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Nuprl Environment

Distributed )]
Runs in the cloud )]
Structure editor J)
Tactic language: Classic ML J
Shared library )

Br a@r <2r B T OAC
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Nuprl Stack

( Refiner J
( Inference rules J

( Allen's PER semantics J

[ Howe's computational equality J

[ An untyped applied lambda-calculus J
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Nuprl Types

Based on Martin-Lof's extensional type theory ]

Equality: a=be T
Dependent product: a:A — BJa]
Dependent sum: a:A x BJa]

Universe: U;
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Nuprl Types

Less “conventional types” J

Partial: A

Domain: Base
Disjoint union: A+B

Simulation: t; < t
Intersection: Na:A.BJa]

Bisimulation: t; ~ t
Union: Ua:A.BJa]

Image: Img(A,f)
Subset: {a: A| B[a]}

PER: per(R)
Quotient: T//E
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Nuprl Types

Image type (Nogin & Kopylov) ]

Subset: {a: A| B[a]} £ Img(a:A x B[a], )

Union: Ua:A.B[a] = Img(a:A x Bla], )
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Nuprl Types

PER type (extensional)

Void = per(A_,-.1 < 0)

Top = per(A_,_.0 < 0)
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Nuprl Types

PER type (extensional) |

Void = per(A_,-.1 < 0)

Top = per(A_, -.0 < 0)

halts(t) = Ax < (let x :=t in Ax)

AN B = Nx:Base. N y:halts(x).isaxiom(x, A, B)

T//E =per(Ax,y.(xe T)N(y € T)M(E x y))
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Nuprl Types

Squashing J

{Unit | T}

Img( T, \_.Ax)

T//True

Nx:—T.Void

Vincent Rahli

per(Ax. Ay Ax < xMAx <y T)

per(Ax. Ay xe TNyeT)

per(A_.A_.T)
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Nuprl Types

Recursive types

2 Used to have Mendler’s recursive types.
2 Still consistent?

2 Indexed W types from bar induction.
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Nuprl Types

Rich type language facilitates specification |

Makes type-checking harder |
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Refinements

Nuprl’s proof engine is called a refiner

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Example of a rule

extract

Ht a:A — Bla] |ext Ax.b|
BY [lambdaFormation]
H,x : At B[x] |ext b]
HEAeTU; |_ext AXJ
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Recent projects

What evidence do we have that (distributed)
systems are correct?

What evidence do we have that our proofs
are correct?
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Recent projects

What evidence do we have that (distributed)
systems are correct?

Platform to develop and reason about
distributed systems.

What evidence do we have that our proofs
are correct?

Building and verifying Nuprl in Coq. |
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Distributed systems are ubiquitous
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Distributed Systems

What evidence do we have that these
systems are correct?
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Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing
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Distributed Systems

What evidence do we have that these
systems are correct?
Type checking
Testing
Model checking )
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Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing

Model checking

Theorem proving
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Distributed Systems

Distributed systems are hard to specify,
implement and verify.

We need to tolerate failures.

It is hard to test all possible scenarios.

Model checking often done on abstractions of the code rather

J
State space explosion using model checking. J
than on the code itself. J
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Distributed Systems

We use Nuprl as a specification,
programming and verification language.

Programming interface:
a constructive specification language called EventML

Verification methodology
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Distributed Systems

A logic of events implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable

replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.
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Distributed Systems — Blg picture

ShadowDB

request

Databases + Aneris interface

00

response ‘

,//'" )
&&Zf replica 1 replica 2 replica f+1
th 7 f
263 |
wf w
] &LHU \ Aneri
i ,,L . eris
|
|
\ = B8 .. B
] 1] i
\\ -
AN ya
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Distributed Systems — Message sequence diagram

Synod
Idrl  Idr2 accl acc2 acc3
scout
pla
\7
Learners %4
client repl rep2 e
adopted
request
) Lopose commander
Bh —
?4
decision | ___——
response /7/
1
See: Paxos Made Moderately Complex ]
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Distributed Systems — Combinators

EventML
combinator

generate generate

Process
combinator

implements

Logic of Events
combinator
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Distributed Systems — Combinators

application

recognizer

header | data I

parallel
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Distributed Systems — Combinators

Delegation/bind

N

return

<>
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Distributed Systems — Combinators

application

2% )
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Distributed Systems — Combinators

LeaderState

.

propose

Prog

3
”\ recognizer

Commander(pl)
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Distributed Systems — Verification

We use causal induction + inductive logical forms (ILFs) +

state machine invariants

J

Y y

ILF instance

ILF instance

States + Inputs

ILF instance

Inconstistent
states or inputs

Vincent Rahli
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Learners
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Distributed Systems — Verification

We use causal induction + inductive logical forms (ILFs) +
state machine invariants

@ decides (12,5)

y

decision on p sent to i ate

ILF instance

ILF instance <=>

J

e happens at a leader location

States + Inputs (decision is triggered by a p2b message)

A
N (s )
N

commander has received a p2b message
from a majority of acceptors

ILF instance

M

p comes from a proposal

\/ p comes from an acceptor

Inconstistent
states or inputs

(
>
.
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Distributed Systems — EventML

