Developing Correctly Replicated Databases
Using Formal Tools

Nicolas Schiper, Vincent Rahli, Robbert Van Renesse,
Mark Bickford, and Robert L. Constable

May 30, 2017

Vincent Rahli May 30, 2017 1/35

PRL & System Groups

PRL group
Mark Bickford Robert L. Constable Richard Eaton Vincent Rahli

System group
Robbert van Renesse

Vincent Rahli May 30, 2017 2/35

Goals

What we strive for:

A platform to develop provably correct programs.

Our current interest:

Specify, verify, and generate distributed systems using formal
tools. (As part of the CRASH project funded by DARPA.)

2 Today applications are distributed over many machines.

2 Even critical applications used by governments, banks,
armies, etc.

Vincent Rahli May 30, 2017 3/35

Goals
Correctness?
How can we make sure that these applications are correct?
Distributed programs are hard to specify, implement, and
reason about.
2 We need to tolerate failures.
2 It is hard to test all possible scenarios.
2 State space explosion using model checking.
2 Model checking often done on abstractions of the code

rather than on the code itself.

We use a proof assistant (Nuprl) that implements a

constructive type theory.
Vincent Rahli May 30, 2017 4/35

Achievements
2 A logic of events implemented in Nuprl.

2 Specified, verified, and generated consensus protocols
(e.g., Paxos).

2 Aneris: a total ordered broadcast service [RSRT12].

2 ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of

Aneris [SRR*12].

> Improved performance without introducing bugs [RBA13].

2 We get decent performance.

Vincent Rahli May 30, 2017 5/35

Table of contents

ShadowDB

Aneris: a provably correct ordered broadcast service

Evaluation

Conclusion

Vincent Rahli May 30, 2017 6/35

The Big Picture

~"ShadowDB

£ \9} \
Databases
w request
replica 1 replica 2 replica f+1
AN Aneris f+1 Aneris rdplicas
| 3f+1 2/3-Consensus replicas
E '] f+1 Paxos Ig‘aders
[2f+1 Paxos/acceptors
\
AN /
AN /
AN

Vincent Rahli May 30, 2017 7/35

Primary-Backup Replication

=3
¢ 2 (4) execute
\ (2) execute I
! \2} & commit T 3)T & commit T
\ (1) sentT

(S, j (6) answer

LHL/ Primary (5) ACK(T) Backup

Vincent Rahli May 30, 2017

Pool of spare
machines

8/35

Primary-Backup Replication

_— Shadowds

T -

(partition

— <
N
N ¢
\ Primary Backup /
Pool of spare
—< | Jpchines -

T~ _

<&
/ ™ N
()
. N (N
(Y,)
\\\ Primary Backup2 > \ Primary2 Backup)

\¥X N A // o \ /4"/

Vincent Rahli May 30, 2017 9/35

Primary-Backup Replication

ShadowDB

h e

/
{

\‘ Primary Backup

reconﬁguratlon @

\ Aneris
| E
\ E £
\ \ Il \

%

\

Vincent Rahli May 30, 2017 10/35

State Machine Replication

_~~ ShadowDB .
request <

Databases + Aneris interface

///'%,
{ &)
&%Zf replica 1 replica 2 replica f+1
e |
5&1 w
| L[Ji \\ Aneris
Il il il

Vincent Rahli May 30, 2017 11/35

Aneris
A synthesized and verified ordered broadcast service.

ﬁneris Paxos Synod \

Replicas E
I I
£\ =\

2/3 Consensus
- /

ensures among other things (properties of atomic broadcast):
» agreement: for any slot s, if decisions (r1,s) and (r2,s)
get delivered then r1 = r2.
» validity: if decision (r,s) is delivered then r was
requested.

