
Bar Induction: The Good, the Bad, and the Ugly

Vincent Rahli

SnT, University of Luxembourg
Email: vincent.rahli@gmail.com

Mark Bickford

Cornell University, USA
Email: markb@cs.cornell.edu

Robert L. Constable

Cornell University, USA
Email: rc@cs.cornell.edu

Abstract—We present an extension of the computa-
tion system and logic of the Nuprl proof assistant with
intuitionistic principles, namely versions of Brouwer’s
bar induction principle, which is equivalent to trans-
finite induction. We have substantially extended the
formalization of Nuprl’s type theory within the Coq
proof assistant to show that two such bar induction
principles are valid w.r.t. Nuprl’s semantics (the Good):
one for sequences of numbers that involved only minor
changes to the system, and a more general one for
sequences of name-free (the Ugly) closed terms that
involved adding a limit constructor to Nuprl’s term syn-
tax in our model of Nuprl’s logic. We have proved that
these additions preserve Nuprl’s key metatheoretical
properties such as consistency. Finally, we show some
new insights regarding bar induction, such as the non-
truncated version of bar induction on monotone bars is
intuitionistically false (the Bad).

I. Introduction

Nuprl. The Nuprl interactive theorem prover [25; 5] im-
plements a type theory called Constructive Type Theory
(CTT), which is a dependent type theory, in the spirit
of Martin-Löf’s extensional theory [48], based on an un-
typed functional programming language. Its types include
equality types, a hierarchy of universes, W types, quotient
types [26], set types, union and (dependent) intersection
types [43], image types [50], PER types [6], approximation
and computational equivalence types [60], and partial
types [66; 29]. CTT “mostly” differs from other similar
constructive type theories such as the ones implemented by
Agda [17; 1], Coq [13; 28], or Idris [18; 41], in the sense that
CTT is an extensional theory (i.e., propositional and def-
initional equality are identified [34]) with types of partial
functions [66; 27; 29]. For example, the fixpoint fix(λx.x)
diverges. It is nonetheless a member of types such as the
partial type Z—the type of integers and diverging terms.
In Nuprl, type checking is undecidable but in practice
this is mitigated by type inference/checking heuristics
implemented as tactics. Following Allen’s semantics [3; 4],
CTT types are interpreted as Partial Equivalence Rela-
tions (PERs) on closed terms, and we have formalized this
semantics in Coq [7; 51].

This work was partially supported by the SnT and the Na-
tional Research Fund Luxembourg (FNR), through PEARL grant
FNR/P14/8149128.

Inductive types. One of our initial motivations for study-
ing Bar Induction (BI), was to derive “standard” in-
duction principles (Howard and Kreisel proved that BI
is equivalent to transfinite induction [36]—see Sec. V).
Until recently, Nuprl was relying on Mendler’s monotone
inductive types [49] to build inductive types similar to
those of Coq [54]. Mendler provides proofs of the validity
of inference rules for (co-)inductive types in his thesis.
Unfortunately, his proof does not hold “as is” anymore
for Nuprl’s current version because the version of Nuprl
about which Mendler wrote his thesis was terminating [49].
This is not true anymore for several reasons, such as:
Nuprl has now types of partial functions [66; 27; 29].
To recover inductive types in Nuprl, we proposed in [16]
a solution (discussed in [61, Appx.E] which consists in
building indexed families of W types from indexed families
of co-W types using a variant of BI. This paper justifies
among other things the addition of BI to Nuprl.

Intuitionism. There are two principles that distinguish
Brouwer’s intuitionistic mathematics [22; 20; 8] from other
constructive mathematics, namely bar induction and a
continuity principle for numbers [42; 36; 44; 31; 10; 19;
71; 76; 9; 63; 62; 74; 73; 59]. Also, a central concept in
intuitionistic logic is the notion of a choice sequence [69],
which is a never finished sequence of objects created over
time by a creating subject [31, Sec.6.3]. Choice sequences
can be lawlike in the sense that they are determined by
an algorithm, or lawless in the sense that they are not
subject to any law, or a combination of both. Brouwer
developed a notion of intuitionistic continuum by defining
real numbers as choice sequences, and proved that all
real-valued functions on the unit interval are uniformly
continuous [21, Thm.3] using his continuity principle for
numbers, which roughly speaking says that a decision on
a choice sequence can only be made according to an initial
segment of the sequence. To prove this uniform continuity
principle, Brouwer also used a reasoning principle for
choice sequences called the Fan Theorem (FT), which
he derived from his bar induction principle. Brouwer’s
(decidable) fan theorem says that every decidable bar
on a finitary spread is uniform (this will be made more
precise below)—see [71, Ch.7,Sec.7], [31, Sec.3.2], and [61,
Appx.G].

Bar induction. We have proved that CTT is consistent
with truncated versions of Brouwer’s continuity princi-978-1-5090-3018-7/17/$31.00 c©2017 IEEE

ple [59; 58] (Sec. III-A discusses squashing/truncation).
These past few years we have also been experimenting
with versions of BI, which is an induction principle on
barred universal spreads. What does that mean? A spread,
as Dummett defines it [31, Sec.3.2] “is essentially a tree,
with the restriction that every path is infinite, and that we
can effectively construct any subtree consisting of initial
segments of finitely many paths”. The universal spread is
the type of choice sequences of numbers (denoted B below).
A fan is a finitely branching spread. A bar is a property
of spreads that is true about at least one initial segment
of each path.

As mentioned by Kleene [42, pp.50-51], BI corresponds
to Brouwer’s footnote 7 in [21], which roughly speaking
says that if a spread is barred then there is a “back-
ward” inductive proof of that. We first state below a
“general” unconstrained version of BI, i.e. where the bar
is not constrained, which is not true in constructive
mathematics [42, Sec.7.14; 31, Sec.3.4; 62, Rem.3.3; 74,
Sec.2]—Kleene showed that it contradicts continuity [42,
Sec.7.14,Lem.∗27.23]. However, BI is often accepted by
intuitionists when bars are restricted to decidable or mono-
tone bars [42; 31; 76]. Also, as proved by Kleene [42,
Lem.9.8], functions on numbers, such as B’s members, are
not and cannot be restricted to general recursive functions
for FT and BI to be true (see also [71, p.223; 31, pp.52–
53; 36, Sec.4; 42, pp.47–48]). Until recently, CTT’s B type
only contained general recursive functions. As we explain
here, this is not the case anymore.

Before stating BI in the next paragraph, we first need to
introduce some notation (Sec. II discusses Nuprl’s syntax
and semantics in more details): We write B for the Baire
space, i.e., the function space N → N, which we also
write as N

N. We write Bk for N
Nk , where k is a natural

number and Nk is the type of natural numbers strictly
less than k. We use Π and Σ in lieu of the constructive
logical quantifiers ∀ and ∃, respectively. We sometimes
write Σx1:T1. · · · Σxn:Tn.P as Σ(x1 : T1) · · · (xn : Tn).P ,
and similarly for Π types. In the context of types, we use
the symbols + and ∨ for the disjoint union type. The type
t =T u (also written t = u ∈ T) expresses that t and u are
equal members of the type T . Let False be 0 =N 1, and
True be 0 =N 0. As usual, ¬T is defined as T → False.
Ui is the universe type at level i. We often omit levels and
write either Type or P for Ui—as opposed to Coq, there is
no distinction between types and propositions in Nuprl.

We now formally state BI. A term P is a predicate on
finite sequences (of numbers) if it is a member of the type
Πn:N.Bn → P. A predicate on finite sequences P is a
subset of another predicate on finite sequences Q if for
all n ∈ N and s ∈ Bn, P (n, s) implies Q(n, s)—in this
context, for readability, we sometimes write P (a, b) for
the application (P a b). A bar is a predicate on finite
sequences B, such that Πs:B.Σn:N.B(n, s)—we will see
below that the Σ type in this formula can sometimes be
truncated. A bar B is decidable if for all n ∈ N and

s ∈ Bn, B(n, s) ∨ ¬B(n, s). A bar B is monotone if for all
n, m ∈ N and s ∈ Bn if B(n, s) then B(n+1, s⊕nm), where
s⊕n m = λx.if x=n then m else s(x). A predicate P on
finite sequences is inductive if for all n ∈ N and s ∈ Bn, if
Πm:N.P (n+1, s⊕nm) then P (n, s). The unconstrained BI
principle says that if P is an inductive predicate on finite
sequences, and B is a bar and a subset of P , then for any
term t, P (0, t), i.e., P is true about the empty sequence.
Bar Induction on Decidable bars (BID) also assumes that
B is decidable, and Bar Induction on Monotone bars
(BIM) assumes that B is monotone. Kleene proved using
continuity that BIM can be reduced to BID, and that
BID follows from BIM without any extra assumptions [42,
Ch.1,Sec.7.6; 71, Ch.4,Prop.8.13; 31, Thm.3.7&3.8].

