
Asphalion: Trustworthy Shielding Against Byzantine Faults

IVANA VUKOTIC, SnT, University of Luxembourg

VINCENT RAHLI, University of Birmingham

PAULO ESTEVES-VERÍSSIMO, SnT, University of Luxembourg

Byzantine fault-tolerant state-machine replication (BFT-SMR) is a technique for hardening systems to tolerate

arbitrary faults. Although robust, BFT-SMR protocols are very costly in terms of the number of required

replicas (3f + 1 to tolerate f faults) and of exchanged messages. However, with “hybrid” architectures, where

“normal” components trust some “special” components to provide properties in a trustworthy manner, the

cost of using BFT can be dramatically reduced. Unfortunately, even though such hybridization techniques

decrease the message/time/space complexity of BFT protocols, they also increase their structural complexity.

Therefore, we introduce Asphalion, the first theorem prover-based framework for verifying implementations
of hybrid systems and protocols. It relies on three novel languages: (1) HyLoE: a Hybrid Logic of Events

to reason about hybrid fault models; (2) MoC: a Monadic Component language to implement systems as

collections of interacting hybrid components; and (3) LoCK: a sound Logic Of events-based Calculus of

Knowledge to reason about both homogeneous and hybrid systems at a high-level of abstraction (thereby

allowing reusing proofs, and capturing the high-level logic of distributed systems). In addition, Asphalion

supports compositional reasoning, e.g., through mechanisms to lift properties about trusted-trustworthy
components, to the level of the distributed systems they are integrated in. As a case study, we have verified

crucial safety properties (e.g., agreement) of several implementations of hybrid protocols.

CCS Concepts: • Theory of computation→ Logic and verification.

Additional Key Words and Phrases: Fault-tolerance, Byzantine faults, Hybrid protocols, MinBFT, Formal

verification, Compositional reasoning, Coq, Knowledge calculus, Monad, Step-indexing

1 INTRODUCTION
Our society strongly depends on critical information infrastructures such as electrical grids, au-

tonomous vehicles, distributed public ledgers, etc. Unfortunately, proving that they operate correctly

is very hard to achieve due to their complexity. Moreover, given the increasing number of sophisti-

cated attacks on such systems (e.g. Stuxnet), ensuring their correct behavior becomes even more

necessary. Ideally, we should ensure the correctness of these systems, relying on a minimal trusted

computing base, and to the highest standards possible, e.g., using theorem provers. However, be-

cause current state-of-the-art verification tools (such as theorem provers) cannot yet tackle complex

production infrastructures, bugs and attacks are bound to happen in partially verified systems [1].

One standard technique to mitigate this problem is to use Byzantine fault-tolerant state machine

replication (BFT-SMR) [2, 3, 4] in addition to cheaper certification techniques. It enables correct

functioning of a system even when some parts of the system are not working correctly,
1
by masking

the behavior of faulty replicas behind the behavior of enough healthy replicas. Unfortunately,

because these protocols are rather complex, usually come without a formal specification, and

sometimes even without an implementation [5], there is a non-negligible chance that they will

later be found incorrect [6]. Adding on top of that the fact that many variants of these protocols

1
Processes and messages in transit can be corrupted arbitrarily. However, we assume perfect cryptography, i.e., a process

cannot impersonate another process without the two processes being faulty.

Authors’ addresses: Ivana Vukotic, SnT, University of Luxembourg, ivana.vukotic@uni.lu; Vincent Rahli, University of

Birmingham, vincent.rahli@gmail.com; Paulo Esteves-Veríssimo, SnT, University of Luxembourg, paulo.verissimo@uni.lu.

2019. XXXX-XXXX/2019/8-ART $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

are being developed and adopted in critical sectors (e.g., in blockchain technology [7, 8, 9, 10, 11,

12]), it is clear that ensuring the correctness of these protocols is extremely important.

Moreover, because traditional BFT-SMR is extremely expensive,
2
“hybrid” architectures [15,

16, 17, 18, 19, 20, 21] have been getting increasing attention: they allow dramatically cutting the

message/time/space complexity mentioned above. For example, when applied to BFT-SMR, hybrid

solutions only require 2f +1 replicas instead of 3f +1, to tolerate f faults. Such hybrid architectures

allow the coexistence and interaction of components with largely diverse behavior, e.g., synchronous

vs. asynchronous, or crash vs. Byzantine [22]. In such models, “normal” components trust “special”
components that provide trustworthy properties. These trusted-trustworthy “special” components

are made trustworthy through careful design and by verifying their correctness. Therefore, by

relying on stronger assumptions (e.g., synchrony or crash), they can be unconditionally trusted

to provide stronger properties about the entire hybrid distributed system, than what would be

possible otherwise.

This generic “hybridization” paradigm has been showing great promise for BFT-SMR. Many

“hybrid” solutions have been designed to reduce the message/time/space complexity of BFT proto-

cols [20, 23, 24, 25, 26, 27, 28, 29, 30], by relying on trusted-trustworthy components (e.g., message

counters in MinBFT [25]) that cannot be tampered with (they are trusted in the sense that they

can only fail by crashing, and otherwise always deliver correct results). An increasing number of

off-the-shelf hardware systems are now providing trusted environments [31, 32, 33, 34], thereby

enabling the further development and large-scale use of hybrid protocols.

Anticipating the impact and widespread use of such systems, and to support the development

of correct hybrid systems, we present Asphalion,
3
the first theorem prover-based framework that

can guarantee the correctness of implementations of hybrid fault tolerant distributed systems

communicating via message passing. Asphalion is inspired by Velisarios [35], a framework for

verifying the correctness of homogeneous BFT protocols (see Sec. 2 for a comparison). As opposed

to Velisarios, Asphalion allows reasoning about hybrid systems by modeling replicas as collections

of multiple components that can have different failure assumptions, e.g., some can fail arbitrarily,

while others can only crash on failure.
4
In addition, Asphalion allows modular reasoning by lifting

properties proved about sub-components of a local system to the level of that local system (see

Sec. 5.4). As part of Asphalion, we developed LoCK: a sound knowledge calculus to reason about

both homogeneous and hybrid systems, at a high level of abstraction. LoCK enables lifting properties

proved about (trusted) sub-components to the level of a distributed system (see Sec. 6.7). As for any

such abstract language, a benefit of using LoCK is also that it allows reusing proofs of high-level

properties for multiple implementations. As a case study, we verified, among other things, critical

safety properties (e.g., agreement) of several versions of the seminal MinBFT hybrid protocol [25],
5

and managed to simplify some of the original proofs of those properties [37]. Verifying MinBFT-like

protocols is important because: (1) MinBFT is part of other protocols, such as [27, 29]; (2) many

protocols such as [26, 27, 25, 30] rely on the same kind of trusted components as MinBFT (see

Sec. 7.1); and (3) to the best of our knowledge MinBFT’s trusted components (called USIGs) have

the smallest TCB compared to other trusted components used in contemporary hybrid protocols.

2
Seminal BFT protocols such as [3, 13, 14] are expensive both in terms of the messages exchanged, and the required number

of replicas, which in addition have to be diverse enough to enforce independence of failures.

3
Asphalion was one of king Menelaus’ squires, and is associated with trustworthiness.

4
We focus here on the different failure assumptions aspect (crash vs. Byzantine) and leave the different system assumptions

aspect (synchronous vs. asynchronous) for future work.

5
MinBFT [25] is part of the Hyperledger Fabric umbrella [36].

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 3

Fig. 1 Overview of Asphalion

Contributions. To summarize, our contributions are as follows: (1) We introduce Asphalion, a

generic and extensible Coq-based [38, 39] framework for verifying implementations of hybrid

fault tolerant distributed systems communicating via message passing. (2) As part of Asphalion,

we developed a Hybrid Logic of Events (Sec. 4) to reason about programs composed of multiple

components that can have different failure assumptions (Sec. 5). (3) We developed LoCK, a sound

knowledge calculus to reason about hybrid systems at a high-level of abstraction (Sec. 6). (4) We

verified within LoCK several reasoning patterns that are used to prove standard properties about

both homogeneous and hybrid systems. (5) We developed methods to lift properties of (trusted)
sub-components of a local system to the level of that local system (Sec. 5.4), and to further lift

those properties to the level of a distributed system (Sec. 6.7). (6) We implemented the normal case

operation of two versions of the seminal MinBFT protocol: one based on USIGs (as in the original

version) and one based on TrIncs [24] (Sec. 7.1). (7) We proved critical safety properties, such as

agreement, of these versions of MinBFT, and simplified some of the original pen-and-paper proofs

(Sec. 7.2). (8) We implemented a runtime environment to execute OCaml code extracted from Coq,

that enables running trusted components inside Intel SGX enclaves (Sec. 8).

2 OVERVIEW
Before diving into the details of our framework in Sec. 4, 5, and 6, we provide here a high-level

overview of Asphalion (available at: https://github.com/vrahli/Asphalion). In addition, Sec. 3 illustrates how

it can be used to verify the correctness of fault-tolerant distributed systems. Asphalion provides three

languages, which are based on extensions/variants of well-known and established formalisms: MoC

is a component-based programming language, where components interact through a monad; HyLoE

is based on Lamport’s happened before relation [40]—one of the two main models of distributed

systems, along with distributed snapshots [41]; and LoCK is a knowledge calculus, and, as discussed

below, knowledge calculi have been shown over the years to provide convenient abstraction layers

to reason about distributed systems without having to worry about low-level details.

2.1 High-Level Architecture of Asphalion
Fig. 1 depicts Asphalion’s architecture, where the yellow parts must be provided by the user, while

the green parts are optional but convenient to use as we explain below. One starts by implementing
a distributed system Sys within MoC, our monadic component language shallowly embedded into

Coq.
6
A distributed system is a collection of local sub-systems, which are themselves collections

of trusted/non-trusted sub-components. Fig. 1 depicts a system composed of 4 local sub-systems,

each being composed of 4 components—3 non-trusted blue components, and 1 trusted in orange.

Then, one has to provide a specification Spec (e.g. agreement) for Sys within HyLoE, our hybrid

logic of events, which provides a model of distributed systems. Finally, one proves that Sys satisfies
Spec within HyLoE by proving that Spec holds for all possible runs of Sys (see Sec. 4). This can be

done: (1) using the general high-level distributed properties proved within our knowledge calculus

6
See the file called model/ComponentSM.v in our implementation for a definition of MoC, as well as the two files called

model/ComponentSMExample1.v and model/ComponentSMExample2.v for examples.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSMExample1.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSMExample2.v

4 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

LoCK, and (2) by directly proving the properties specific to Sys using the automation provided by

Asphalion in the form of Coq tactics.

One can then generate executable OCaml code from the distributed system Sys implemented

in MoC, using Coq’s extraction mechanism. In addition, Asphalion provides support to execute

trusted components (the orange C4 components in the case of Sys) within Intel SGX enclaves.
7

Note that MoC implementations are Coq programs that can be as abstract or concrete as one wants.

For example, one could choose to abstract away some data structures using parameters. However,

these data structures ultimately need to be instantiated in order to extract executable OCaml code.

2.2 High-Level Reasoning
Hybrid systems have a particular architecture, whereby generic components rely on (the trust part
of such systems) tamperproof components to correctly provide functionalities (the trustworthy part

of such systems) that are inherited by the rest of the system (such as counting messages in MinBFT).

LoCK, among other things, captures this inheritance mechanism at a high-level of abstraction (i.e.,

the knowledge exchanged between the nodes of a system) through general reasoning principles,

called lifting, which we discuss in Sec. 5.4 (local lifting) and Sec. 6.7 (distributed lifting).

Note that LoCK provides an optional, but convenient, abstract layer to reason about crash/Byzan-

tine/hybrid fault tolerant distributed systems without having to worry about low-level details.

Using such an abstract layer allows reusing results proved once and for all at the abstract knowledge

level, to derive properties of multiple concrete implementations: (1) by adequately instantiating the

parameters of the abstract model (LoCK’s parameters in our case—see Sec. 6.1); and (2) by proving

that the assumptions made within the abstract model are satisfied by the concrete implementations

(see Sec. 6.6 and Sec. 7.2 for examples of such assumptions). The high-level results we present here

(such as the lifting property presented in Sec. 6.7) can be instantiated for many implementations of

hybrid systems. We already used those results to prove the safety of the Micro system discussed in

Sec. 3, as well as two versions of MinBFT that rely on two different trusted components (see Sec. 7).

We chose to rely on a knowledge calculus because such calculi provide a convenient way to

reason about distributed systems at a high-level of abstraction, as it has been demonstrated in the

extensive literature on the subject. Many knowledge based systems have been developed to, e.g.

(we only cite a few relevant papers here): analyze distributed systems [42, 43, 44, 45, 46]; reason

about synchronous systems [47, 48, 49, 50, 51, 52]; derive protocols [53]; synthesize systems [54];

and reason about blockchain protocols [55]. However, as opposed to “standard” knowledge theories

that consider an external and logical notion of knowledge (that cannot necessarily be computed),

Asphalion relies on a syntactic and explicit representation of knowledge [56], which is more

pragmatic and computational, in the sense that pieces of knowledge are concrete pieces of data

stored locally and exchanged through messages (allowing processes to gain knowledge [57, 42]).

2.3 Rationale for Designing Asphalion
As it turns out, Asphalion is not a simple extension of Velisarios, but is inspired by and uses part of

Velisarios. Starting from the foundations of Velisarios (its logic of events), we designed an entirely

new framework in order to handle hybrid systems, and reason about such systems in a principled

way (Sec. 8 describes our proof effort). Let us now elaborate on the four main reasons that led us to

design a new framework and not simply extend Velisarios.

(1) Velisarios does not provide full support for compositional programming and reasoning in the

sense that, in Velisarios, a local state machine is essentially a single component. To add axioms

7
We explain how to obtain running code such that trusted components are executed inside Intel SGX enclaves, in the file

called MinBFT/runtime w sgx/README.md in our implementation.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/runtime_w_sgx/README.md

Asphalion 5

about trusted components to it, we would first need the notion of components, which is why we

developed MoC (see Sec. 5). MoC allows implementing distributed systems as collections of local

systems, which are themselves collections of components, some of them being marked as trusted. In

addition, MoC enables lifting properties of trusted components to the level of a local state machine,

via deep embeddings of fragments of MoC (see Sec. 5.4).

(2) Moreover, to capture the behavior of these trusted components, we had to modify Velisarios’s

logic of events, to allow the non-trusted components of processes to misbehave, while the trusted

components keep following their specification. We captured this by changing the semantics of

events (namely the trigger function described in Sec. 4.3) to also handle events at which a trusted

component of a compromised process is called (see Sec. 4 for details on events and their semantics

in Velisarios and Asphalion). This led us to developing the HyLoE logic described in Sec. 4.
8

(3) Inspired by Velisarios’s knowledge library, we equippedAsphalionwith LoCK, a sound (hybrid)

knowledge sequent calculus, which differs and goes well beyond Velisarios’s knowledge library

in several ways. First of all, as opposed to Velisarios’s knowledge library (where the knowledge

operators are simply definitionswithin its logic of events), LoCK provides amore principled theory of
knowledge because designing it forced us to identify the primitive constructs (as constructors of the

language) and principles (as derivation rules) of the theory. Moreover, LoCK enforces an abstraction

barrier (thanks to the fact that it is deeply embedded in Coq), which does not exist in Velisarios’s

simple knowledge library. In addition, LoCK allows reasoning at a high-level of abstraction about

trusted and non-trusted knowledge (among other things), while Velisarios’s knowledge library does

not distinguish between trusted and non-trusted knowledge. Other advantages of LoCK that we

plan to explore in the future are that: such a sequent calculus opens the door to some automation;

and while its semantics is currently expressed in terms of HyLoE, other backends could be used.

(4) We developed, within LoCK, a general technique to lift properties of trusted components to

the global level of an entire distributed system. A great advantage of such high-level results is that

they are abstract and can be reused for several implementations. Moreover, the result we proved in

Sec. 6.7 captures a key aspect of the logic of hybrid systems.

2.4 Benefits and Limitations
As hinted at above, in addition to reasoning about hybrid systems,

9
using Asphalion one can also

reason about homogeneous Byzantine systems by not using trusted components, and about crash

fault tolerant systems by assuming that there are no Byzantine events (see Sec. 4.2). Moreover,

as explained in this paper, and as illustrated in Sec. 3 and 7, Asphalion supports verifying safety

properties of such systems, while providing support for liveness is left for future work. Asphalion’s

support comes in the form of three novel languages. (1) As discussed in Sec. 5, MoC is a programming

language shallowly embedded in Coq. In order to automatically derive properties of components,

Asphalion allows defining deep embeddings of sub-languages (for which the desired properties

hold) that are interpreted to MoC expressions. We so far provide two such deep embeddings, which

are prototypical, and which we expect will be reusable for other protocols. In case additional

features that are not supported by these two embeddings are required, one can simply implement

additional deep embeddings following the two examples we provide. (2) As discussed in Sec. 4,

HyLoE is a logic of events shallowly embedded in Coq (i.e., one must use Coq’s logic to state and

derive properties from HyLoE’s axioms). Therefore, when specifying and proving properties of

distributed systems in Asphalion, one is constrained by: (a) the expressiveness of HyLoE’s operators,

(b) HyLoE’s axioms, and (c) Coq’s logic. Finally, (3) as discussed in Sec. 6, LoCK is a high-level

8
Note that Asphalion reuses only these logical foundations of Velisarios’s foundations, i.e., part of its logic of events.

9
To the best of our knowledge, Asphalion is the only framework that supports reasoning about hybrid systems.

, Vol. 1, No. 1, Article . Publication date: August 2019.

6 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

knowledge calculus deeply embedded in Coq, whose expressiveness is constrained by its inference

rules. We leave studying LoCK’s proof-theoretic strength for future work. LoCK is optional but

recommended because: (a) it allows stating system properties at a high-level of abstraction, without

having to worry about how knowledge is computed (it is more abstract and less verbose than

HyLoE); and (b) it allows reusing those properties to prove the correctness of multiple protocols.

2.5 Notation
Before illustrating how Asphalion works through a simple example in Sec. 3, let us finish here by

presenting some notation used throughout the paper. The type A→ B is the type of total functions,

of the form λx .b, from A to B. The type A ∗ B is the type of pairs of the form ⟨a, b⟩ of an a ∈ A and

a b ∈ B. We use the standard “let” notation to destruct pairs: let x, y = p in f . We write p.1 and
p.2 for the 1st and 2nd elements of the pair p. B is the Boolean type with constructors true and
false. We often assume an implicit coercion from B to P (the type of propositions). The option(A)
type is the usual option type with constructors None and Some(a), where a ∈ A. The list(A) type is
the usual list type, with constructors []—the empty list—and a :: l, where a ∈ A and l ∈ list(A).

3 RUNNING EXAMPLE
Let us now explain the workflow in Asphalion, by going

through the simple example depicted on the right, which we

refer to as Micro (a simplified version of MinBFT), and which

we use throughout the paper. We start by implementing Micro

within MoC. Next, we specify its agreement property within

HyLoE. Finally, we verify this property primarily using LoCK.

Micro’s implementation in MoC. Micro is composed of three nodes, i.e. three local sub-systems:

a primary called primary, and two backups called backup1 and backup2. More precisely, let the

Micro distributed system be a function that, for every node name a ∈ {primary, backup1, backup2},
returns a local sub-system (a’s code). Each local sub-system is composed of three components (state

machines), namely, a main component called main and two sub-components: (1) a log called log
containing all received/generated requests; and (2) a trusted message counter, called usig, similar

to the one used in MinBFT (Sec. 7.1 elaborates on MinBFT and its trusted USIG component).

Each node’s main component is in charge of receiving messages; calling the log and usig sub-
components to handle messages appropriately as discussed below; and finally possibly sending

further messages. A message is either of the form: (1) request(r)—sent from clients to the primary;

or (2) commit(r, ui)—sent from the primary to the backups; or (3) accept(r, i)—sent from the

backups to themselves. The log components receive inputs of the form log(c) (to log commits) and

produce outputs of the form logged; while usig components receive inputs of the form createUI(r)
or verifyUI(r, ui) and produce outputs of the form createdUI(ui), goodUI, or badUI.