Vincent Rahli May 30, 2017 12/35

(r,4)

Z-%
! \\‘2) request(r)

$ =&

decision(r,4)
replica 1 replica f+1
ri|r2|r3 rifr2

12345 12345

Methodology

manual informal hlgh level specification | ; manual

EventML Nuprl A
correctness
properties

\ 4

specification

Runtime

Vincent Rahli May 30, 2017 13/35

Methodology

manual informal high-level specification |

EventML Nuprl A
correctness
¥ properties

LoE specification

untrusted GPM code

specification

Runtime

Vincent Rahli May 30, 2017 14/35

Methodology

level specification]

manual informal hig

EventML
correctness
properties

A

specification

Runtime f

SML
interpreter

f
Ocaml Lisp
interpreter translator

Vincent Rahli May 30, 2017 15/35

Methodology

manual informal high-level specification |

EventML
correctness
properties

A

specification

automated
proof

satisfiablity proof

Runtime f

SML
interpreter

f
Ocaml Lisp
interpreter translator

Vincent Rahli May 30, 2017 16/35

Methodology

manual informal high-level specification
EventML Nuprl
Y a LoE specification
specification E;/;l:iill\ll;
b untrusted GPM code

Runtime f

SML
interpreter

Ocaml
interpreter

Lisp
translator

Vincent Rahli

y
_Iogiga_l ILF correctness
simplifier properties
automated manual
proof proof
c d

satisfiablity proof W

May 30, 2017

17/35

Methodology

manual informal high-level specification
EventML Nuprl i A
|°9'§a| ILF correctness
\ 4 a LoE specification simplifier properties
specification EventML
compiler,
b
untrusted GPM code Zutomated manual
correct proof proof

c d

satisfiablity proof M

Runtime f

SML
interpreter

Ocaml
interpreter

Lisp
translator

Vincent Rahli May 30, 2017 18/35

Methodology

manual informal high-level specification
EventML Nuprl i A
|°9'§a| ILF correctness
\ 4 a LoE specification simplifier properties
specification EventML
compiler,
b
untrusted GPM code Zutomated manual
correct - proof proof
c d

Runtime f

SML
interpreter

Ocaml
interpreter

Lisp
translator

Vincent Rahli

optimizer) [Satisfiablity proof M

May 30, 2017

19/35

EML, LoE, and GPM

In LoE [BCO08, Bic09, BCR12], we specify distributed programs
by combining event handlers (similar to Orc) which are all
implementable by simple processes [BCG10]:

‘ extract information \
\ associated with event '

> parallel composition: A || B \e.A(e) U B(e)

2 base:

Vincent Rahli May 30, 2017 20/35

EML, LoE, and GPM

2 application:
(-0)
2 buffer:
(ouffer)
2 delegation:

Vincent Rahli May 30, 2017 21/35

EventML

2/3-Consensus:

class TT_Replica = NewVoters >>= Voter;;
main TT_Replica @ locs

Paxos Synod:

class Leader = SpawnFirstScout
|| ((LeaderPropose || LeaderAdopted) >>= Commander)
|| (LeaderPreempted >>= Scout) ;;

main Leader @ Idrs || Acceptor @ accpts

Aneris replicas:

class ReplicaState =
State(\-.(init_state ,{}),
out_tr propose.inl, swap'base,
out_tr propose_inr, bcast'base,
out_tr on_decision, decision'base);;
class Replica = (\-.snd) o ReplicaState
main Replica @ reps

Vincent Rahli May 30, 2017

22/35

Code Synthesis

Optimized version of the Aneris process:

aneris_main-program-opt (Cid;0p;clients;eq_Cid;pax_procs;reps;tt_procs) ==
Ai.case bag-deq-member(Aa,b.if a=2 b then inl . else (inr -);i;reps)
of in1() =>
fix((Amk-hdf,s.
(inl (Av.let x,y = v
in case name_eq(x;[swapl) Ay
of inl(x1) =>

let vl <— ... aneris_propose_inl(Cid;0p;.. .)
in let x,y = vl in let v2 <— y @ [] in <mk- hdf <x, y>, v2>
| inr(y1) =>
case name_eq(x;[bcast]) Ay ...
of inl(x1) =>
let vl <— ... aneris_propose_ 1nr(CldOp,...,...;...)
in let x,y = vl in let v2 <— y @ [] in <mk-hdf <x, y>, v2>
| inr(y1) =>
case name_eq(x;[decision]) Ap ...
of inl(x1l) =>
let vl «— ... aneris_on_decision(Cid; [0) PP RS |
in let x,y = vl in let v2 <— y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

let vl <— s

in let x,y = vl in let v2 <— y @ [] in <mk-hdf <x, y>, v2>))))
<aneris_init_state(Cid;0p), [1>
| inr() =>
inr -

