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Goals

What we strive for:

A platform to develop provably correct programs.

Our current interest:

Specify, verify, and generate distributed systems using formal
tools. (As part of the CRASH project funded by DARPA.)

{ Today applications are distributed over many machines.

{ Even critical applications used by governments, banks,
armies, etc.

Vincent Rahli May 30, 2017 3/35



Goals

Correctness?

How can we make sure that these applications are correct?

Distributed programs are hard to specify, implement, and
reason about.

{ We need to tolerate failures.

{ It is hard to test all possible scenarios.

{ State space explosion using model checking.

{ Model checking often done on abstractions of the code
rather than on the code itself.

We use a proof assistant (Nuprl) that implements a
constructive type theory.
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Achievements

{ A logic of events implemented in Nuprl.

{ Specified, verified, and generated consensus protocols
(e.g., Paxos).

{ Aneris: a total ordered broadcast service [RSR+12].

{ ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of
Aneris [SRR+12].

{ Improved performance without introducing bugs [RBA13].

{ We get decent performance.

Vincent Rahli May 30, 2017 5/35



Table of contents

ShadowDB

Aneris: a provably correct ordered broadcast service

Evaluation

Conclusion

Vincent Rahli May 30, 2017 6/35



The Big Picture
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Primary-Backup Replication
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Primary-Backup Replication
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Primary-Backup Replication
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State Machine Replication
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Aneris
A synthesized and verified ordered broadcast service.

ensures among other things (properties of atomic broadcast):
◮ agreement: for any slot s, if decisions (r1, s) and (r2, s)

get delivered then r1 = r2.
◮ validity: if decision (r , s) is delivered then r was

requested.
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Methodology

Vincent Rahli May 30, 2017 13/35



Methodology

Vincent Rahli May 30, 2017 14/35



Methodology

Vincent Rahli May 30, 2017 15/35



Methodology

Vincent Rahli May 30, 2017 16/35



Methodology

Vincent Rahli May 30, 2017 17/35



Methodology

Vincent Rahli May 30, 2017 18/35



Methodology
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EML, LoE, and GPM

In LoE [BC08, Bic09, BCR12], we specify distributed programs
by combining event handlers (similar to Orc) which are all
implementable by simple processes [BCG10]:

{ base:

{ parallel composition: A || B λe.A(e) ∪ B(e)
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EML, LoE, and GPM
{ application:

{ buffer:

{ delegation:

Vincent Rahli May 30, 2017 21/35



EventML
2/3-Consensus:

. .
c l a s s TT Repl i ca = NewVoters >>= Vote r ; ;
main TT Repl i ca @ l o c s

Paxos Synod:

. . .
c l a s s Leade r = SpawnF i r s tScout

| | ( ( Leade rPropose | | Leade rAdopted ) >>= Commander )
| | ( Leade rPreempted >>= Scout ) ; ;

main Leade r @ l d r s | | Acceptor @ ac cpt s

Aneris replicas:

. . .
c l a s s R e p l i c aS t a t e =

Stat e (\ . ( i n i t s t a t e ,{} ) ,
o u t t r p r o po s e i n l , swap’base ,
o u t t r p r opo s e i n r , b c a s t ’ b a s e ,
o u t t r o n d e c i s i o n , d e c i s i o n ’ b a s e ) ; ;

c l a s s R e p l i c a = (\ . snd ) o Re p l i c aS t a t e ; ;
main Re p l i c a @ r e p s
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Code Synthesis

Optimized version of the Aneris process:

aneris_main-program-opt(Cid;Op;clients;eq_Cid;pax_procs;reps;tt_procs) ==

λi.case bag-deq-member(λa,b.if a=2 b then inl · else (inr · );i;reps)

of inl() =>

fix((λmk-hdf,s.

