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Goals

What we strive for:

A platform to develop provably correct programs.

Our current interest:

Specify, verify, and generate distributed systems using formal
tools. (As part of the CRASH project funded by DARPA.)

2 Today applications are distributed over many machines.

2 Even critical applications used by governments, banks,
armies, etc.
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Goals
Correctness?
How can we make sure that these applications are correct?
Distributed programs are hard to specify, implement, and
reason about.
2 We need to tolerate failures.
2 It is hard to test all possible scenarios.
2 State space explosion using model checking.
2 Model checking often done on abstractions of the code

rather than on the code itself.

We use a proof assistant (Nuprl) that implements a

constructive type theory.
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Achievements
2 A logic of events implemented in Nuprl.

2 Specified, verified, and generated consensus protocols
(e.g., Paxos).

2 Aneris: a total ordered broadcast service [RSRT12].

2 ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of

Aneris [SRR*12].

> Improved performance without introducing bugs [RBA13].

2 We get decent performance.
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Primary-Backup Replication

_— Shadowds

T -

( partition

— <
N
N ¢
\ Primary Backup /
Pool of spare
—< | Jpchines -

T~ _

<&
/ ™ N
( )
. N ( N
( Y, )
\\\ Primary Backup2 > \ Primary2 Backup )

\¥X N A // o \ /4"/

Vincent Rahli May 30, 2017 9/35



Primary-Backup Replication
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State Machine Replication
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Aneris
A synthesized and verified ordered broadcast service.
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ensures among other things (properties of atomic broadcast):
» agreement: for any slot s, if decisions (r1,s) and (r2,s)
get delivered then r1 = r2.
» validity: if decision (r,s) is delivered then r was
requested.
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Methodology
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EML, LoE, and GPM

In LoE [BCO08, Bic09, BCR12], we specify distributed programs
by combining event handlers (similar to Orc) which are all
implementable by simple processes [BCG10]:

‘ extract information \
\ associated with event '

> parallel composition: A || B \e.A(e) U B(e)

2 base:
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EML, LoE, and GPM

2 application:
(-0)
2 buffer:
(ouffer )
2 delegation:
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EventML

2/3-Consensus:

class TT_Replica = NewVoters >>= Voter;;
main TT_Replica @ locs

Paxos Synod:

class Leader = SpawnFirstScout
|| ((LeaderPropose || LeaderAdopted) >>= Commander)
|| (LeaderPreempted >>= Scout) ;;

main Leader @ Idrs || Acceptor @ accpts

Aneris replicas:

class ReplicaState =
State(\-.(init_state ,{}),
out_tr propose.inl, swap'base,
out_tr propose_inr, bcast'base,
out_tr on_decision, decision'base);;
class Replica = (\-.snd) o ReplicaState
main Replica @ reps
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Code Synthesis

Optimized version of the Aneris process:

aneris_main-program-opt (Cid;0p;clients;eq_Cid;pax_procs;reps;tt_procs) ==
Ai.case bag-deq-member(Aa,b.if a=2 b then inl . else (inr - );i;reps)
of in1() =>
fix((Amk-hdf,s.
(inl (Av.let x,y = v
in case name_eq(x;[swapl) Ay
of inl(x1) =>

let vl <— ... aneris_propose_inl(Cid;0p;.. . )
in let x,y = vl in let v2 <— y @ [] in <mk- hdf <x, y>, v2>
| inr(y1) =>
case name_eq(x;[bcast]) Ay ...
of inl(x1) =>
let vl <— ... aneris_propose_ 1nr(CldOp,...,...;... )
in let x,y = vl in let v2 <— y @ [] in <mk-hdf <x, y>, v2>
| inr(y1) =>
case name_eq(x;[decision]) Ap ...
of inl(x1l) =>
let vl «— ... aneris_on_decision(Cid; [0) PP RS |
in let x,y = vl in let v2 <— y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

let vl <— s

in let x,y = vl in let v2 <— y @ [] in <mk-hdf <x, y>, v2>) )))
<aneris_init_state(Cid;0p), [1>
| inr() =>
inr -
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Verification

We use causal induction and inductive logical forms (ILFs).
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Verification
E.g., logical explanation of why decisions are made by Paxos:

V[Cnd:{T:Type| valueall-type(T)} 1. V[accpts,ldrs:bag(Id)]. V[ldrs_uid:Id — Z]. V[reps:bag(Id)].
Vles:EQ’]. V[e:E]. V[i:Id]. V[p:Proposall.