Synod
Idrl  Idr2 accl acc2 acc3
scout
e |
——
~J
Learners
X A// pio
client repl rep2 .
adopted

[commander

- p2a
t_ —
/ P2b
decision ;—/
—

EventML for Paxos Synod:

agent Leader = SpawnFirstScout

|| ((LeaderPropose || LeaderAdopted) >>= Commander)
|| (LeaderPreempted >>= Scout) ;;
main Leader @ Idrs || Acceptor @ accpts
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Distributed Systems — Code generation

Efficiency? |

January 2012: 2 seconds per transaction )

Revamped the whole system.
June 2012: 500 milliseconds per transaction

Optimization/compilation to Lisp.
End of 2012: 60 milliseconds per transaction (interpreted), 9
milliseconds per transaction (compiled)
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Distributed Systems — What next?

Crash-tolerant Byzantine fault-tolerant

manual informal high-level specifi »(manual
.
EventML Nuprl i y
logical ILF correctness
\ 4 a LOE specification simplifier properties
specification EventML
compiler,
b
untrusted GPM code Zutomated anual
correct proof proof
@
c d

probabilistic systems

Runtime f

f
SML Ocaml
interpreter interpreter

f
Lisp
translator

optimizer)  [Satisfiablity proof M

Scala interface?
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Correctness

What evidence do we have that these
distributed systems are correct?

What evidence do we have that our proofs
are correct?
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Correctness

What evidence do we have that these
distributed systems are correct?

Platform to develop and reason about
distributed systems.

What evidence do we have that our proofs
are correct?

Building and verifying Nuprl in Coq.
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Nuprl in Cog — Our initial motivation

We build theorem provers to prove programs’
correctness
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Nuprl in Cog — Our initial motivation

We build theorem provers to prove programs’
correctness

... but don't use them to prove their own
correctness
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Nuprl in Cog — Our initial motivation

How do we know that our systems are sound?
How do we safely extend them?

v

Proofs mostly carried out on paper.

Not carried out in full detail.

v

v

Spread over several papers/PhD theses.

v

Precise metatheory, precise account of Nuprl.
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Nuprl in Cog — Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker

Nuprl

2 lInvalid rules
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Nuprl in Cog — Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker

Nuprl

2 lInvalid rules

How can we be sure that these rules are valid?

Nuprl's PER semantics (where types are defined as partial
equivalence relations on terms) in Coq and Agda.
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Nuprl in Coq — Mechanization and Experimentation!

Mechanization ) Experimentation |

A

5%
's

D Less error prone 2 Adding new computations

2 Easier to propagate changes 2 Adding new types

2 Positive feedback loop 2 Exploring type theory
> Additive 2 Changing the theory
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Nuprl in Coq — What do we cover?

P

Lambda-PRL—CTT84;
C 2

(191

Constuctive Mathematics
as a Programming Logic I:
Some Principles of Type Theory
Quotient and Set Types

85)

Constable

Constable
Knoblock

Howe
(1989) Kreitz ot ai -
1999) nan
Equality in Lazy (£ Bickford Anand
Buing Relable, i Peformance (2008) o
Computation System unication Systems Unguessable Atom: ‘ Ily Verified
Computational E I "fom Components ALogica Foundation for Securty TS Ly Wi
putational Equivalence nen Proof Assistant
\ Semantics (VPrl) )
\ ( Y C D)
Constable et al. e P Rahli, Bickford, Anand
Kopylov
(1986) (1995) b (2013)
Implementing Mathematics

with the Nuprl Proof
tem

Enhancing the Nuprl Proof
Development System and Azplying It to

Nuprl Book—-CTT86

Abstract Algebra
Rewriting package \

Type Theoretical Foundations for
Data Structures, Classes, and Objects

Intersection and Union Types

Formal Program Optimization in Nuprl
using Computational Equivalence
and Partial Types

I ‘ I ) -
‘ >
Constable ( Constable \ ( Howe Y ( Hickey " e Constable 0
(1971) ndler (1996) (2001) Blckford
Censuctiveliiathematcs (FEEE]) Semantic Foundations for The MetaPRL Logical EBD
tomatic Recursive Definitions.

L

Program Writers

a

J

Constable

emantics of Evidence

.