Roadmap and Contributions (numbered 1© to 5©). Sec. II
discusses Nuprl’s syntax and semantics. 1© Sec. III-A–
III-G introduce the ↓-squashed (see Sec. III-A) uncon-
strained BI inference rule that we have proved to be valid
w.r.t. Nuprl’s PER semantics using CTT’s formalization
in Coq, and present the versions of BID and BIM that
we have derived in Nuprl using bar recursion operators
(the Good). 2© Sec. III-H presents a new and more general
version of BIM. 3© Sec. III-I proves that both this general
principle and the standard BIM principle are false in
Nuprl when not ⇃-squashed. This means that we can
only prove ⇃-squashed formulas with these principles (the
Bad), i.e., we can only prove proof-irrelevant predicates.
4© Sec. IV-A provides a model of Nuprl extended with BI,
and proves the validity of a BI inference rule for sequences
of numbers. As mentioned above, functions on numbers
cannot be restricted to general recursive functions for BI
to be true. Consequently, to prove the validity of this
rule we added choice sequences to Nuprl’s term language
in our model of CTT. These choice sequences are here
all Coq functions from numbers to numbers, even those
that make use of axioms (that are consistent with CIC—
Coq’s logic), and are therefore not computable. Our choice
sequences are similar to the choice sequences in [11] and
are introduced for a similar reason. They are only used in
the metatheory and only get exposed to users through a
partial axiomatization as illustrated in Sec. IV-A4. Users
need only work with finite terms that do not contain choice
sequences as illustrated in https://github.com/vrahli/NuprlInCoq

/blob/master/rules/sterm.v. 5© Sec. IV-B generalizes Sec. IV-A
to sequences of name-free (the Ugly) closed terms. Our
names, sometimes called unguessable atoms [2; 15; 59],
are similar to those in nominal logic [55]. Finally, Sec. V
discusses additional related work and Sec. VI concludes.
In addition, we suggest in [61, Appx.F] a possible external-
ization of our metatheoretic proof of BI’s validity; and [61,
Appx.G]. discusses the fan theorem. Fig. 1 summarizes the
results presented in this paper.

The results presented here have either been for-
malized in Coq: https://github.com/vrahli/NuprlInCoq; or in
Nuprl: http://www.nuprl.org/LibrarySnapshots/Published/Version2/

https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v
https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v
https://github.com/vrahli/NuprlInCoq
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html

Fig. 1 Outline of results

Validated in Coq

Validated in Nuprl

Unconstrained
Squashed
BI rule

(Sec. III-B & IV)

BID
(Sec. III-E)

truncated
BIM

(Sec. III-G)

gBIM
(Sec. III-H)

SCP
(Sec. III-F & [59])

¬uBIM
(Sec. III-I)

Standard/continuity/index.html. Nuprl lemmas can be accessed
by clicking the green hyperlinks or alternatively the reader
can search in the continuity library for the lemmas named
as the hyperlinks. The text will make it precise whether
the results have been proved using Coq or using Nuprl.

II. Background

We first start by presenting some key aspects of Nuprl
that will be used in the rest of this paper. Sec. II-A
discusses the syntax and operational semantics of a large
subset of Nuprl’s computation system, and Sec. II-B dis-
cusses Nuprl’s type system and its PER semantics.

A. Computation System

Fig. 2 presents a subset of Nuprl’s syntax and small-
step operational semantics [5; 51]. We only show the part
that is either mentioned or used in this paper. Nuprl’s
programming language is an untyped (à la Curry), lazy
λ-calculus with pairs, injections, a fixpoint operator, etc.
For efficiency, integers are primitive and Nuprl provides
operations on integers as well as comparison operators.

A term is either a variable, a value (or canonical term),
or a non-canonical term. A non-canonical term t has one or
two principal arguments—marked using boxes in Fig. 2—
which are terms that have to be evaluated to canonical
forms before t can be reduced further. For example the
application f(a) diverges if f diverges—we often write
f(a) for the application f a. The canonical form tests [60]
ifint(t, a, b) and iflam(t, a, b) are used and explained in
Sec. IV-A4.

Fig. 2 also shows part of Nuprl’s small-step operational
semantics. We omit the rules that reduce principal argu-
ments such as: if t1 7→ t2 then t1 u 7→ t2 u. Also, the
operational semantics of ν was introduced in [59] and is
discussed below in Sec. IV-B1.

We now define abstractions that will be used below:

⊥ = fix(λx.x)
tt = inl(⋆)
ff = inr(⋆)

π1(a) = let x, y = a in x
π2(a) = let x, y = a in y

a ≤z b = if a<b then tt else if a=b then tt else ff
isl(a) = case a of inl() ⇒ tt | inr() ⇒ ff
if a then b else c = case a of inl() ⇒ b | inr() ⇒ c

Also, we write: a =T b for the type a = b ∈ T ; we write
b for (if b then True else False), i.e., we use implicit
coercions from Booleans to propositions; and we write
λx1, . . . , xn.t for λx1. . . . λxn.t.

B. Type System

Following Allen’s PER semantics, Nuprl’s types are
interpreted as partial equivalence relations (PERs) on
closed terms [3; 4; 29]. Allen’s PER semantics can be seen
as an inductive-recursive definition of: (1) an inductive
relation T1≡T2 that expresses type equality; and (2) a
recursive function a≡b∈T that expresses equality in a type.
For example, T1≡T2 is true if T1 computes to Πx1:A1.B1;
T2 computes to Πx2:A2.B2; A1≡A2; and for all closed
terms t1 and t2 such that t1≡t2∈A1, B1[x1\t1]≡B2[x2\t2].
We say that a term t inhabits or realizes a type T if t is
equal to itself in the PER interpretation of T , i.e., t≡t∈T .
It follows from the PER interpretation of types that the
theoretical proposition a = b ∈ T is true iff a≡b∈T holds
in the metatheory [7; 51]. An equality type of the form
a = b ∈ T , which expresses that a and b are equal members
of the type T , can only be inhabited by the constant ⋆,
i.e., they do not have computational content as opposed
to HoTT [72].

As it turns out CTT is not only closed under compu-
tation but more generally under Howe’s computational
equivalence ∼, which he proved to be a congruence [37].
In any context C, when t ∼ t′ we can rewrite t into
t′ without concern for typing. This relation is especially
useful to prove equalities between programs (bisimula-
tions) without concern for typing as illustrated in [60].
For example, using the least upper bound theorem [29,
Thm.5.9], we can prove that all diverging expressions such
as fix(λx.x) and fix(λx.x(x)) are computationally equiv-
alent; or that all streams of zeros such as fix(λx.〈0, x〉)
and fix(λx.〈0, 〈0, x〉〉) are computationally equivalent.

The top part of Fig. 2 lists some of Nuprl’s types. Among
these, Base is the type of all closed terms of the computa-
tion system with ∼ as its equality. The type t1 ≃ t2 is the
theoretical counterpart of Howe’s metatheoretical relation
t1 ∼ t2, and similarly for � and 4. Names [2; 59] come
with two operations: a fresh operator ν to generate fresh
names, and a test for equality (not shown here). We used
names to validate a continuity inference rule [59].

As mentioned above, we have formalized CTT in Coq [7;
51], including: (1) an implementation of Nuprl’s compu-
tation system; (2) an implementation of Howe’s compu-
tational equivalence relation, and a proof that it is a
congruence; (3) a definition of Allen’s PER semantics of
CTT; (4) definitions of Nuprl’s derivation rules, and proofs
that these rules are valid w.r.t. Allen’s semantics; (5) and
a proof of Nuprl’s consistency [7; 51; 58, Appx.A]. We are
using CTT’s formalization in Coq to prove the validity of
all the inference rules of Nuprl, and have already verified
a large number of them. See https://github.com/vrahli/NuprlI

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/index.html
https://github.com/vrahli/NuprlInCoq/blob/master/RULES

Fig. 2 Syntax (top) and operational semantics (bottom) of a subset of Nuprl

v ∈ Value ::= vt (type) | inl(t) (left injection) | ⋆ (axiom) | 〈t1, t2〉 (pair)
| λx.t (lambda) | inr(t) (right injection) | i (integer) | a (name value)

vt ∈ Type ::= Z (integer type) | Πx:t1.t2 (product) | t1 = t2 ∈ t (equality)
| Base (base) | Σx:t1.t2 (sum) | t1+t2 (disjoint union)
| Name (name type) | ∪x:t1.t2 (union) | t1 � t2 (simulation)
| Ui (universe) | W(x:t1.t2) (W) | t1 ≃ t2 (bisimulation)
| t1//t2 (quotient) | {x : t1 | t2} (set) | ∩x:t1.t2 (intersection)

t ∈ Term ::= x (variable) | let x := t1 in t2 (call-by-value) | ifint(t1 , t2, t3) (integer test)
| v (value) | let x, y = t1 in t2 (spread) | iflam(t1 , t2, t3) (lambda test)
| t1 t2 (application) | if t1 < t2 then t3 else t4 (less than)
| νx. t (fresh) | fix(t) (fixpoint)
| if t1 = t2 then t3 else t4 (integer equality) | case t1 of inl(x) ⇒ t2 | inr(y) ⇒ t3 (decide)

(λx.F) a 7→ F [x\a]
fix(v) 7→ v fix(v)
let x := v in t 7→ t[x\v]
let x, y = 〈t1, t2〉 in F 7→ F [x\t1; y\t2]
ifint(i, t1, t2) 7→ t1

ifint(v, t1, t2) 7→ t2, if v is not an integer

if i1=i2 then t1 else t2 7→ t1, if i1 = i2

if i1=i2 then t1 else t2 7→ t2, if i1 6= i2

if i1<i2 then t1 else t2 7→ t1, if i1 < i2

if i1<i2 then t1 else t2 7→ t2, if i1 6< i2

iflam(λx.t, t1, t2) 7→ t1

iflam(v, t1, t2) 7→ t2, if v is not a λ-term
case inl(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ F [x\t] case inr(t) of inl(x) ⇒ F | inr(y) ⇒ G 7→ G[y\t]

nCoq/blob/master/RULES for a list of Nuprl’s inference rules
along with pointers to the proofs of their validity.

III. Squashing and Bootstrapping BI

This section presents an unconstrained squashed BI
principle, which we prove to be valid w.r.t. Nuprl’s PER
semantics in Sec. IV. It also explains how we derived in
Nuprl versions of BID and BIM from this squashed BI
principle using bar recursion operators, and proves the
negation of a non-⇃-squashed version of BIM.