On every input request(r), the primary (its main component) first calls its trusted usig compo-

nent to assign a unique trusted sequence number i to the request r—the request along with the

sequence number are signed by the trusted component using a confidential key. It then stores the

signed request in its log. Finally, it broadcasts commit(r, ⟨i,ϑ ⟩) to both backups, where ϑ is the

signature of the pair ⟨r, i⟩ generated by its usig component. The pair ⟨i,ϑ ⟩ is called a UI as it allows
Uniquely Identifying the request r in a reliable manner (thanks to the signature). Upon receipt of

such a message c = commit(r, ⟨i,ϑ ⟩) from the primary, each backup b (its main component) first

checks whether c has a valid trusted sequence number i, i.e., the signature ϑ is correct and whether

i = j + 1, where j is the highest sequence number received so far by b from the primary. If c is valid,
then b stores it in its log, and sends a message to acknowledge the fact that c has been accepted.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 7

λs,m.I
©«
match m with
| request() ⇒ handleRequest(a, s,m)
| commit(,) ⇒ handleCommit(a, s,m)
| accept(,) ⇒ handleAccept(a, s,m)

ª®®¬
Each main component maintains a state com-

posed of: (1) the service state (a number), which is

updated every time a request is executed; and (2) the

highest sequence number received from the primary

(this is only used by backups). The initial state of the main component of each node a is simply

the pair ⟨0, 0⟩, and its update function is depicted above on the right. Given a state s and an input

message m, main pattern matches on m, and runs the appropriate handler. Note the I() operator.
Let us explain what it does. As discussed in Sec. 5.4, the three handlers are expressed in a deep

embedding of a simple language, which is more amenable to automation than our general monadic

programming language shallowly embedded in Coq (and therefore rather unwieldy).
10 I() lifts

processes from the deep embedding to the general shallow embedding. This simple deep embedding

provides three constructors, namely: RET() to create a process out of a Coq term, BIND(,) to
compose processes (sometimes written as BIND), and CALL(,) to call sub-processes.

def handleCommit(a, s, c)
= if ¬validCommit(a, s, c) then RET(s, []) else

CALL(usig, verifyUI(c.val, c.ui)) BIND λo.
match o with
| goodUI⇒

let s′ = update(c, s) in
CALL(log, log(c)) BIND λ .

RET(s′, [accept(c.val, c.ui.counter)])
| ⇒ RET(s, [])

Let us now define handleCommit, which handles com-

mits sent by the primary to the backups—we elude some

details for readability. The other handlers and compo-

nents are defined in a similar fashion, and are therefore

omitted here (see MinBFT/MicroBFT.v for more details). A

commit message c contains a request value and a UI,

which we access using c.val and c.ui, respectively. The
validCommit function checks that: c was sent by the

primary, a is a backup, and a received the counter values less than the one in c.ui (this information

is stored in s). If c is invalid, handleCommit returns RET(s, []), meaning that main’s state remains

the same (i.e., s), and it does not output any message ([] is the empty list). If c is valid,main verifies

the validity of c.ui by calling the usig sub-component using CALL. If c.ui is valid, main updates its

state using update, which computes the highest counter between the one in c.ui (i.e., c.ui.counter)
and the one recorded so far in s. Finally, it logs the commit by calling its log sub-component, and

returns its updated state s′ and an accept message, which is meant to be sent to itself.

Micro’s specification using HyLoE. We then specifyMicro’s agreement property within HyLoE

(our hybrid logic of events shallowly embedded in Coq). It states that if the backups accept two

requests r1 and r2, both with sequence number i , then r1 = r2. The formula on the left formally

states this property (we omit some details for readability—see MinBFT/MicroBFTagreement.v for more

details), while the diagram on the right depicts a simple run of Micro:
Lemma micro agreement :

∀(eo : EO)(e1, e2 : Event(eo))(r1, r2 : Request)(i : N).
accept(r1, i) ∈ Micro { e1
→ accept(r2 , i) ∈ Micro { e2
→ r1 = r2

This property is stated directly in Coq (using Coq’s logical constructors), and involves HyLoE

constructs. The type EO is the type of event orderings, which are abstract representations of system

runs (e.g., as depicted on the right above), and which are discussed further in Sec. 4.3. Event(eo)
is the type of events happening within the event ordering eo.11 We simply write Event when the

corresponding event ordering is clear from the context. In micro agreement, the events e1 and e2
are therefore events happening within the event ordering eo, i.e., during the run of the system

10
The monad of this general language takes care of threading the sub-components that a local system’s components are

allowed to use/call throughout the execution of that system.

11
The event ordering depicted on the right above is composed of 5 events: one triggered by the receipt of a request by the

primary; two triggered by the receipt of commits by the backups; and two triggered by the receipt of accepts by the backups.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/MicroBFT.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MicroBFTagreement.v

8 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

captured by eo. Therefore, this property states that in each possible run ofMicro, if it outputs two
messages of the form accept(r1, i) and accept(r2, i) at e1 and e2, respectively, where i is the trusted
sequence number associated with both r1 and r2 , then it must be that r1 = r2 .

HyLoE is essentially the definition of event orderings, along with the axioms that govern them

(see Sec. 4). As discussed in Sec. 5.2, on top of that, Asphalion provides constructs to reason about

the behavior of processes at given events, thereby allowing one to reason about runs of MoC

systems. In particular, it provides three constructs to reason about: (1) the inputs of processes

at given events; (2) the states of processes before and after given events; and (3) the outputs of

processes at given events. For example, in micro agreement, accept(r1, i) ∈ Micro { e1 states
that accept(r1, i) belongs to Micro’s outputs at e1.

As discussed in Sec. 4, one particularity of HyLoE is that it allows reasoning about the behavior

of trusted components running at compromised locations. In our example here, it allows reasoning

about usig components even though the main and log components might have been compromised.

In general, to prove a system property, one has to prove that it holds for all event orderings, even

the ones where the events happen at compromised nodes where only the trusted components are

still running. As it turns out, micro agreement is true even for the runs where the primary, except

for its usig component, has been compromised.

Micro’s verification using LoCK. One could prove Micro’s agreement property using only HyLoE,

i.e., using only HyLoE’s axioms and properties of the above mentioned constructs to reason about

systems’ inputs, states and outputs. However, in general we recommend to use LoCK instead for

two main reasons. (1) As mentioned above, one advantage of using LoCK is that it allows one to

reuse the results proved there for several protocols. (2) Moreover, LoCK is a convenient language to

reason about systems because it is more abstract and less verbose than HyLoE, as LoCK expressions

do not mention events and event orderings. Note that even though expressions do not mention

events, sequents do, and LoCK provides a highly convenient way to navigate through events,

through what we call guards (see Sec. 6.4). Let us provide a simple example. LoCK is a sequent

calculus, where a sequent is of form ⟨G⟩ H ⊢ σ , where G is a list of guards, H is a list of hypotheses,

and σ is the conclusion. In the following sequent (LoCK’s syntax is presented in See 6.2, and its

semantics in Sec. 6.3):

⟨y : e1≺e2 ⟩ x1 : K+(d1) @ e1, x2 : K+(d2) @ e2 ⊢ σ

the expressions K+(d1) (i.e., we know d1) and K+(d2) (i.e., we know d2) are event-free. The x1
hypothesis states that K+(d1) holds at some event e1, and similarly for x2, while the y guard states

that e1 happened before e2. Through guards, one can then conveniently relate the knowledge

available at different points in space/time in a system run (which is captured by the hypothesis list).

Now, back to Micro, we derived micro agreement (see Sec. 6.8 for further details regarding this

proof) using Thm. 6.1, a general abstract lemma proved within LoCK (i.e., using LoCK’s inference

rules). As it turns out, Thm. 6.1 captures part of the logic used by hybrid systems, and can be reused

for several such systems (we show two other examples in this paper: a USIG-based MinBFT, and a

TrInc-based MinBFT). Roughly speaking, Thm. 6.1 allows one to derive that if two nodes know two

pieces of information for which the same trusted sequence number has been generated, then those

pieces of information must be the same. It relies on a number of protocol-dependent assumptions,

described in Sec. 6.6, regarding, for example, the way knowledge gets propagated, and the way

trusted sequence numbers get maintained. Because we have proved LoCK’s soundness, i.e., its

inference rules are valid w.r.t. its HyLoE semantics, once we have proved a lemma within LoCK,

we can immediately extract its HyLoE interpretation. We rely on this to prove micro agreement,

which is expressed in HyLoE, i.e., we instantiate Thm. 6.1 appropriately, and compute its HyLoE

interpretation. It then remains to prove, within HyLoE, that the corresponding instances of its

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 9

Fig. 2 Examples of message sequence diagrams

(a) Correct (kind 1) (b) Byzantine (kind 2a) (c) Hybrid (kind 2b)

protocol-dependent assumptions hold about Micro (see Sec. 5.3 for an example of such an HyLoE

proof). One interesting fact about these properties is that they do not need to be proved by induction,

as the inductive reasoning is all done within LoCK. For example, one of those assumptions, called

KLD in Sec. 6.6, is: ∀tλt.K+(t)→ (K−(t) ∨ L(t) ∨ OD(t)). Intuitively, it states that if we know a

trusted piece of information then either (1) we already knew it in the past; or (2) we just learned it

from someone else; or (3) we came up with this piece of information (and disseminated it). This

is straightforwardly true aboutMicro because backups get to know about UIs by learning about

them from the primary. As it turns out, the protocol-dependent assumptions that Thm. 6.1 relies

on, are all straightforward to prove, allowing us to straightforwardly derive micro agreement.

4 HYLOE: A HYBRID LOGIC OF EVENTS
We now present a new hybrid variant of the Logic of Events (LoE) that was originally introduced

in [58] to reason about crash fault tolerant protocols [59, 60, 61], and later used to reason about

cyber-physical systems [62]. LoE was then extended in [35] to reason about Byzantine fault tolerant

protocols. We extend LoE further here to enable reasoning about hybrid fault models and hybrid

protocols (i.e., protocols that contain components with different failure assumptions—some can

be compromised, while others can only crash on failure), and explain the main differences with

previous versions below. First, we start by introducing basic concepts such as names, messages,

etc., which we use later to define our new Hybrid LoE (HyLoE).

4.1 Basic HyLoE Concepts
To model the behavior of a distributed protocol one has to reason about its nodes (also called

processes, locations, or local sub-systems), and the messages they exchange. In order to make our

model as general as possible, these concepts are introduced as parameters of HyLoE, and have

to be instantiated later for a given protocol. One of HyLoE’s parameters is a type Node of node
names, ranged over by a. Because nodes communicate via message passing, another parameter is

Msg, a type of messages ranged over by msg. The nodes of a system receive messages and produce

directed messages, which are pairs of a message and a list of destinations denoting the locations

to which the message has to be delivered. In Asphalion, nodes are composed of sub-components,

some of which are trusted (i.e., they cannot be compromised—see Sec. 5). We assume that those

trusted components only receive inputs of some abstract type InputTrusted, ranged over by it.

4.2 Accounting for Trusted Components in HyLoE Through Hybrid Events
HyLoE is a logic of events to model hybrid fault tolerant distributed systems. One of the most

fundamental concepts to reason about distributed systems in LoE, is the concept of an event, which
can be seen as a point in space/time [40] at which something happened. In EventML [59, 60, 61]

events are abstract objects that only correspond to the handling of a message by a node that follows

its specification (kind 1—see Fig. 2a). As opposed to EventML, in Velisarios [35], an event is either of

kind 1, or it corresponds to some arbitrary behavior, in which case no further information regarding

this event is available/provided (kind 2—see Fig. 2b). HyLoE further extends LoE by providing

, Vol. 1, No. 1, Article . Publication date: August 2019.

10 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 3 HyLoE parameters

Types: Event (ranged over by e) AuthData (ranged over by auth) Keys (ranged over by ks)

Functions: ≺ ∈ Event→ Event→ P trigger ∈ Event→ TriggerInfo keys ∈ Event→ Keys
loc ∈ Event→ Node pred ∈ Event→ option(Event) nfo2auth ∈ TriggerInfo→ list(AuthData)

Axioms: (1) ≺ is transitive and well-founded (2) Equality on events is decidable

(3) ∀e1, e2 .pred(e1) = Some(e2) → loc(e1) = loc(e2) (4) ∀e1, e2 .pred(e1) = Some(e2) → e2 ≺ e1
(5) ∀e1, e2 .pred(e1) = None→ loc(e1) = loc(e2) → e1 , e2 → e1 ≺ e2
(6) ∀e1, e2 .pred(e1) = pred(e2) → loc(e1) = loc(e2) → e1 = e2
(7) ∀e, e1, e2 .e1 ≺ e2 → loc(e1) = loc(e2) → pred(e2) = Some(e) → e = e1 ∨ e1 ≺ e

means to reason about three kinds of events. As in EventML and Velisarios, Asphalion supports

events of kind 1 (see the constructor TImsg below). Furthermore, the kind 2 events of Velisarios,

that are happening at a compromised node, are now split into two categories: (1) those that did not

call a trusted component, and therefore for which no information is available (kind 2a—see Fig. 2b

and TIarbitrary below); and (2) those that called a trusted component (kind 2b—see Fig. 2c and

TItrust below). Correspondingly, we introduce the type (msg and it are introduced in Sec. 4.1):

nfo ∈ TriggerInfo ::= TImsg(msg) | TItrust(it) | TIarbitrary

4.3 Hybrid Event Orderings
To prove a property about a distributed system, one has to reason about all its possible execution
traces. Therefore, we need to provide a model of those traces. As in LoE, we model a run of a

distributed system essentially as a partial order on events. Such an abstract representation of a run

is called an event ordering.12 Therefore, to prove a property P about a distributed system, one has

to prove that P is true for all event orderings that correspond to this system (among other things,

all possible assignments of TriggerInfos to events have to be considered).
13

Fig. 2 provides examples of message sequence diagrams. Fig. 2a, depicts an event ordering with

three locations l1, l2, l3, where all events are correct and are triggered by messages. Because here the

network is asynchronous, even though l1 sent a message to l2 at event e1 before it sent a message

to l2 at e3, l2 received the first message at e5 after it received the second message at e4. In this figure,

e6 is triggered by the receipt of a message sent by l2 at e5. Instead, in Fig.2b, e6 is a Byzantine event
for which no information is available and at which no trusted component was called; and in Fig. 2c,

e6 is a hybrid event at a Byzantine location and at which a trusted component was called.

Formally, an event ordering eo of type EO is a record (see Fig. 3) that consists of a set of abstract

events Event ordered by a well-founded and transitive causal ordering relation ≺ (see Axiom (1)).14

The function loc returns the location where each event e happens, and trigger explains why it

happened by associating an element of TriggerInfo with e. Events are totally ordered at a given

location: pred(e) returns e’s local direct predecessor, if it exists. As in Velisarios [35, Sec.3.3],

our model relies on an abstract concept of keys (of type Keys) to implement and reason about

authenticated communication. Even though for the purpose of this paper the type AuthData, of
authenticated pieces of data, is left abstract, let us mention that an authenticated piece of data (e.g.,

an authenticated message) can be seen as the pair of a piece of data and an authentication token

(also an abstract entity, which one can instantiate for example using RSA signatures) that has been

generated using keys (which one can instantiate for example using RSA keys). Keys are associated

12Event orderings formalize the message sequence diagrams used by system designers to describe the behavior of systems.

13
Note that event orderings are used to model systems and prove properties about them, and cannot be accessed by the

systems themselves, i.e., faulty nodes identified in the model through TriggerInfo, are not identified by programs.

14
Our model is based on Lamport’s happened before relation [40], as opposed to the “global state” semantics [41].

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 11

with nodes as follows: keys(e) returns the keys available at e. Finally, nfo2auth(nfo) lists all the
authenticated pieces of data included in nfo. Axioms (3) to (7) provide an axiomatization of pred.
For example, Axiom (4) says that if e2 is e1’s direct predecessor, then e2 happened before e1; and
Axiom (5) says that if e1 has no direct predecessor and e2 happened at the same location as e1, then
e2 happened after e1 if it is not e1 (e1 is the initial event at that location). Thanks to these axioms, one

can see an event ordering as a collection of local traces, where a local trace is a collection of events

happening at the same location and ordered in time (through pred), and such that some events

of different local traces are causally ordered (through ≺). Typically, some runs/event orderings

are not possible and therefore excluded through assumptions in specification statements (e.g., for

fault-tolerant protocols, we typically exclude event orderings with more than f faulty nodes).

HyLoENotation. Even though some operators are parameterized by event orderings, we often omit

those for readability. We now define some useful notation. Let first?(e) be true iff pred(e) = None;
let e1 ⊂ e2 be pred(e2) = Some(e1); let pred=(e) be e′ if e′ ⊂ e, and e otherwise; let e1 ⪯ e2 be (e1 ≺
e2 ∨ e1 = e2); let e1 ⊏ e2 be e1 ≺ e2 ∧ loc(e1) = loc(e2); and let e1 ⊑ e2 be e1 ⪯ e2 ∧ loc(e1) = loc(e2).

5 MOC: COMPONENT-BASED PROGRAMMING
Asphalion enables reasoning about distributed systems, where local sub-systems are composed

of multiple components that can have different failure assumptions. Components are referred to

by their names. Let CompName be the set of component names, ranged over by cn. A component

name includes a tag (a Boolean) describing whether the component is trusted (trusted components

are constrained to only react to inputs of type InputTrusted—see Sec. 4.1). Moreover, a component’s

name specifies its behavior: we assume some functions S, I, and O from component names to

types, which enforce that a component named cn must have a state of type S(cn); take inputs of
type I(cn); and produce outputs of type O(cn). Sec. 5.1 introduces components and explains how

they interact through a monad. It then explains how to build local/distributed systems as collections

of components. Sec. 5.2 explains how to relate the execution of systems with event orderings.

Finally, Sec. 5.4 explains how to reason about systems compositionally by lifting properties of

sub-components of a local system to the level of that system.

5.1 Components as State Machines, Local and Distributed Systems
Components. A component is a named state machine, which essentially consists of an update

function and the current state of the machine. To support the fact that components are allowed to

call each other, we define state machines using a state monad [63]. Therefore, instead of traditionally

defining update functions as functions that take an input and a state and return an output and

an updated state, we combine those with a monad (see Mn(T)’s definition below), such that in

addition update functions take components as input and return possibly modified components.

Consequently, state machines can call other state machines through this state monad. Therefore,

to avoid a circularity in the definition of state machines, we now use step indexing [64] to define

them, requiring that machines at level n can only use machines of lower levels. Let Componentn

(ranged over by comp) be the collection of components at level n, which we define recursively over

n below. This definition uses the monad mentioned above, which looks like this (where T is a type):

Mn(T) = list(Componentn) → (list(Componentn) ∗ T)

Going back to state machines, a machine at level n + 1 (of type Componentn+1—by definition there

are no level 0 machines) with name cn is either a state machine at level n, or a pair of: (1) an update

function of type Updn(cn) = S(cn) → I(cn) → Mn(S(cn) ∗ O(cn)); and (2) a state of type S(cn).15

15
State machines also have the ability to halt on their own. However, we do not discuss this feature here for simplicity.

, Vol. 1, No. 1, Article . Publication date: August 2019.

12 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 4 An execution of a local system

Monad operators. The return and bind operators of our (state) monad are defined as usual:

ret(a) = λs.⟨s, a⟩ takes a a ∈ A and outputs aMn(A); andm >>= f = (λs.let s′, a = m(s) in f (a, s′))
takes a m ∈ Mn(A) and a f ∈ A→ Mn(B) and outputs aMn(B). We also introduce a call operator
to call other components from within a component at level n+ 1. It takes a component name cn and

an input i ∈ I(cn) and returns a monadic output of type Mn(O(cn)). It first looks for a component

with name cn within its sub-components subs, provided by the returned monad. If it finds one, say

comp, it then applies comp to the input i and to the subset subs1 of subs containing the components

of levels strictly lower than n (the only sub-components that comp can use because of its level).

This computation produces an output o and a list of updated sub-components subs2. Finally, call
returns the output o, as well as the list of sub-components subs, where subs1 is replaced by subs2.16

Local & Distributed Systems. A local system of type LocalSystem is a pair of a main component

at level n and a list of sub-components at lower levels. We enforce that main components send and

receive messages. A (distributed) system of type System is a function from node names to local

systems, i.e., of type Node→ LocalSystem (see, e.g., the Micro system presented in Sec. 3).

5.2 Relating MoC Systems and HyLoE Events
As mentioned above, to prove a property about a distributed system S, one has to prove that this

property holds for all “possible” event orderings. Therefore, given an event ordering eo, one has
to be able to compute the inputs, outputs, and states of S’s local sub-systems at all events in eo in
order to reason about S’s “trace” provided by eo. Inputs are provided by the trigger function. We

now explain how to compute outputs and states, and provide an example showing how to combine

these definitions to prove systems’ properties in a compositional manner.

Computing systems’ states. First, ls@−e runs the local system ls by applying its main component

to its sub-components and to the list of events locally preceding e and excluding e (similarly, ls@+e
computes ls’s state after e, by applying ls to the list of events locally preceding e, including e). It
either (1) returns a local system ls′ if all those events have been triggered by information of the form

TImsg(msg), i.e., non-Byzantine events; or (2) it returns a trusted component in case at least one of

those preceding events has been triggered by some information of the form TItrust(it) (in case

the trusted component
17
is called) or TIarbitrary (in case the trusted component is not called), in

which case some Byzantine event happened, and we cannot know what state the rest of the local

system is in; or (3) it is undefined if one of those preceding events is a Byzantine event and ls does
not include a trusted component. Fig. 4 provides an example of the status of the components of a

local system (composed of 3 non-trusted blue components and a trusted orange one) after handling

the events caused by: (1) the receipt of a message; (2) some arbitrary behavior; and (3) a call to the

trusted component D. As shown in Fig. 4, in case one of those preceding events is Byzantine, ls@−e
keeps on running the trusted component because it cannot be compromised. However, ls@−e loses
track of the rest of the system since a Byzantine event has occurred, and the other non-trusted

components could be in any state.

