πa:B.shiftpc, aq Nuprl

WCP1,1å
? ΠP:B Ñ P

B
.pΠa:B.Σb:B.Ppa, bqq Ñ åΣc:NB

. CONTpcqå ^ Πa:B.shiftpc, aq ?

WCP1,1Ó
? ΠP:B Ñ P

B
.pΠa:B.Σb:B.Ppa, bqq Ñ ÓΣc:NB

.CONTpcqÓ ^ Πa:B.shiftpc, aq ?

AC0,0 ΠP:NÑ P
N

.pΠn:N.Σm:N.Ppn, mqq Ñ Σf :B.Πn:B.Ppn, f pnqq Nuprl

AC0,0å
ΠP:NÑ P

N
.pΠn:N.åΣm:N. Ppn, mqq Ñ åΣf :B. Πn:B.Ppn, f pnqq Nuprl

AC0,0Ó
ΠP:NÑ P

N
.pΠn:N.ÓΣm:N.Ppn, mqq Ñ ÓΣf :B.Πn:B.Ppn, f pnqq Coq uses classical logic

AC1,0 ΠP:B Ñ P
N

.pΠf :B.Σn:N.Ppf , nqq Ñ ΣF :NB
.Πf :B.Ppf , Fpf qq Nuprl

AC1,0å
ΠP:B Ñ P

N
.pΠf :B.åΣn:N. Ppf , nqq Ñ åΣF :NB

. Πf :B.Ppf , Fpf qq Nuprl

AC1,0Ó
? ΠP:B Ñ P

N
.pΠf :B.ÓΣn:N.Ppf , nqq Ñ ÓΣF :NB

.Πf :B.Ppf , Fpf qq ?

AC2,0 ΠP:NB Ñ P
N

.pΠf :NB
.Σn:T .Ppf , nqq Ñ ΣF :T pNBq

.Πf :NB
.Ppf , Fpf qq Nuprl

AC2,0å
 pΠP:NB Ñ P

T
.pΠf :NB

.åΣn:T . Ppf , nqq Ñ åΣF :T pNBq
. Πf :NB

.Ppf , Fpf qqq Nuprl contradicts continuity

AC2,0Ó
 pΠP:NB Ñ P

T
.pΠf :NB

.åΣn:T . Ppf , nqq Ñ ÓΣF :T pNBq
.Πf :NB

.Ppf , Fpf qqq Nuprl contradicts continuity

LEM  ΠP:P.P _  P Nuprl
LEMå  ΠP:P.åpP _  Pq Nuprl

LEMÓ ΠP:P.ÓpP _  Pq Coq uses classical logic

MP ΠP:PN.pΠn:N.Ppnq _  Ppnqq Ñ p Πn:N. Ppnqq Ñ Σn:N.Ppnq Nuprl uses LEMÓ
KS  ΠA:P.Σa:B.ppΣx :N.apxq “N 1q ðñ Aq Nuprl uses MP
KSå  ΠA:P.åΣa:B.ppΣx :N.apxq “N 1q ðñ Aq Nuprl uses MP

KSÓ ΠA:P.ÓΣa:B.ppΣx :N.apxq “N 1q ðñ Aq Coq uses classical logic

BIÓ WFpBq Ñ BARÓpBq Ñ BASEpB, Pq Ñ INDpPq Ñ ÓPp0, ‚q Coq uses classical logic

BID WFpBq Ñ BARÓpBq Ñ DECpBq Ñ BASEpB, Pq Ñ INDpPq Ñ Pp0, ‚q Nuprl uses BIÓ
BIMå WFpBq Ñ BARåpBq Ñ MONpBq Ñ BASEpB, Pq Ñ INDpPq Ñ åPp0, ‚q Nuprl uses BIÓ
BIM  ΠB, P:pΠn:N.P

Bn q.BARåpBq Ñ MONpBq Ñ BASEpB, Pq Ñ INDpPq Ñ Pp0, ‚q Nuprl contradicts continuity
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We verified the core of another

prover: KeYmaera X

(some of that material comes from http://symbolaris.com/)
(thanks to Ivana for some of the material)
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KeYmaera—a theorem prover for hybrid systems

CPSs combine digital and physical components

Hybrid systems model discrete and continuous effects of CPSs

Combination of computation and control
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KeYmaera—a theorem prover for hybrid systems

discrete dynamics specified using assignments

a :“ 1
(set acceleration to 1)

continuous dynamic specified using differential equations

x 1 “ v , v 1 “ a

(derivative of position “ velocity,
derivative of velocity “ acceleration)
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KeYmaera—example 1
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KeYmaera—example 2
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KeYmaera—example 3

ph1 “ v , v 1 “ ´g&h ě 0; if ph “ 0q then v :“ ´cv fiq˚

(g : gravity force; c : damping factor)
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KeYmaera—verified cores

Core implemented in Scala

§ dL

§ Axioms

§ Uniform substitution

§ Renaming

Verified using Coq and Isabelle
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KeYmaera—uniform substitution?

concrete axioms instead of schemata

rx :“ esppxq ðñ ppeq

instantiated using substitutions

rx :“ esx ě 0 ðñ e ě 0

all side conditions are handled by a
uniform admissibility condition on substitutions

e.g., x shouldn’t get captured
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KeYmaera—verified cores

We formalized in Coq:

§ dL’s syntax

§ dL’s static and dynamic semantics

§ dL’s axioms

§ uniform substitution

§ renaming

§ proof checker

Brandon Bohrer found a bug
in the implementation of renaming!
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KeYmaera—Picard-Lindelöf

1 gap: The real analysis library we used doesn’t provide the
Picard-Lindelöf theorem

Existence and uniqueness of solutions to first-order equations
with initial condition

"

y 1ptq“ f pt, yptqq
yp0q “ y0

where f is Lipschitz continuous
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KeYmaera—Faà di Bruno

We thought we would have to compute the nth-derivatives of
standard operations, such as composition

Chain rule for 1st derivative:

pf ˝ gq1 “ pf 1 ˝ gq ¨ g 1

Faà di Bruno generalizes the chain rule (1855–1857):

pf ˝ gqpnq “
ÿ

n“1k1`¨¨¨`nkn

n!

k1! ¨ ¨ ¨ kn!
¨ f pk1`¨¨¨`knqpgq ¨

n
ź

j“1

p
g pjq

j!
qkj
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KeYmaera—Faà di Bruno

Faà di Bruno generalizes the chain rule:

pf ˝ gqpnq “
ÿ

n“1k1`¨¨¨`nkn

n!

k1! ¨ ¨ ¨ kn!
¨ f pk1`¨¨¨`knqpgq ¨

n
ź

j“1

p
g pjq

j!
qkj

So far, we only proved McKiernan’s formula
(see: “On the nth Derivative of Composite Functions”):

pf ˝ gqpnq “
n

ÿ

r“1

f prqpgq ¨
r

ÿ

s“0

p´1qr´s

s!pr ´ sq!
g r´spg sqpnq
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KeYmaera—Faà di Bruno

Many hand-written proofs

See Johnson’s “The Curious History of Faà di Bruno’s
Formula”

Formally verified?
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