[(decision’send(Cmd) i p € pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps) (e) decision of p sent to i at e |
<> [loc(e) € 1drs e happens at a leader location |
ﬂ (header (e) = *‘pax_mb p2b**) the decision is triggered by a p2b message l
(msgtype(e) = P2b)
AN i € reps the recipient of the decision message is a replica
A (Fe’:{e’:E| e’ <loce }
[(3z:Pvalue proposal p is extracted from a pvalue z |

((((neader(e’) = [proposel)
Al (msgtype(e’) = Proposal)
Al ((+ (proposal_siot (proposal_cmd LeaderStateFun(e’))))

either pvalue z is made from a proposal and current ballot

A (=1 (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))
(z = (nk_pvalue (proposal slot LeaderStateFun(e’)) msgval(e’))))
((header(e’) = ‘‘pax_mb adopted‘‘) or either pvalue z received in an adopted message or in leader state
A (msgtype(e’) = pax_mb_AState(Cnd))
A ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))
(A z € map(Asp.(mk_pvalue (astate_ballot msgval(e’)) sp);

<>

<

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))
L (pmax(1drs_uid) (astate_pvals msgval(e’)))))) b,
A [(no commander_output (accpts;reps) z@Loc this decision is the first output of the commander

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))
letween e’ and e)

A [((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

A |((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

A (((pval_ballot z) = (p2b_ballot msgval(e))) the acceptor that sent the p2b message has accepted pvalue z
A [(#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts)) |
A (p = (pval_proposal z))))) the commander has received a p2b messages from a majority of acceptors
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Verification

EventML |LoE |GPM |opt. GPM|correctness|correctness
spec. spec. |prog. |prog. properties |proofs
CLK 79N (1H) |590N |452N |249N 73N (1H) [1A/3M (2H)
2/3 Consensus|646N (4H) [1398N|1343N|1752N 122N (1H)|8A/6M (3D)
Paxos-Synod |1729N (2D)|2673N|[2625N|3165N  |97N (1H) [24A/75M (3W)
Aneris 820N (2D) |1434N|1352N|1245N  |418N (1H)|0A/22M (1W)

That was possible thanks:

» to Nuprl's large library of definitions and facts,

» to the powerful logic of events theory developed in Nuprl
by Mark Bickford and Robert Constable over the past few
years (especially to the delegation combinator), and

» to the collaboration between the PRL and system groups
at Cornell.
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Evaluation

Setup:
» Quad-core 3.6 Ghz Xeons with 4GB running RH 5.8
» Gigabit switch
» Various embedded and in-memory DBs

We evaluate:

» Aneris (the broadcast service)
» ShadowDB

» Micro-benchmark (1 table, single-row update)
» TPC-C (9 tables, 5 transaction types, 92% updates)

Vincent Rahli May 30, 2017 28/35



Evaluation - Aneris
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Evaluation - ShadowDB - Micro-benchmark
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Evaluation - ShadowDB - TPC-C
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Even More Trustworthy Distributed Systems

Crash-tolerant Byzantine fault-tolerant probabilistic systems
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Summary

2 Provably correct distributed protocols.

2 Aneris in used by the replicated database ShadowDB that
itself will be used by Nuprl.

2 Decent performance.
> Example that our methodology to specify (using small

human manageable components) and verify (ILFs + causal
induction) protocols works.
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