16
See Appx. A for an example of a local system and of how call works.

17
For simplicity, we currently only support systems with at most one trusted component per local sub-system—the typical

case in the literature on hybrid systems. This can easily be extended to systems with multiple trusted components if needed.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 13

Computing components’ states. We can then access the state of a component named cn of a local

system ls using the operator ls⇂cn. Also, let comp⇂cn be comp if it has name cn, and undefined

otherwise. Therefore, ls@−e⇂cn returns the state of ls’s component called cn before the event e
(if it exists, i.e., if the component is trusted or no Byzantine event has occurred, otherwise the

component could be in any state); and similarly for ls@+e⇂cn. Finally, we can compute the state of

a component cn of a system S before a given event e simply by calling S(loc(e))@−e⇂cn, which we

write as S@−e⇂cn, and similarly for after the event.

Computing systems’ outputs. Let ls { e be the outputs produced by ls’s main component at e,
when all the events preceding e are non-Byzantine (these outputs are obtained by running the

system on ls@−e). In case one of those events is Byzantine, ls { e produces instead the outputs of

the trusted component, which we are keeping track of (as explained above). We write S { e for
S(loc(e)) { e; and d ∈ ls { e to mean that d occurs within the outputs computed by ls { e.

As illustrated in Sec. 5.3, Asphalion allows composing the specifications of components to derive

local and distributed system specifications, which are fully specified in terms of (1) their states

using S@−e⇂cn and S@+e⇂cn; (2) their inputs using trigger; and (3) their outputs using S { e.

5.3 Example: a Compositional Proof of a Simple Micro Property
Let us provide an example. As defined in Sec. 3,Micro is a distributed system composed of three

local sub-systems, each of which is composed of three components called main, log, and usig. Let
us prove prove that if accept(r, i) ∈ Micro { e, i.e., if a backup accepts a request r with sequence

number i, then r is logged, i.e., it is inMicro@+e⇂log. First, (1) we prove that whenever log is called,

it logs the commit given as input. We prove this about the local system composed of log only (which
does not use any sub-components). Then, (2) from accept(r, i) ∈ Micro { e, we obtain that this

output, as well as Micro@+e, was produced by running Micro on Micro@−e. We then inspect the

code run by Micro, and we see that log, through the use of call, was requested to log a commit

containing r . Finally, (2) we compose this proof with the one in step (1), and conclude by showing

that Micro@+e⇂log is the new state computed in step (1).

5.4 Lifting Through “Deep” Restrictions
Wenow describe a compositional method to lift properties proved about (trusted) sub-components of

a local system to the level of that system. One advantage of MoC is its expressiveness and flexibility:

one can build a component essentially from any update function of type Updn(cn). Indeed, our
framework provides a shallow embedding of components that can make use of any Coq expression

as long as it has the right type. Unfortunately, this is also sometimes a disadvantage because it

entails that we cannot prove many general lemmas about the behavior of components. For example,

a component could simply throw away all its sub-components. However, often components simply

use their sub-components, and return them updated. This is useful information, which we would

like to easily derive. A standard technique to prove such generic results about such “well-behaved”

components is to: (1) define a deep embedding of these “well-behaved” components; (2) define an

“interpretation” function from the deep embedding to the shallow embedding; and (3) prove that

these generic properties hold for the deep embedding.

One can define as many deep embeddings as needed. We define here a simple one (which we

used to implement MinBFT) that contains only three operators: return/bind/call.
18

Namely, let

Proc(A) be the set of terms p of the following form (left), and let I ∈ Proc(A) → Mn(A) (for any

18
Appx. B presents another example of such a language that also allows spawning new sub-components.

, Vol. 1, No. 1, Article . Publication date: August 2019.

14 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

level n) be the following interpretation of this language (right):

RET(a) where a ∈ A
BIND(p1, p2) where p1 ∈ Proc(B) & p2 ∈ B→ Proc(A)
CALL(cn, i) where i ∈ I(cn) & O(cn) = A

I(RET(a)) = ret(a)
I(BIND(m, f)) = I(m) >>= λx .I(f (x))
I(CALL(cn, i)) = call(cn, i)

Then, given a component name cn, a level n (indicating what sub-components cn will be able to

use—it will only be able to use lower-level components), and a “deep” update function u ∈ S(cn) →
I(cn) → Proc(S(cn) ∗ O(cn)), we can build a “shallow” update function of type Updn(cn) using
λs, i.I(u s i). Thanks to this language, we can now prove the preservation lemma mentioned above,

i.e., that when a component is applied to sub-components subs1 then it produces sub-components

subs2 such that subs1 and subs2 only differ by their states (components cannot be thrown away or

spawned and the names and update functions remain the same).

Most importantly, this language allows us to reason compositionally about local and distributed

systems (see Sec. 5.1). For example, we proved the following general result,
19
which we in turn used

to prove that our MinBFT implementations satisfy the Mon property presented in Eq. 4 in Sec. 6.6:
20

Theorem 5.1 (Local Lifting). Given a local system ls, if (1) all its components are built as above
and have different names; and (2) cn is a trusted level 1 component in ls (i.e., it does not call other
components); then for all event e, there must exist a list of inputs l ∈ list(I(cn)) such that the state
ls@+e⇂cn is obtained by running cn on l, starting from the state ls@−e⇂cn.

Remark 1. Trusted components do not need to be at level 1. However, this constraint in Thm. 5.1 is
convenient to obtain a simple lifting theorem. Otherwise, without this constraint, i.e., for higher-level
components, such a local lifting theorem would be more complicated because it would have to also take
into consideration the sub-components such higher-level components use to compute their new state.
More precisely, it would not be enough to run the sub-system ls′ composed of cn and its sub-components
subs (the sub-components of ls that cn relies on) because the execution of ls on an event e might involve
other components than those in ls′. Those other components might also call some of the sub-components
in subs. In that case it might not be enough to call ls′ on a list of inputs to get to ls@+e⇂cn, because in
between each call, we might have to also update the states of the sub-components subs. It is worth noting
that all the “standard” trusted components used in the literature [23, 24, 25] are level 1 components.
Therefore, we leave developing such local lifting lemmas for higher-level components for future work.

6 LOCK: A HYBRID KNOWLEDGE CALCULUS
In order for a distributed system to achieve some objective as a whole, its nodes typically need

to generate, disseminate, and gather some information. The way they exchange this information

forms the high-level logic of the system. Understanding and being able to reason about this logic is

one of the major difficulties when dealing with distributed systems. Moreover, the same high-level

logic is typically shared by many systems. Therefore, we introduce LoCK: a calculus to reason at a

high-level of abstraction about the knowledge exchanged between the nodes of a distributed system.

Although LoCK is inspired by Velisarios’s knowledge library, one advantage of LoCK is that it

exposes the primitive concepts necessary to reason about knowledge through sound inference

rules,
21
which further opens the door to automation.

22
Moreover, unlike in Velisarios, LoCK enables

reasoning about both trusted and non-trusted knowledge. First, Sec. 6.1 introduces the parameters

19
See the lemma called M byz compose step trusted in the file called model/ComponentSM3.v in our implementation.

20
See ASSUMPTION monotonicity true in MinBFT/MinBFTass mon.v and MinBFT/TrIncass mon.v.

21
We proved the soundness of our inference rules using Coq—see the file called model/CalculusSM.v.

22
Automating proofs within LoCK is left for future work. We have started developing proof tactics similar to Coq’s intro

and destruct. In addition, we would like to develop both simple “brute-force” proof search engines, and decision procedures

for fragments of LoCK.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM3.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTass_mon.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncass_mon.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 15

Fig. 5 LoCK’s parameters

Types: Data (ranged over by d) Identifier (ranged over by i) Trust ⊆ Data (ranged over by t)

Functions: sys ∈ System trustHasId ∈ Trust→ Identifier→ P verify ∈ Event→ AuthData→ B
mem ∈ CompName genFor ∈ Data→ Trust→ P trusted2id ∈ S(trust) → Identifier
trust ∈ CompName know ∈ Data→ S(mem) → P lt ∈ Identifier→ Identifier→ P
owner ∈ Data→ Node auth2data ∈ AuthData→ list(Data) initId ∈ Identifier

Axioms: (1) lt is transitive and anti-reflexive (3) ∀t, d1, d2 .genFor(d1, t) → genFor(d2, t) → d1 = d2
(2) know(d,m) is decidable (4) ¬know(d,m) for all initial states m of sys’s components

(5) all initial identifiers of sys’s trusted components are equal to initId

Fig. 6 LoCK’s syntax

θ ∈ KType ::= KTi | KTn | KTd | KTt υ ∈ KVal ::= i | a | d
τ ∈ KExp ::= ⊤ | ⊥ | τ 1 → τ 2 | τ 1 ∧ τ 2 | τ 1 ∨ τ 2 | ∃ϕ | ∀ϕ | υ1 = υ2 | i1 < i2 | @(a)

| L(d) | D(d) | K+(d) | I+(i) | HI(t, i) | O(d, a) | G(d, t) | � | ⊂τ | ≺τ | ⊏τ
ϕ ∈ (θ ∈ KType) ∗ {υ ∈ KVal | oftype(υ , θ)} → KExp

on which LoCK depends. Sec. 6.2 describes its syntax and Sec. 6.3 its semantics. Sec. 6.4 presents

LoCK’s derivation rules, and their semantics. Finally, Sec. 6.6 and 6.7 show how to derive within

LoCK general results about systems from typical assumptions. We among other things show how

to lift properties about trusted sub-components to the level of distributed systems.

6.1 LoCK’s Parameters
To be as general as possible, LoCK is parametrized by the types and functions described in Fig. 5.

Sec. 7.2 explains how we can instantiate those parameters to derive high-level properties of several

versions of MinBFT. LoCK can be instantiated for any kind of data (Data), trusted data
23
(Trust—a

subset of Data), and identifier (Identifier—a partially ordered set, whose ordering relation is lt).
Identifiers are used to identify trusted pieces of data through the trustHasId relation. In addition,

LoCK is parameterized over the following operators: (1) sys is the distributed system we want to

reason about; (2) mem is the name of sys’s component holding the knowledge, while trust is the
name of its trusted component (these could be straightforwardly generalized to lists of component

names if necessary); (3) each piece of data is tagged by a node (extracted using owner) meant to

be the one that generated the data; (4) verify(e, auth) is true iff the authenticated piece of data

auth can indeed be authenticated at e; (5) genFor captures the fact that trusted pieces of data are

meant to correspond to non-trusted pieces of data, e.g. in MinBFT, a UI essentially corresponds to

a non-trusted request (see Sec. 7.1); (6) know expresses what it means to hold some information;

(7) the trust component is in charge of recording the last trusted identifier it generated, which

is computed using trusted2id, with initial value initId; (8) auth2data extracts the list of pieces of
data contained within an authenticated piece of data. We assume that if some trusted knowledge t
is generated for two different pieces of data d1 and d2, then they must be equal. In addition, we

assume that know is decidable, and that sys’s nodes have no initial memory.

6.2 LoCK’s Syntax
As shown in Fig. 6, besides standard first-order logic operators (⊤, ⊥, ∧, ∨,→, ∃, ∀), LoCK also pro-

vides HyLoE-specific operators to state properties relating different points in space/time: ⊂, ≺, ⊏; to
talk about initial events:�; and to relate space/time coordinates:@. A quantifier of the form ∃ϕ or of

23
A piece of data is trusted if generated by a trusted component (e.g. UIs generated by USIGs in MinBFT—see Sec. 7.1).

, Vol. 1, No. 1, Article . Publication date: August 2019.

16 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 7 LoCK’s semantics (predicate logic)

J⊤Ke = True
J⊥Ke = False

Jτ 1 ∧ τ 2Ke = Jτ 1Ke ∧ Jτ 2Ke
Jτ 1 ∨ τ 2Ke = Jτ 1Ke ∨ Jτ 2Ke
Jτ 1 → τ 2Ke = Jτ 1Ke → Jτ 2Ke

J∃ϕKe = ∃υ ∈ {υ ∈ KVal | oftype(υ , ϕ .1)}.ϕ .2(υ)
J∀ϕKe = ∀υ ∈ {υ ∈ KVal | oftype(υ , ϕ .1)}.ϕ .2(υ)

Fig. 8 LoCK’s semantics (logic of events)

J�Ke = first?(e) = true
J@(a)Ke = loc(e) = a

J⊂τ Ke =
{

Jτ Ke′ , if pred(e) = Some(e′)
False otherwise

J≺τ Ke = ∃e′ ≺ e.Jτ Ke′
J⊏τ Ke = ∃e′ ⊏ e.Jτ Ke′

Fig. 9 LoCK’s semantics (knowledge)

JL(d)Ke = learns(e, d)
JD(d)Ke = d ∈ sys { e
JK+(d)Ke = knows+(e, d)

JI+(i)Ke = ident+(e, i)
Jυ1 = υ2Ke = υ1 = υ2
Ji1 < i2Ke = lt(i1, i2)

JHI(t, i)Ke = trustHasId(t, i)
JO(d, a)Ke = owner(d) = a
JG(d, t)Ke = genFor(d, t)

the form ∀ϕ takes a dependent pair ϕ as argument: (1) a type θ and (2) a function from values of type

θ to expressions. The predicate oftype(υ, θ) is true iff (υ, θ) ∈ {(i, KTi), (d, KTd), (t, KTt), (a, KTn)}.
LoCK also provides general operators to capture properties about distributed knowledge. Reason-

ing about distributed knowledge is a well studied topic [42, 43, 44, 45, 53, 46, 54, 49, 50, 55, 51, 52].

However, as opposed to the papers listed above, we follow here a more computational approach, i.e.

one can always compute the knowledge at a given location. LoCK supports the standard knowledge

knows (K+) operator, which is at the core of several knowledge calculi such as the ones mentioned

above. LoCK also adopts learns (L) and owns (O) operators from Velisarios; and introduces a new

disseminate (D) operator. In addition, LoCK also includes the knows identifier (I+), has identifier
(HI), and generated for (G) operators to state properties about trusted knowledge, which were

not part of any of the systems mentioned above. In order to enable reasoning about any point

in space/time some of our operators come in two flavors, one annotated with a
−
and the other

with
+
. The ones annotated with

−
are used to state properties about the knowledge of a system

right before handling an event, and are defined below; while the ones annotated with
+
are used to

state properties once events have been handled, and are primitives of the language.

Notation. Let us now define some notation. Let ∃if stand for ∃⟨KTi, f ⟩, and ∃iλi1, . . . , in .τ for

∃iλi. . . . ∃iλin .τ ; and similarly for the other quantifiers. As usual, let ¬τ be τ → ⊥. In addition, let

⪯τ = ≺τ ∨ τ
⊑τ = ⊏τ ∨ τ
⊆τ = ⊂τ ∨ (τ ∧ �)

K−(τ) = ⊂K+(τ)
I−(i) = ⊂I+(i) ∨ (i = initId ∧ �)
i1 ≤ i2 = i1 < i2 ∨ i1 = i2

O(d) = ∃nλa .@(a) ∧ O(d, a)
OD(d) = O(d) ∧ D(d)

These abstractions are interpreted as follows: O(d) means that “we” own the data d, i.e., the node
at which this expression is interpreted owns the data; and OD(d) means that “we” disseminated

the data d, i.e., the node at which this expression is interpreted disseminated the data.

6.3 LoCK’s Semantics
Fig. 7, 8, and 9 describe LoCK’s semantics: Jτ Ke is a proposition expressing that τ is true at event e.
First-order logic and HyLoE operators are interpreted as expected. Let us now describe the semantics

of the other knowledge operators. First, L’s semantics is defined in terms of the learns predicate:

learns(e, d) = ∃auth.auth ∈ nfo2auth(trigger(e)) ∧ d ∈ auth2data(auth) ∧ verify(e, auth)

This states that a node learns d at some event e, if e was triggered by an input that contains the

data d. Moreover, in order to deal with Byzantine faults, we also require that to learn some data

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 17

Fig. 10 Syntax of knowledge calculus rules

x ∈ HypName (a set of hypothesis names) y ∈ GuardName (a set of guard names)

σ ∈ KExpAt ::= τ @ e α ∈ EventRel ::= e1 ≡ e2 | e1⊂e2 | e1≺e2 | e1⪯e2 | e1⊏e2 | e1⊑e2
h ∈ Hyp ::= x : σ H ∈ Hyps ::= ⊘ | H , h
g ∈ Guard ::= y : α G ∈ Guards ::= ⊘ | G, g

seq ∈ Sequent ::= ⟨G⟩ H ⊢ σ R ∈ Rule ::=

Λ[e, t, i] seq1 · · · seqn
seq

one has to be able to verify its authenticity. Then, K+ is interpreted by the knows+ predicate:

knows+(e, d) = ∃m ∈ S(mem).sys@+e⇂mem = m ∧ know(d,m)

where knows+(e, d) states that a node knows d at some event e, if it holds d in its memory m (i.e.

know(d,m) is true), such that its memorym is the state of the componentmem right after e. Finally,
I+ is interpreted by the ident+ predicate:

ident+(e, i) = ∃m ∈ S(trust).sys@+e⇂trust = m ∧ trusted2id(m) = i

This states that the trusted component trust remembers the current trusted identifier i after e.

6.4 LoCK’s Rules
Syntax. Fig. 10 presents the syntax of rules. Expressions are annotated with events allowing

different expressions to be true at different points in space/time in a single sequent/rule. In a sequent

of the form ⟨G⟩ H ⊢ σ , the list of guards G is used to relate the different events mentioned in the

hypotheses H and the conclusion σ . Note that for convenience we use the same symbols for guards

and for the corresponding knowledge expressions (e1≺e2 is a guard, while ≺τ is an expression).
24

For convenience, hypotheses and guards are all named in a sequent, allowing rules to point to them

(expressions do not depend on names). We write H 1,H 2 for the list H 1 appended with the list H 2,

and similarly for guards. A rule R is essentially a pair of a list of sequents (R’s hypotheses) and a

sequent (R’s conclusion). In addition, the hypotheses of a rule can depend on a list of events e, a list
of trusted values t, and a list of trusted identifiers i, allowing rules to introduce new symbols. We

omit the Λ[] part in rules that do not introduce new symbols. We sometime write H [σ], for a list
of hypotheses H that contains an hypothesis of the form x : σ , and similarly for guards. We then

sometimes write H [σ ′] to denote the same list of hypotheses where x : σ is replaced by x : σ ′.

Semantics. Guards, hypotheses, and sequents are interpreted as follows:

Je1□e2K = e1 ◦ e2
Jx : τ @ eK = Jτ Ke

JGK = ∀g ∈ G.JgK
JHK = ∀h ∈ H .JhK J⟨G⟩ H ⊢ σK = JGK→ JHK→ JσK

where (□, ◦) ∈ {(⊏, ⊏), (⊑, ⊑), (≺, ≺), (⪯, ⪯), (⊂, ⊂), (≡,=)}. Note that□ is a guard operator, while ◦

is a HyLoE operator. Finally, a rule R (see Fig. 10) is true if JseqK (R’s conclusion) follows from
Jseq1K ∧ · · · ∧ JseqnK (R’s hypotheses) for all possible instances of e, t, and i.

Primitive Rules. We now provide a sample of LoCK’s derivation rules. Additional rules such as

LoCK’s standard structural and predicate logic rules are presented in Appx. C. As mentioned above,

LoCK is sound in the sense that we have proved that its inference rules are sound w.r.t. the HyLoE-

based semantics introduced above (we skip those proofs here since they are all straightforward).

Fig. 11 presents LoCK’s event relation rules. The family of elimination rules □E allows turning

HyLoE operators into guards, while the families of introduction rules□I and□It allow using those

guards to navigate between points in space/time to prove HyLoE expressions. The two rules if¬�
24
Note also that the collection of guards is not minimal for convenience.

, Vol. 1, No. 1, Article . Publication date: August 2019.

