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Nuprl Environment

Distributed

Runs in the cloud

Structure editor

Tactic language: Classic ML

Shared library
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Nuprl Stack
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Nuprl Types

Based on Martin-Löf’s extensional type theory

Equality: a = b ∈ T

Dependent product: a:A → B[a]

Dependent sum: a:A× B[a]

Universe: Ui
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Nuprl Types

Less “conventional types”

Partial: A

Disjoint union: A+B

Intersection: ∩a:A.B[a]

Union: ∪a:A.B[a]

Subset: {a : A | B[a]}

Quotient: T//E

Domain: Base

Simulation: t1 4 t2

Bisimulation: t1 ∼ t2

Image: Img(A, f )

PER: per(R)
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Nuprl Types

Image type (Nogin & Kopylov)

Subset: {a : A | B[a]} , Img(a:A× B[a], π1)

Union: ∪a:A.B[a] , Img(a:A× B[a], π2)
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Nuprl Types

PER type (extensional)

Void = per(λ , .1 4 0)

Top = per(λ , .0 4 0)
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Nuprl Types

PER type (extensional)

Void = per(λ , .1 4 0)

Top = per(λ , .0 4 0)

halts(t) = Ax 4 (let x := t in Ax)

A ⊓ B = ∩x :Base. ∩ y :halts(x).isaxiom(x ,A,B)

T//E = per(λx , y .(x ∈ T ) ⊓ (y ∈ T ) ⊓ (E x y ))
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Nuprl Types

Squashing

{Unit | T}

Img(T , λ .Ax)
per(λx .λy .Ax 4 x ⊓ Ax 4 y ⊓ T )

T//True per(λx .λy .x ∈ T ⊓ y ∈ T )

∩x :¬T .Void per(λ .λ .T )
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Nuprl Types

Recursive types

{ Used to have Mendler’s recursive types.

{ Still consistent?

{ Indexed W types from bar induction.
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Nuprl Types

Rich type language facilitates specification

Makes type-checking harder
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Refinements

Nuprl’s proof engine is called a refiner

A generic goal directed reasoner:

{ a rule interpreter

{ a proof manager

Example of a rule

H ⊢ a:A → B[a] ⌊ext λx .b⌋
BY [lambdaFormation]

H, x : A ⊢ B[x ] ⌊ext b⌋
H ⊢ A ∈ Ui ⌊ext Ax⌋
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Recent projects

What evidence do we have that (distributed)
systems are correct?

What evidence do we have that our proofs
are correct?
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Recent projects

What evidence do we have that (distributed)
systems are correct?

Platform to develop and reason about
distributed systems.

What evidence do we have that our proofs
are correct?

Building and verifying Nuprl in Coq.
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Distributed systems are ubiquitous
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Distributed Systems

What evidence do we have that these
systems are correct?
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Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing
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Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing

Model checking
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Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing

Model checking

Theorem proving
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Distributed Systems

Distributed systems are hard to specify,
implement and verify.

We need to tolerate failures.

It is hard to test all possible scenarios.

State space explosion using model checking.

Model checking often done on abstractions of the code rather
than on the code itself.
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Distributed Systems

We use Nuprl as a specification,
programming and verification language.

Programming interface:
a constructive specification language called EventML

Verification methodology
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Distributed Systems

A logic of events implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable
replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.
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Distributed Systems — Big picture
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Distributed Systems — Message sequence diagram

See: Paxos Made Moderately Complex
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Distributed Systems — Combinators
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Distributed Systems — Combinators
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Distributed Systems — Combinators
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Distributed Systems — Combinators
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Distributed Systems — Combinators
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Distributed Systems — Verification

We use causal induction + inductive logical forms (ILFs) +
state machine invariants
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Distributed Systems — Verification

We use causal induction + inductive logical forms (ILFs) +
state machine invariants
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Distributed Systems — EventML

EventML for Paxos Synod:

. . .
agent Leade r = SpawnF i r s tScout

| | ( ( Leade rPropose | | Leade rAdopted ) >>= Commander )
| | ( Leade rPreempted >>= Scout ) ; ;

main Leade r @ l d r s | | Acceptor @ ac cpt s
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Distributed Systems — Code generation

Efficiency?

January 2012: 2 seconds per transaction

Revamped the whole system.
June 2012: 500 milliseconds per transaction

Optimization/compilation to Lisp.
End of 2012: 60 milliseconds per transaction (interpreted), 9
milliseconds per transaction (compiled)
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Distributed Systems — What next?
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Correctness

What evidence do we have that these
distributed systems are correct?

What evidence do we have that our proofs
are correct?
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Correctness

What evidence do we have that these
distributed systems are correct?

Platform to develop and reason about
distributed systems.

What evidence do we have that our proofs
are correct?

Building and verifying Nuprl in Coq.
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Nuprl in Coq — Our initial motivation

We build theorem provers to prove programs’
correctness
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Nuprl in Coq — Our initial motivation

We build theorem provers to prove programs’
correctness

. . . but don’t use them to prove their own
correctness
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Nuprl in Coq — Our initial motivation

How do we know that our systems are sound?
How do we safely extend them?

◮ Proofs mostly carried out on paper.

◮ Not carried out in full detail.

◮ Spread over several papers/PhD theses.

◮ Precise metatheory, precise account of Nuprl.
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Nuprl in Coq — Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker

Nuprl

{ Invalid rules
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Nuprl in Coq — Our initial motivation

Agda & Coq

{ 2013/2014: bug in their termination checker

Nuprl

{ Invalid rules

How can we be sure that these rules are valid?

