Past, Present and Future of Nuprl

Vincent Rabhli
http://www.nuprl.org
http://www.cs.cornell.edu/~rahli/

May 30, 2017

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

1/72

http://www.nuprl.org
http://www.cs.cornell.edu/~rahli/

My collaborators

PRL group
Abhishek Anand

Mark Bickford Robert L. Constable Richard Eaton Vincent Rahli

ATC-NY
id Guaspari

System group
Robbert van Renesse

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 2/72

Nuprl Environment

Distributed)]
Runs in the cloud)]
Structure editor J)
Tactic language: Classic ML J
Shared library)

Br a@r <2r B T OAC

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 3/72

Nuprl Stack

(Refiner J
(Inference rules J

(Allen's PER semantics J

[Howe's computational equality J

[An untyped applied lambda-calculus J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 4/72

Nuprl Types

Based on Martin-Lof's extensional type theory]

Equality: a=be T
Dependent product: a:A — BJa]
Dependent sum: a:A x BJa]

Universe: U;

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 5/72

Nuprl Types

Less “conventional types” J

Partial: A

Domain: Base
Disjoint union: A+B

Simulation: t; < t
Intersection: Na:A.BJa]

Bisimulation: t; ~ t
Union: Ua:A.BJa]

Image: Img(A,f)
Subset: {a: A| B[a]}

PER: per(R)
Quotient: T//E

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 6/72

Nuprl Types

Image type (Nogin & Kopylov)]

Subset: {a: A| B[a]} £ Img(a:A x B[a],)

Union: Ua:A.B[a] = Img(a:A x Bla],)

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 7/72

Nuprl Types

PER type (extensional)

Void = per(A_,-.1 < 0)

Top = per(A_,_.0 < 0)

Vincent Rahli Past, Present and Future of Nuprl

May 30, 2017

8/72

Nuprl Types

PER type (extensional) |

Void = per(A_,-.1 < 0)

Top = per(A_, -.0 < 0)

halts(t) = Ax < (let x :=t in Ax)

AN B = Nx:Base. N y:halts(x).isaxiom(x, A, B)

T//E =per(Ax,y.(xe T)N(y € T)M(E x y))

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 9/72

Nuprl Types

Squashing J

{Unit | T}

Img(T, _.Ax)

T//True

Nx:—T.Void

Vincent Rahli

per(Ax. Ay Ax < xMAx <y T)

per(Ax. Ay xe TNyeT)

per(A_.A_.T)

Past, Present and Future of Nuprl May 30, 2017 10/72

Nuprl Types

Recursive types

2 Used to have Mendler’s recursive types.
2 Still consistent?

2 Indexed W types from bar induction.

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

11/72

Nuprl Types

Rich type language facilitates specification |

Makes type-checking harder |

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 12/72

Refinements

Nuprl’s proof engine is called a refiner

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Example of a rule

extract

Ht a:A — Bla] |ext Ax.b|
BY [lambdaFormation]
H,x : At B[x] |ext b]
HEAeTU; |_ext AXJ

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

13/72

Recent projects

What evidence do we have that (distributed)
systems are correct?

What evidence do we have that our proofs
are correct?

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 14/72

Recent projects

What evidence do we have that (distributed)
systems are correct?

Platform to develop and reason about
distributed systems.

What evidence do we have that our proofs
are correct?

Building and verifying Nuprl in Coq. |

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 15/72

Distributed systems are ubiquitous

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 16/72

Distributed Systems

What evidence do we have that these
systems are correct?

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 17/72

Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

18/72

Distributed Systems

What evidence do we have that these
systems are correct?
Type checking
Testing
Model checking)

Vincent Rahli Past, Present and Future of Nuprl

May 30, 2017

19/72

Distributed Systems

What evidence do we have that these
systems are correct?

Type checking

Testing

Model checking

Theorem proving

Vincent Rahli

Past, Present and Future of Nuprl

May 30, 2017

o>

20/72

Distributed Systems

Distributed systems are hard to specify,
implement and verify.

We need to tolerate failures.

It is hard to test all possible scenarios.

Model checking often done on abstractions of the code rather

J
State space explosion using model checking. J
than on the code itself. J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 21/72

Distributed Systems

We use Nuprl as a specification,
programming and verification language.