18 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 11 LoCK’s event relation rules

Let □ ∈ {⊏, ≺} and (◁,◀) ∈ {(≺, ⪯), (⊏, ⊑), (⊏, ≺), (⊑, ⪯), (⊂, ⊏), (≡, ⊑)}

Λ[e′] ⟨G, y : e′□e⟩ H [x : τ @ e′] ⊢ σ
⟨G⟩ H [x : □τ @ e] ⊢ σ

□E
⟨G[e′□e]⟩ H ⊢ τ @ e′

⟨G[e′□e]⟩ H ⊢ □τ @ e
□I

⟨G[e′□e]⟩ H ⊢ □τ @ e′

⟨G[e′□e]⟩ H ⊢ □τ @ e
□It

⟨G, y : pred=(e)⊂e⟩ H ⊢ σ
⟨G⟩ H ⊢ ¬� @ e

⟨G⟩ H ⊢ σ
if¬�

⟨G, y : pred=(e) ≡ e⟩ H ⊢ σ
⟨G⟩ H ⊢ � @ e

⟨G⟩ H ⊢ σ
if�

⟨G[e′ ◀ e]⟩ H ⊢ σ
⟨G[e′ ◁ e]o ⟩ H ⊢ σ

weak

⟨G[e1 ≡ e2]⟩ H [τ @ e2] ⊢ σ
⟨G[e1 ≡ e2]⟩ H [τ @ e1] ⊢ σ

subH
⟨G[y : e1 ≡ e2]⟩ H ⊢ τ @ e1
⟨G[y : e1 ≡ e2]⟩ H ⊢ τ @ e2

subC
⟨G, y : e ≡ e⟩ H ⊢ σ
⟨G⟩ H ⊢ σ

≡refl

Fig. 12 LoCK’s logic of events rules

⟨G[e1⊏e2]⟩ H ⊢ ¬� @ e2
¬�

⟨G⟩ H ⊢ � ∨ ¬� @ e
�dec

Λ[e′] ⟨G, y : e′⊑e⟩ H ⊢ � → τ @ e′

⟨G, y : e′⊑e⟩ H ⊢ ⊂τ → τ @ e′

⟨G⟩ H ⊢ τ @ e
ind

⟨G⟩ H ⊢@(a) @ e1
⟨G⟩ H ⊢@(a) @ e2

⟨G, y : e1 ≡ e2 ⟩ H ⊢ σ
⟨G, y : e1⊏e2 ⟩ H ⊢ σ
⟨G, y : e2⊏e1 ⟩ H ⊢ σ

⟨G⟩ H ⊢ σ
tri

Fig. 13 LoCK’s knowledge rules

Let (π , κ , ρ) ∈ {(=, <, <), (<, =, <), (<, <, <), (=, =, =)}.

⟨G⟩ H ⊢ υ2 = υ1 @ e
⟨G⟩ H ⊢ υ1 = υ2 @ e

sym
⟨G⟩ H ⊢ i1 π i @ e ⟨G⟩ H ⊢ i κ i2 @ e

⟨G⟩ H ⊢ i1 ρ i2 @ e
trans

⟨G⟩ H ⊢ K+(d) ∨ ¬K+(d) @ e
Kdec

⟨G⟩ H [i < i] ⊢ σ
irrefl

⟨G⟩ H ⊢ O(d, a1) @ e
⟨G⟩ H ⊢ O(d, a2) @ e

⟨G⟩ H ⊢ a1 = a2 @ e
1owner

⟨G⟩ H ⊢ G(d1, t) @ e
⟨G⟩ H ⊢ G(d2, t) @ e

⟨G⟩ H ⊢ d1 = d2 @ e
1data

⟨G⟩ H ⊢ I+(i1) @ e
⟨G⟩ H ⊢ I+(i2) @ e

⟨G⟩ H ⊢ i1 = i2 @ e
1id

and if� provide an axiomatization of pred=. The weak family of rules allows weakening guards,

e.g., from ≺ to ⪯ (strengthening rules are presented in Appx. C). Finally, the substitution rules subH
and subC allow substituting events in a sequent’s hypotheses and conclusion.

Fig. 12 presents LoCK’s HyLoE rules. The ind rule is an induction rule on causal time. It says

that to prove that a property is true at some event e, it is enough to prove that it is true at the first

event prior to e (the base case), and that for any event e′ prior to e, if it is true right before e′, then
it is also true at e′ (the inductive case). The tri rule axiomatizes the HyLoE fact that if two events

e1 and e2 happen at the same location a, then either the events are equal, or one happened before

the other. The ¬� rule states that if some event e1 happened strictly and locally before some event

e2, then e2 cannot be the first event at that location. Finally, �dec states that � is decidable.

Fig. 13 presents LoCK’s knowledge rules. The Kdec rule says thatK+ is decidable. The 1owner
rule states that a given piece of data can only be owned by a single node. The 1data rule states

that trusted pieces of data can only be related to a single piece of data. Finally, the 1id rule states

that one can only know about a single identifier at any point in time.

6.5 Examples of Derivations Within LoCK
Let us now provide a few simple examples to illustrate the expressiveness of our calculus, as well

as the usefulness of some of its features, such as guards.
25

25
We omit here the Λ[] part for readability. Moreover, we use some standard rules such as→E (implication elimination);

∨E (or elimination); ∨Il/∨Ir (or introduction left/right); or hyp (hypothesis rule), which are described in Appx. C.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 19

⟨y : e′⊏e⟩ x : τ @ e′ ⊢ ¬� @ e
¬�

⟨⊘⟩ x : ⊏τ @ e ⊢ ¬� @ e
□E

⟨⊘⟩ ⊘ ⊢ ⊏τ → ¬� @ e
→E

Non-initial-events. We start by proving that if τ happened before,

then the current event cannot be the initial event, i.e.: ⊏τ → ¬�
(see figure on the right).

26
In this first example, we only navigate

between events in the hypothesis x : we use the □E elimination rule

to introduce a guard, that allows navigating from the point in space/time where ⊏τ is true (i.e., e),
to the point where τ is true (i.e., e′) . We conclude using ¬�, which says that a point that has

predecessors cannot be the first event.

⟨y : e′⊏e, y′ : e′′⊏e′⟩ x : τ @ e′′ ⊢ τ @ e′′
hyp

⟨y : e′⊏e, y′ : e′′⊏e′⟩ x : τ @ e′′ ⊢ ⊏τ @ e′
□I

⟨y : e′⊏e, y′ : e′′⊏e′⟩ x : τ @ e′′ ⊢ ⊏τ @ e
□It

⟨y : e′⊏e⟩ x : ⊏τ @ e′ ⊢ ⊏τ @ e
□E

⟨⊘⟩ x : ⊏⊏τ @ e ⊢ ⊏τ @ e
□E

⟨⊘⟩ ⊘ ⊢ ⊏⊏τ → ⊏τ @ e
→E

Collapsing. We now prove another simple, though

slightly more involved, example (see figure on the right),

where we use guards to navigate through events in multi-

ple formulas: both in hypothesis x and in the conclusion.

Namely, we prove: ⊏⊏τ → ⊏τ , which says that if it hap-

pened before that τ happened before, then τ happened

before.
27
We use the □E elimination rules twice to go from

the point where ⊏⊏τ is true (i.e., e), to the point where τ is true (i.e., e′′). We then use the □It

introduction rule to navigate to the e′ intermediary point. Finally, we use the □I introduction rule

to navigate to e′′, while eliminating ⊏ (as opposed to the previous step, which keeps the operator).

Weakening. Our next example illustrates how our weak rules become handy when navigating

between points in space/time. We show here that we can derive ⟨G⟩ H [x : ⊑τ @ e] ⊢ σ from

⟨G, y : e′⊑e⟩ H [x : τ @ e′] ⊢ σ , i.e., we derive ⊑’s elimination rule. We weaken here both ⊏ and ≡,

to ⊑, in order to obtain the same guard in both branches of our derivation:
28

Λ[e′] ⟨G, y : e′⊑e⟩ H [x : τ @ e′] ⊢ σ

Λ[e′] ⟨G, y : e′⊏e⟩ H [x : τ @ e′] ⊢ σ
weak

⟨G⟩ H [x : ⊏τ @ e] ⊢ σ
□E

Λ[e′] ⟨G, y : e′⊑e⟩ H [x : τ @ e′] ⊢ σ

⟨G, y : e⊑e⟩ H [x : τ @ e′] ⊢ σ

⟨G, y : e ≡ e⟩ H [x : τ @ e′] ⊢ σ
weak

⟨G⟩ H [x : τ @ e] ⊢ σ
≡refl

⟨G⟩ H [x : ⊑τ @ e] ⊢ σ
∨E

Predecessor. Next, we prove that if τ was true at pred=(e) (denoted ep below) then it must be that

τ happened before or at e.29 Once again, we use here LoCK’s feature that different expressions in a

sequent can be true at different events: x is true at ep , while the conclusion of the root is true at e.
In the following proof, Π1 is a proof that � is decidable (using �dec); Π2 is a proof of � (using hyp);
and Π3 is a proof of ¬� (using hyp)—those are eluded here for readability:

Π1

⟨y : ep ≡ e⟩ x : τ @ e, o : � @ e ⊢ τ @ e
hyp

⟨y : ep ≡ e⟩ x : τ @ ep , o : � @ e ⊢ τ @ e
subH

Π2

⟨⊘⟩ x : τ @ ep , o : � @ e ⊢ τ @ e
if�

⟨⊘⟩ x : τ @ ep , o : � @ e ⊢ ⊑τ @ e
∨Ir

⟨y : ep⊏e⟩ x : τ @ ep , o : ¬� @ e ⊢ τ @ ep
hyp

⟨y : ep⊏e⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊏τ @ e
□I

⟨y : ep ⊂e⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊏τ @ e
weak

Π3

⟨⊘⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊏τ @ e
if¬�

⟨⊘⟩ x : τ @ ep , o : ¬� @ e ⊢ ⊑τ @ e
∨Il

⟨⊘⟩ x : τ @ ep , o : � ∨ ¬� @ e ⊢ ⊑τ @ e
∨E

⟨⊘⟩ x : τ @ ep ⊢ ⊑τ @ e
cut

Acquired knowledge. Finally, let us present another useful fact that allows getting back to the

point where the knowledge was acquired (because it was locally generated or because it was

26
See DERIVED RULE local before implies not first true in model/CalculusSM derived3.v.

27
See DERIVED RULE twice local before implies once true in model/CalculusSM derived3.v.

28
See DERIVED RULE unlocal before eq hyp true in model/CalculusSM.v.

29
See DERIVED RULE at pred implies local before eq true in model/CalculusSM derived3.v.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived3.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived3.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived3.v

20 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

received): if we know some piece of data d, then there was a point e′ in the past, where we did not

know d before e′ but we knew it after e′.30 We state this fact as a derived rule as follows:

⟨G⟩ H ⊢ K+(d) @ e

⟨G⟩ H ⊢ ⊑(K+(d) ∧ ¬K−(d)) @ e (1)

which we prove by induction on causal time using ind. To prove the base case, we first eliminate ⊑
using ∨Ir. The left conjunct follows trivially from our hypothesis, and we prove the right conjunct

using weak and ¬�. The inductive case follows from Kdec, i.e. that knowledge is decidable.

6.6 Typical System Assumptions and Consequences
In order to derive general results about distributed knowledge, such as in Sec. 6.7, let us first present

some typical assumptions about knowledge, which we express here within LoCK (see the file called

model/CalculusSM.v for more details). We illustrate in Sec. 7.2 that those assumptions indeed make

sense, by validating them to, in turn, derive properties about MinBFT from those general results.

Assumptions. We first start by defining those assumptions, and we then explain their meaning:

LID = ∀tλt.L(t) → ≺(OD(t)) (2)

KLD = ∀tλt.K+(t) → (K−(t) ∨ L(t) ∨ OD(t)) (3)

Mon = (∃iλi.I−(i) ∧ I+(i)) ∨ (∃iλi1, i2.i1 < i2 ∧ I−(i1) ∧ I+(i2)) (4)

New = ∀tλt.∀iλi, i1, i2.(OD(t) ∧ I−(i1) ∧ I+(i2)) → (i1 < i ∧ i ≤ i2 ∧ HI(t, i) ∧ ¬HI(t, i1)) (5)

Uniq = ∀tλt1, t2.∀iλi.(OD(t1) ∧ OD(t2) ∧ HI(t1, i) ∧ HI(t2, i)) → t1 = t2 (6)

Through LID, we get to assume that if one learns some trusted data, it must be that it was dissem-

inated by the corresponding trusted component that owns the data. Moreover, as stated by KLD,
typically if we know some trusted information, then we either knew it before, or we just learned it,

or we just disseminated it. Also, a typical property of trusted components is Mon, which says that

the identifiers maintained by those components monotonically increase, i.e., either the recorded

identifier stays the same (left disjunct), or it increases (right disjunct). In addition, as stated by New,
if a trusted component is in charge of generating trusted identifiers, such an identifier i must be

between the one recorded before and the one recorded after it generated i. Finally, trusted pieces of
data disseminated by a trusted component at a given point in time are typically unique (Uniq).

Provenance of knowledge. From KLD (Eq. 3) and using LoCK’s induction on causal time rule (ind),
we can derive:

31 K+(t)→ ⊑L(t) ∨ ⊑OD(t). Then, using LID (Eq. 2), and using a similar collapsing
result as the one presented in Sec. 6.5 above (to collapse ⊑≺ into ⪯ here), we can further derive:

32

K+(t) → ⪯(OD(t)) (7)

Uniqueness over time. Uniq can be generalized to trusted pieces of data generated at any point in

space/time by a trusted component. Namely, we can derive the following rule within LoCK:
33

Λ[e′] ⟨G⟩ H ⊢ Mon ∧ New ∧ Uniq @ e′
⟨G⟩ H ⊢ OD(t1) ∧ HI(t1, i) ∧ @(a) @ e1
⟨G⟩ H ⊢ OD(t2) ∧ HI(t2, i) ∧ @(a) @ e2

⟨G⟩ H ⊢ t1 = t2 @ e (8)

This derived rule is critical to prove Thm. 6.1 in Sec. 6.7. It says that if two trusted pieces of data t1
and t2 are disseminated at e1 and e2, respectively, such that they have the same identifier and that

e1 and e2 happened at the same location a, then t1 must be equal to t2. We can derive this result

30
See the lemma called DERIVED RULE knowledge acquired true in the filed called model/CalculusSM.v.

31
See the lemma called DERIVED RULE trusted KLD implies or true in the file called model/CalculusSM.v.

32
See the lemma called DERIVED RULE trusted KLD implies gen true in the file called model/CalculusSM.v.

33
See the lemma called DERIVED RULE trusted disseminate unique ex true in the file called model/CalculusSM.v.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 21

using LoCK’s trichotomy rule tri. If e1 = e2 then we conclude using Uniq. If e1 happened locally

before e2 (and similarly if e2 happened before e1) then from Mon, and using LoCK’s induction on

causal time rule ind, we derive that the identifier i1 recorded after e1 must be less than or equal to

the one, say i2, recorded before e2. Moreover, from New, we derive that i is less than or equal to i1
and i2 is strictly less than i. Finally, we conclude using the trans and irrefl derivation rules.

6.7 Distributed Lifting
Using the above mentioned rules and assumptions, we derived among other things the following

lemma (see below for a proof sketch):
34

Theorem 6.1 (Distributed Lifting). The following rule is derivable within LoCK:
Λ[e′] ⟨G⟩ H ⊢ LID ∧ KLD ∧ Mon ∧ New ∧ Uniq @ e′

⟨G⟩ H ⊢ K+(t1) ∧ O(t1, a) ∧ G(d1, t1) ∧ HI(t1, i) @ e1
⟨G⟩ H ⊢ K+(t2) ∧ O(t2, a) ∧ G(d2, t2) ∧ HI(t2, i) @ e2

⟨G⟩ H ⊢ d1 = d2 @ e

This derived rule allows lifting properties of trusted sub-components to the level of a distributed

system. It states that if all assumptions presented in Sec. 6.6 are satisfied at all events; and at event e1
some node knows some trusted information t1, owned by a, with identifier i, and generated from

some data d1; and similarly at e2 some node knows some trusted information t2, also owned by a
and with identifier i, and generated from d2; then the two pieces of data d1 and d2 must be equal.

This is the crux of proving the safety properties of MinBFT’s normal case operation (see Sec. 7.2).

Proof Sketch 1. We derive here Thm. 6.1 essentially from the “derived knowledge” formula 7 and
the “uniqueness” derived rule 8 presented above. FromK+(t1) (at e1) andK+(t2) (at e2), we can derive
using Eq. 7 that there must be two previous events e′

1
and e′

2
such that t1 was disseminated at e′

1
and t2

was disseminated at e′
2
(by their rightful owners). Because a owns both t1 and t2 then it must be that e′

1

and e′
2
happened at the same location. We can then derive that t1 = t2 from the derived rule 8. Finally,

we derive that d1 = d2 using LoCK’s 1data inference rule.

6.8 Example: Micro’s Agreement
As mentioned above, we used Thm. 6.1 to prove the agreement property of the Micro system

defined in Sec. 3 (as well as of the MinBFT variants discussed in Sec. 7). For that we first need

to instantiate LoCK’s parameters (we only discuss some of the most interesting parameters—

see MinBFT/MicroBFTkn.v for more details). We instantiate Data by the union type that contains

commit messages, accept messages, and UIs, i.e., all pieces of data that mention a counter; Identifier
is instantiated byN; and Trust is the type of UIs as generated by usig components. The sys parameter

is instantiated by Micro; mem is instantiated by log; trust is instantiated by usig; trustHasId(ui, i)
is true if i is the counter contained in ui; know(d,m) is true if d occurs in the list of commits m
maintained by log; verify(e, auth) returns true iff the usig component running at e can indeed verify

auth; trusted2id returns the counter maintained by the usig component; lt is <; and initId is 0.

Getting back to Micro’s agreement property: we have to prove that if the backups accept two

requests r1 and r2 both with trusted counter value i (generated by the primary), then those requests

must be equal. See Sec. 3 for a formal statement of this property. From the facts that the two

requests r1 and r2 were accepted at e1 and e2, respectively, we derive that those requests must have

been known at these two points. More precisely, because as explained in Sec. 5.3, the commits

corresponding to those two requests must be logged, then there must exist two pieces of trusted

data (two UIs) ui1 and ui2 , such that JK+(ui1)Ke1 , JK+(ui2)Ke2 , ui1 corresponds to the piece of data

34
See the lemma called DERIVED RULE trusted knowledge unique3 ex true in the file called model/CalculusSM.v.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/MicroBFTkn.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

22 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

⟨r1, i⟩, i.e. JG(⟨r1, i⟩, ui1)Ke1 , and ui2 corresponds to the piece of data ⟨r2, i⟩, i.e. JG(⟨r2, i⟩, ui2)Ke2 .
Moreover, both ui1 and ui2 have trusted counter i, i.e. JHI(ui1, i)Ke1 and JHI(ui2, i)Ke2 , and both

were generated (are owned) by the primary, i.e. JO(ui1, primary)Ke1 and JO(ui2, primary)Ke2 . We

are now ready to use Thm. 6.1. To use this LoCK theorem in our HyLoE proof, we use the fact that it

is true w.r.t. its HyLoE semantics described in Sec. 6.3. Namely, we derive J⟨r1, i⟩ = ⟨r2, i⟩Ke (for any
event e) from the fact that JLIDKe′ , JKLDKe′ , JMonKe′ , JNewKe′ , and JUniqKe′ are true at all events e′.
These assumptions are straightforwardly true about Micro, and are proved within HyLoE directly.

Finally, because J⟨r1, i⟩ = ⟨r2, i⟩Ke , i.e., ⟨r1, i⟩ = ⟨r2, i⟩, we conclude that r1 = r2 . High-level results
such as Thm. 6.1 allow us to capture the logic of distributed systems at a high-level of abstraction,

leaving proving simple protocol-dependent properties directly within HyLoE.
35

7 CASE STUDIES: USIG- AND TRINC-BASED MINBFT
We exercised Asphalion by implementing and verifying two versions of the seminal MinBFT hybrid

protocol [25]: one based on USIGs (as in the original version), and one based on TrIncs [24]. As

discussed below, USIGs and TrIncs have different pros and cons that make them both interesting to

use and verify correct. We proved the agreement property of both versions using Thm. 6.1, which

we proved within LoCK (see Sec. 6.7). Because other hybrid protocols rely on trusted components

that are similar to USIGs and TrIncs, we believe that our methodology can also be used to verify the

correctness of other hybrid protocols such as [27, 30, 23]. We now present MinBFT (see [25, 37] for

further details), starting with a description of the trusted components our implementations rely on.

7.1 MinBFT Recap
function c r e a t eU I (msg) : UI {

coun te r ++ ;
H: = hash (msg , id , counter , keys) ;
return ⟨ id , counter ,H⟩ ; }

function v e r i f yU I (msg , UI) : boo l {
H: = hash (msg , UI . id , UI . counter , keys) ;
return (UI . d i g e s t == H) ; }

USIG. To achieve safety with only 2f + 1 replicas, every
MinBFT replica runs a local service called USIG (Unique

Sequential Identifier Generator). Its purpose is to securely

count messages so that replicas can know whether they

have missed messages. Every sent message is supposed

to be tagged with a USIG-generated certificate called UI

(Unique Identifier). A UI is a triple of: an id (the replica’s unique id), a counter value, and a signed

hash (of the message/id/counter triple). USIGs provide only two simple operations: to generate

and verify UIs (see pseudo-code above). Counter values produced by USIGs are monotonic (and

without gaps) and therefore uniquely identify messages. This is guaranteed even when replicas are

compromised because by definition USIGs execute inside trusted-trustworthy components, i.e., in

tamperproof environments. To the best of our knowledge USIGs have the smallest TCB compared

to other trusted components used in contemporary hybrid protocols, such as TrIncs discussed next.

TrInc. In [24], the authors introduced a new kind of trusted components called TrInc (which

stands for Trusted Incrementer). TrInc is more general than USIG in the sense that it maintains

multiple counters (one can dynamically add new counters through TrInc’s interface), and that

counters can have gaps: given a counter k , k’s next counter value is provided by the client of the

trusted component and has to be greater than the current value (see [24] for uses of these features).