Vincent Rahli May 30, 2017 23/35

Verification

We use causal induction and inductive logical forms (ILFs).

Vincent Rahli

decides (rl,s) decides (r2,s)

ILF instance

ILF instance

States + Inputs

ILF instance

Inconstistent
states or inputs

May 30, 2017

24/35

Verification
E.g., logical explanation of why decisions are made by Paxos:

V[Cnd:{T:Type| valueall-type(T)} 1. V[accpts,ldrs:bag(Id)]. V[ldrs_uid:Id — Z]. V[reps:bag(Id)].
Vles:EQ’]. V[e:E]. V[i:Id]. V[p:Proposall.

[(decision’send(Cmd) i p € pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps) (e) decision of p sent to i at e |
<> [loc(e) € 1drs e happens at a leader location |
ﬂ (header (e) = *‘pax_mb p2b**) the decision is triggered by a p2b message l
(msgtype(e) = P2b)
AN i € reps the recipient of the decision message is a replica
A (Fe’:{e’:E| e’ <loce }
[(3z:Pvalue proposal p is extracted from a pvalue z |

((((neader(e’) = [proposel)
Al (msgtype(e’) = Proposal)
Al ((+ (proposal_siot (proposal_cmd LeaderStateFun(e’))))

either pvalue z is made from a proposal and current ballot

A (=1 (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))
(z = (nk_pvalue (proposal slot LeaderStateFun(e’)) msgval(e’))))
((header(e’) = ‘‘pax_mb adopted‘‘) or either pvalue z received in an adopted message or in leader state
A (msgtype(e’) = pax_mb_AState(Cnd))
A ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))
(A z € map(Asp.(mk_pvalue (astate_ballot msgval(e’)) sp);

<>

<

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))
L (pmax(1drs_uid) (astate_pvals msgval(e’)))))) b,
A [(no commander_output (accpts;reps) z@Loc this decision is the first output of the commander

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))
letween e’ and e)

A [((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

A |((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

A (((pval_ballot z) = (p2b_ballot msgval(e))) the acceptor that sent the p2b message has accepted pvalue z
A [(#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts)) |
A (p = (pval_proposal z))))) the commander has received a p2b messages from a majority of acceptors

Vincent Rahli May 30, 2017 25/35

Verification

EventML |LoE |GPM |opt. GPM|correctness|correctness
spec. spec. |prog. |prog. properties |proofs
CLK 79N (1H) |590N |452N |249N 73N (1H) [1A/3M (2H)
2/3 Consensus|646N (4H) [1398N|1343N|1752N 122N (1H)|8A/6M (3D)
Paxos-Synod |1729N (2D)|2673N|[2625N|3165N |97N (1H) [24A/75M (3W)
Aneris 820N (2D) |1434N|1352N|1245N |418N (1H)|0A/22M (1W)

That was possible thanks:

» to Nuprl's large library of definitions and facts,

» to the powerful logic of events theory developed in Nuprl
by Mark Bickford and Robert Constable over the past few
years (especially to the delegation combinator), and

» to the collaboration between the PRL and system groups
at Cornell.