Programming interface:
a constructive specification language called EventML

Verification methodology

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

22/72

Distributed Systems

A logic of events implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable

replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

23/72

Distributed Systems — Blg picture

ShadowDB

request

Databases + Aneris interface

00

response ‘

,//'")
&&Zf replica 1 replica 2 replica f+1
th 7 f
263 |
wf w
] &LHU \ Aneri
i ,,L . eris
|
|
\ = B8 .. B
] 1] i
\\ -
AN ya
Vincent Rahli

Past, Present and Future of Nuprl May 30, 2017 24/72

Distributed Systems — Message sequence diagram

Synod
Idrl Idr2 accl acc2 acc3
scout
pla
\7
Learners %4
client repl rep2 e
adopted
request
) Lopose commander
Bh —
?4
decision | ___——
response /7/
1
See: Paxos Made Moderately Complex]

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 25/72

Distributed Systems — Combinators

EventML
combinator

generate generate

Process
combinator

implements

Logic of Events
combinator

Vincent Rahli

Past, Present and Future of Nuprl May 30, 2017 26/72

Distributed Systems — Combinators

application

recognizer

header | data I

parallel

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 27/72

Distributed Systems — Combinators

Delegation/bind

N

return

<>

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

28/72

Distributed Systems — Combinators

application

2%)

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 29/72

Distributed Systems — Combinators

LeaderState

.

propose

Prog

3
”\ recognizer

Commander(pl)

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 30/72

Distributed Systems — Verification

We use causal induction + inductive logical forms (ILFs) +

state machine invariants

J

Y y

ILF instance

ILF instance

States + Inputs

ILF instance

Inconstistent
states or inputs

Vincent Rahli

decides (r2,s)

Learners
client

request

——

response

—

Past, Present and Future of Nuprl

repl rep2

Synod

Idrl Idr2 accl acc2 acc3

scout

Vi

-
‘adopted

commander

Wi

decision

May 30, 2017 31/72

Distributed Systems — Verification

We use causal induction + inductive logical forms (ILFs) +
state machine invariants

@ decides (12,5)

y

decision on p sent to i ate

ILF instance

ILF instance <=>

J

e happens at a leader location

States + Inputs (decision is triggered by a p2b message)

A
N (s)
N

commander has received a p2b message
from a majority of acceptors

ILF instance

M

p comes from a proposal

\/ p comes from an acceptor

Inconstistent
states or inputs

(
>
.

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 32/72

Distributed Systems — EventML

Synod
Idrl Idr2 accl acc2 acc3
scout
e |
——
~J
Learners
X A// pio
client repl rep2 .
adopted

[commander

- p2a
t_ —
/ P2b
decision ;—/
—

EventML for Paxos Synod:

agent Leader = SpawnFirstScout

|| ((LeaderPropose || LeaderAdopted) >>= Commander)
|| (LeaderPreempted >>= Scout) ;;
main Leader @ Idrs || Acceptor @ accpts

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 33/72

Distributed Systems — Code generation

Efficiency? |

January 2012: 2 seconds per transaction)

Revamped the whole system.
June 2012: 500 milliseconds per transaction

Optimization/compilation to Lisp.
End of 2012: 60 milliseconds per transaction (interpreted), 9
milliseconds per transaction (compiled)

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 34/72

Distributed Systems — What next?

Crash-tolerant Byzantine fault-tolerant

manual informal high-level specifi »(manual
.
EventML Nuprl i y
logical ILF correctness
\ 4 a LOE specification simplifier properties
specification EventML
compiler,
b
untrusted GPM code Zutomated anual
correct proof proof
@
c d

probabilistic systems

Runtime f

f
SML Ocaml
interpreter interpreter

f
Lisp
translator

optimizer) [Satisfiablity proof M

Scala interface?

Vincent Rahli

Past, Present and Future of Nuprl

May 30, 2017

35/72

Correctness

What evidence do we have that these
distributed systems are correct?

What evidence do we have that our proofs
are correct?

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 36/72

Correctness

What evidence do we have that these
distributed systems are correct?

Platform to develop and reason about
distributed systems.

What evidence do we have that our proofs
are correct?

Building and verifying Nuprl in Coq.

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

37/72

Nuprl in Cog — Our initial motivation

We build theorem provers to prove programs’
correctness

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 38/72

Nuprl in Cog — Our initial motivation

We build theorem provers to prove programs’
correctness

... but don't use them to prove their own
correctness

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 39/72

Nuprl in Cog — Our initial motivation

How do we know that our systems are sound?
How do we safely extend them?

v

Proofs mostly carried out on paper.

Not carried out in full detail.

v

v

Spread over several papers/PhD theses.

v

Precise metatheory, precise account of Nuprl.