This is to contrast with a USIG, which increments its counter by one on each createUI call. Note that
the fact that counters do not have gaps does not need to be enforced by the trusted components,

which is made explicit when using TrInc instead of USIG. TrInc’s flexibility comes at the price of

slightly more complex trusted components. However, this flexibility makes TrInc compelling and

led BFT implementations such as Hybster [30] to be based on TrInc instead of USIG.

35
For example, as discussed in Appx. D, we have also proved the crux ofMicro’s validity property using a general high-level

LoCK lemma.

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 23

MinBFT details. As other such protocols do, MinBFT works

in a succession of configurations called views. In each view v ,
the distinguished replica p = v mod n (n is the total number

of replicas), called the primary, is in charge of ordering client

requests by assigning sequence numbers (the counter values generated by its USIG) to them. As

long as the primary is not suspected to be faulty, MinBFT executes its normal case operation (see

figure above on the right); and switches to a view-change operation otherwise.
36
We focus here on

the normal case operation, which works as follows:

1. To execute an operation op with timestamp seq, client c sends a message ⟨REQUEST, c, seq,op⟩σc
to all replicas and waits for f + 1 matching replies from different replicas.

2.When the primary p receives a requestm, it calls its USIG to generate a new identifier uii and
sends ⟨PREPARE,v,m,uii ⟩ to all other replicas (v is the current view).

3.Upon receipt of ⟨PREPARE,v,m,uii ⟩, replica j calls its USIG to verifyuii , generates a new identifier

ui j , and sends ⟨COMMIT,v,m,uii ,ui j ⟩ to all other replicas.

4. If replica k receives f + 1 valid ⟨COMMIT,v,m,uii ,ui j ⟩ messages (i.e., the UIs are valid) from

different replicas, it executes the requestm, and sends the result res of this execution in a reply

⟨REPLY,k, seq, res⟩σk to the client. In addition, upon receipt of a new commit, k calls its USIG to

generate a new identifier uik and sends ⟨COMMIT,v,m,uii ,uik ⟩ to all others.

In all these steps, replicas only handle messages if: (1) the message is signed properly (for

requests); (2) prepare messages come from the current primary; (3) the view number is the current

one; and (4) upon receipt of a UI from a replica i , replicas check that they have already received all

the UIs from i with lower counter values.

7.2 Implementation and Verification of MinBFT
Let us now describe how we used Asphalion to implement the two variants of MinBFT mentioned

above using MoC, and verify their correctness using HyLoE and LoCK. We focus on the USIG-based

version, and only mention the TrInc-based one when the two versions differ.

MinBFT system. In our MoC implementation of MinBFT (see MinBFT/MinBFT.v for more details),

a replica is a local system called MinBFTlocalSys. Each local system is composed of: (1) a main

component (called MAINcomp), which among other things maintains the replicated service; (2) a

USIG component (called USIGcomp—the only trusted component) as described in Sec. 7.1; and (3) a

log component (called LOGcomp) that stores all sent and received messages. Finally, the distributed

system MinBFTsys is the function mapping each replica name to MinBFTlocalSys.

MinBFT knowledge. To verify properties about MinBFT using LoCK, we had to instantiate the

parameters presented in Fig. 5.
37
We only discuss here some of the most interesting parameters. The

interested reader is invited to look at our Coq implementation for more details. We instantiate Data
with a type that contains both UIs and triples of the form view/request/UI, which is the canonical

information contained in most MinBFT messages. Trust is instantiated with the type of UIs, and

Identifier is instantiated with the type of counter values. The component namemem is instantiated

with LOGcomp; while trust is instantiated with USIGcomp. The predicate know is instantiated by

a predicate that states that the data is stored in the log. Finally sys is instantiated with MinBFTsys.

As opposed to the USIG-based version, to reason about the TrInc-based version, we have instan-

tiated Identifier with the type of counter value lists, because TrInc maintains multiples counters.

36
MinBFT provides a garbage collection process to discard messages so as not to exhaust the memory; and a view-change

process to ensure liveness. Those are outside the scope of this paper, and are left as future work, because the normal phase

operation provides the necessary and sufficient context to address the challenges of reasoning about hybrid systems.

37
See the files called MinBFT/MinBFTkn0.v, MinBFT/MinBFTkn.v and MinBFT/TrInckn.v in our implementation.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFT.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTkn0.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTkn.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrInckn.v

24 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

We then say that a UI ui, with counter id i and counter value c, has identifier l (a list of counter
values) if the counter value in l corresponding to i is c (the other counters can have any values).

Verified properties. Using Asphalion we proved the following Coq lemma, which is critical to

prove the safety of MinBFT’s normal case operation (the→ direction is the agreement property):
38

Lemma agreement iff : ∀ (eo : EventOrdering) (e1 e2 : Event) (r1 r2 : Request) (i1 i2 : nat) (l1 l2 : list name),

AXIOM auth messages were sent or byz eo MinBFTsys

→ ((send accept r1 i1 l1) ∈ MinBFTsys { e1)→ ((send accept r2 i2 l2) ∈ MinBFTsys { e2)→ (i1 = i2↔ r1 = r2).

The AXIOM auth messages were sent or byz axiom is discussed below. This lemma states that

if a correct replica executes
39
a request r with counter value i1, then no other correct replica will

execute the same request with a different counter value i2 , i1; and two correct replicas cannot

execute two different requests with the same counter value (all the other replicas could well be

faulty). As mentioned above, this lemma is a straightforward consequence of the general Thm. 6.1

proved within LoCK and presented in Sec. 6.7.

Knowledge assumptions. Because Thm. 6.1 relies on some assumptions (see Sec. 6.6), we had

to prove that those are indeed true about our MinBFT implementations. KLD is a straightforward
consequence of the way MinBFT accumulates knowledge by logging messages: a message is logged

if it is generated or received. We proved Mon using the local lifting Thm. 5.1, described in Sec. 5.4.

It is true because USIGs (and TrIncs) indeed maintain monotonic counters. New and Uniq are

straightforwardly true because USIGs always increment their counters before generating a new

UI. LID differs from the others because it is not a direct consequence of MinBFT’s behavior, but

follows from our generic AXIOM auth messages were sent or byz HyLoE assumption, which is

a constraint on event orderings that rules out impossible message transmissions. It states that if a

node receives a valid piece of data d (in the sense that its authenticity has been checked), then either

(1) a correct node sent d following the protocol; or (2) some arbitrary event happened, for which

no information is available, and some node sent d either authenticating it itself or impersonating

some other node; or (3) some arbitrary event happened at which a trusted component generated d.

7.3 Differences from the Original Proof
As it turns out, our proof of agreement iff is significantly simpler than the original pen-and-

paper proof [37, pp.151–153]. The original proof of the← direction, which we claim here to be

unnecessarily convoluted, goes as follows: given that a quorum of f + 1 replicas have committed

(r,i1), and a quorum of f +1 replicas have committed (r,i2), there must be a replica at the intersection

of the two quorums that has committed both i1 and i2 (since there are 2f + 1 replicas in total). Then,

their proof goes by cases on whether or not that replica and the primary are correct, leading to four

cases. However, such a replica at the intersection of the two quorums is not required because if a

replica has executed a request, it must have received at least one prepare/commit for this request

containing a UI created by the primary’s USIG. Therefore, we can deduce that the primary’s USIG

must have created UIs for the two counter values corresponding to the two quorums mentioned

above. We can then trace back these two counters to the time that primary’s USIG generated UIs

for them, and conclude using monotonicity. Note that we do not need to go by cases on whether

replicas are correct or not because trusted components of hybrid systems (USIGs here) cannot be

tampered with, and the above reasoning rely solely on properties that the system inherits from the

trusted components. Thanks to Asphalion’s operators, such as ls { e described in Sec. 5.2, we can

always reliably access these trusted components because they cannot be compromised and because

38
See the the files called MinBFT/MinBFTagreement iff.v and MinBFT/TrIncagreement iff.v.

39
In our implementations, replicas send “accept” messages whenever they execute a request. In addition to the executed

request, these messages include the counter value generated for the request by the primary.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTagreement_iff.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncagreement_iff.v

Asphalion 25

in the context of such safety proofs, they must have been running at the time they outputted values

(i.e., at the time they created UIs in the case of USIGs). As a matter of fact, agreement iff holds

even if the primary, except for its USIG, has been compromised.

8 EVALUATION
Extraction. We use Coq’s extraction mechanism to obtain executable OCaml code from our

distributed systems implemented in MoC (see Sec. 5.1). However, because we want to run the

different components of a local system separately (i.e. execute the trusted ones within trusted

environments such as Intel SGX), the monad structure is “erased” during extraction.
40
Instead, a

separate module is created for each component, and calls to sub-components are extracted to calls

to those modules. In addition, the functional states of MoC components are turned into imperative

ones within those modules.
41
Running the sub-components of a local system separately enables

executing the trusted ones within trusted environments, in our case Intel SGX enclaves.

Trusted execution. We use Graphene-SGX [65] in order to run MinBFT’s trusted USIG compo-

nents inside Intel SGX enclaves (see MinBFT/runtime w sgx/README.md or Appx. G for further details).

Graphene-SGX is a library for running unmodified applications inside SGX enclaves. Because

Graphene-SGX’s driver closes enclaves after each call, and because only part of the extracted code

is meant to run inside SGX enclaves, our SGX-based runtime environment uses a TCP interface for

replicas to interact with USIGs running in Graphene-SGX enclaves. Moreover, because to the best

of our knowledge, at the time of writing, Intel SGX only supports C applications, our SGX-based

runtime environment includes C wrappers around the OCaml code of the USIG components, as well

as OCaml wrappers around the TCP interface implemented in C (these wrappers use [66]). Note that

to support calling the interfaces of trusted components through the above mentioned TCP interface,

one has to write custom serializers/deserializers (see for example MinBFT/runtime w sgx/tcp client.c

and MinBFT/runtime w sgx/tcp server.c). We leave it for future work to generate those automatically.

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000

av
er

ag
e

re
sp

on
se

 ti
m

e
in

 m
s

timestamp/instance

verif. PBFT f=3
verif. PBFT f=2
verif. PBFT f=1

verif. MinBFT f=3
verif. MinBFT f=2
verif. MinBFT f=1

Comparison. As the figure on the right shows, the aver-

age latency of our USIG-based version of MinBFT is lower

than the average latency of the verified version of PBFT

presented in [35]. Although Graphine-SGX incurs some

overhead, our MinBFT implementation is faster because:

(1) MinBFT uses less communication steps than PBFT;

and (2) our MinBFT implementation uses less expensive

crypto (i.e. HMACs as opposed to RSA in [35]). We ran

our experiments using a desktop with 16GB of memory, and 8 i7-6700 cores running at 3.40GHz.

The experiments we report here are with one client, where f ∈ {1, 2, 3}, and the replicated service

is a state machine whose state is a number and whose operation is addition.

Trusted Computing Base. The TCB of our system is composed of: (1) the fact that our HyLoE

model faithfully reflects the behavior of hybrid systems (see Sec. 4); (2) the validity of the assumption

described in Sec. 7.2; (3) Coq’s logic and implementation; (4) our runtime environment implemented

in OCaml (Sec. 8); (5) and the hardware and software on which our framework is running.

Proof Effort. Our model is about 12.5K lines of spec. and 11.5K lines of proofs, while our MinBFT

proofs are about 8K lines of spec. and 4.5K lines of proofs (excluding the code we reused from

Velisarios). Developing Asphalion and partially verifying MinBFT took us about one person-year.

40
The monad erasure we perform is very simple and standard (see MinBFT/runtime w sgx/MinBFTinstance.v).

41
Verifying the correctness of this “compilation” phase is left for future work.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/runtime_w_sgx/README.md
https://github.com/vrahli/Asphalion/blob/master/MinBFT/runtime_w_sgx/tcp_client.c
https://github.com/vrahli/Asphalion/blob/master/MinBFT/runtime_w_sgx/tcp_server.c
https://github.com/vrahli/Asphalion/blob/master/MinBFT/runtime_w_sgx/MinBFTinstance.v

26 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 14 Comparison with related work

Running code Byz. (synch.) Byz. (asynch.) Hybrid

ConsL/DISEL/EventML/IronFleet/Ivy/ModP/PSync/Verdi ✓ ✗ ✗ ✗
PVS ✗ ✓ ✗ ✗
HO-model/ByMC/IOA/TLA

+ ✗ ✓ ✓ ✗
Event-B ✓/✗ ✓ ✗ ✗
Velisarios ✓ ✓ ✓ ✗
Asphalion ✓ ✓ ✓ ✓

9 RELATEDWORK
As shown in Fig. 14 and as discussed below, several logics, models and tools have been developed

over the years to reason about distributed systems. However, to the best of our knowledge, Asphalion

is the first theorem prover based framework for verifying the correctness of implementations of

hybrid fault-tolerant protocols.

9.1 Logics and Models

Event-B [67, 68] is a set-theory-based language for modeling reactive systems and for refining
high-level abstract specifications into low-level ones. It supports code generation [69, 70] (not all

features are covered), and has been used in a number of projects [71, 72, 73], e.g., to prove the

agreement and validity of synchronous Byzantine agreement algorithms [73].

The Heard-Of (HO) model [74, 75] requires protocols to be divided into rounds, allowing pro-

cesses to execute in lock-step. It was implemented in Isabelle/HOL [76] and used to verify the

EIGByz [77] Byzantine agreement algorithm for synchronous systems. Model checking and the

HO-model have also been used in [78, 79, 80] to verify crash fault-tolerant consensus algorithms [74].

IOA [81, 82, 83, 84] is a programming/specification language for describing asynchronous dis-

tributed systems as I/O automata [85] and for stating their properties.

TLA+ [86, 87, 88] is a language for specifying and reasoning about systems, that combines a

temporal logic for describing systems, and set theory to specify data structures. It has been used

in a large number of projects [89, 90, 91, 92, 93, 94], including to prove the safety and liveness of

Multi-Paxos [94], and the safety of a variant of an abstract model of PBFT [95].

9.2 Tools

ConsL [96] is a language for expressing crash-fault tolerant asynchronous and partially synchro-

nous consensus algorithms, whose semantics is expressed in HO, and that connects to the Spin

model checker [97]. As for ByMC, it relies on guards. The authors proved cutoff bounds that reduce

the parameterized verification of consensus algorithms to a guard-depending number of processes.

DISEL [98] is a framework for modular verification of implementations of crash fault tolerant sys-

tems. It provides a programming language shallowly embedded in Coq, as well as a separation-style

program logic. It introduces two techniques enabling modular verification: the WITHINV inference

rule to strengthen assumptions, and send-hooks to allow logical access between components.

EventML [59, 99, 61] is a domain specific language implemented on top of the Nuprl prover [100].

It provides expressive and modular combinators for implementing and reasoning about crash-fault

tolerant distributed systems (e.g., the authors proved Multi-Paxos’ safety [101, 102, 60]).

IronFleet [103, 104] uses a combination of Dafny, Hoare logic and TLA to automatically verify

the safety and liveness of distributed protocols. The authors proved the safety and liveness of a

Paxos based state machine replication protocol (IronRSL), as well as a distributed key value store

(IronKV).

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 27

Ivy [105] initially supported debugging infinite-state systems using bounded verification, and

verifying their safety by gradually building universally quantified inductive invariants. The novel

notion of decidable decomposition [106] allowed Ivy to automatically verify the correctness of

implementations of crash-fault tolerant distributed systems such as Raft andMulti-Paxos (as opposed

to models in [107]). Systems, models and proofs should be structured in a modular way to allow Ivy

to use different decidable logics. Ivy also supports proving liveness by reducing it to safety [108].

ModP [109] is a programming framework to build, specify and compositionally test dynamic,

asynchronous distributed systems. Using their framework, the authors implemented modularly

and validated (through testing) two fault-tolerant distributed systems (including Multi-Paxos).

PSync [110] is an HO-based domain specific language embedded in Scala, that enables executing

and verifying synchronous and partially asynchronous crash fault-tolerant distributed algorithms.

It relies on the multi-sorted first-order Consensus verification logic (CL) [111]. To prove safety, users
have to provide invariants, which CL checks for validity.

Verdi [112, 113] is a framework to develop and reason about crash-fault tolerant distributed

systems using Coq, that can generate running OCaml code. Verdi provides a compositional way of

specifying distributed systems, by applying verified system transformers (e.g., Raft [114] transforms

a distributed system into a crash-tolerant one).

PVSwas extensively used for verification of synchronous systems that toleratemalicious faults [115],

to the extent that its design was influenced by these verification efforts [116].

ByMC [117, 118, 119, 120] is a model checker for verifying the safety and liveness of BFT algorithms.

It uses an automated method for model checking parametrized threshold-guarded algorithms (e.g.,

processes waiting for messages from a majority of senders). It relies on a short counterexample

property, which says that if a distributed algorithm violates a temporal specification then there is a

parameter (e.g. the number of tolerated faults) independent counterexample of bounded length.

Velisarios [35] is a Coq-based framework for verifying the correctness of homogeneous BFT

protocols. As mentioned above it relies on a knowledge library to reason about distributed systems

at a high-level of abstraction. Using Velisarios, the authors verified PBFT’s agreement property [14].

10 CONCLUSIONS AND FUTUREWORK
This paper introduces Asphalion, the first theorem prover-based framework to reason about

executable hybrid fault-tolerant systems, which have been getting increasing attention over the

past few years. It provides three novel languages: HyLoE, a hybrid logic of events to model hybrid

systems; MoC, a monadic programming language to implement systems composed of interacting

components; and LoCK, a sound hybrid knowledge calculus to reason about systems at a high-level

of abstraction. In addition, Asphalion introduces novel proof techniques to lift properties about

(trusted) sub-components to the level of distributed systems. Using Asphalion, we proved among

other things the agreement property of two variants of the seminal MinBFT protocol.

In the future, we would like to extend LoCK so that some proofs about distributed knowledge

could be automated. In addition, we would like to investigate whether LoCK specifications could

be compiled to running code. We also wish to implement a formally verified compiler from MoC to

imperative code. Finally, we plan to exercise Asphalion further by verifying other hybrid protocols.

ACKNOWLEDGMENTS
The authors thank Christoph Lambert for his invaluable help and for sharing his SGX expertise.

This work is partially supported by the Fonds National de la Recherche Luxembourg (FNR)

through PEARL grant FNR/P14/8149128.

, Vol. 1, No. 1, Article . Publication date: August 2019.

28 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

REFERENCES
[1] Pedro Fonseca, Kaiyuan Zhang, Xi Wang, and Arvind Krishnamurthy. “An Empirical Study on the

Correctness of Formally Verified Distributed Systems”. In: EUROSYS 2017. ACM, 2017, pp. 328–343.

url: http://doi.acm.org/10.1145/3064176.3064183.

[2] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The Byzantine Generals Problem”. In: ACM
Trans. Program. Lang. Syst. 4.3 (1982), pp. 382–401. url: http://doi.acm.org/10.1145/357172.357176.

[3] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance”. In: OSDI 1999. USENIX
Association, 1999, pp. 173–186. url: http://doi.acm.org/10.1145/296806.296824.

[4] Alysson Neves Bessani, João Sousa, and Eduardo Adílio Pelinson Alchieri. “State Machine Replication

for the Masses with BFT-SMART”. In: DSN 2014. IEEE, 2014, pp. 355–362. url: http://dx.doi.org/10.
1109/DSN.2014.43.

[5] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. “The Need for Language Support for Fault-

Tolerant Distributed Systems”. In: SNAPL 2015. Vol. 32. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015, pp. 90–102. url: https://doi.org/10.4230/LIPIcs.SNAPL.2015.90.

[6] Ittai Abraham, Guy Gueta, Dahlia Malkhi, Lorenzo Alvisi, Ramakrishna Kotla, and Jean-Philippe

Martin. “Revisiting Fast Practical Byzantine Fault Tolerance”. In: CoRR abs/1712.01367 (2017). arXiv:

1712.01367. url: http://arxiv.org/abs/1712.01367.

[7] Christian Decker, Jochen Seidel, and RogerWattenhofer. “Bitcoin meets strong consistency”. In: ICDCN
2016. ACM, 2016, 13:1–13:10. url: http://doi.acm.org/10.1145/2833312.2833321.

[8] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and Bryan

Ford. “Enhancing Bitcoin Security and Performance with Strong Consistency via Collective Signing”.

In: USENIX Security Symposium. USENIX Association, 2016, pp. 279–296. url: https://www.usenix.

org/conference/usenixsecurity16/technical-sessions/presentation/kogias.

[9] Ittai Abraham, DahliaMalkhi, Kartik Nayak, Ling Ren, andAlexander Spiegelman. “Solida: A Blockchain

Protocol Based on Reconfigurable Byzantine Consensus”. In: OPODIS 2017. Vol. 95. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 25:1–25:19. url: https://doi.org/10.4230/LIPIcs.

OPODIS.2017.25.