A. Squashing

In Nuprl, there are various ways of squashing or trun-
cating a type. The one we use the most throws away the
evidence that a type is inhabited and squashes it down to
a single inhabitant using set types: ↓T = {True | T} (as
defined in [25, p.60]). Because a member of {x : T | U} is
a member t of T (such that U [x\t] holds)—and not a pair
of a t in T and a u in U [x\t]—the only member of ↓T is
then the constant ⋆, which is True’s single inhabitant. The
constant ⋆ inhabits ↓T if T is true/inhabited, but we do
not keep the proof that it is true. See [58, Appx.F] for more
information on squashing. Using the HoTT terminology,
we also sometimes truncate types at the propositional
level [72, Sec.3.7]. In Nuprl, that corresponds to squashing
a type down to a single equivalence class, i.e. all inhabi-
tants are equal, using quotient types [26]: ⇃T = T//True.
Because the members of a quotient type T//E are the
members of T , the members of ⇃T are then the members
of T . Also, ⇃T is a proof-irrelevant type, i.e., its members
are all equal to each other because if x, y ∈ T then
(x =⇃T y ⇐⇒ True). Note that ⇃T → ↓T is true because
it is inhabited by λx.⋆, but we cannot prove the converse
because to prove ⇃T we have to exhibit an inhabitant of
T , which ↓T does not give us because only ⋆ inhabits ↓T .

B. Squashed Unconstrained BI Rule

As mentioned above, the unconstrained non-squashed
BI principle is not consistent with constructive mathe-
matics. However, it is consistent when proving ↓-squashed
propositions as we prove in Sec. IV. (We do not imply here
that Brouwer would have approved such a rule.) Using
CTT’s formalization in Coq, we prove in this paper the
validity w.r.t. Nuprl’s PER semantics of inference rules of
the following form, which we call [BarInduction]:

Definition 1 ([BarInduction] rule)

(wfd) H , n : N, s : TNn ⊢ B(n, s) ∈ Type

(bar) H , s : TN ⊢ ↓Σn:N.B(n, s)
(base) H , n : N, s : TNn , b : B(n, s) ⊢ P (n, s)
(ind) H , n : N, s : TNn , i : (Πm:T.P (n + 1, s ⊕n m))

⊢ P (n, s)

H ⊢ ↓P (0,‚)

where T is N in Sec. IV-A, and the type of name-free
closed terms in Sec. IV-B; and ‚ is an empty sequence,
defined as λx.let := x in ⊥ for technical reasons
discussed in [61, Appx.K]

The conclusion of this rule is ↓-squashed and therefore
does not have any computational content, or rather its
computational content is trivially the constant ⋆. This
means that we can use whatever means we want in our
Coq metatheoretical proof of its validity w.r.t. Nuprl’s
PER semantics in Sec. IV, even classical ones, because this
proof will not be exposed in any way in the theory. Using
this ↓-squashed principle, we show below how to derive
in Nuprl, BI principles that have computational content,
namely versions of BID and BIM.

The conclusion of the bar hypothesis is ↓-squashed
because the bar is sometimes only used for termination,
as in BID, and does not contribute to the extract, i.e., to
the computational content of the induction principle.

https://github.com/vrahli/NuprlInCoq/blob/master/RULES

C. BI Hypotheses

Let us now introduce a few variable names that will be
used below to define bar recursion operators, and which
correspond to the hypotheses of BID and BIM. We provide
a list of such terms along with their types:

base : Πn:N.Πs:TNn .B(n, s) → P (n, s)
bar↓ : Πs:TN.↓Σn:N.B(n, s)
bar⇃ : Πs:TN.⇃Σn:N. B(n, s)
ind : Πn:N.Πs:TNn .(Πm:T.P (n + 1, s ⊕n m)) → P (n, s)
dec : Πn:N.Πs:TNn .B(n, s) ∨ ¬B(n, s)
mon : Πn:N.Πs:TNn .Πt:T.B(n, s) → B(n + 1, s ⊕n t)
mon∗ : Πn:N.Πm:Nn.Πs:TNn .B(m, s) → B(n, s)

Note that the Σ type in bar⇃’s type is ⇃-squashed and
not ↓-squashed as in bar↓ and in [BarInduction] because
in Sec. III-G we need the bar hypothesis to have some
computational content to build a realizer for BIM. We can
trivially prove that bar⇃ implies bar↓.

The mon∗ hypothesis is sometimes more convenient to
use than the equivalent, more standard, mon hypothesis. It
says that if B is true about the initial segment of length
m of some sequence s of length at least n, then it is also
true about its initial segment of length n > m.

D. Spector’s Bar Recursion Operator

Spector first introduced a parametrized bar recursion
operator, called SBR here, in order to provide a consistency
proof of classical analysis relative to system T extended
with this bar recursion operator [67]. Spector mentioned
some relation between SBR and BID, and Howard showed
that his W operator [35, p.111], which can be reduced
to SBR, realizes BIM (see Sec. III-G). SBR can be defined
as the following parametrized recursive operator (a minor
difference: Spector’s operator uses <z instead of ≤z)—see
Nuprl definition spector-bar-rec:

Definition 2 (Spector’s bar recursion operator)

SBR(Y, G, H, n, s) = if Y n s ≤z n then G n s
else H n s (λt.SBR(Y, G, H, n + 1, s ⊕n t))

Nuprl being untyped, we do not have to prove that SBR is
in any type, and we have not done so. However, we show
that two of its instances inhabit BI principles in Sec. III-E
and III-G.

Spector used a restricted form of SBR to interpret the
double-negation shift, which he used in his consistency
proof [67, Sec.10]. Oliva and Powell [53] later proved that
this restricted form of SBR is in fact as general as SBR.
Informally, the way bar recursion works is that it goes
up sequences by extending finite sequences using the ⊕
operator, until Y tells us we have reached the bar, i.e. the
finite sequence given as argument is barred, at which point
we apply the base operator G. Once we have reached the
bar for all the direct extensions of a finite sequence we
apply the induction operator H. As explained for example
in [67, Sec.6.4,p.9; 70, Sec.1.9.26,p.83], the continuity of

Y implies that the recursion terminates because it im-
plies that for long enough sequences Y returns a number
smaller than the length of the sequence it is applied to—
see [61, Appx.D]. Also, note that this implies that checking
whether we have reached the bar has to be decidable. As
mentioned in [67, p.9,Footnote 6], and as further explained
in Sec. III-G, this can be ensured by the fact that we can
compute the modulus of continuity of the bar.

E. Bar Induction on Decidable Bars

Using an instance of SBR we now prove a BID princi-
ple, which is both more general than the one presented
in Sec. III-B in the sense that it is for non-squashed
propositions, and less general because the bar has to
be decidable. We prove this principle directly in Nuprl
(see Nuprl lemma decidable-bar-rec wf) by proving that it is
realized by the following decidable bar recursion operator,
parametrized by a n ∈ N and a s ∈ TNn—see Nuprl
definition decidable-bar-rec:

Definition 3 (Decidable bar recursion operator)

DBR(dec, base, ind, n, s) =
case dec n s of

inl(r) ⇒ base n s r
| inr() ⇒ ind n s (λt.DBR(dec, base, ind, n + 1, s ⊕n t))

More precisely, using the [BarInduction] inference rule
presented above in Def. 1, we have proved the following
BID principle:

Lemma 1 (Bar Induction on Decidable bars)

The hypotheses bar↓, dec, base, and ind defined in
Sec. III-C imply that the term DBR(dec, base, ind, 0,‚)
inhabits the proposition P (0,‚).

As mentioned in Sec. III-D, the way this decidable bar
recursion operator works (and essentially the way our
proof in Nuprl goes—see decidable-bar-rec wf) is that starting
from the empty sequence, we test whether we have reached
the bar using dec, which inhabits the proposition that
says that the bar B is decidable. Given a finite sequence
provided by a number n and a sequence s, if (dec n s)
returns inl(r), i.e. we have reached the bar, then r is
a proof that B(n, s) is true. In that case, we use our
base hypothesis base. Otherwise, (dec n s) returns inr(r)
which means that we are not at the bar yet, and in that
case we recursively call DBR on all possible extensions of
the sequence and use our induction hypothesis ind.

As mentioned above, DBR is an instance of SBR—see
Nuprl lemma decidable-bar-rec-equal-spector:

Lemma 2 (DBR as SBR)

DBR(dec, base, ind, n, s) =
SBR(λn, s.if dec n s then 0 else n + 1

, λn, s.case dec n s of inl(r) ⇒ base n s r
| inr() ⇒ ⊥

, ind, n, s)

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/spector-bar-rec.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/decidable-bar-rec_wf.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/decidable-bar-rec.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/decidable-bar-rec_wf.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/decidable-bar-rec-equal-spector.html

The term ⊥ could be any term because the base operator
is only applied to n and s when (dec n s) is an inl.

Remark 1. In Spector’s bar recursion operator SBR, the
base case (G n s) does not use the usual base hypothesis of
BI that the bar implies the predicate we are trying to prove.
More precisely G only takes a finite sequence as argument,
and Y , which checks whether we have reached the bar, does
not build anything for G to use. It is enough to know that
Y returns a small enough number. We have not done so,
but this suggests that the bar proposition B(n, s) in BI’s
base hypothesis could be squashed as follows:

Πn:N.Πs:TNn .↓B(n, s) → P (n, s)

It turns out that for both BID and BIM we can always
rebuild a proof of B(n, s) in order to use the base hypothesis.