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 40/72

Nuprl in Cog — Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker

Nuprl

2 lInvalid rules

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

41/72

Nuprl in Cog — Our initial motivation

Agda & Coq

2 2013/2014: bug in their termination checker

Nuprl

2 lInvalid rules

How can we be sure that these rules are valid?

Nuprl's PER semantics (where types are defined as partial
equivalence relations on terms) in Coq and Agda.

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

42/72

Nuprl in Coq — Mechanization and Experimentation!

Mechanization) Experimentation |

A

5%
's

D Less error prone 2 Adding new computations

2 Easier to propagate changes 2 Adding new types

2 Positive feedback loop 2 Exploring type theory
> Additive 2 Changing the theory

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 43/72

Nuprl in Coq — What do we cover?

P

Lambda-PRL—CTT84;
C 2

(191

Constuctive Mathematics
as a Programming Logic I:
Some Principles of Type Theory
Quotient and Set Types

85)

Constable

Constable
Knoblock

Howe
(1989) Kreitz ot ai -
1999) nan
Equality in Lazy (£ Bickford Anand
Buing Relable, i Peformance (2008) o
Computation System unication Systems Unguessable Atom: ‘ Ily Verified
Computational E I "fom Components ALogica Foundation for Securty TS Ly Wi
putational Equivalence nen Proof Assistant
\ Semantics (VPrl))
\ (Y C D)
Constable et al. e P Rahli, Bickford, Anand
Kopylov
(1986) (1995) b (2013)
Implementing Mathematics

with the Nuprl Proof
tem

Enhancing the Nuprl Proof
Development System and Azplying It to

Nuprl Book—-CTT86

Abstract Algebra
Rewriting package \

Type Theoretical Foundations for
Data Structures, Classes, and Objects

Intersection and Union Types

Formal Program Optimization in Nuprl
using Computational Equivalence
and Partial Types

I ‘ I) -
‘ >
Constable (Constable \ (Howe Y (Hickey " e Constable 0
(1971) ndler (1996) (2001) Blckford
Censuctiveliiathematcs (FEEE]) Semantic Foundations for The MetaPRL Logical EBD
tomatic Recursive Definitions.

L

Program Writers

a

J

Constable

emantics of Evidence

.

D

in Type Theory
Recursive and Subtype Types |

Embedding HOL in Nuprl
Set Theoretical Semantics
/)

A Non-Type-Theoretic Semantics

Allen
(1987)

for Type-Theoretic Language
PER Semantics

Programming Environment

Intuitionistic Completeness
of First-Order Logic

MetaPRL
S J
Cral (Allen et al
o (2006)
() Innovation in Computation Type Theroy
Type-Theoretic Methodology Using Nupr!
for Practical L cTT06
Programming Languages
Partial Types and Objects

Schiper et al
1 (2014)
Developing Correctly Replicated

Databases Using Formaf
Distributed systems

J

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.

Vincent Rahli

Past, Present and Future of Nuprl

May 30, 2017

1 Tools.

44/72

Nuprl in Coqg — What we've implemented in Coq

[Refiner J
(Inference rules J

(Allen's PER semantics)

[Howe's computational equality J

> [An untyped applied lambda-calculus J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 45/72

Nuprl in Coq — An untyped A-calculus

Parameterized by a library of definitions

Nominal features

Lazy exceptions

Provides a generic framework for defining and reasoning about
programming languages using a “nominal” style

Vincent Rahli

Past, Present and Future of Nuprl

May 30, 2017

46/72

Nuprl in Coqg — What we've implemented in Coq

[Refiner J
(Inference rules J

(Allen's PER semantics)

) [Howe's computational equality J

[An untyped applied lambda-calculus J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 47/72

Nuprl in Coq — Howe's computational equality

< is a simulation relation

~ is a bisimulation relation (a~b=a<b A b< a)

Vincent Rahli Past, Present and Future of Nuprl

May 30, 2017

48/72

Nuprl in Coq — Howe's computational equality

< is a simulation relation J

~ is a bisimulation relation (a~b=a<b A b< a))

Purely by computation:

map (f ,map(g,/)) ~ map(fog,l)

Used for program optimization J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 49/72

Nuprl in Coq — Howe's computational equality

< is a simulation relation J

~ is a bisimulation relation (a~b=a<b A b< a) J

Purely by computation:

map (f ,map(g,/)) ~ map(fog,l)

Used for program optimization J
< and ~ are congruences J
Restricts the computation system J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 50/72

Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 51/72

Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Least element J

Vil <t

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 52/72

Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Least element)
Vil <t
Least upper bound principle)

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 53/72

Nuprl in Coq — Constructive domain theory

Let L be fix(Ax.x).