[10] Rafael Pass and Elaine Shi. “Hybrid Consensus: Efficient Consensus in the Permissionless Model”. In:

DISC 2017. Vol. 91. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017, 39:1–39:16. url:

https://doi.org/10.4230/LIPIcs.DISC.2017.39.

[11] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena.

“A Secure Sharding Protocol For Open Blockchains”. In: CCS 2016. ACM, 2016, pp. 17–30. url: http:

//doi.acm.org/10.1145/2976749.2978389.

[12] João Sousa, Alysson Bessani, and Marko Vukolic. “A Byzantine Fault-Tolerant Ordering Service for

the Hyperledger Fabric Blockchain Platform”. In: DSN 2018. IEEE Computer Society, 2018, pp. 51–58.

url: https://doi.org/10.1109/DSN.2018.00018.

[13] Miguel Castro and Barbara Liskov. A Correctness Proof for a Practical Byzantine-Fault-Tolerant Replica-
tion Algorithm. Technical Memo MIT-LCS-TM-590. MIT, June 1999.

[14] Miguel Castro. “Practical Byzantine Fault Tolerance”. Also as Technical Report MIT-LCS-TR-817. Ph.D.

MIT, Jan. 2001.

[15] Paulo Veríssimo, Antonio Casimiro, and Christof Fetzer. “The timely computing base: Timely actions

in the presence of uncertain timeliness”. In: DSN 2000. IEEE Computer Society, 2000, pp. 533–542. url:

https://doi.org/10.1109/ICDSN.2000.857587.

[16] Paulo Veríssimo and Antonio Casimiro. “The Timely Computing Base Model and Architecture”. In:

IEEE Trans. Computers 51.8 (2002), pp. 916–930. url: https://doi.org/10.1109/TC.2002.1024739.
[17] Miguel Correia, Paulo Veríssimo, and Nuno Ferreira Neves. “The Design of a COTSReal-Time Dis-

tributed Security Kernel”. In: EDCC-4. Vol. 2485. LNCS. Springer, 2002, pp. 234–252. url: https :
//doi.org/10.1007/3-540-36080-8_21.

[18] Paulo Veríssimo. “Uncertainty and Predictability: Can They Be Reconciled?” In: FDDC 2003. Vol. 2584.
LNCS. Springer, 2003, pp. 108–113. url: https://doi.org/10.1007/3-540-37795-6_22.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://doi.acm.org/10.1145/3064176.3064183
http://doi.acm.org/10.1145/357172.357176
http://doi.acm.org/10.1145/296806.296824
http://dx.doi.org/10.1109/DSN.2014.43
http://dx.doi.org/10.1109/DSN.2014.43
https://doi.org/10.4230/LIPIcs.SNAPL.2015.90
https://arxiv.org/abs/1712.01367
http://arxiv.org/abs/1712.01367
http://doi.acm.org/10.1145/2833312.2833321
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/kogias
https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
https://doi.org/10.4230/LIPIcs.OPODIS.2017.25
https://doi.org/10.4230/LIPIcs.DISC.2017.39
http://doi.acm.org/10.1145/2976749.2978389
http://doi.acm.org/10.1145/2976749.2978389
https://doi.org/10.1109/DSN.2018.00018
https://doi.org/10.1109/ICDSN.2000.857587
https://doi.org/10.1109/TC.2002.1024739
https://doi.org/10.1007/3-540-36080-8_21
https://doi.org/10.1007/3-540-36080-8_21
https://doi.org/10.1007/3-540-37795-6_22

Asphalion 29

[19] Nuno Ferreira Neves, Miguel Correia, and Paulo Veríssimo. “Wormhole-aware Byzantine protocols”.

In: 2nd Bertinoro Workshop on Future Directions in Distributed Computing: Survivability – Obstacles and
Solutions (2004). url: http://www.di.fc.ul.pt/~nuno/PAPERS/SOS04.pdf.

[20] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. “How to Tolerate Half Less One Byzantine

Nodes in Practical Distributed Systems”. In: SRDS 2004. IEEE Computer Society, 2004, pp. 174–183.

url: http://dx.doi.org/10.1109/RELDIS.2004.1353018.

[21] Miguel Correia, Nuno Ferreira Neves, Lau Cheuk Lung, and Paulo Veríssimo. “Low complexity

Byzantine-resilient consensus”. In: Distributed Computing 17.3 (2005), pp. 237–249. url: https : / /

doi.org/10.1007/s00446-004-0110-7.

[22] Paulo Veríssimo. “Travelling through wormholes: a new look at distributed systems models”. In:

SIGACT News 37.1 (2006), pp. 66–81. url: http://doi.acm.org/10.1145/1122480.1122497.

[23] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatowicz. “Attested append-only

memory: making adversaries stick to their word”. In: SOSP 2007. ACM, 2007, pp. 189–204. url: http:

//doi.acm.org/10.1145/1294261.1294280.

[24] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda. “TrInc: Small Trusted Hardware

for Large Distributed Systems”. In: USENIX 2009. USENIX Association, 2009, pp. 1–14. url: http :

//www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf.

[25] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, Lau Cheuk Lung, and Paulo

Veríssimo. “Efficient Byzantine Fault-Tolerance”. In: IEEE Trans. Computers 62.1 (2013), pp. 16–30. url:
http://doi.ieeecomputersociety.org/10.1109/TC.2011.221.

[26] Giuliana Santos Veronese, Miguel Correia, Alysson Neves Bessani, and Lau Cheuk Lung. “EBAWA:

Efficient Byzantine Agreement for Wide-Area Networks”. In: HASE 2010. IEEE Computer Society, 2010,

pp. 10–19. url: https://doi.org/10.1109/HASE.2010.19.

[27] Rüdiger Kapitza, Johannes Behl, Christian Cachin, Tobias Distler, Simon Kuhnle, Seyed Vahid Moham-

madi, Wolfgang Schröder-Preikschat, and Klaus Stengel. “CheapBFT: resource-efficient byzantine fault

tolerance”. In: EuroSys ’12. ACM, 2012, pp. 295–308. url: http://doi.acm.org/10.1145/2168836.2168866.

[28] Miguel Correia, Nuno Ferreira Neves, and Paulo Veríssimo. “BFT-TO: Intrusion Tolerance with Less

Replicas”. In: Comput. J. 56.6 (2013), pp. 693–715. url: http://dx.doi.org/10.1093/comjnl/bxs148.

[29] Tobias Distler, Christian Cachin, and Rüdiger Kapitza. “Resource-Efficient Byzantine Fault Tolerance”.

In: IEEE Trans. Computers 65.9 (2016), pp. 2807–2819. url: https://doi.org/10.1109/TC.2015.2495213.
[30] Johannes Behl, Tobias Distler, and Rüdiger Kapitza. “Hybrids on Steroids: SGX-BasedHigh Performance

BFT”. In: EUROSYS 2017. ACM, 2017, pp. 222–237. url: http://doi.acm.org/10.1145/3064176.3064213.

[31] SGX. 2019. url: https://software.intel.com/en-us/sgx.

[32] ARM TrustZone. 2019. url: https://www.arm.com/products/security-on-arm/trustzone.

[33] Secure Blue. 2019. url: https://researcher.watson.ibm.com/researcher/view_page.php?id=6904.

[34] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. “HYDRA: hybrid design for remote

attestation (using a formally verified microkernel)”. In: WiSec 2017. ACM, 2017, pp. 99–110. url:

https://doi.org/10.1145/3098243.3098261.

[35] Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. “Velisarios: Byzantine

Fault-Tolerant Protocols Powered by Coq”. In: ESOP 2018. Vol. 10801. LNCS. Springer, 2018, pp. 619–650.
url: https://doi.org/10.1007/978-3-319-89884-1_22.

[36] Hyperledger. 2019. url: https://github.com/hyperledger-labs.

[37] Guiliana Santos Veronese. “Intrusion Tolerance in Large Scale Networks”. PhD thesis. Universidade de

Lisboa, 2010.

[38] The Coq Proof Assistant. 2019. url: http://coq.inria.fr/.
[39] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development. http://www.

labri.fr/perso/casteran/CoqArt. SpringerVerlag, 2004.

[40] Leslie Lamport. “Time, Clocks, and the Ordering of Events in a Distributed System”. In: Commun.
ACM 21.7 (1978), pp. 558–565. url: http://doi.acm.org/10.1145/359545.359563.

[41] K. Mani Chandy and Leslie Lamport. “Distributed Snapshots: Determining Global States of Distributed

Systems”. In: ACM Trans. Comput. Syst. 3.1 (1985), pp. 63–75. url: http://doi.acm.org/10.1145/214451.

214456.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://www.di.fc.ul.pt/~nuno/PAPERS/SOS04.pdf
http://dx.doi.org/10.1109/RELDIS.2004.1353018
https://doi.org/10.1007/s00446-004-0110-7
https://doi.org/10.1007/s00446-004-0110-7
http://doi.acm.org/10.1145/1122480.1122497
http://doi.acm.org/10.1145/1294261.1294280
http://doi.acm.org/10.1145/1294261.1294280
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
http://www.usenix.org/events/nsdi09/tech/full_papers/levin/levin.pdf
http://doi.ieeecomputersociety.org/10.1109/TC.2011.221
https://doi.org/10.1109/HASE.2010.19
http://doi.acm.org/10.1145/2168836.2168866
http://dx.doi.org/10.1093/comjnl/bxs148
https://doi.org/10.1109/TC.2015.2495213
http://doi.acm.org/10.1145/3064176.3064213
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://researcher.watson.ibm.com/researcher/view_page.php?id=6904
https://doi.org/10.1145/3098243.3098261
https://doi.org/10.1007/978-3-319-89884-1_22
https://github.com/hyperledger-labs
http://coq.inria.fr/
http://www.labri.fr/perso/casteran/CoqArt
http://www.labri.fr/perso/casteran/CoqArt
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/214451.214456
http://doi.acm.org/10.1145/214451.214456

30 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

[42] Joseph Y. Halpern. “Using Reasoning About Knowledge to Analyze Distributed Systems”. In: Annual
Review of Computer Science 2.1 (1987), pp. 37–68. eprint: https://doi.org/10.1146/annurev.cs.02.060187.
000345. url: https://doi.org/10.1146/annurev.cs.02.060187.000345.

[43] Joseph Y. Halpern and Yoram Moses. “Knowledge and Common Knowledge in a Distributed Environ-

ment”. In: J. ACM 37.3 (1990), pp. 549–587. url: http://doi.acm.org/10.1145/79147.79161.

[44] Cynthia Dwork and Yoram Moses. “Knowledge and Common Knowledge in a Byzantine Environment:

Crash Failures”. In: Inf. Comput. 88.2 (1990), pp. 156–186. url: https : / / doi . org / 10 . 1016 / 0890 -

5401(90)90014-9.

[45] Prakash Panangaden and Kim Taylor. “Concurrent Common Knowledge: Defining Agreement for

Asynchronous Systems”. In: Distributed Computing 6.2 (1992), pp. 73–93. url: https://doi.org/10.1007/

BF02252679.

[46] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. “Knowledge-Based Programs”. In:

Distributed Computing 10.4 (1997), pp. 199–225. url: https://doi.org/10.1007/s004460050038.

[47] Ido Ben-Zvi. “Causality, Knowledge and Coordinaltion in Distributed Systems”. PhD thesis. Technion

– Computer Science Department, Sept. 2011.

[48] Ido Ben-Zvi and Yoram Moses. “Beyond Lamport’s Happened-before: On Time Bounds and the

Ordering of Events in Distributed Systems”. In: J. ACM 61.2 (2014), 13:1–13:26. url: https://doi.org/10.

1145/2542181.

[49] Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. “Unbeatable Consensus”. In: Dis-
tributed Computing - 28th International Symposium, DISC 2014, Austin, TX, USA, October 12-15, 2014.
Proceedings. Vol. 8784. LNCS. Springer, 2014, pp. 91–106. url: https://doi.org/10.1007/978-3-662-45174-
8%5C_7.

[50] Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. “Unbeatable Set Consensus via

Topological and Combinatorial Reasoning”. In: Proceedings of the 2016 ACM Symposium on Principles
of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016. ACM, 2016, pp. 107–116. url:

https://doi.org/10.1145/2933057.2933120.

[51] Asa Dan, Rajit Manohar, and Yoram Moses. “On Using Time Without Clocks via Zigzag Causality”. In:

PODC 2017. ACM, 2017, pp. 241–250. url: https://doi.org/10.1145/3087801.3087839.

[52] Guy Goren and Yoram Moses. “Silence”. In: PODC 2018. ACM, 2018, pp. 285–294. url: https://dl.acm.

org/citation.cfm?id=3212768.

[53] Joseph Y. Halpern and Lenore D. Zuck. “A Little Knowledge Goes a Long Way: Knowledge-Based

Derivations and Correctness Proofs for a Family of Protocols”. In: J. ACM 39.3 (1992), pp. 449–478.

url: http://doi.acm.org/10.1145/146637.146638.

[54] Mark Bickford, Robert L. Constable, Joseph Y. Halpern, and Sabina Petride. “Knowledge-Based Synthe-

sis of Distributed Systems Using Event Structures”. In: LPAR 2004. Vol. 3452. LNCS. Springer, 2004,
pp. 449–465. url: https://doi.org/10.1007/978-3-540-32275-7_30.

[55] Joseph Y. Halpern and Rafael Pass. “A Knowledge-Based Analysis of the Blockchain Protocol”. In:

TARK 2017. Vol. 251. EPTCS. 2017, pp. 324–335. url: https://doi.org/10.4204/EPTCS.251.22.
[56] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning About Knowledge. Jan. 2003.
[57] K. Mani Chandy and Jayadev Misra. “How Processes Learn”. In: Distributed Computing 1.1 (1986),

pp. 40–52. url: https://doi.org/10.1007/BF01843569.

[58] Mark Bickford. “Component Specification Using Event Classes”. In: CBSE 2009. Vol. 5582. LNCS.
Springer, 2009, pp. 140–155.

[59] Mark Bickford, Robert L. Constable, and Vincent Rahli. “Logic of Events, a framework to reason about

distributed systems”. In: Languages for Distributed Algorithms Workshop. 2012. url: http://www.nuprl.

org/documents/Bickford/LOE-LADA2012.html.

[60] Nicolas Schiper, Vincent Rahli, Robbert van Renesse, Mark Bickford, and Robert L. Constable. “Devel-

oping Correctly Replicated Databases Using Formal Tools”. In: DSN 2014. IEEE, 2014, pp. 395–406. url:
http://dx.doi.org/10.1109/DSN.2014.45.

[61] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. “EventML: Specification,

Verification, and Implementation of Crash-Tolerant State Machine Replication Systems”. In: SCP (2017).

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1146/annurev.cs.02.060187.000345
https://doi.org/10.1146/annurev.cs.02.060187.000345
http://doi.acm.org/10.1145/79147.79161
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1016/0890-5401(90)90014-9
https://doi.org/10.1007/BF02252679
https://doi.org/10.1007/BF02252679
https://doi.org/10.1007/s004460050038
https://doi.org/10.1145/2542181
https://doi.org/10.1145/2542181
https://doi.org/10.1007/978-3-662-45174-8%5C_7
https://doi.org/10.1007/978-3-662-45174-8%5C_7
https://doi.org/10.1145/2933057.2933120
https://doi.org/10.1145/3087801.3087839
https://dl.acm.org/citation.cfm?id=3212768
https://dl.acm.org/citation.cfm?id=3212768
http://doi.acm.org/10.1145/146637.146638
https://doi.org/10.1007/978-3-540-32275-7_30
https://doi.org/10.4204/EPTCS.251.22
https://doi.org/10.1007/BF01843569
http://www.nuprl.org/documents/Bickford/LOE-LADA2012.html
http://www.nuprl.org/documents/Bickford/LOE-LADA2012.html
http://dx.doi.org/10.1109/DSN.2014.45

Asphalion 31

[62] Abhishek Anand and Ross A. Knepper. “ROSCoq: Robots Powered by Constructive Reals”. In: ITP-6.
Vol. 9236. LNCS. Springer, 2015, pp. 34–50. url: http://dx.doi.org/10.1007/978-3-319-22102-1_3.

[63] Eugenio Moggi. “Computational Lambda-Calculus and Monads”. In: LICS. IEEE Computer Society,

1989, pp. 14–23.

[64] Derek Dreyer, Amal Ahmed, and Lars Birkedal. “Logical Step-Indexed Logical Relations”. In: Logical
Methods in Computer Science 7.2 (2011). url: https://doi.org/10.2168/LMCS-7(2:16)2011.

[65] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library OS for Unmodified

Applications on SGX”. In: USENIX ATC 2017. USENIX Association, 2017, pp. 645–658. url: https:

//www.usenix.org/conference/atc17/technical-sessions/presentation/tsai.

[66] Interfacing C with OCaml. 2019. url: https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html.

[67] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engineering. Cambridge University

Press, 2010. url: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569.

[68] Jean-Raymond Abrial, Michael J. Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and

Laurent Voisin. “Rodin: an open toolset for modelling and reasoning in Event-B”. In: STTT 12.6 (2010),

pp. 447–466. url: http://dx.doi.org/10.1007/s10009-010-0145-y.

[69] Dominique Méry and Neeraj Kumar Singh. “Automatic code generation from event-B models”. In:

Symposium on Information and Communication Technology, SoICT 2011. ACM, 2011, pp. 179–188. url:

http://doi.acm.org/10.1145/2069216.2069252.

[70] Andreas Fürst, Thai Son Hoang, David A. Basin, Krishnaji Desai, Naoto Sato, and Kunihiko Miyazaki.

“Code Generation for Event-B”. In: IFM 2014. Vol. 8739. LNCS. Springer, 2014, pp. 323–338. url:
http://dx.doi.org/10.1007/978-3-319-10181-1_20.

[71] Manamiary Bruno Andriamiarina, Dominique Méry, and Neeraj Kumar Singh. “Analysis of Self-⋆

and P2P Systems Using Refinement”. In: ABZ 2014. Vol. 8477. LNCS. Springer, 2014, pp. 117–123. url:
http://dx.doi.org/10.1007/978-3-662-43652-3_9.

[72] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[73] Roman Krenický and Mattias Ulbrich. Deductive Verification of a Byzantine Agreement Protocol. Tech.
rep. 2010-7. Karlsruhe Institute of Technology, Department of Computer Science, 2010. url: https:

//lfm.iti.kit.edu/english/769.php.

[74] Bernadette Charron-Bost and André Schiper. “The Heard-Of model: computing in distributed systems

with benign faults”. In: Distributed Computing 22.1 (2009), pp. 49–71. url: https://doi.org/10.1007/

s00446-009-0084-6.

[75] Martin Biely, Josef Widder, Bernadette Charron-Bost, Antoine Gaillard, Martin Hutle, and André

Schiper. “Tolerating corrupted communication”. In: PODC 2007. ACM, 2007, pp. 244–253. url: http:

//doi.acm.org/10.1145/1281100.1281136.

[76] Bernadette Charron-Bost, Henri Debrat, and Stephan Merz. “Formal Verification of Consensus Algo-

rithms Tolerating Malicious Faults”. In: SSS 2011. Vol. 6976. LNCS. Springer, 2011, pp. 120–134. url:
https://doi.org/10.1007/978-3-642-24550-3_11.

[77] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. “Shifting Gears: Changing

Algorithms on the Fly to Expedite Byzantine Agreement”. In: Inf. Comput. 97.2 (1992), pp. 205–233.
url: https://doi.org/10.1016/0890-5401(92)90035-E.

[78] Tatsuhiro Tsuchiya and André Schiper. “Model Checking of Consensus Algorithm”. In: SRDS 2007.
IEEE Computer Society, 2007, pp. 137–148. url: https://doi.org/10.1109/SRDS.2007.20.

[79] Tatsuhiro Tsuchiya and André Schiper. “Using Bounded Model Checking to Verify Consensus Algo-

rithms”. In: DISC 2008. Vol. 5218. LNCS. Springer, 2008, pp. 466–480. url: https://doi.org/10.1007/978-
3-540-87779-0_32.

[80] Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. “A Reduction Theorem for the

Verification of Round-Based Distributed Algorithms”. In: RP 2009. Vol. 5797. LNCS. Springer, 2009,
pp. 93–106. url: https://doi.org/10.1007/978-3-642-04420-5_10.

[81] Stephen J. Garland and Nancy Lynch. “Using I/O automata for developing distributed systems”.