Nuprl’s PER semantics (where types are defined as partial
equivalence relations on terms) in Coq and Agda.
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Nuprl in Coq — Mechanization and Experimentation!

Mechanization

{ Less error prone

{ Easier to propagate changes

{ Positive feedback loop

{ Additive

Experimentation

{ Adding new computations

{ Adding new types

{ Exploring type theory

{ Changing the theory
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Nuprl in Coq — What do we cover?

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Nuprl in Coq — What we’ve implemented in Coq

{

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 45/72



Nuprl in Coq — An untyped λ-calculus

Parameterized by a library of definitions

Nominal features

Lazy exceptions

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style
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Nuprl in Coq — What we’ve implemented in Coq

{
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Nuprl in Coq — Howe’s computational equality

4 is a simulation relation

∼ is a bisimulation relation (a ∼ b = a 4 b ∧ b 4 a)
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Nuprl in Coq — Howe’s computational equality

4 is a simulation relation

∼ is a bisimulation relation (a ∼ b = a 4 b ∧ b 4 a)

Purely by computation:

map(f ,map(g,l)) ∼ map(f ◦ g,l)

Used for program optimization
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Nuprl in Coq — Howe’s computational equality

4 is a simulation relation

∼ is a bisimulation relation (a ∼ b = a 4 b ∧ b 4 a)

Purely by computation:

map(f ,map(g,l)) ∼ map(f ◦ g,l)

Used for program optimization

4 and ∼ are congruences

Restricts the computation system
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Nuprl in Coq — Constructive domain theory

Let ⊥ be fix(λx .x).
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Nuprl in Coq — Constructive domain theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t
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Nuprl in Coq — Constructive domain theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Least upper bound principle

G (fix(f )) is the lub of the 4 chain G (f n(⊥)) for n ∈ N
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Nuprl in Coq — Constructive domain theory

Let ⊥ be fix(λx .x).

Least element

∀t.⊥ 4 t

Least upper bound principle

G (fix(f )) is the lub of the 4 chain G (f n(⊥)) for n ∈ N

Compactness

if G (fix(f )) converges, then there exists a natural number n
such that G (f n(⊥)) converges
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Nuprl in Coq — What we’ve implemented in Coq

{
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Nuprl in Coq — Allen’s PER semantics
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Allen’s PER semantics

f1≡f2∈x :A → B

type((x :A → B)) ∧ ∀a1, a2. a1≡a2∈A ⇒
f1(a1)≡f2(a2)∈B[x\a1]
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Allen’s PER semantics

f1≡f2∈x :A → B

type((x :A → B)) ∧ ∀a1, a2. a1≡a2∈A ⇒
f1(a1)≡f2(a2)∈B[x\a1]

t1≡t2∈Base

t1 ∼ t2

Ax≡Ax∈(a = b ∈ A)

type((a = b ∈ A)) ∧ a≡b∈A

t1≡t2∈A

type((A)) ∧ (t1⇓ ⇐⇒ t2⇓) ∧ (t1⇓ ⇒ t1≡t2∈A)
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Allen’s PER semantics

x1:A1 → B1≡x2:A2 → B2

A1≡A2 ∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]
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Allen’s PER semantics

x1:A1 → B1≡x2:A2 → B2

A1≡A2 ∧ ∀a1, a2. a1≡a2∈A1 ⇒ B1[x1\a1]≡B2[x2\a2]

Base≡Base

(a1 = a2 ∈ A)≡(b1 = b2 ∈ B)

A≡B ∧ (a1≡b1∈A ∨ a1 ∼ b1) ∧ (a2≡b2∈A ∨ a2 ∼ b2)

A≡B

A≡B ∧ (∀a. a∈A ⇒ a⇓)
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Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ
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Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .
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Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Closure

Inductive close (ts : cts) : cts := . . .
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Allen’s PER semantics

Ternary relations

candidate type systems:

cts = CTerm → CTerm → per → Univ

where per = CTerm → CTerm → Univ

Type constructors

Definition per function (ts : cts) : cts := . . .

Closure

Inductive close (ts : cts) : cts := . . .

Universes

Fixpoint univi (i : nat) : cts := . . .
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Allen’s PER semantics

Fixpoint univi (i : nat) (T T’ : CTerm) (eq : per) : Prop :=
match i with

| 0 ⇒ False
| S n ⇒
. . .
eq ⇐2⇒ (fun A A’ ⇒ {eqa : per, close (univi n) A A’ eqa})
. . .

end.

Has to be in Prop, otherwise we can only define a finite
number of universes
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Allen’s PER semantics

Definition univ T T’ eq := {i : nat , univi i T T’ eq}.

Definition nuprl := close univ.

t1≡t2∈T = {eq : per , nuprl T T eq × eq t1 t2}

T≡T ′ = {eq : per , nuprl T T ′ eq}
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Nuprl in Coq — Allen’s PER semantics

Interesting fact: n:N → U(n) is a Nuprl type
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Nuprl in Coq — Allen’s PER semantics

Interesting fact: n:N → U(n) is a Nuprl type

. . . but it’s not in any universe
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Nuprl in Coq — What we’ve implemented in Coq

{
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Nuprl in Coq — Inference rules

The more (verified) rules the better

Expose more of the metatheory

Encode Mathematical knowledge

We have verified over 70 rules

Gives us the basis for a formally verified Nuprl
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Nuprl in Coq — What now?

Support for a library of definitions

Experimenting with new types (e.g., PER types)

Mendler’s recursive types?

Experimenting with new computations

Nominal type theory

Continuity

Bar induction
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Nuprl in Coq — What next?

Write a parser

Build a verified refiner

Type checker/type inferencer?

Build a proof assistant
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