F. Continuity

We use a variant of Brouwer’s continuity principle
below in Sec. III-G to define (a variant of) Howard’s
W operator. This variant is sometimes called the strong
continuity principle for numbers [63], which we have
proved to be valid w.r.t. Nuprl’s PER semantics (see
Coq file https://github.com/vrahli/NuprlInCoq/blob/master/continui

ty/continuity_roadmap.v). The following barred variant, called
BSCP, can be derived from the one presented in [59] as we
proved in Nuprl lemma strong-continuity-rel-unique-pair:

Definition 4 (Barred Strong Continuity Principle)

ΠP :(B → N → P).
(Πf :B.⇃Σn:N. P (f, n))
→ ⇃ΣM :(Πn:N.Πs:Bn.(barred(P, n, s)+True)).

Πf :B.Σn:N.Σp:barred(P, n, f).
M(n, f) = inl(p) ∈ barred(P, n, f)+True

∧ Πm:N.isl(M(m, f)) → m =N n

where barred(P, n, s) = Σk:Nn.P (s↑0
n
, k) is the type of

pairs of a k in Nn and a p in P (s↑0
n
, k), i.e., in the case

where P is a predicate on finite sequences as it is the case
for our bar predicate B on which we will use BSCP below,
P is true about the finite sequence s truncated at k; and
where s↑m

n
= λx.if x<n then s(x) else m extends a

finite sequence s of length n to an infinite sequence by
returning the default value m starting from n.

BSCP makes it more convenient to define HBR below than
the standard definition of the strong continuity principle,
where barred(P, n, s) is simply Nn. These strong continu-
ity principles say that there is a uniform way, called M
in the above formula (such a function is often called a
neighborhood function [71, p.212]), to decide whether n is
the modulus of continuity of P at f , and if so returns a
number n such that P (f, n) [42, pp.70–71].

As proved in [47, p.154; 68, Thm.IIA; 32], the non-
truncated version of a “weaker” version of BSCP called WCP,
and therefore of BSCP too, is false in Martin-Löf-like type
theories. We have proved that this result is true about
Nuprl too. See [61, Appx.D] for more information.

G. Bar Induction on Monotone Bars

A few years after Spector [67] introduced his bar re-
cursion operator, Howard [35] showed that some instance
of it, which he called W, realizes BIM, and of which we
present a variant here called HBR. Let the parameter T
from Sec. III-B be N here, i.e., we only consider sequences
of numbers. Our setting is less general than Howard’s
because the continuity principle presented in Sec. III-F
is only for sequences of numbers. Howard does not ex-
plicitly mention continuity. However, Spector mentions
continuity in [67, p.9,Footnote 6], where the modulus of
continuity of the bar ensures that each infinite sequence
has an initial segment that is long enough so that we
can check where the sequence is barred. More precisely,
(BSCP (λs, n.B(n, s)) bar⇃) gives us a M that, given a
finite sequence, tells us whether the sequence is long
enough to know whether we have reached the bar and
also where we have reached the bar. Because BSCP is
⇃-squashed, assuming that the proposition we are prov-
ing by monotone bar induction is ⇃-squashed too, then
(BSCP (λs, n.B(n, s)) bar⇃), gives us a:

M ∈ Πn:N.Πs:Bn.(barred(B, n, s)+True) (1)

such that:

F ∈ Πf :B.Σn:N.Σp:barred(B, n, f).
M(n, f) = inl(p) ∈ barred(B, n, f)+True

∧ Πm:N.isl(M(m, f)) → m =N n

(2)

We now define our monotone bar recursion operator HBR

as follows—see Nuprl definition howard-bar-rec:

Definition 5 (Monotone bar recursion operator)

HBR(M, mon, base, ind, n, s) =
case M(n, s) of

inl(〈k, p〉) ⇒ base n s (mon n k s p)
| inr() ⇒ ind n s (λt.HBR(M, mon, base, ind, n + 1, s ⊕n t))

We have proved the following BIM result in Nuprl
using the above bar recursion operator —see Nuprl
lemma howard-bar-rec wf:

Lemma 3 (Bar Induction on Monotone bars)

The hypotheses bar⇃, mon∗, base, and ind defined in
Sec. III-C imply that HBR(M, mon∗, base, ind, 0,‚) in-
habits ⇃P (0,‚).

Note that the proposition we are proving here using bar
induction is ⇃-squashed. This is due to the fact that we
are using BSCP which is ⇃-squashed. Therefore, we can only
prove that HBR inhabits a ⇃-squashed BIM principle. Does
that mean that, using BIM, one can only prove ⇃-squashed
propositions? We partly answer this question below in
Sec. III-I.

Proof. Let us sketch BIM’s proof here. We want to prove
that ⇃P (0,‚) is true. The first step is to compute the
modulus of continuity of bar⇃ to get a neighborhood
function M as shown above in Equation 1. Once we have

https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/continuity_roadmap.v
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/strong-continuity-rel-unique-pair.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/howard-bar-rec.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/howard-bar-rec_wf.html

unsquashed the existence of this neighborhood function,
we can also unsquash our conclusion, i.e., we are now
proving P (0,‚), which we prove by showing that it
is inhabited by HBR(0,‚), where we write HBR(n, s) for
HBR(M, mon∗, base, ind, n, s). We are now proving:

HBR(0,‚) ∈ P (0,‚)

We now use the [BarInduction] inference rule presented
above in Sec. III-B. When instantiating this rule, we
have to choose a bar predicate B, which does not nec-
essarily have to be the same as the one in BIM’s state-
ment. Here we instantiate [BarInduction] using B =
λn, s.isl(M(n, s)), which is a well-formed predicate on
finite sequences, and it remains to prove [BarInduction]’s
bar hypothesis:

Πs:B.↓Σn:N.isl(M(n, s)) (3)

[BarInduction]’s base hypothesis:

Πn:N.Πs:Bn.Πb:isl(M(n, s)).HBR(n, s) ∈ P (n, s) (4)

and [BarInduction]’s induction hypothesis:

Πn:N.Πs:Bn.
Πi:(Πm:T.HBR(n + 1, s ⊕n m) ∈ P (n + 1, s ⊕n m)).

HBR(n, s) ∈ P (n, s)

(5)

We prove 3 using 2: we apply F to s and get a n ∈ N, a p ∈
barred(B, n, s), and a proof that M(n, s) is a left injection,
and we conclude by instantiating the conclusion of 3 using
n. We now prove 4. Because M(n, s) is a left injection, say
inl(〈k, p〉), such that 〈k, p〉 ∈ barred(B, n, s), we get that
HBR(n, s) computes to (base n s (mon∗ n k s p)), and we
now have to prove that (base n s (mon∗ n k s p)) ∈ P (n, s),
which is trivial by typing of base and mon∗. Finally, we
prove 5. By definition of HBR, if M(n, s) is a left injection,
we conclude using the same proof as for 4. If M(n, s) is a
right injection, we have to prove that (ind n s (λt.HBR(n+
1, s⊕n t))) ∈ P (n, s), which is trivial by typing of ind.

As mentioned above, HBR is an instance of SBR—see
Nuprl lemma howard-bar-rec-equal-spector:

Lemma 4 (HBR as SBR)

HBR(M, mon, base, ind, n, s) =
SBR(λn, s.if M(n, s) then 0 else n + 1

, λn, s. case M(n, s) of
inl(〈k, p〉) ⇒ base n s (ind n k s p)

| inr() ⇒ ⊥
, ind, n, s)

As in DBR’s definition, here the term ⊥ could be any term
because this base operator is only applied to n and s when
M(n, s) is a left injection.

As mentioned above, continuity is used here to decide
whether we have reached the bar or not. Thanks to conti-
nuity we can reduce monotone bar induction to decidable
bar induction as proved for example by Kleene [42, p.78],
and we can prove that HBR is also an instance of DBR—see
Nuprl lemma howard-bar-rec-equal-decidable:

Lemma 5 (HBR as DBR)

HBR(M, mon, base, ind, n, s) =
DBR(M, λn, s, r.let k, p = r in base n s (mon n k s p)

, ind, n, s)

H. Generalizing BIM

Before proving that the non-⇃-squashed version of BIM
is false in Sec. III-I, we present here a slightly more general
BIM principle than the standard one, which is also only
for ⇃-squashed propositions. This principle, which we call
gBIM, is inspired by the way Howard’s W operator works,
and especially by the fact that monotonicity is only used
in HBR in the base case—see Nuprl lemma gen-bar-rec:

Definition 6 (gBIM)

ΠP :(Πn:N.Bn → P).
(Πs:B.⇃Σn:N. Πm:{n . . . }.P (m, s))
→ (Πn:N.Πs:NBn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s))
→ ⇃P (0,‚)

where {n . . . } is the type {k : N | n ≤z k}.

Proof. We prove that this BIM principle is true, us-
ing again our unconstrained ↓-squashed BI principle pre-
sented in Def. 1, by proving that assuming that bar has
type Πs:B.⇃Σn:N. Πm:{n . . . }.P (m, s) and ind has type
Πn:N.Πs:NBn .(Πm:N.P (n + 1, s ⊕n m)) → P (n, s) then
the following instance of Spector’s bar recursion operator
has type ⇃P (0,‚):

SBR(λn, s.if M(n, s) then 0 else n + 1
, λn, s.case M(n, s) of inl(〈k, F 〉) ⇒ F (n)

| inr() ⇒ ⊥
, ind, n, s)

where M is the neighborhood function of our bar hypoth-
esis, i.e.: M ∈ Πn:N.Πs:Bn.(barred(Q, k, s)+True), where
Q = λn, s.Πm:{n . . . }.P (m, s), and such that:

F ∈ Πf :B.Σn:N.Σp:barred(Q, n, f).
M(n, f) = inl(p) ∈ barred(Q, n, f)+True

∧ Πm:N.isl(M(m, f)) → m =N n

The rest proof is similar to the one presented in Sec. III-G.