In: Foundations of componentbased systems. New York, NY, USA: Cambridge University Press, 2000,

pp. 285–312. url: http://dl.acm.org/citation.cfm?id=336431.336455.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://dx.doi.org/10.1007/978-3-319-22102-1_3
https://doi.org/10.2168/LMCS-7(2:16)2011
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html
http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521895569
http://dx.doi.org/10.1007/s10009-010-0145-y
http://doi.acm.org/10.1145/2069216.2069252
http://dx.doi.org/10.1007/978-3-319-10181-1_20
http://dx.doi.org/10.1007/978-3-662-43652-3_9
https://lfm.iti.kit.edu/english/769.php
https://lfm.iti.kit.edu/english/769.php
https://doi.org/10.1007/s00446-009-0084-6
https://doi.org/10.1007/s00446-009-0084-6
http://doi.acm.org/10.1145/1281100.1281136
http://doi.acm.org/10.1145/1281100.1281136
https://doi.org/10.1007/978-3-642-24550-3_11
https://doi.org/10.1016/0890-5401(92)90035-E
https://doi.org/10.1109/SRDS.2007.20
https://doi.org/10.1007/978-3-540-87779-0_32
https://doi.org/10.1007/978-3-540-87779-0_32
https://doi.org/10.1007/978-3-642-04420-5_10
http://dl.acm.org/citation.cfm?id=336431.336455

32 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

[82] S. Garland, N. Lynch, J. Tauber, and M. Vaziri. IOA user guide and reference manual. Tech. rep.
MIT/LCS/TR-961. Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge,

MA, 2004.

[83] Joshua A. Tauber. “Verifiable Compilation of I/O Automata without Global Synchronization”. PhD

thesis. Departement of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, 2004.

[84] Chryssis Georgiou, Nancy Lynch, Panayiotis Mavrommatis, and Joshua A. Tauber. “Automated

implementation of complex distributed algorithms specified in the IOA language”. In: Int. J. Softw. Tools
Technol. Transf. 11 (2 Feb. 2009), pp. 153–171. url: http://dl.acm.org/citation.cfm?id=1529842.1529844.

[85] Nancy A. Lynch and Mark R. Tuttle. “Hierarchical Correctness Proofs for Distributed Algorithms”. In:

PODC 1987. ACM, 1987, pp. 137–151. url: http://doi.acm.org/10.1145/41840.41852.

[86] Leslie Lamport. Specifying Systems: The TLA+ Language and Tools for Hardware and Software Engineers.
Addison-Wesley, 2004.

[87] Kaustuv Chaudhuri, Damien Doligez, Leslie Lamport, and Stephan Merz. “Verifying Safety Properties

with the TLA+ Proof System”. In: IJCAR 2010. Vol. 6173. LNCS. Springer, 2010, pp. 142–148. url:
https://doi.org/10.1007/978-3-642-14203-1_12.

[88] Leslie Lamport. “The Temporal Logic of Actions”. In: ACM Trans. Program. Lang. Syst. 16.3 (1994),
pp. 872–923. url: http://doi.acm.org/10.1145/177492.177726.

[89] Tianxiang Lu, Stephan Merz, and Christoph Weidenbach. “Towards Verification of the Pastry Protocol

Using TLA
+
”. In: FORTE 2011. Vol. 6722. LNCS. Springer, 2011, pp. 244–258. url: http://dx.doi.org/10.

1007/978-3-642-21461-5_16.

[90] Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran, Mark R. Tuttle, and Yuan Yu. “Checking

Cache-Coherence Protocols with TLA
+
”. In: Formal Methods in System Design 22.2 (2003), pp. 125–131.

url: http://dx.doi.org/10.1023/A:1022969405325.

[91] William J. Bolosky, John R. Douceur, and Jon Howell. “The Farsite project: a retrospective”. In:

Operating Systems Review 41.2 (2007), pp. 17–26. url: http://doi.acm.org/10.1145/1243418.1243422.

[92] Chris Newcombe. “Why Amazon Chose TLA +”. In: ABZ 2014. Vol. 8477. LNCS. Springer, 2014, pp. 25–
39. url: http://dx.doi.org/10.1007/978-3-662-43652-3_3.

[93] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu, Marc Brooker, and Michael Deardeuff.

“How Amazon web services uses formal methods”. In: Commun. ACM 58.4 (2015), pp. 66–73. url:

http://doi.acm.org/10.1145/2699417.

[94] Saksham Chand, Yanhong A. Liu, and Scott D. Stoller. “Formal Verification of Multi-Paxos for Dis-

tributed Consensus”. In: FM 2016. Vol. 9995. LNCS. 2016, pp. 119–136. url: https://doi.org/10.1007/978-
3-319-48989-6_8.

[95] Mechanically Checked Safety Proof of a Byzantine Paxos Algorithm. 2018. url: http : / / lamport .

azurewebsites.net/tla/byzpaxos.html.

[96] Ognjen Maric, Christoph Sprenger, and David A. Basin. “Cutoff Bounds for Consensus Algorithms”.

In: CAV 2017. Vol. 10427. LNCS. Springer, 2017, pp. 217–237. url: https://doi.org/10.1007/978-3-319-
63390-9%5C_12.

[97] Gerard J. Holzmann. The SPIN Model Checker - primer and reference manual. Addison-Wesley, 2004.

[98] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. “Programming and Proving with Distributed

Protocols”. In: POPL 2018. 2018.
[99] Vincent Rahli, David Guaspari, Mark Bickford, and Robert L. Constable. “Formal Specification, Verifi-

cation, and Implementation of Fault-Tolerant Systems using EventML”. In: ECEASST 72 (2015). url:

http://journal.ub.tu-berlin.de/eceasst/article/view/1013.

[100] R.L. Constable, S.F. Allen, H.M. Bromley, W.R. Cleaveland, J.F. Cremer, R.W. Harper, D.J. Howe, T.B.

Knoblock, N.P. Mendler, P.Panangaden, J.T. Sasaki, and S.F. Smith. Implementing mathematics with the
Nuprl proof development system. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

[101] Vincent Rahli, Nicolas Schiper, Robbert van Renesse, Mark Bickford, and Robert L. Constable. “A

diversified and correct-by-construction broadcast service”. In: ICNP 2012. IEEE Computer Society,

2012, pp. 1–6. url: https://doi.org/10.1109/ICNP.2012.6459943.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://dl.acm.org/citation.cfm?id=1529842.1529844
http://doi.acm.org/10.1145/41840.41852
https://doi.org/10.1007/978-3-642-14203-1_12
http://doi.acm.org/10.1145/177492.177726
http://dx.doi.org/10.1007/978-3-642-21461-5_16
http://dx.doi.org/10.1007/978-3-642-21461-5_16
http://dx.doi.org/10.1023/A:1022969405325
http://doi.acm.org/10.1145/1243418.1243422
http://dx.doi.org/10.1007/978-3-662-43652-3_3
http://doi.acm.org/10.1145/2699417
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
http://lamport.azurewebsites.net/tla/byzpaxos.html
http://lamport.azurewebsites.net/tla/byzpaxos.html
https://doi.org/10.1007/978-3-319-63390-9%5C_12
https://doi.org/10.1007/978-3-319-63390-9%5C_12
http://journal.ub.tu-berlin.de/eceasst/article/view/1013
https://doi.org/10.1109/ICNP.2012.6459943

Asphalion 33

[102] Nicolas Schiper, Vincent Rahli, Robbert Van Renesse, Mark Bickford, and Robert L. Constable. “Shad-

owDB: A Replicated Database on a Synthesized Consensus Core”. In: Eighth Workshop on Hot Topics
in System Dependability. HotDep’12. 2012. url: http://www.nuprl.org/documents/Schiper/ShadowDB_

A_Replicated_Database_on_a_Synthesized_Consensus_Core.pdf.

[103] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts,

Srinath T. V. Setty, and Brian Zill. “IronFleet: proving practical distributed systems correct”. In: SOSP
2015. ACM, 2015, pp. 1–17. url: http://doi.acm.org/10.1145/2815400.2815428.

[104] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L. Roberts,

Srinath T. V. Setty, and Brian Zill. “IronFleet: proving safety and liveness of practical distributed

systems”. In: Commun. ACM 60.7 (2017), pp. 83–92. url: http://doi.acm.org/10.1145/3068608.

[105] Oded Padon, Kenneth L. McMillan, Aurojit Panda, Mooly Sagiv, and Sharon Shoham. “Ivy: safety

verification by interactive generalization”. In: PLDI 2016. ACM, 2016, pp. 614–630. url: http://doi.acm.

org/10.1145/2908080.2908118.

[106] Marcelo Taube, Giuliano Losa, Kenneth L. McMillan, Oded Padon, Mooly Sagiv, Sharon Shoham, James

R. Wilcox, and Doug Woos. “Modularity for decidability of deductive verification with applications to

distributed systems”. In: PLDI 2018. ACM, 2018, pp. 662–677. url: http://doi.acm.org/10.1145/3192366.

3192414.

[107] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. “Paxos made EPR: decidable reasoning

about distributed protocols”. In: PACMPL 1.OOPSLA (2017), 108:1–108:31. url: http://doi.acm.org/10.

1145/3140568.

[108] Oded Padon, Jochen Hoenicke, Giuliano Losa, Andreas Podelski, Mooly Sagiv, and Sharon Shoham.

“Reducing liveness to safety in first-order logic”. In: PACMPL 2.POPL (2018), 26:1–26:33. url: http:

//doi.acm.org/10.1145/3158114.

[109] Ankush Desai, Amar Phanishayee, Shaz Qadeer, and Sanjit A. Seshia. “Compositional programming

and testing of dynamic distributed systems”. In: PACMPL 2.OOPSLA (2018), 159:1–159:30. url: https:

//doi.org/10.1145/3276529.

[110] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. “PSync: a partially synchronous language

for fault-tolerant distributed algorithms”. In: POPL 2016. ACM, 2016, pp. 400–415. url: http://doi.acm.

org/10.1145/2837614.2837650.

[111] Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien Zufferey. “A Logic-

Based Framework for Verifying Consensus Algorithms”. In: VMCAI 2014. Vol. 8318. LNCS. Springer,
2014, pp. 161–181. url: https://doi.org/10.1007/978-3-642-54013-4_10.

[112] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang, Michael D. Ernst, and

Thomas E. Anderson. “Verdi: a framework for implementing and formally verifying distributed

systems”. In: PLDI 2015. ACM, 2015, pp. 357–368. url: http://doi.acm.org/10.1145/2737924.2737958.

[113] DougWoos, James R.Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst, and Thomas E. Anderson.

“Planning for change in a formal verification of the raft consensus protocol”. In: CPP 2016. ACM, 2016,

pp. 154–165. url: http://doi.acm.org/10.1145/2854065.2854081.

[114] Diego Ongaro and John K. Ousterhout. “In Search of an Understandable Consensus Algorithm”. In:

2014 USENIX Annual Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014.
USENIX Association, 2014, pp. 305–319. url: https://www.usenix.org/conference/atc14/technical-

sessions/presentation/ongaro.

[115] Ulrich Schmid, BettinaWeiss, and JohnM. Rushby. “Formally Verified Byzantine Agreement in Presence

of Link Faults”. In: ICDCS. 2002, pp. 608–616. url: https://doi.org/10.1109/ICDCS.2002.1022311.
[116] Sam Owre, John M. Rushby, Natarajan Shankar, and Friedrich W. von Henke. “Formal Verification for

Fault-Tolerant Architectures: Prolegomena to the Design of PVS”. In: IEEE Trans. Software Eng. 21.2
(1995), pp. 107–125. url: https://doi.org/10.1109/32.345827.

[117] Igor Konnov, Helmut Veith, and Josef Widder. “SMT and POR Beat Counter Abstraction: Parameterized

Model Checking of Threshold-Based Distributed Algorithms”. In: CAV 2015. Vol. 9206. LNCS. Springer,
2015, pp. 85–102. url: https://doi.org/10.1007/978-3-319-21690-4_6.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://www.nuprl.org/documents/Schiper/ShadowDB_A_Replicated_Database_on_a_Synthesized_Consensus_Core.pdf
http://www.nuprl.org/documents/Schiper/ShadowDB_A_Replicated_Database_on_a_Synthesized_Consensus_Core.pdf
http://doi.acm.org/10.1145/2815400.2815428
http://doi.acm.org/10.1145/3068608
http://doi.acm.org/10.1145/2908080.2908118
http://doi.acm.org/10.1145/2908080.2908118
http://doi.acm.org/10.1145/3192366.3192414
http://doi.acm.org/10.1145/3192366.3192414
http://doi.acm.org/10.1145/3140568
http://doi.acm.org/10.1145/3140568
http://doi.acm.org/10.1145/3158114
http://doi.acm.org/10.1145/3158114
https://doi.org/10.1145/3276529
https://doi.org/10.1145/3276529
http://doi.acm.org/10.1145/2837614.2837650
http://doi.acm.org/10.1145/2837614.2837650
https://doi.org/10.1007/978-3-642-54013-4_10
http://doi.acm.org/10.1145/2737924.2737958
http://doi.acm.org/10.1145/2854065.2854081
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://www.usenix.org/conference/atc14/technical-sessions/presentation/ongaro
https://doi.org/10.1109/ICDCS.2002.1022311
https://doi.org/10.1109/32.345827
https://doi.org/10.1007/978-3-319-21690-4_6

34 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

[118] Igor V. Konnov, Marijana Lazic, Helmut Veith, and Josef Widder. “A short counterexample property

for safety and liveness verification of fault-tolerant distributed algorithms”. In: POPL 2017. ACM, 2017,

pp. 719–734. url: http://dl.acm.org/citation.cfm?id=3009860.

[119] Igor V. Konnov, Helmut Veith, and Josef Widder. “On the completeness of bounded model checking

for threshold-based distributed algorithms: Reachability”. In: Inf. Comput. 252 (2017), pp. 95–109. url:
https://doi.org/10.1016/j.ic.2016.03.006.

[120] Marijana Lazic, Igor Konnov, Josef Widder, and Roderick Bloem. “Synthesis of Distributed Algorithms

with Parameterized Threshold Guards”. In: OPODIS 2017. Vol. 95. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2017, 32:1–32:20. url: https://doi.org/10.4230/LIPIcs.OPODIS.2017.32.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://dl.acm.org/citation.cfm?id=3009860
https://doi.org/10.1016/j.ic.2016.03.006
https://doi.org/10.4230/LIPIcs.OPODIS.2017.32

Asphalion 35

A SIMPLE EXAMPLE OF A MOC LOCAL SYSTEM
We provide here a simple example of a local system composed of multiple components, implemented

using MoC (see the file called model/ComponentSMExample2.v in our implementation). The local system

is composed of (1) a trusted level 1 component called ST = ⟨"STATE", 0, true⟩, which maintains a

state—simply a number here; (2) of two other non-trusted level-2 components, one to add a value

once to the state called OP1 = ⟨"OP", 0, false⟩, and one to add a value twice from the state called

OP2 = ⟨"OP", 1, false⟩; and finally (3) of a main level-3 component, calledM = ⟨"MSG", 0, false⟩,
that dispatches incoming messages to either of the "OP" sub-components. Because "STATE" is the
only stateful component, all the other components maintain a trivial state of type Unit, which is

a singleton type inhabited by tt. Messages are of the form ADD1(n), or ADD2(n), or TOTAL(n),
where n ∈ N. Let ST’s update function be defined as follows:

λs, i.ret(⟨s + i, s + i⟩)

Let OP1’s update function be defined as follows:

λs, i.call(⟨"STATE", 0, true⟩, i) >>= λo.ret(⟨tt, o⟩)

Let OP2’s update function be defined as follows:

λs, i. call(⟨"STATE", 0, true⟩, i)
>>= λ .call(⟨"STATE", 0, true⟩, i) >>= λo.ret(⟨tt, o⟩)

Finally, the update function of M is defined as follows:

λs, i. match i with
| ADD1(n) ⇒ call(⟨"OP", 0, false⟩, n)
| ADD2(n) ⇒ call(⟨"OP", 1, false⟩, n)
| TOTAL(n) ⇒ ret(n)
end
>>= λo.ret(⟨tt, [⟨TOTAL(o), []⟩]⟩)

where ⟨TOTAL(o), []⟩ is a directed message, in this case, the instruction to send the message

TOTAL(o) to the empty list of recipients [].

Whenever this local system receives a message m, it applies M’s update function to m and to

the list of its three sub-components OP1, OP2, and ST. If m is, for example, of the form ADD1(n),
then M calls OP1 on the input n. This results in looking for a component with that name in the

list of M’s sub-components. Because such a component exists, namely OP1, we create a new local

system with main component OP1 and sub-component ST (the only sub-component with level

lower than OP1’s). We then apply OP1’s update function to n and to the list containing its single

sub-component, namely ST. This results in calling ST on the input n. Because ST is present in the

list of OP1’s sub-components, we then create a new local system with main component ST and

no sub-components (because there are no sub-components with level lower than ST’s), and we

apply this system to n. This results in applying ST’s update function to n and to the empty list of

sub-components. If this call is the first call, and if ST’s initial state is 0, then its update function

returns the new state n and outputs n. It also returns the empty list of sub-components that it

took as input. Going back to OP1, we then update the state of its sub-component ST from 0 to

n. Finally, OP1 return this updated list of sub-components, it outputs the value n, and its state

remains tt. Going back toM, we then update the state of OP1 from tt to tt, and we replace the

sub-component ST with state 0 that M took as input, with the one with state n that OP1 returned.
Finally M returns the list of updated sub-components OP1 with state tt; OP2 with state tt, which
it did not call here; and ST with state n.M also returns the state tt and outputs a single directed

message: ⟨TOTAL(n), []⟩.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/ComponentSMExample2.v

36 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 15 LoCK’s structural rules

⟨G⟩ H1, H2 ⊢ σ 2

⟨G⟩ H1, h, H2 ⊢ σ 2

thinh
⟨G1, G2 ⟩ H ⊢ σ
⟨G1, g, G2 ⟩ H ⊢ σ

thing
⟨G⟩ H [x2 : σ ′] ⊢ σ
⟨G⟩ H [x1 : σ ′] ⊢ σ

renh
⟨G[y2 : α]⟩ H ⊢ σ
⟨G[y1 : α]⟩ H ⊢ σ

reng

⟨G⟩ H [σ] ⊢ σ
hyp

⟨G⟩ H ⊢ σ 2 ⟨G⟩ H , x : σ 2 ⊢ σ 1

⟨G⟩ H ⊢ σ 1

cut

If the input had been of the form ADD2(n) then instead we would have called ST twice in a row.

This would have resulted in OP2 updating twice its list of sub-components (containing only ST).
The first time, ST’s state would have been updated to n, and the second time, because ST’s state
would have then be n, ST’s state would have then been updated to n + n.

B A DEEP-EMBEDDING TO SPAWN SUB-COMPONENTS
As mentioned in Sec. 5.4, the simple language presented here (the type Proc(A)) is not the only
choice. Note however that it is enough for a large number of protocols. To allow other features, one

can simply introduce extensions of this language. For example, to allow spawning sub-processes, one

could define the following language (see the file called model/ComponentSM5.v in our implementation):

let SpawnProc(A) be the set of terms sp of the form:

SRET(a) where a ∈ A
SBIND(sp1, sp2) where sp1 ∈ SpawnProc(B)

& sp2 ∈ B→ SpawnProc(A)
SCALL(cn, i) where i ∈ I(cn) & O(cn) = A
SSPAWN(cn, u, s, a) where u ∈ S(cn) → I(cn) → SpawnProc(S(cn) ∗ O(cn))

& s ∈ S(cn) & a ∈ A

We can interpret this language as follows (this defines the function I form SpawnProc(A) toMn(A),
and this for any level n):

I(n, SRET(a)) = ret(a)
I(n, SBIND(m, f)) = I(n,m) >>= λx .I(n, f (x))
I(n, SCALL(cn, i)) = call(cn, i)
I(n, SSPAWN(cn, u, s, a)) = if n = 0 then ret(a)

else spawn(λs, i.I(n − 1, (u s i)), s, a)

where spawn is a new monadic operator defined as follows (mkComp(u, s) builds a component

from an update function u and a state s):

spawn(u, s, a) = λsubs.⟨mkComp(u, s) :: subs, a⟩

One simple property that one can for example derive about components built this way is that when

a component is applied to sub-components subs1 then it produces sub-components subs2 such that

subs1 is a subset of subs2, modulo the states of the components. Investigating such variants is left

for future work.

C ADDITIONAL LOCK RULES
We present here some important rules of LoCK that we omitted in Sec. 6.4 for space reasons (see

the file called model/CalculusSM.v for a list of our rules).