Least element J
Vil <t
Least upper bound principle J

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N

Compactness]

if G(£ix(f)) converges, then there exists a natural number n
such that G(f"(L)) converges

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 54/72

Nuprl in Coqg — What we've implemented in Coq

[Refiner J
(Inference rules J

) (Allen's PER semantics)

[Howe's computational equality J

[An untyped applied lambda-calculus J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 55/72

Nuprl in Coq — Allen’s PER semantics

Models only
a finite number of universes

Agda

Universe 3 Universe 3

//ﬁ
Universe 0

il
S

Universe 0 <

~———

Uses
induction-recursion

Vincent Rahli Past, Present and Future of Nuprl

Uses
induction + impredicativity

Axiom of functional
choice

May 30, 2017

56,72

Allen's PER semantics
fi=hex:A— B

type((x:A — B)) AVay, ay. a1=a,€A =
fi(a)=f(az)€B[x\a]

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

57/72

Allen's PER semantics
fi=hHhex:A— B)

type((x:A — B)) AVay, ay. a1=a,€A =
fi(a1)=f(a2)€B[x\ai]

ti=t,EBase J
1~ b
Ax=Ax€(a=b € A) J

type((a = b € A)) A a=bEA

ti=t,EA J

type((A) A (Bl <=) A (1l = t=HEA)

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 58/72

Allen’'s PER semantics

X1:A1 — BlzX2ZA2 — B2 J

A1£A2 A ‘v’al, an. 315326141 = Bl [X1\31]EBQ[X2\32]

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 59/72

Allen’'s PER semantics

X1:A1 — 815X2:A2 — Bz

A1£A2 A ‘v’al, ar. 315326141 = Bl [xl\al]ng[xz\az]

Base=Base

(31 = a € A)E(bl =b, € B)

A=B A (a1=b1EAV a1 ~ b)) A (ax=b €AV ay ~ by)

A=B

A=B A (Va. a€A = al))

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

60,/72

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ

where per = CTerm — CTerm — Univ

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

61/72

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

62/72

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

63/72

Allen’'s PER semantics

Ternary relations

candidate type systems:
cts = CTerm — CTerm — per — Univ
where per = CTerm — CTerm — Univ

Type constructors

Definition per_function (ts : cts) : cts = ...

Closure

Inductive close (ts : cts) : cts := ...

Universes

Fixpoint univi (/ : nat) : cts := ...

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017

64/72

Allen’'s PER semantics

Fixpoint univi (/ : nat) (T T': CTerm) (eq : per) : Prop :=
match / with
| 0 = False
|Sn=

eq <2= (fun A A’ = {eqa : per, close (univi n) A A’ eqa})
end.

Has to be in Prop, otherwise we can only define a finite
number of universes

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 65/72

Allen's PER semantics

Definitionuniv T T eq:= {i : nat, univii T T’ eq}. J

Definition nuprl := close univ. J

ti=tb€T = {eq : per , nuprl T T eq X eq t; to} J

T=T" = {eq : per , nuprl T T' eq} J

o) - = A
Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 66/72

Nuprl in Coq — Allen’s PER semantics

Interesting fact: ~ mN — U(n) is a Nuprl type]

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 67/72

Nuprl in Coq — Allen’s PER semantics

Interesting fact: ~ mN — U(n) is a Nuprl type

... but it's not in any universe

Vincent Rahli

o
Past, Present and Future of Nuprl

=

May 30, 2017

68/72

J

Nuprl in Coqg — What we've implemented in Coq

[Refiner J
> (Inference rules J

(Allen's PER semantics)

[Howe's computational equality J

[An untyped applied lambda-calculus J

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 69/72

Nuprl in Coq — Inference rules

The more (verified) rules the better |

Expose more of the metatheory J

Encode Mathematical knowledge J

We have verified over 70 rules)

Gives us the basis for a formally verified Nuprl J
=) = - E = >

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 70/72

Nuprl in Coq — What now?

Support for a library of definitions J
Experimenting with new types (e.g., PER types) J
Mendler's recursive types?)

Experimenting with new computations

Nominal type theory

Continuity

Bar induction

v S S S

— —ae

Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 71/72

Nuprl in Coqg — What next?

Write a parser

Build a verified refiner

Type checker/type inferencer?

Build a proof assistant

o) - - E DAl
Vincent Rahli Past, Present and Future of Nuprl May 30, 2017 72/72