Let us mention two differences with a more “standard”
version of BIM. (1) BIM is usually stated using two predi-
cates on finite sequences: a predicate B that represents the
bar; and a predicate P , which we are proving by induction.
Here we do not have the predicate B that represents the
bar because P itself represents the bar. (2) Also, here P
has to be true at the bar and above the bar1, whereas in
the “standard” BIM principle the bar predicate B has to
be true at the bar and monotone below, at, and above the
bar. We can easily prove that gBIM implies the following

1The predicate P needs only be true between the bar and its modulus
of continuity. Defining such a version of BIM is left for future work.

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/howard-bar-rec-equal-spector.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/howard-bar-rec-equal-decidable.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/gen-bar-rec.html

more “standard” BIM principle, which we simply call BIM
here—see Nuprl lemma gen-bar-ind-implies-monotone:

ΠB, P :(Πn:N.Bn → P).
(Πs:B.⇃Σn:N. B(n, s))
→ (Πn:N.Πs:Bn.(Πm:N.P (n + 1, s ⊕n m)) → P (n, s))
→ (Πn, m:N.Πs:Bn.B(n, s) → B(n + 1, s ⊕n m))
→ (Πn:N.Πs:Bn.B(n, s) → P (n, s))
→ ⇃P (0,‚)

which is the principle we have proved above in Sec. III-G
by proving that it is inhabited by a variant of Howard’s bar
recursion operator—except that it uses a one-step mono-
tonicity hypothesis instead of a multi-step monotonicity
hypothesis (see mon and mon∗ in Sec. III-C).

I. Negation of Non-⇃-Squashed BIM

We now prove that the ⇃ operator in the above versions
of BIM is necessary, i.e., that the following non-⇃-squashed
version of BIM, which we call uBIM, is false—see Nuprl
lemma unsquashed-monotone-bar-induction3-false (we have also
proved this result in Coq: https://github.com/vrahli/NuprlInC

oq/blob/master/continuity/unsquashed_continuity.v):

Definition 7 (uBIM)

ΠB, P :(Πn:N.Bn → P).
(Πs:B.⇃Σn:N. B(n, s))
→ (Πn:N.Πs:Bn.(Πm:N.P (n + 1, s ⊕n m)) → P (n, s))
→ (Πn, m:N.Πs:Bn.B(n, s) → B(n + 1, s ⊕n m))
→ (Πn:N.Πs:Bn.B(n, s) → P (n, s))
→ P (0,‚)

As discussed below, we still require that the bar be
⇃-squashed. This negative result follows from the fact
that uBIM implies a non-squashed version of WCP (see
Nuprl lemma unsquashed-BIM-implies-unsquashed-weak-continuity),
which, as mentioned in Sec. III-F, is false in Nuprl, i.e.:

¬ΠF :NB.Πf :B.Σn:N.Πg:B.f =Bn
g → F (f) =N F (g)

is true in Nuprl.

Lemma 6 (¬uBIM)

Because the non-squashed version of gBIM implies
uBIM, we get that both versions are false.

Proof. The proof that uBIM implies a non-squashed ver-
sion of WCP goes as follows. We assume that F ∈ N

B

and f ∈ B, and we have to prove: Σn:N.Πg:B.f =Bn
g →

F (f) =N F (g). To prove this, we instantiate uBIM with:

B = λn, s.Πg:B.(s ⊞n f) =Bn
g → F (s ⊞n f) =N F (g)

P = λn, s. Σm:{n . . . }.Πg:B.
(s ⊞n f) =Bm

g → F (s ⊞n f) =N F (g)

where s ⊞n f = λx.if x<n then s(x) else f(x). The
proposition P (0,‚) is WCP, and we can then easily prove
the hypotheses of uBIM:

Bar. The bar hypothesis follows from the ⇃-squashed WCP

principle, which is true in Nuprl. WCP being ⇃-squashed, we
also require uBIM’s bar hypothesis to be ⇃-squashed.

Base. The base hypothesis is trivial: it suffices to instan-
tiate P (n, s) with n.

Induction. To prove the induction hypothesis we instanti-
ate Πm:N.P (n + 1, s ⊕n m) with f(n). We get to assume
P (n + 1, s ⊕n f(n)), i.e., that there exists a m ≥ n + 1
such that for all g such that ((s ⊕n f(n)) ⊞n+1 f) =Bm

g
then F ((s ⊕n f(n)) ⊞n+1 f) =N F (g), and have to prove
P (n, s). We instantiate our conclusion using m and con-
clude because ((s ⊕n f(n)) ⊞n+1 f) =B (s ⊞n f).

Monotonicity. To prove the monotonicity hypothesis, we
have to prove that B(n, s) implies B(n + 1, s ⊕n m), i.e.,
assuming B(n, s) and ((s ⊕n m)⊞n+1 f) =Bn+1

g, we have
to prove that F ((s ⊕n m) ⊞n+1 f) =N F (g). From ((s ⊕n

m) ⊞n+1 f) =Bn+1
g, we deduce that (s ⊞n f) =Bn

g, and
therefore from B(n, s), we deduce that F (s⊞n f) =N F (g).
Finally, to prove F ((s ⊕n m) ⊞n+1 f) =N F (g) it is now
enough to prove F (s⊞n f) =N F ((s ⊕n m)⊞n+1 f), which
we get by instantiating B(n, s) with (s ⊕n m)⊞n+1 f .

One question remains open: can we prove the validity
of a non-squashed version of gBIM or of the “standard”
BIM principle, where both the bar hypothesis and the
conclusion are not squashed? This is left for future work.

IV. Validating BI Inference Rules

Sec. III presented an unconstrained ↓-squashed BI prin-
ciple, from which we have derived BID and BIM principles.
We now prove the validity of instances of this BI principle
w.r.t. Nuprl’s PER semantics. Sec. IV-A proves that our
[BarInduction] inference rule is valid w.r.t. Nuprl’s PER
semantics when T = N (see Coq file https://github.com/vrah

li/NuprlInCoq/blob/master/bar_induction/bar_induction3.v); while
Sec. IV-B proves its validity for sequences of name-free
closed terms (see Coq file https://github.com/vrahli/NuprlInCoq

/blob/master/bar_induction/bar_induction_cterm4.v).

A. BI for Sequences of Natural Numbers

1) Following the Standard Classical Proof:

Lemma 7 (Validity of [BarInduction])

[BarInduction] is true in CTT’s impredicative Coq
metatheory, i.e. in Prop.

Proof. We have proved this following Dummett’s stan-
dard classical proof [31, p.55], which uses the law of
excluded middle and the axiom of choice: see Coq
file https://github.com/vrahli/NuprlInCoq/blob/master/bar_inductio

n/bar_induction3.v. His proof goes as follows2: first we assume
the negation of the conclusion using the law of excluded
middle, i.e., the Coq axiom classic (available at https://co

q.inria.fr/library/Coq.Logic.Classical_Prop.html). We now get to
assume ¬↓P (0,‚) and therefore ¬P (0,‚) too. Then, we
contrapose our induction hypothesis (ind), and using the

2For readability, we omit some technicalities here regarding the well-
formedness of terms, which are discussed in [61, Appx.K], in particular
that finite sequences have to be normalized.

http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/gen-bar-ind-implies-monotone.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/unsquashed-monotone-bar-induction3-false.html
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/unsquashed_continuity.v
https://github.com/vrahli/NuprlInCoq/blob/master/continuity/unsquashed_continuity.v
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/unsquashed-BIM-implies-unsquashed-weak-continuity.html
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction3.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction3.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction_cterm4.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction_cterm4.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction3.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction3.v
https://coq.inria.fr/library/Coq.Logic.Classical_Prop.html#classic
https://coq.inria.fr/library/Coq.Logic.Classical_Prop.html
https://coq.inria.fr/library/Coq.Logic.Classical_Prop.html

axiom of choice FunctionalChoice on (available at https://coq.inr

ia.fr/library/Coq.Logic.ChoiceFacts.html) we obtain a function F
that, for all n ∈ N, s ∈ Bn, and proof of ¬P (n, s), returns
a natural number m such that ¬P (n+1, s⊕n m). Because
¬P (0,‚), F gives us a sequence α ∈ B such that for all
n ∈ N, ¬P (n, α). We now instantiate our bar hypothesis
(bar) with α to get a number k such that B(k, α). Finally,
using our base hypothesis (base), we get a proof of P (k, α),
which contradicts that for all n ∈ N, ¬P (n, α).

2) Adding Coq Sequences to Nuprl: How did we con-
struct the sequence α? F gives us a Coq function from
numbers to numbers, but our proof needs a Nuprl term
in the Nuprl type B. To remedy that we added all Coq
functions from numbers to numbers to Nuprl’s computa-
tion system, even those that make use of axioms such as
classic and FunctionalChoice on, and which are therefore not
computable. This coincides with the fact that functions
on numbers should not be restricted to general recursive
functions for BI to be true [42, Lem.9.8]. We call choice
sequences these Coq functions from numbers to numbers
occurring in Nuprl terms.

Our choice sequences are similar to the infinite se-
quences in [11] denoted λλx.Mx, where M1, M2, . . . , is
an infinite sequence of terms, which are used in a similar
fashion as above to prove that some bar recursion operator
realizes the negative translation of the axiom of choice.
Similarly, as mentioned in [57], using our choice sequences,
we have proved the validity of versions of the axiom
of choice. In [11] the authors write: “The infinite terms
are not for computational purposes, they only play a
role in the termination proof”. The same is true for us.
The only place where we use choice sequences is in the
metatheoretical Coq proof of [BarInduction]’s validity,
which is not exposed in the theory because the conclusion
of this rule is ↓-squashed and its computational content is
the constant ⋆. Therefore, choice sequences do not have to
be—and are not—part of the syntax of Nuprl definitions
and proofs, i.e., the syntax visible to users. The syntax
of terms occurring in definitions and proofs is the proper
subset of Nuprl terms that do not contain choice sequences
as illustrated in https://github.com/vrahli/NuprlInCoq/blob/maste

r/rules/sterm.v. We talk about the theoretical Nuprl syntax
to refer to the user syntax that does not allow choice
sequences to occur in terms, as opposed to the syntax
of terms implemented in our Coq metatheory that allows
choice sequences to occur in terms.