(inl (λv.let x,y = v

in case name_eq(x;[swap]) ∧
b

...

of inl(x1) =>

let v1 ← ... aneris_propose_inl(Cid;Op;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

case name_eq(x;[bcast]) ∧
b

...

of inl(x1) =>

let v1 ← ... aneris_propose_inr(Cid;Op;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

case name_eq(x;[decision]) ∧
b

...

of inl(x1) =>

let v1 ← ... aneris_on_decision(Cid;Op;...;...;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

let v1 ← s

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>) )))

<aneris_init_state(Cid;Op), []>

| inr() =>

inr ·
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Verification
We use causal induction and inductive logical forms (ILFs).
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Verification
E.g., logical explanation of why decisions are made by Paxos:

∀[Cmd:{T:Type| valueall-type(T)} ]. ∀[accpts,ldrs:bag(Id)]. ∀[ldrs_uid:Id → Z]. ∀[reps:bag(Id)].

∀[es:EO’]. ∀[e:E]. ∀[i:Id]. ∀[p:Proposal].

(decision’send(Cmd) i p ∈ pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps)(e)

⇐⇒ loc(e) ∈ ldrs

∧ (header(e) = ‘‘pax_mb p2b‘‘)

∧ (msgtype(e) = P2b)

∧ i ∈ reps

∧ (∃e’:{e’:E| e’ ≤loc e }

∃z:PValue

((((header(e’) = [propose])

∧ (msgtype(e’) = Proposal)

∧ ((↑ (proposal_slot (proposal_cmd LeaderStateFun(e’))))

∧ (¬↑ (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

∧ (z = (mk_pvalue (proposal_slot LeaderStateFun(e’)) msgval(e’))))

∨ ((header(e’) = ‘‘pax_mb adopted‘‘)

∧ (msgtype(e’) = pax_mb_AState(Cmd))

∧ ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

∧ z ∈ map(λsp.(mk_pvalue (astate_ballot msgval(e’)) sp);

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

(pmax(ldrs_uid) (astate_pvals msgval(e’))))))

∧ (no commander_output(accpts;reps) z@Loc

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

between e’ and e)

∧ ((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

∧ ((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

∧ ((pval_ballot z) = (p2b_ballot msgval(e)))

∧ (#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts))

∧ (p = (pval_proposal z)))))

decision of p sent to i at e

e happens at a leader location

the decision is triggered by a p2b message

the recipient of the decision message is a replica

proposal p is extracted from a pvalue z

either pvalue z is made from a proposal and current ballot

or either pvalue z received in an adopted message or in leader state

this decision is the first output of the commander

the acceptor that sent the p2b message has accepted pvalue z

the commander has received a p2b messages from a majority of acceptors
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Verification
EventML LoE GPM opt. GPM correctness correctness
spec. spec. prog. prog. properties proofs

CLK 79N (1H) 590N 452N 249N 73N (1H) 1A/3M (2H)
2/3 Consensus 646N (4H) 1398N 1343N 1752N 122N (1H) 8A/6M (3D)
Paxos-Synod 1729N (2D) 2673N 2625N 3165N 97N (1H) 24A/75M (3W)
Aneris 820N (2D) 1434N 1352N 1245N 418N (1H) 0A/22M (1W)

That was possible thanks:

◮ to Nuprl’s large library of definitions and facts,

◮ to the powerful logic of events theory developed in Nuprl
by Mark Bickford and Robert Constable over the past few
years (especially to the delegation combinator), and

◮ to the collaboration between the PRL and system groups
at Cornell.
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Evaluation

Setup:

◮ Quad-core 3.6 Ghz Xeons with 4GB running RH 5.8

◮ Gigabit switch

◮ Various embedded and in-memory DBs

We evaluate:

◮ Aneris (the broadcast service)

◮ ShadowDB
◮ Micro-benchmark (1 table, single-row update)
◮ TPC-C (9 tables, 5 transaction types, 92% updates)
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Evaluation - Aneris
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Evaluation - ShadowDB - Micro-benchmark
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Evaluation - ShadowDB - TPC-C
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Even More Trustworthy Distributed Systems
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Summary

{ Provably correct distributed protocols.

{ Aneris in used by the replicated database ShadowDB that
itself will be used by Nuprl.

{ Decent performance.

{ Example that our methodology to specify (using small
human manageable components) and verify (ILFs + causal
induction) protocols works.
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