
Developing Correctly Replicated Databases

Using Formal Tools

Nicolas Schiper, Vincent Rahli, Robbert Van Renesse,
Mark Bickford, and Robert L. Constable

May 30, 2017

Vincent Rahli May 30, 2017 1/35

PRL & System Groups

PRL group
Mark Bickford Robert L. Constable Richard Eaton Vincent Rahli

System group
Robbert van Renesse Nicolas Schiper

Vincent Rahli May 30, 2017 2/35

Goals

What we strive for:

A platform to develop provably correct programs.

Our current interest:

Specify, verify, and generate distributed systems using formal
tools. (As part of the CRASH project funded by DARPA.)

{ Today applications are distributed over many machines.

{ Even critical applications used by governments, banks,
armies, etc.

Vincent Rahli May 30, 2017 3/35

Goals

Correctness?

How can we make sure that these applications are correct?

Distributed programs are hard to specify, implement, and
reason about.

{ We need to tolerate failures.

{ It is hard to test all possible scenarios.

{ State space explosion using model checking.

{ Model checking often done on abstractions of the code
rather than on the code itself.

We use a proof assistant (Nuprl) that implements a
constructive type theory.

Vincent Rahli May 30, 2017 4/35

Achievements

{ A logic of events implemented in Nuprl.

{ Specified, verified, and generated consensus protocols
(e.g., Paxos).

{ Aneris: a total ordered broadcast service [RSR+12].

{ ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of
Aneris [SRR+12].

{ Improved performance without introducing bugs [RBA13].

{ We get decent performance.

Vincent Rahli May 30, 2017 5/35

Table of contents

ShadowDB

Aneris: a provably correct ordered broadcast service

Evaluation

Conclusion

Vincent Rahli May 30, 2017 6/35

The Big Picture

Vincent Rahli May 30, 2017 7/35

Primary-Backup Replication

Vincent Rahli May 30, 2017 8/35

Primary-Backup Replication

Vincent Rahli May 30, 2017 9/35

Primary-Backup Replication

Vincent Rahli May 30, 2017 10/35

State Machine Replication

Vincent Rahli May 30, 2017 11/35

Aneris
A synthesized and verified ordered broadcast service.

ensures among other things (properties of atomic broadcast):
◮ agreement: for any slot s, if decisions (r1, s) and (r2, s)

get delivered then r1 = r2.
◮ validity: if decision (r , s) is delivered then r was

requested.
Vincent Rahli May 30, 2017 12/35

Methodology

Vincent Rahli May 30, 2017 13/35

Methodology

Vincent Rahli May 30, 2017 14/35

Methodology

Vincent Rahli May 30, 2017 15/35

Methodology

Vincent Rahli May 30, 2017 16/35

Methodology

Vincent Rahli May 30, 2017 17/35

Methodology

Vincent Rahli May 30, 2017 18/35

Methodology

Vincent Rahli May 30, 2017 19/35

EML, LoE, and GPM

In LoE [BC08, Bic09, BCR12], we specify distributed programs
by combining event handlers (similar to Orc) which are all
implementable by simple processes [BCG10]:

{ base:

{ parallel composition: A || B λe.A(e) ∪ B(e)

Vincent Rahli May 30, 2017 20/35

EML, LoE, and GPM
{ application:

{ buffer:

{ delegation:

Vincent Rahli May 30, 2017 21/35

EventML
2/3-Consensus:

. .
c l a s s TT Repl i ca = NewVoters >>= Vote r ; ;
main TT Repl i ca @ l o c s

Paxos Synod:

. . .
c l a s s Leade r = SpawnF i r s tScout

| | ((Leade rPropose | | Leade rAdopted) >>= Commander)
| | (Leade rPreempted >>= Scout) ; ;

main Leade r @ l d r s | | Acceptor @ ac cpt s

Aneris replicas:

. . .
c l a s s R e p l i c aS t a t e =

Stat e (\ . (i n i t s t a t e ,{}) ,
o u t t r p r o po s e i n l , swap’base ,
o u t t r p r opo s e i n r , b c a s t ’ b a s e ,
o u t t r o n d e c i s i o n , d e c i s i o n ’ b a s e) ; ;

c l a s s R e p l i c a = (\ . snd) o Re p l i c aS t a t e ; ;
main Re p l i c a @ r e p s

Vincent Rahli May 30, 2017 22/35

Code Synthesis

Optimized version of the Aneris process:

aneris_main-program-opt(Cid;Op;clients;eq_Cid;pax_procs;reps;tt_procs) ==

λi.case bag-deq-member(λa,b.if a=2 b then inl · else (inr ·);i;reps)

of inl() =>

fix((λmk-hdf,s.