Our choice sequences are also similar to Howe’s set-
theoretical functions in [39; 40; 38] (also called “oracles”),
which he used to provide a set-theoretical semantics of
both Nuprl (extended with set-theoretical terms) and
HOL, allowing the shallow embedding of HOL in Nuprl.

Definition 8 (Nuprl’s syntax with choice sequences)

Therefore, we extend Nuprl’s (metatheoretical) term
syntax presented in Sec. II with choice sequences, as

well as an eager application operator:

v ::= · · · | seq(f) (choice sequence)
t ::= · · · | t1 @ t2 (eager application)

where f is a Coq function from numbers to numbers.

For example, seq(fun n ⇒ n + 1) is a choice sequence.
We use eager applications to reduce lazy applications of
choice sequences. Given a lazy application s(t) of a choice
sequence s to a term t, we first compute t to a value. If t
computes to a natural number n, then s(t) reduces to the
application of the choice sequence s to n; otherwise the
computation either gets stuck or diverges. For example,
seq(fun n ⇒ n+1)(1) reduces to 2; seq(fun n ⇒ n+1)(⊥)
diverges; and seq(fun n ⇒ n + 1)(⋆) gets stuck.

Definition 9 (Computing with choice sequences)

To achieve this, we add the following reduction steps to
compute with choice sequences:

seq(f) t 7→ seq(f)@t

i.e., the lazy application of a sequence s to a term t
computes in one step to the eager application of s to t.
Eager applications compute as follows:

t1@t 7→ t2@t if t1 7→ t2

v@t1 7→ v@t2 if t1 7→ t2

(λx.b)@v 7→ b[x\v]
seq(f)@i 7→ f(i) if 0 ≤ i

where f is a Coq function from numbers to numbers, i is
a Nuprl integer, and v is a value. In the last computation
step above, we write f(i) for the computation that
extracts a Coq natural number n from the positive
integer i, then applies f to n, and finally builds a Nuprl
integer from the Coq natural number f(n).

3) A Note on Decidability: Adding such choice se-
quences to Nuprl’s (metatheoretical) terms does have
interesting consequences such as: many properties become
undecidable. For example, syntactic equality or α-equality
are now undecidable in general. However, it turns out that
even though these properties had been proved and used in
the formalization of CTT in Coq, they are not necessary
and we managed to do without them. Note that this is
only true about Nuprl’s metatheoretical syntax. Because
Nuprl terms occurring in definitions and proofs do not
contain choice sequences, syntactic equality and α-equality
are decidable for the user syntax.

4) Consistency: Adding choice sequences to Nuprl’s
terms also affected Nuprl’s consistency: we had to modify
the following inference rule, called [ApplyCases]:

H ⊢ halts(f(a)) H ⊢ f ∈ Base

H ⊢ f ≃ λx.f(x)

where the type halts(t) = ⋆ � (let x := t in ⋆) uses
Howe’s approximation relation to assert that t computes to
a value. This rule says that f is computationally equivalent
to its η-expansion λx.f(x) (i.e. f is a function) if f(a)

https://coq.inria.fr/library/Coq.Logic.ChoiceFacts.html#FunctionalChoice_on
https://coq.inria.fr/library/Coq.Logic.ChoiceFacts.html
https://coq.inria.fr/library/Coq.Logic.ChoiceFacts.html
https://coq.inria.fr/library/Coq.Logic.Classical_Prop.html#classic
https://coq.inria.fr/library/Coq.Logic.ChoiceFacts.html#FunctionalChoice_on
https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v
https://github.com/vrahli/NuprlInCoq/blob/master/rules/sterm.v

computes to a value, for some term a. Before adding
choice sequences to Nuprl’s terms, the only way f(a) could
compute to a value was if f would compute to a λ-term.
This is not true anymore after adding choice sequences to
Nuprl’s terms. We chose to restate [ApplyCases] as follows:

H ⊢ halts(f(a)) H ⊢ f ∈ Base

H ⊢ f ≃ λx.f(x) ∨ isChoiceSeq(x, z, f) ⌊iflam(f, tt, ff)⌋

where

isChoiceSeq(x, z, f)
= ∩x:Base. ∩ z:halts(x).ifint(x, True, f(x) � ⊥)

and x and z are distinct variables that do not occur free
in f . Only the conclusion of the rule has changed. It now
says that if f(a) computes to a value then either (1) f
computes to a λ-term (as before), or (2) it computes to
a choice sequence, and therefore f(x) will be computa-
tionally equivalent to ⊥ when x is not an integer, i.e.,
it will either get stuck or diverge (terms that either get
stuck or diverge are all computationally equivalent to each
other). This rule also says that the conclusion, which is a
∨, is realized by iflam(f, tt, ff), which checks whether
f computes to a λ-term: if it does then the conclusion is
realized by tt, i.e. inl(⋆), because ⋆ realizes the left-hand-
side of the ∨; otherwise, the conclusion is realized by ff,
i.e. inr(⋆), because ⋆ realizes the right-hand-side of the ∨.
Using this new valid rule, we were able to replay Nuprl’s
entire library.

This new [ApplyCases] rule provides a partial axiom-
atization of choice sequences. Note that because choice
sequences are not allowed in Nuprl’s theoretical syntax,
there is no way in the theory that f ≃ λx.f(x) would not
be true for some term f such that f(a) computes to a
value, while isChoiceSeq(x, z, f) would be. However, we
cannot validate the old [ApplyCases] inference rule that
rules out choice sequences, because they do occur in the
metatheory.

B. BI For Sequences of Terms

Intuitively a similar proof as the one presented at the
beginning of Sec. IV-A could be used at least when T
is Base (defined in Sec.II-B). Following the same scheme
as in Sec. IV-A, we want to add all Coq functions from
natural numbers to closed terms, to the collection of Nuprl
terms. However, this modification does not play nicely
with Nuprl’s “fresh” ν operator. We explain this issue here
in more details.

1) Banning Names From Choice Sequences: Let us as-
sume that we change our choice sequence operator seq(f)
so that f can now be a Coq function from numbers to
closed Nuprl terms. The Coq function (fun n ⇒ a), where
a is a name, is such a function. In general we cannot
compute the collection of all names occurring in such
functions. Therefore, unless we somehow tag this function
with a, we have no way of knowing that it mentions a.
Now, the way Nuprl’s ν operator works, as explained
in [59], is that to compute νx.t, if t 7→ u, we first pick

a fresh name b w.r.t. t. The name b being fresh w.r.t. t
here means that if b occurs in t then it can only occur
in a choice sequence. Then, we compute t[x\b] to w in
one computation step, and finally we return νx.(w[b\x]),
where t[a\u] is a capture avoiding substitution function
on names similar to the usual substitution operation on
variables. Therefore, if t contains seq(fun n ⇒ a), we
have to make sure that we do not pick a. Otherwise,
when computing νx.(seq(fun n ⇒ a) 0), we could pick
a as our fresh name, reduce (seq(fun n ⇒ a) 0)[x\a],
which is equal to (seq(fun n ⇒ a) 0), to a, perform the
substitution a[a\x] = x, and finally return νx.x, which
would not be correct because the two as are supposed to
be different.

We avoid this here by precluding names from occurring
in sequences, and change our choice sequence operator
seq(f) so that f is now a Coq function from numbers to
name-free closed Nuprl terms. This means that the Coq
type of Nuprl terms is now an ordinal with a limit con-
structor for such sequences (see https://github.com/vrahli/Nu

prlInCoq/blob/master/terms/terms.v for more details regarding
Nuprl’s metatheoretical term syntax).

Because choice sequences do not contain free variables
or names, most operations on terms do not change be-
cause the two substitution operations on names and free
variables stay unchanged. Using these choice sequences,
we have proved in Coq the validity w.r.t. Nuprl’s PER
semantics of [BarInduction] when the parameter T is the
following type, closed under ∼, of name-free closed terms:
{t : Base | (t : Base)#}, where the type (a : A)# asserts
that the term a is in the type A and does not contain
names (see Coq file https://github.com/vrahli/NuprlInCoq/blob/

master/bar_induction/bar_induction_ctemr4.v).

2) Could Names Occur in Sequences?: We suggest here
a possible solution, whose study is left for future work. It
consists in introspecting computations. When performing
a computation step on a term of the form νx.t, we first
pick a fresh name a w.r.t. t by not looking inside choice
sequences, then we reduce t[x\a] to u in one computation
step, and we compute a new fresh name b w.r.t. both
t and u. This is to ensure that if the computation step
applies a sequence to a term and “reveals” new names,
then b is not one of these names. Finally, we compute νx.t
using b as our fresh name. Let us consider the example we
gave in Sec. IV-B1: νx.(seq(fun n ⇒ a) 0). Following the
procedure we just described, we first pick a name that is
fresh w.r.t. (seq(fun n ⇒ a) 0) by not looking inside the
choice sequence. Here it does not matter which one we pick.
Let us pick c. We reduce the term (seq(fun n ⇒ a) 0)[x\c]
to a in one computation step. Now we pick a name b, which
is fresh w.r.t. both (seq(fun n ⇒ a) 0) and a, and we
reduce (seq(fun n ⇒ a) 0)[x\b] to a in one computation
step. Finally, we return the term νx.(a[b\x]), which is
equal to νx.a.