D

in Type Theory
Recursive and Subtype Types |

Embedding HOL in Nuprl
Set Theoretical Semantics
/)

A Non-Type-Theoretic Semantics

Allen
(1987)

for Type-Theoretic Language
PER Semantics

Programming Environment

Intuitionistic Completeness
of First-Order Logic

MetaPRL
S J
Cral ( Allen et al
o (2006)
() Innovation in Computation Type Theroy
Type-Theoretic Methodology Using Nupr!
for Practical L cTT06
Programming Languages
Partial Types and Objects

Schiper et al
1 (2014)
Developing Correctly Replicated

Databases Using Formaf
Distributed systems

J

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Nuprl in Coqg — What we've implemented in Coq

[ Refiner J
( Inference rules J

( Allen's PER semantics )

[ Howe's computational equality J

> [ An untyped applied lambda-calculus J
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Nuprl in Coq — An untyped A-calculus

Parameterized by a library of definitions

Nominal features

Lazy exceptions

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style

Vincent Rahli
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Nuprl in Coqg — What we've implemented in Coq

[ Refiner J
( Inference rules J

( Allen's PER semantics )

) [ Howe's computational equality J

[ An untyped applied lambda-calculus J
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Nuprl in Coq — Howe's computational equality

< is a simulation relation

~ is a bisimulation relation (a~b=a<b A b< a)

Vincent Rahli Past, Present and Future of Nuprl

May 30, 2017

48/72



Nuprl in Coq — Howe's computational equality

< is a simulation relation J

~ is a bisimulation relation (a~b=a<b A b< a) )

Purely by computation:

map (f ,map(g,/)) ~ map(fog,l)

Used for program optimization J
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Nuprl in Coq — Howe's computational equality

< is a simulation relation J

~ is a bisimulation relation (a~b=a<b A b< a) J

Purely by computation:

map (f ,map(g,/)) ~ map(fog,l)

Used for program optimization J
< and ~ are congruences J
Restricts the computation system J
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Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).
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Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Least element J

Vil <t
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Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Least element )
Vil <t
Least upper bound principle )

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N
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Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Least element J
Vil <t
Least upper bound principle J

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N

Compactness ]

if G(£ix(f)) converges, then there exists a natural number n
such that G(f"(L)) converges
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Nuprl in Coqg — What we've implemented in Coq

[ Refiner J
( Inference rules J

) ( Allen's PER semantics )

[ Howe's computational equality J

[ An untyped applied lambda-calculus J
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Nuprl in Coq — Allen’s PER semantics

Models only
a finite number of universes

Agda

Universe 3 Universe 3

//ﬁ
Universe 0

il
S

Universe 0 <

~———

Uses
induction-recursion

Vincent Rahli Past, Present and Future of Nuprl

Uses
induction + impredicativity
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choice
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Allen's PER semantics
fi=hex:A— B

type((x:A — B)) AVay, ay. a1=a,€A =
fi(a)=f(az)€B[x\a]
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Allen's PER semantics
fi=hHhex:A— B )

type((x:A — B)) AVay, ay. a1=a,€A =
fi(a1)=f(a2)€B[x\ai]

ti=t,EBase J
1~ b
Ax=Ax€(a=b € A) J

type((a = b € A)) A a=bEA

ti=t,EA J

type((A) A (Bl <= ) A (1l = t=HEA)
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Allen’'s PER semantics

X1:A1 — BlzX2ZA2 — B2 J

A1£A2 A ‘v’al, an. 315326141 = Bl [X1\31]EBQ[X2\32]
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Allen’'s PER semantics

X1:A1 — 815X2:A2 — Bz

A1£A2 A ‘v’al, ar. 315326141 = Bl [xl\al]ng[xz\az]

Base=Base

(31 = a € A)E(bl =b, € B)

A=B A (a1=b1EAV a1 ~ b)) A (ax=b €AV ay ~ by)

A=B

A=B A (Va. a€A = al))
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ

where per = CTerm — CTerm — Univ
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...
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Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...

Universes

Fixpoint univi (/ : nat) : cts := ...
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Allen’'s PER semantics

Fixpoint univi (/ : nat) (T T': CTerm) (eq : per) : Prop :=
match / with
| 0 = False
|Sn=

eq <2= (fun A A’ = {eqa : per, close (univi n) A A’ eqa})
end.

Has to be in Prop, otherwise we can only define a finite
number of universes
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Allen's PER semantics

Definitionuniv T T eq:= {i : nat, univii T T’ eq}. J

Definition nuprl := close univ. J

ti=tb€T = {eq : per , nuprl T T eq X eq t; to} J

T=T" = {eq : per , nuprl T T' eq} J

o ) - = A
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Nuprl in Coq — Allen’s PER semantics

Interesting fact: ~ mN — U(n) is a Nuprl type ]
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Nuprl in Coq — Allen’s PER semantics

Interesting fact: ~ mN — U(n) is a Nuprl type

... but it's not in any universe

Vincent Rahli

o
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Nuprl in Coqg — What we've implemented in Coq

[ Refiner J
> ( Inference rules J

( Allen's PER semantics )

[ Howe's computational equality J

[ An untyped applied lambda-calculus J
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Nuprl in Coq — Inference rules

The more (verified) rules the better |

Expose more of the metatheory J

Encode Mathematical knowledge J

We have verified over 70 rules )

Gives us the basis for a formally verified Nuprl J
=) = - E = >
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Nuprl in Coq — What now?

Support for a library of definitions J
Experimenting with new types (e.g., PER types) J
Mendler's recursive types? )

Experimenting with new computations

Nominal type theory

Continuity

Bar induction

v S S S

— —ae
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Nuprl in Coqg — What next?

Write a parser

Build a verified refiner

Type checker/type inferencer?

Build a proof assistant

o ) - - E DAl
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