(inl (λv.let x,y = v

in case name_eq(x;[swap]) ∧
b

...

of inl(x1) =>

let v1 ← ... aneris_propose_inl(Cid;Op;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

case name_eq(x;[bcast]) ∧
b

...

of inl(x1) =>

let v1 ← ... aneris_propose_inr(Cid;Op;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

case name_eq(x;[decision]) ∧
b

...

of inl(x1) =>

let v1 ← ... aneris_on_decision(Cid;Op;...;...;...;...;...;...;...) ...

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>

| inr(y1) =>

let v1 ← s

in let x,y = v1 in let v2 ← y @ [] in <mk-hdf <x, y>, v2>))))

<aneris_init_state(Cid;Op), []>

| inr() =>

inr ·

Vincent Rahli May 30, 2017 23/35

Verification
We use causal induction and inductive logical forms (ILFs).

Vincent Rahli May 30, 2017 24/35

Verification
E.g., logical explanation of why decisions are made by Paxos:

∀[Cmd:{T:Type| valueall-type(T)}]. ∀[accpts,ldrs:bag(Id)]. ∀[ldrs_uid:Id → Z]. ∀[reps:bag(Id)].

∀[es:EO’]. ∀[e:E]. ∀[i:Id]. ∀[p:Proposal].

(decision’send(Cmd) i p ∈ pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps)(e)

⇐⇒ loc(e) ∈ ldrs

∧ (header(e) = ‘‘pax_mb p2b‘‘)

∧ (msgtype(e) = P2b)

∧ i ∈ reps

∧ (∃e’:{e’:E| e’ ≤loc e }

∃z:PValue

((((header(e’) = [propose])

∧ (msgtype(e’) = Proposal)

∧ ((↑ (proposal_slot (proposal_cmd LeaderStateFun(e’))))

∧ (¬↑ (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

∧ (z = (mk_pvalue (proposal_slot LeaderStateFun(e’)) msgval(e’))))

∨ ((header(e’) = ‘‘pax_mb adopted‘‘)

∧ (msgtype(e’) = pax_mb_AState(Cmd))

∧ ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

∧ z ∈ map(λsp.(mk_pvalue (astate_ballot msgval(e’)) sp);

update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

(pmax(ldrs_uid) (astate_pvals msgval(e’))))))

∧ (no commander_output(accpts;reps) z@Loc

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

between e’ and e)

∧ ((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

∧ ((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

∧ ((pval_ballot z) = (p2b_ballot msgval(e)))

∧ (#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts))

∧ (p = (pval_proposal z)))))

decision of p sent to i at e

e happens at a leader location

the decision is triggered by a p2b message

the recipient of the decision message is a replica

proposal p is extracted from a pvalue z

either pvalue z is made from a proposal and current ballot

or either pvalue z received in an adopted message or in leader state

this decision is the first output of the commander

the acceptor that sent the p2b message has accepted pvalue z

the commander has received a p2b messages from a majority of acceptors

Vincent Rahli May 30, 2017 25/35

Verification
EventML LoE GPM opt. GPM correctness correctness
spec. spec. prog. prog. properties proofs

CLK 79N (1H) 590N 452N 249N 73N (1H) 1A/3M (2H)
2/3 Consensus 646N (4H) 1398N 1343N 1752N 122N (1H) 8A/6M (3D)
Paxos-Synod 1729N (2D) 2673N 2625N 3165N 97N (1H) 24A/75M (3W)
Aneris 820N (2D) 1434N 1352N 1245N 418N (1H) 0A/22M (1W)

That was possible thanks:

◮ to Nuprl’s large library of definitions and facts,

◮ to the powerful logic of events theory developed in Nuprl
by Mark Bickford and Robert Constable over the past few
years (especially to the delegation combinator), and

◮ to the collaboration between the PRL and system groups
at Cornell.