Remark 2. We also want to preserve the property that

https://github.com/vrahli/NuprlInCoq/blob/master/terms/terms.v
https://github.com/vrahli/NuprlInCoq/blob/master/terms/terms.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction_ctemr4.v
https://github.com/vrahli/NuprlInCoq/blob/master/bar_induction/bar_induction_ctemr4.v

Howe’s computational approximation and equivalence re-
lations are congruences [37]. For Nuprl’s ν operator, this
means that to prove that νx.t ∼ νx.u, it should be enough to
prove that t[x\a] ∼ u[x\a] for some a fresh w.r.t. t and u.
Unfortunately, if names were allowed in choice sequences,
we would not be able to compute such a name. See Appx. ??
for more details.

V. Related Work

As mentioned in the introduction, Howard and Kreisel
studied Brouwer’s bar induction and continuity principles
in [36] and showed the equivalence between the axiom
of transfinite induction (TI)—sometimes called the bar
rule [64]—and BIM, assuming the strong continuity prin-
ciple. They also showed without assuming continuity that
TI for decidable relations is equivalent to BID. TI says
that one can use the transfinite induction principle on well-
founded relations. They consider the two following notions
of well-foundedness: a strong form

WF1(ρ) = ∀f∃n¬(f(n)ρf(n + 1))

and a weak form

WF2(ρ) = ∀f∃n¬∀m ≤ n(f(m)ρf(m + 1))

Their transfinite induction principle says:

∀x(∀y(xρy → Q(y)) → Q(x)) → ∀xQ(x)

In Coq, TI is simply a lemma called well founded ind

for Prop; and well founded induction type for Type:
see the Coq library https://coq.inria.fr/library/Coq.Init.Wf.htm

l. Well-foundedness is inductively defined in Coq using
the accessibility predicate Acc. It can be shown that if
a decidable relation is well-founded using Coq’s definition
then it is well-founded using WF1.

The bar recursion operators mentioned in Sec. III and
some of their variants have been extensively studied [65;
11; 14; 52; 12; 56; 33]. However, to the best of our knowl-
edge, it has not been studied whether these variants (such
as Berger and Oliva’s modified bar recursion operator [12])
lead to new BI principles.

Troelstra lists some uses of BI in [70, p.114], e.g. to prove
strong normalization of systems such as N-HAω. Veldman
and Bezem proved an intuitionistically valid reformulation
of Ramsey’s theorem using BIM [77; 75]. We have proved
this result in Nuprl: see lemma intuitionistic-Ramsey. In [79],
the authors proved similar results using directly Coq’s
inductive types rather than BI.

Choice sequences have also been widely studied over the
years [45; 42; 46; 44; 69; 31; 71; 78]. One interesting result
regarding choice sequences is the so-called “elimination of
choice sequences” theorem [46, Sec.2; 44, Ch.7; 69, Ch.3;
31, pp.221–222; 30] that eliminates quantifications over
choice sequences. This theorem relies on a mapping from
the formulae of the CS formal system [44] to formulae of
the IDB1 formal system [44] that do not contain choice
sequence variables. It is left to future work to study

whether a similar result could be used to prove that BI
is consistent with Nuprl without using choice sequences.

Finally, it is worth noting that our method of building
a model of Nuprl extended with BI principles bears some
resemblance with forcing [23; 24] where our forcing condi-
tions are our choice sequences.

VI. Conclusion

We have recently proved, using CTT’s formalization
in Coq, that ⇃-squashed versions of Brouwer’s continuity
principle for numbers are consistent with Nuprl [59]. We
have now also proved the validity of a ↓-squashed BI in-
ference rule for sequences of name-free closed terms. From
this ↓-squashed BI rule, we have derived a non-squashed
version of BID for sequences of name-free closed terms,
as well as a ⇃-version of BIM for sequences of numbers
(because Nuprl’s version of continuity is only for sequences
of numbers). We have also shown that BIM is not true in
general for non-⇃-squashed propositions. Several questions
remain open such as: (1) Can we generalize the ⇃-squashed
continuity principle to sequences of terms? (2) Can we gen-
eralize our ↓-squashed BI principle to sequences of terms
with names? (3) What is the proof-theoretical strength of
Nuprl? Is it stronger than before adding choice sequences
or bar induction?

Acknowledgements

We thank David Guaspari and Evan Moran for their
helpful criticism.

References

[1] Agda Wiki. http://wiki.portal.chalmers.se/agda/pmwiki.php.
[2] Stuart Allen. An Abstract Semantics for Atoms in Nuprl. Tech. rep.

Cornell University, 2006.
[3] Stuart F. Allen. “A Non-Type-Theoretic Definition of Martin-Löf’s

Types”. In: LICS. IEEE Computer Society, 1987, pp. 215–221.
[4] Stuart F. Allen. “A Non-Type-Theoretic Semantics for Type-

Theoretic Language”. PhD thesis. Cornell University, 1987.
[5] Stuart F. Allen, Mark Bickford, Robert L. Constable, Richard

Eaton, Christoph Kreitz, Lori Lorigo, and Evan Moran. “Innova-
tions in computational type theory using Nuprl”. In: J. Applied

Logic 4.4 (2006). http://www.nuprl.org/, pp. 428–469.
[6] Abhishek Anand, Mark Bickford, Robert L. Constable, and Vin-

cent Rahli. “A Type Theory with Partial Equivalence Relations as
Types”. Presented at TYPES 2014. 2014.

[7] Abhishek Anand and Vincent Rahli. “Towards a Formally Verified
Proof Assistant”. In: ITP 2014. Vol. 8558. LNCS. Springer, 2014,
pp. 27–44.

[8] Mark van Atten. On Brouwer. Wadsworth Philosophers. Cengage
Learning, 2004.

[9] Mark van Atten and Dirk van Dalen. “Arguments for the continuity
principle”. In: Bulletin of Symbolic Logic 8.3 (2002), pp. 329–347.

[10] Michael J. Beeson. Foundations of Constructive Mathematics.
Springer, 1985.

[11] Stefano Berardi, Marc Bezem, and Thierry Coquand. “On the
Computational Content of the Axiom of Choice”. In: J. Symb. Log.

63.2 (1998), pp. 600–622.
[12] Ulrich Berger and Paulo Oliva. “Modified bar recursion”. In: Math-

ematical Structures in Computer Science 16.2 (2006), pp. 163–183.
[13] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and

Program Development. http://www.labri.fr/perso/casteran/CoqA
rt. SpringerVerlag, 2004.

[14] Marc Bezem. “Equivalence of Bar Recursors in the Theory of
Functionals of Finite Type”. In: Archive for Mathematical Logic

27.2 (1988), pp. 149–160.

https://coq.inria.fr/library/Coq.Init.Wf.html
https://coq.inria.fr/library/Coq.Init.Wf.html
http://www.nuprl.org/LibrarySnapshots/Published/Version2/Standard/continuity/intuitionistic-Ramsey.html
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://www.nuprl.org/
http://www.labri.fr/perso/casteran/CoqArt
http://www.labri.fr/perso/casteran/CoqArt

[15] Mark Bickford. “Unguessable Atoms: A Logical Foundation for
Security”. In: Verified Software: Theories, Tools, Experiments,

Second Int’l Conf. Vol. 5295. LNCS. Springer, 2008, pp. 30–53.
[16] Mark Bickford and Robert Constable. “Inductive Construction in

Nuprl Type Theory Using Bar Induction”. Presented at TYPES
2014 http://nuprl.org/KB/show.php?ID=723. 2014.

[17] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda
- A Functional Language with Dependent Types”. In: TPHOLs

2009. Vol. 5674. LNCS. http://wiki.portal.chalmers.se/agda/pmw
iki.php. Springer, 2009, pp. 73–78.

[18] Edwin Brady. “IDRIS —: systems programming meets full depen-
dent types”. In: PLPV 2011. ACM, 2011, pp. 43–54.

[19] Douglas Bridges and Fred Richman. Varieties of Constructive

Mathematics. London Mathematical Society Lecture Notes Series.
Cambridge University Press, 1987.

[20] L.E.J. Brouwer. Brouwer’s Cambridge Lectures on Intuition-

ism. Edited by D. Van Dalen. Cambridge University Press, 1981,
pp. 214–215.

[21] L.E.J. Brouwer. “From frege to Gödel: A Source Book in Math-
ematical Logic, 1879–1931”. In: Harvard University Press, 1927.
Chap. On the Domains of Definition of Functions.

[22] L.E.J. Brouwer. “Historical background, principles and methods of
intuitionism”. In: South African journal of science 49.3,4 (1952).

[23] Paul J. Cohen. “The independence of the continuum hypothesis”.
In: the National Academy of Sciences of the United States of

America 50.6 (Dec. 1963), pp. 1143–1148.
[24] Paul J. Cohen. “The independence of the continuum hypothesis

II”. In: the National Academy of Sciences of the United States of

America 51.1 (Jan. 1964), pp. 105–110.
[25] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F.

Cremer, R.W. Harper, D.J. Howe, T.B. Knoblock, N.P. Mendler,
P.Panangaden, J.T. Sasaki, and S.F. Smith. Implementing math-

ematics with the Nuprl proof development system. Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1986.

[26] Robert L. Constable. “Constructive Mathematics as a Program-
ming Logic I: Some Principles of Theory”. In: Fundamentals of

Computation Theory. Vol. 158. LNCS. Springer, 1983, pp. 64–77.
[27] Robert L. Constable and Scott F. Smith. “Computational Founda-

tions of Basic Recursive Function Theory”. In: Theoretical Com-

puter Science 121.1&2 (1993), pp. 89–112.
[28] The Coq Proof Assistant. http://coq.inria.fr/.
[29] Karl Crary. “Type-Theoretic Methodology for Practical Program-

ming Languages”. PhD thesis. Ithaca, NY: Cornell University, Aug.
1998.