Vincent Rahli

May 30, 2017 26/35

Table of Contents

Evaluation

Vincent Rahli May 30, 2017 27/35

Evaluation

Setup:
» Quad-core 3.6 Ghz Xeons with 4GB running RH 5.8
» Gigabit switch
» Various embedded and in-memory DBs

We evaluate:

» Aneris (the broadcast service)
» ShadowDB

» Micro-benchmark (1 table, single-row update)
» TPC-C (9 tables, 5 transaction types, 92% updates)

Vincent Rahli May 30, 2017 28/35

Evaluation - Aneris

Interpreted —+— Inter.-Opt. -a— Compiled —x—

1000 f F o,
E 100 ? Pt
= 100 | g
N E
§ 10 3 il
j 1 ; 1 1 1
1 10 100 1000 10000

Delivered messages per second

Vincent Rahli May 30, 2017 29/35

Evaluation - ShadowDB - Micro-benchmark

ShadowDB-PBR —+—- ShadowDB-SMR —v—
MySQL-repl. -=— H2-stdalone —e—

H2-repl. —a—

100 ¢
g
E 0l
>, g : A
E 1t i—;—j;—:l’: et
3 :

0.1 L - - -

0 2K 4K oK 8K

Committed transactions per second

Vincent Rahli May 30, 2017

30/35

Evaluation - ShadowDB - TPC-C

ShadowDB-PBR —+- ShadowDB-SMR —v-
MySQL-repl. =~ H2-stdalone

100
b 3
: L
~ /-_ e ad utl
> 10t %7 *
c F +
3 [AT
3 [+

1 1 1 1 1

0 200 400 600 800 1000

Committed TPC-C transactions per second

Vincent Rahli May 30, 2017

31/35

Table of Contents

Conclusion

Vincent Rahli May 30, 2017 32/35

Even More Trustworthy Distributed Systems

Crash-tolerant Byzantine fault-tolerant probabilistic systems

manual informal high-level specifi »(manual
.
EventML Nuprl i y
logical ILF correctness
\ 4 a LOE specification simplifier properties
specification EventML
compiler,
b
untrusted GPM code Zutomated anual
correct proof proof
@
c d

Runtime f

optimizer) [Satisfiablity proof M
SML
interpreter

£ f,
Ocaml Lisp
interpreter translator
Scala interface?

Vincent Rahli May 30, 2017 33/35

Summary

2 Provably correct distributed protocols.

2 Aneris in used by the replicated database ShadowDB that
itself will be used by Nuprl.

2 Decent performance.
> Example that our methodology to specify (using small

human manageable components) and verify (ILFs + causal
induction) protocols works.

Vincent Rahli May 30, 2017 34/35

References |

@ Mark Bickford and Robert L. Constable.

Formal foundations of computer security.
In NATO Science for Peace and Security Series, D: Information and Communication Security, volume 14,
pages 29-52. 2008

@ Mark Bickford, Robert Constable, and David Guaspari.
Generating event logics with higher-order processes as realizers.

Technical report, Cornell University, 2010.

@ Mark Bickford, Robert L. Constable, and Vincent Rahli.

Logic of events, a framework to reason about distributed systems.
In Languages for Distributed Algorithms Workshop, 2012

@ Mark Bickford.
Component specification using event classes.
In Component-Based Software Engineering, 12th Int’l Symp., volume 5582 of LNCS, pages 140-155
Springer, 2009
@ Vincent Rahli, Mark Bickford, and Abhishek Anand.
Formal program optimization in Nuprl using computational equivalence and partial types.
In ITP’13, volume 7998 of LNCS, pages 261-278. Springer, 2013.
@ Vincent Rahli, Nicolas Schiper, Robbert Van Renesse, Mark Bickford, and Robert L. Constable.

A diversified and correct-by-construction broadcast service.
In The 2nd Int’'| Workshop on Rigorous Protocol Engineering (WRIPE), October 2012

@ Nicolas Schiper, Vincent Rahli, Robbert Van Renesse, Mark Bickford, and Robert L. Constable.

ShadowDB: A replicated database on a synthesized consensus core.
In Eighth Workshop on Hot Topics in System Dependability, HotDep'12, 2012

Vincent Rahli May 30, 2017 35/35

	ShadowDB
	Aneris: a provably correct ordered broadcast service
	Evaluation
	Conclusion