Vincent Rahli May 30, 2017 26/35

Table of Contents

ShadowDB

Aneris: a provably correct ordered broadcast service

Evaluation

Conclusion

Vincent Rahli May 30, 2017 27/35

Evaluation

Setup:

◮ Quad-core 3.6 Ghz Xeons with 4GB running RH 5.8

◮ Gigabit switch

◮ Various embedded and in-memory DBs

We evaluate:

◮ Aneris (the broadcast service)

◮ ShadowDB
◮ Micro-benchmark (1 table, single-row update)
◮ TPC-C (9 tables, 5 transaction types, 92% updates)

Vincent Rahli May 30, 2017 28/35

Evaluation - Aneris

1

10

100

1000

1 10 100 1000 10000

L
at
en
cy

(m
s)

Delivered messages per second

Interpreted –+– Inter.-Opt. – – Compiled –×–

Vincent Rahli May 30, 2017 29/35

Evaluation - ShadowDB - Micro-benchmark

0.1

1

10

100

0 2K 4K 6K 8K

L
at
en
cy

(m
s)

Committed transactions per second

ShadowDB-PBR –+– ShadowDB-SMR – –
H2-repl. – – MySQL-repl. – – H2-stdalone –•–

Vincent Rahli May 30, 2017 30/35

Evaluation - ShadowDB - TPC-C

1

10

100

0 200 400 600 800 1000

L
at
en
cy

(m
s)

Committed TPC-C transactions per second

ShadowDB-PBR –+– ShadowDB-SMR – –
MySQL-repl. – – H2-stdalone –•–

Vincent Rahli May 30, 2017 31/35

Table of Contents

ShadowDB

Aneris: a provably correct ordered broadcast service

Evaluation

Conclusion

Vincent Rahli May 30, 2017 32/35

Even More Trustworthy Distributed Systems

Vincent Rahli May 30, 2017 33/35

Summary

{ Provably correct distributed protocols.

{ Aneris in used by the replicated database ShadowDB that
itself will be used by Nuprl.

{ Decent performance.

{ Example that our methodology to specify (using small
human manageable components) and verify (ILFs + causal
induction) protocols works.

Vincent Rahli May 30, 2017 34/35

References I

Mark Bickford and Robert L. Constable.

Formal foundations of computer security.
In NATO Science for Peace and Security Series, D: Information and Communication Security, volume 14,
pages 29–52. 2008.

Mark Bickford, Robert Constable, and David Guaspari.

Generating event logics with higher-order processes as realizers.
Technical report, Cornell University, 2010.

Mark Bickford, Robert L. Constable, and Vincent Rahli.

Logic of events, a framework to reason about distributed systems.
In Languages for Distributed Algorithms Workshop, 2012.

Mark Bickford.

Component specification using event classes.
In Component-Based Software Engineering, 12th Int’l Symp., volume 5582 of LNCS, pages 140–155.
Springer, 2009.

Vincent Rahli, Mark Bickford, and Abhishek Anand.

Formal program optimization in Nuprl using computational equivalence and partial types.
In ITP’13, volume 7998 of LNCS, pages 261–278. Springer, 2013.

Vincent Rahli, Nicolas Schiper, Robbert Van Renesse, Mark Bickford, and Robert L. Constable.

A diversified and correct-by-construction broadcast service.
In The 2nd Int’l Workshop on Rigorous Protocol Engineering (WRiPE), October 2012.

Nicolas Schiper, Vincent Rahli, Robbert Van Renesse, Mark Bickford, and Robert L. Constable.

ShadowDB: A replicated database on a synthesized consensus core.
In Eighth Workshop on Hot Topics in System Dependability, HotDep’12, 2012.

Vincent Rahli May 30, 2017 35/35

	ShadowDB
	Aneris: a provably correct ordered broadcast service
	Evaluation
	Conclusion