[30] Gerrit van Der Hoeven and Ieke Moerdijk. “Sheaf models for choice
sequences”. In: Ann. Pure Appl. Logic 27.1 (1984), pp. 63–107.

[31] Michael A. E. Dummett. Elements of Intuitionism. Second. Claren-
don Press, 2000.

[32] Martín Hötzel Escardó and Chuangjie Xu. “The Inconsistency of a
Brouwerian Continuity Principle with the Curry-Howard Interpre-
tation”. In: TLCA 2015. Vol. 38. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2015, pp. 153–164.

[33] Martín Escardó and Paulo Oliva. “Bar Recursion and Products of
Selection Functions”. In: J. Symb. Log. 80.1 (2015), pp. 1–28.

[34] Martin Hofmann. “Extensional concepts in intensional type the-
ory”. PhD thesis. University of Edinburgh, 1995.

[35] William A. Howard. “Functional interpretation of bar induction
by bar recursion”. eng. In: Compositio Mathematica 20 (1968),
pp. 107–124.

[36] William A. Howard and Georg Kreisel. “Transfinite Induction and
Bar Induction of Types Zero and One, and the Role of Continuity in
Intuitionistic Analysis”. In: J. Symb. Log. 31.3 (1966), pp. 325–358.

[37] Douglas J. Howe. “Equality in Lazy Computation Systems”. In:
LICS 1989. IEEE Computer Society, 1989, pp. 198–203.

[38] Douglas J. Howe. “Importing Mathematics from HOL into Nuprl”.
In: Theorem Proving in Higher Order Logics. Vol. 1125. LNCS.
Berlin: Springer-Verlag, 1996, pp. 267–282.

[39] Douglas J. Howe. “On Computational Open-Endedness in Martin-
Löf’s Type Theory”. In: LICS ’91. IEEE Computer Society, 1991,
pp. 162–172.

[40] Douglas J. Howe. “Semantic Foundations for Embedding HOL
in Nuprl”. In: Algebraic Methodology and Software Technology.
Vol. 1101. LNCS. Berlin: Springer-Verlag, 1996, pp. 85–101.

[41] Idris. http://www.idris-lang.org/.
[42] S.C. Kleene and R.E. Vesley. The Foundations of Intuitionistic

Mathematics, especially in relation to recursive functions. North-
Holland Publishing Company, 1965.

[43] Alexei Kopylov. “Type Theoretical Foundations for Data Struc-
tures, Classes, and Objects”. PhD thesis. Ithaca, NY: Cornell
University, 2004.

[44] G. Kreisel and A.S. Troelstra. “Formal systems for some branches
of intuitionistic analysis”. In: Annals of Mathematical Logic 1.3
(1970), pp. 229–387.

[45] Georg Kreisel. “A Remark on Free Choice Sequences and the
Topological Completeness Proofs”. In: J. Symb. Log. 23.4 (1958),
pp. 369–388.

[46] Georg Kreisel. “Lawless sequences of natural numbers”. eng. In:
Compositio Mathematica 20 (1968), pp. 222–248.

[47] Georg Kreisel. “On weak completeness of intuitionistic predicate
logic”. In: J. Symb. Log. 27.2 (1962), pp. 139–158.

[48] Martin-Löf. “Constructive Mathematics and Computer Program-
ming”. In: 6th International Congress for Logic, Methodology and

Philosophy of Science. Noth-Holland, Amsterdam, 1982, pp. 153–
175.

[49] Paul F. Mendler. “Inductive Definition in Type Theory”. PhD the-
sis. Ithaca, NY: Cornell University, 1988.

[50] Aleksey Nogin and Alexei Kopylov. “Formalizing Type Operations
Using the "Image" Type Constructor”. In: Electr. Notes Theor.

Comput. Sci. 165 (2006), pp. 121–132.
[51] Nuprl in Coq. https://github.com/vrahli/NuprlInCoq.
[52] Paulo Oliva. “Understanding and Using Spector’s Bar Recursive

Interpretation of Classical Analysis”. In: CiE 2006. Vol. 3988.
LNCS. Springer, 2006, pp. 423–434.

[53] Paulo Oliva and Thomas Powell. “On Spector’s bar recursion”. In:
Math. Log. Q. 58.4-5 (2012), pp. 356–265.

[54] Christine Paulin-Mohring. “Inductive Definitions in the system
Coq - Rules and Properties”. In: TLCA’93. Vol. 664. LNCS.
Springer, 1993, pp. 328–345.

[55] Andrew M. Pitts. “Nominal Logic: A First Order Theory of Names
and Binding”. In: TACS 2001. Vol. 2215. LNCS. Springer, 2001,
pp. 219–242.

[56] Thomas Powell. “On Bar Recursive Interpretations of Analysis”.
PhD thesis. Queen Mary University of London, Aug. 2013.

[57] Vincent Rahli. “Exercising Nuprl’s Open-Endedness”. In: ICMS

2016. Vol. 9725. LNCS. Springer, 2016, pp. 18–27.
[58] Vincent Rahli and Mark Bickford. “A Nominal Exploration of

Intuitionism”. Extended version of CPP 2016 paper: http://www.
nuprl.org/html/Nuprl2Coq/continuity-long.pdf. 2015.

[59] Vincent Rahli and Mark Bickford. “A nominal exploration of intu-
itionism”. In: CPP 2016. ACM, 2016, pp. 130–141.

[60] Vincent Rahli, Mark Bickford, and Abhishek Anand. “Formal Pro-
gram Optimization in Nuprl Using Computational Equivalence
and Partial Types”. In: ITP’13. Vol. 7998. LNCS. Springer, 2013,
pp. 261–278.

[61] Vincent Rahli, Mark Bickford, and Robert L. Constable. “Bar
Induction: The Good, the Bad, and the Ugly”. Extended version
avaible at http://www.nuprl.org/html/Nuprl2Coq/bar-induction-
lics-long.pdf. Apr. 2017.

[62] Michael Rathjen. “A note on Bar Induction in Constructive Set
Theory”. In: Math. Log. Q. 52.3 (2006), pp. 253–258.

[63] Michael Rathjen. “Constructive Set Theory and Brouwerian Prin-
ciples”. In: J. UCS 11.12 (2005), pp. 2008–2033.

[64] Michael Rathjen. “The Role of Parameters in Bar Rule and Bar
Induction”. In: J. Symb. Log. 56.2 (1991), pp. 715–730.

[65] Helmut Schwichtenberg. “On Bar Recursion of Types 0 and 1”. In:
J. Symb. Log. 44.3 (1979), pp. 325–329.

[66] Scott F. Smith. “Partial Objects in Type Theory”. PhD thesis.
Ithaca, NY: Cornell University, 1989.

[67] Clifford Spector. “Provably recursive functionals of analysis: a
consistency proof of analysis by an extension of principles in current
intuitionistic mathematics”. In: Recursive Function Theory: Proc.

Symposia in Pure Mathematics. Vol. 5. American Mathematical
Society, 1962, pp. 1–27.

[68] A.S. Troelstra. “A Note on Non-Extensional Operations in Connec-
tion With Continuity and Recursiveness”. In: Indagationes Math-

ematicae 39.5 (1977), pp. 455–462.
[69] A.S. Troelstra. Choice Sequences: A Chapter of Intuitionistic

Mathematics. Clarendon Press, 1977.
[70] A.S. Troelstra. Metamathematical Investigation of Intuitionistic

Arithmetic and Analysis. New York, Springer, 1973.
[71] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics

An Introduction. Vol. 121. Studies in Logic and the Foundations of
Mathematics. Elsevier, 1988.

http://nuprl.org/KB/show.php?ID=723
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr/
http://www.idris-lang.org/
https://github.com/vrahli/NuprlInCoq
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/continuity-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/bar-induction-lics-long.pdf
http://www.nuprl.org/html/Nuprl2Coq/bar-induction-lics-long.pdf

[72] The Univalent Foundations Program. Homotopy Type Theory:

Univalent Foundations of Mathematics. Institute for Advanced
Study: http://homotopytypetheory.org/book, 2013.

[73] Wim Veldman. “Brouwer’s Fan Theorem as an axiom and as a con-
trast to Kleene’s alternative”. In: Arch. Math. Log. 53.5-6 (2014),
pp. 621–693.

[74] Wim Veldman. “Brouwer’s real thesis on bars”. In: Philosophia

Scientiæ CS6 (2006), pp. 21–42.
[75] Wim Veldman. “Some Applications of Brouwer’s thesis on Bars”.

In: One Hundred Years of Intuitionism. Birkhäuser, 2008, pp. 326–
340.

[76] Wim Veldman. “Understanding and Using Brouwer’s Continuity
Principle”. English. In: Reuniting the Antipodes — Constructive

and Nonstandard Views of the Continuum. Vol. 306. Synthese
Library. Springer Netherlands, 2001, pp. 285–302.

[77] Wim Veldman and Mark Bezem. “Ramsey’s theorem and the pi-
geonhole principle in intuitionistic mathematics”. In: J. of the

London Mathematical Society s2-47 (2 1993), pp. 193–211.
[78] Richard Vesley. “Realizing Brouwer’s Sequences”. In: Ann. Pure

Appl. Logic 81.1-3 (1996), pp. 25–74.
[79] Dimitrios Vytiniotis, Thierry Coquand, and David Wahlstedt.

“Stop When You Are Almost-Full - Adventures in Constructive
Termination”. In: ITP 2012. Vol. 7406. LNCS. Springer, 2012,
pp. 250–265.

http://homotopytypetheory.org/book