Fig. 15 presents LoCK’s structural rules while Fig. 16 presents LoCK’s predicate logic rules, which

are all standard.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM5.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 37

Fig. 16 LoCK’s predicate logic rules

⟨G⟩ H ⊢ ⊤ @ e
⊤I

⟨G⟩ H [⊥ @ e] ⊢ σ
⊥E

⟨G⟩ H1, H2 ⊢ τ 1 @ e ⟨G⟩ H1, x : τ 2 @ e, H2 ⊢ σ
⟨G⟩ H1, x : τ 1 → τ 2 @ e, H2 ⊢ σ

→E
⟨G⟩ H , x : τ 1 @ e ⊢ τ 2 @ e
⟨G⟩ H ⊢ τ 1 → τ 2 @ e

→I

⟨G⟩ H1, x : τ 1 @ e, H2 ⊢ σ
⟨G⟩ H1, x : τ 2 @ e, H2 ⊢ σ

⟨G⟩ H1, x : τ 1 ∨ τ 2 @ e, H2 ⊢ σ
∨E

⟨G⟩ H ⊢ τ 1 @ e
⟨G⟩ H ⊢ τ 1 ∨ τ 2 @ e

∨Il
⟨G⟩ H ⊢ τ 2 @ e

⟨G⟩ H ⊢ τ 1 ∨ τ 2 @ e
∨Ir

⟨G⟩ H1, x : τ 1 @ e, x′ : τ 2 @ e, H2 ⊢ σ
⟨G⟩ H1, x : τ 1 ∧ τ 2 @ e, H2 ⊢ σ

∧E
⟨G⟩ H ⊢ τ 1 @ e ⟨G⟩ H ⊢ τ 2 @ e

⟨G⟩ H ⊢ τ 1 ∧ τ 2 @ e
∧I

Λ[υ] ⟨G⟩ H1, x : f (υ) @ e, H2 ⊢ σ oftype(υ , θ)
⟨G⟩ H1, x : ∃ ⟨θ , f ⟩ @ e, H2 ⊢ σ

∃E
⟨G⟩ H ⊢ f (υ) @ e oftype(υ , θ)

⟨G⟩ H ⊢ ∃ ⟨θ , f ⟩ @ e
∃I

⟨G⟩ H1, x : f (υ) @ e, H2 ⊢ σ oftype(υ , θ)
⟨G⟩ H1, x : ∀⟨θ , f ⟩ @ e, H2 ⊢ σ

∀E
Λ[υ] ⟨G⟩ H ⊢ f (υ) @ e oftype(υ , θ)

⟨G⟩ H ⊢ ∀⟨θ , f ⟩ @ e
∀I

Fig. 17 Additional event relation rules of LoCK

⟨G⟩ H [x : τ @ pred=(e)] ⊢ σ
⟨G⟩ H [x : ⊂τ @ e] ⊢ σ

⊂E

Λ[e′] ⟨G, y : e′⊂e⟩ H [x : τ @ e′] ⊢ σ
⟨G⟩ H [x : ⊂τ @ e] ⊢ σ

□E
⟨G[e′⊂e]⟩ H ⊢ τ @ e′

⟨G[e′⊂e]⟩ H ⊢ ⊂τ @ e
□I

⟨G[e1 ≡ e2]⟩ H ⊢ σ ⟨G[e1⊏e2]⟩ H ⊢ σ
⟨G[e1⊑e2]⟩ H ⊢ σ

STR⊑
⟨G[e1 ≡ e2]⟩ H ⊢ σ ⟨G[e1≺e2]⟩ H ⊢ σ

⟨G[e1⪯e2]⟩ H ⊢ σ
STR⪯

⟨G[y : e1⊑e2]⟩ H ⊢ σ
⟨G[y : e1⪯e2]⟩ H ⊢@(a) @ e1
⟨G[y : e1⪯e2]⟩ H ⊢@(a) @ e2
⟨G[y : e1⪯e2]⟩ H ⊢ σ

STRl⪯

⟨G[y : e1⊏e2]⟩ H ⊢ σ
⟨G[y : e1≺e2]⟩ H ⊢@(a) @ e1
⟨G[y : e1≺e2]⟩ H ⊢@(a) @ e2
⟨G[y : e1≺e2]⟩ H ⊢ σ

STRl≺

⟨G[y : e1⊂e2]⟩ H ⊢ σ
⟨G[y : e1⊏e, e⊂e2]⟩ H ⊢ σ
⟨G[y : e1⊏e2]⟩ H ⊢ σ

split⊏
⟨G[y : e1⊑pred=(e2), pred=(e2)⊂e2]⟩ H ⊢ σ

⟨G[y : e1⊏e2]⟩ H ⊢ σ
splitPred⊏

⟨G[y : e2 ≡ e1]⟩ H ⊢ σ
⟨G[y : e1 ≡ e2]⟩ H ⊢ σ

≡sym
⟨G[y : e1 ≡ pred=(e2)]⟩ H ⊢ σ
⟨G[y : e2⊂e1]⟩ H ⊢ σ

≡pred=

Fig. 18 Additional logic of events rules of LoCK

⟨G[y : e1⊑e2]⟩ H ⊢@(a) @ e2
⟨G[y : e1⊑e2]⟩ H ⊢@(a) @ e1

@loc
⟨G[y : e1⊑e2]⟩ H ⊢@(a) @ e1
⟨G[y : e1⊑e2]⟩ H ⊢@(a) @ e2

@loc

⟨G⟩ H ⊢@(a1) @ e
⟨G⟩ H ⊢@(a2) @ e

⟨G⟩ H ⊢ a1 = a2 @ e
loc

Fig. 17 presents additional event relation rules, that we omitted in Fig. 11 for space reasons. The

⊂E rule is the standard elimination rule for ⊂, allowing to navigate to previous events. The STR⊑
and STR⪯ allow strengthening ⊑ and ⪯. The STRl⪯ and STRl≺ allow strengthening ⪯ and ≺. The
split⊏ and splitPred⊏ allow splitting guards to get intermediate events.

, Vol. 1, No. 1, Article . Publication date: August 2019.

38 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 19 Additional knowledge rules of LoCK

Let τ be of one of the forms υ1 = υ2, i1 < i2, HI(t, i), O(d, a), G(d, t)

⟨G⟩ H ⊢ τ @ e2
⟨G⟩ H ⊢ τ @ e1

change

⟨G⟩ H ⊢ υ1 = υ2 @ e
⟨G⟩ H ⊢ τ [υ2] @ e

⟨G⟩ H ⊢ τ [υ1] @ e
valSub

Fig. 18 presents additional logic of events rules, that we omitted in Fig. 12 for space reasons. The

@loc rule (note that this rule is invertible) states that if e1⊑e2 then e1 and e2 happen at the same

location. The loc rule states that each event happens at a single location.

Fig. 19 presented additional knowledge rules, that we omitted in Fig. 13 for space reasons. The

change rule allows changing the current event for event agnostic expressions. The valSub rule

allows substituting equal values in any expression.

We conclude this section with several examples of derivations within LoCK. Namely, we introduce

Owns Propagated to illustrate the use of the following rules: cut, ∃E, ∃I and change. Next, we show
Id After is Id Before, that uses ∨Il and □I. Moreover, using Id Before is Id After, we demonstrates

use of following rules: hyp, ∨E, ⊂E, weak, ≡sym, subC, ∧E, ¬�,→E, ⊥E. Finally, Causal, Equal and
First illustrates how STR⊑ and thinh can be used.

Owns Propagated. We show here that we can derive ⟨G, y : e1⊑e2⟩ H ⊢ O(d) @ e2 from

⟨G, y : e1⊑e2⟩ H ⊢ O(d) @ e1, 42

⟨G, y : e1⊑e2 ⟩ H ⊢ O(d) @ e1

⟨G, y : e1⊑e2 ⟩ H , x : O(d, a) @ e1, y : @(a) @ e1 ⊢@(a) @ e1
hyp

⟨G, y : e1⊑e2 ⟩ H , x : O(d, a) @ e1, y : @(a) @ e1 ⊢@(a) @ e2
@loc

Π

⟨G, y : e1⊑e2 ⟩ H , x : O(d, a) @ e1, y : @(a) @ e1 ⊢@(a) ∧ O(d, a) @ e2
∧I

⟨G, y : e1⊑e2 ⟩ H , x : @(a) ∧ O(d, a) @ e1 ⊢@(a) ∧ O(d, a) @ e2
∧E

⟨G, y : e1⊑e2 ⟩ H , x : @(a) ∧ O(d, a) @ e1 ⊢ ∃n(@(a) ∧ O(d, a)) @ e2
∃I

⟨G, y : e1⊑e2 ⟩ H , x : O(d) @ e1 ⊢ O(d) @ e2
∃E

⟨G, y : e1⊑e2 ⟩ H ⊢ O(d) @ e2
cut

where Π is:

⟨G, y : e1⊑e2 ⟩ H , x : O(d, a) @ e1, y : @(a) @ e1 ⊢ O(d, a) @ e1
hyp

⟨G, y : e1⊑e2 ⟩ H , x : O(d, a) @ e1, y : @(a) @ e1 ⊢ O(d, a) @ e2
change

Id After is Id Before. We show here that we can derive ⟨G, y : e1⊂e2⟩ H ⊢ I−(i) @ e2 from
⟨G, y : e1⊂e2⟩ H ⊢ I+(i) @ e1, 43

⟨G, y : e1⊂e2 ⟩ H ⊢ I+(i) @ e1
⟨G, y : e1⊂e2 ⟩ H ⊢ ⊂I+(i) @ e2

□I

⟨G, y : e1⊂e2 ⟩ H ⊢ I−(i) @ e2
∨Il

Id Before is Id After. We show here that we can derive ⟨G, y : e1⊂e2⟩ H ⊢ I+(i) @ e1 from
⟨G, y : e1⊂e2⟩ H ⊢ I−(i) @ e2 44

42
See DERIVED RULE owns change localle true in model/CalculusSM.v.

43
See DERIVED RULE id after is id before true in model/CalculusSM.v.

44
See DERIVED RULE id before is id after true in model/CalculusSM.v.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 39

⟨G, y : e1⊂e2 ⟩ H ⊢ I−(i) @ e2

⟨G, y : pred=(e2) ≡ e1 ⟩ H , h : I+(i) @ pred=(e2) ⊢ I+(i) @ pred=(e2)
hyp

⟨G, y : pred=(e2) ≡ e1 ⟩ H , h : I+(i) @ pred=(e2) ⊢ I+(i) @ e1
subC

⟨G, y : e1 ≡ pred=(e2)⟩ H , h : I+(i) @ pred=(e2) ⊢ I+(i) @ e1
≡sym

⟨G, y : e1⊂e2 ⟩ H , h : I+(i) @ pred=(e2) ⊢ I+(i) @ e1
weak

⟨G, y : e1⊂e2 ⟩ H , h : ⊂I+(i) @ e2 ⊢ I+(i) @ e1
⊂E

Π1

⟨G, y : e1⊂e2 ⟩ H , h : I−(i) @ e2 ⊢ I+(i) @ e1
∨E

⟨G, y : e1⊂e2 ⟩ H ⊢ I+(i) @ e1
cut

where Π1 is:

⟨G, y : e1⊏e2 ⟩ H , h : i = initId @ e2, x : � @ e2 ⊢ ¬� @ e2
¬�

⟨G, y : e1⊂e2 ⟩ H , h : i = initId @ e2, x : � @ e2 ⊢ ¬� @ e2
weak

Π2

⟨G, y : e1⊂e2 ⟩ H , h : i = initId @ e2, x : � @ e2 ⊢ I+(i) @ e1
cut

⟨G, y : e1⊂e2 ⟩ H , h : i = initId ∧ � @ e2 ⊢ I+(i) @ e1
∧E

and Π2 is:

⟨G, y : e1⊂e2 ⟩ H , h : i = initId @ e2, x : � @ e2 ⊢ � @ e2
hyp

Π3

⟨G, y : e1⊂e2 ⟩ H , h : i = initId @ e2, x : � @ e2, n : ¬� @ e2 ⊢ I+(i) @ e1
→E

and Π3 is:

⟨G, y : e1⊂e2 ⟩ H , h : i = initId @ e2, y : (∃n@) @ e2, x : � @ e2, n : ⊥ @ e2 ⊢ I+(i) @ e1
⊥E

Causal, Equal and First. We show here that we can derive ⟨G, y : e1⊑e2⟩ H ⊢ σ from ⟨G, y :

e1⊑e2⟩ H ⊢ � @ e2 and ⟨G, y : e1 ≡ e2⟩ H ⊢ σ 45

⟨G, y : e1⊑e2 ⟩ H ⊢ � @ e2

⟨G, y : e1 ≡ e2 ⟩ H ⊢ σ

⟨G, y : e1 ≡ e2 ⟩ H ,w : � @ e2 ⊢ σ
thinh

⟨G, y : e1⊏e2 ⟩ H ,w : � @ e2 ⊢ ¬� @ e2
¬�

Π

⟨G, y : e1⊏e2 ⟩ H ,w : � @ e2 ⊢ σ
cut

⟨G, y : e1⊑e2 ⟩ H ,w : � @ e2 ⊢ σ
STR⊑

⟨G, y : e1⊑e2 ⟩ H ⊢ σ
cut

where Π is:

⟨G, y : e1⊏e2 ⟩ H ,w : � @ e2 ⊢ � @ e2
hyp

⟨G, y : e1⊏e2 ⟩ H ,w : � @ e2, z : ⊥ @ e2 ⊢ σ
⊥E

⟨G, y : e1⊏e2 ⟩ H ,w : � @ e2, z : ¬� @ e2 ⊢ σ
→E

D TRUSTED KNOWLEDGE DISSEMINATION
We present here another high-level result, which we derived within LoCK, and which is the crux of

Micro’s validity. Roughly speaking, this general high-level LoCK lemma (presented below) says that

if a correct node disseminates a piece of data d (i.e.D(d)), then there must have been a disseminated

trusted piece of data t (i.e. ≺OD(t)), that was generated for d (i.e. G(d, t)) by the owner of the data.

From this, we can straightforwardly derive that if a Micro backup accepts a request r with counter

value i, then it must have been that the primary generated a unique identifier with counter value i
for this request.

45
See DERIVED RULE causalle is equal if first true in model/CalculusSM.v.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

40 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Theorem D.1 (Trusted Knowledge Dissemination). The following rule is derivable within
LoCK:46

Λ[e′] ⟨G⟩ H ⊢ DKT ∧ KLD ∧ LID @ e′

⟨G⟩ H ⊢ D(d) @ e
⟨G⟩ H ⊢ C @ e

⟨G⟩ H ⊢ ∃tλt .(G(d, t) ∧ K+(t) ∧ (≺OD(t) ∨ O(t))) @ e

This rule says that a disseminated piece of data must correspond to some trusted piece of data

that was generated in the past by the owner of the data. More precisely, it states that if DKT (see
below), KLD and LID (see Sec. 6.6) are satisfied, and if some data d was disseminated by a node,

say a, at event e,47 then there must exist some trusted piece of data t that was generated for d,
such that a knows t at event e, and either: (1) a owns t at e; or (2) some other node owns and

disseminated the data in the past. Let us now get back to DKT, which we have not discussed so far:

DKT = ∀dλd.D(d) → C → (∃tλt.K+(t) ∧ G(d, t)) (9)

This states that if a correct node a disseminates some piece of data d, then there must exist some

trusted piece of data t, that a knows and was generated for data d.

E OPENING THE LID

E.1 Primitive Principles Behind LID

Sec. 6.6 presents typical assumptions about knowledge, expressed within LoCK. In particular, it

presents the following LID assumption in Eq. 2, which states that if one learns about a trusted piece

of data, then this trusted piece of data must have been disseminated by its owner in the past:

λt.L(t)→ ≺(OD(t))

As mentioned in Sec. 7.2, LID essentially follows from our generic HyLoE communication assump-

tion called AXIOM auth messages were sent or byz (see model/ComponentAxiom.v for more details).

Given a distributed system such as MinBFT, it is not complicated to prove that LID (its HyLoE

interpretation) holds assuming AXIOM auth messages were sent or byz. However, it requires

using induction in HyLoE, which we are trying to avoid: we are aiming at having all the inductive

reasoning done in LoCK in order to keep the reasoning done in HyLoE as simple as possible. The

reason for the inductive nature of this proof is that LID allows going back directly to the owner of

the learned trusted piece of data, while AXIOM auth messages were sent or byz only allows

getting back to some point in space/time, where the trusted piece of data was disseminated: it does

not have to be disseminated by the owner at that point because the data might have been relayed

by an intermediary node. As it turns out, LID can be derived within LoCK from more primitive

principles, which we present next.
48

Let Com be the following LoCK expression:

∀tλt.L(t)→ (∃dλd.≺(ND(d) ∧ t∈d ∧ C)) ∨ ≺OD(t)

As for C, which we discuss above in Appx. D, t∈d is not discussed in the main body of this paper

because it is scarcely used. It expresses that the trusted piece of data t occurs in the piece of data d.

46
See the lemma called DERIVED RULE disseminate if learned and disseminated2 true in the file called

model/CalculusSM derived.v.
47
We also assume that the node that disseminated the data is correct, i.e., C holds at e. This operator is not discussed in this

paper because, even though simple, it is only used scarcely. See the file called model/CalculusSM.v for more information.

Note there that the C operator is defined in terms of more primitive operators. The only primitive operator used in C’s
definition, which is not presented in this paper is an operator stating that the current event is correct as discussed in Sec. 4.2.

48
See model/CalculusSM derived4.v for more details.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/ComponentAxiom.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived4.v

Asphalion 41

ND(d) is defined as N ∧ D(d), where N = ∃nλa.@(a). We have proved that Com is a straight-

forward consequence of the communication axiom AXIOM auth messages were sent or byz,

i.e., we have proved (assuming a few simple properties that relate HyLoE parameters and LoCK

parameters):
49

∀eo ∈ EO.AXIOM auth messages were sent or byz eo sys
→ ∀e ∈ Event(eo).JComKe

(10)

We can then derive the following derived rule:

Λ[e′] ⟨G⟩ H ⊢ Com ∧ KLD ∧ DIK ∧ KIK @ e′

⟨G⟩ H ⊢ LID @ e LID
(11)

where KLD is defined in Eq. 3 in Sec. 6.6, and

DIK = ∀dλd.ND(d)→ C → K+(d)
KIK = ∀dλd.∀tλt.K+(d)→ t∈d → K+(t)

DIK says that nodes must know about the pieces of data they disseminate; while KIK says that if a

node know a piece of data, then it must know about all the trusted pieces of data contained in that

piece of data.

E.2 A Proof of the LID Derived Rule
Let us now discuss the proof of the LID derived rule (the interested reader is invited to go through

DERIVED RULE implies all trusted learns if gen2 true in model/CalculusSM derived4.v for more details).

First of all, we show that we can derive K+(t) from DIK, KIK, ND(d), C, and t∈d (we combine

some steps for readability):

⟨G⟩ H ⊢ DIK @ e

⟨G⟩ H ⊢ ND(d) @ e ⟨G⟩ H ⊢ C @ e

⟨G⟩ H ⊢ KIK @ e Π

⟨G⟩ H , x : K+(d) @ e ⊢ K+(t) @ e
cut + thinh

⟨G⟩ H , x : DIK @ e ⊢ K+(t) @ e
∀E+→E +thinh

⟨G⟩ H ⊢ K+(t) @ e
cut

where Π is

⟨G⟩ H , x : K+(d) @ e ⊢ K+(d) @ e
hyp

⟨G⟩ H ⊢ t∈d @ e ⟨G⟩ H , x : K+(d) @ e, y : K+(t) @ e ⊢ K+(t) @ e
hyp

⟨G⟩ H , x : K+(d) @ e, y : KIK @ e ⊢ K+(t) @ e
∀E+→E +thinh

The rule we just derived is then:

⟨G⟩ H ⊢ DIK @ e ⟨G⟩ H ⊢ KIK @ e ⟨G⟩ H ⊢ ND(d) @ e ⟨G⟩ H ⊢ C @ e ⟨G⟩ H ⊢ t∈d @ e

⟨G⟩ H ⊢ K+(t) @ e
DITK

Let us now go back to Eq. 11. We proved the validity of this derived rule in LoCK by induction. As

it turns out, we used a different rule than ind, which allows us to go by induction on the happened
before relation, as opposed to ind, which goes by induction on the direct predecessor relation (from

now on we will call both rules ind for simplicity):
50

Λ[e] ⟨G⟩ H ⊢ (∀≺τ)→ τ @ e

⟨G⟩ H ⊢ τ @ e ind

Note the use of the ∀≺τ operator. This (primitive) operator is also not discussed in the main body

of this paper for space reasons and because it is only used scarcely. Its semantics is:

J∀≺τ Ke = ∀e′ ≺ e.J∀≺τ Ke′

49
See ASSUMPTION authenticated messages were sent or byz true in model/CalculusSM derived4.v.

50
See model/PRIMITIVE RULE induction true for a proof of the validity of this rule.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived4.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived4.v
https://github.com/vrahli/Asphalion/blob/master/model/PRIMITIVE_RULE_induction_true

42 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

In our proof of Eq. 11, we will also use the following derived rule, which is similar to Eq. 7, where

∀⪯τ = ∀≺τ ∨ τ (see DERIVED RULE KLD implies gen2 true in model/CalculusSM derived4.v):

Λ[e′] ⟨G⟩ H ⊢ KLD @ e′ ⟨G⟩ H ⊢ ∀⪯LID @ e

⟨G⟩ H ⊢ K+(d)→ ⪯(OD(d)) @ e
KID

In addition, we will also use the following derived rule, which strengthens a ∀⪯ to a ∀≺ by navigating

to a later point in space/time (from e′ to e below) (see DERIVED RULE forall node before eq trans true

in model/CalculusSM derived4.v):

⟨G,u : e′≺e⟩ H ⊢ ∀≺τ @ e
⟨G,u : e′≺e⟩ H ⊢ ∀⪯τ @ e′

STR∀⪯

Finally, we will also use the following derived rule, which allows weakening ≺ to ⪯ by navigating to

an earlier point in space/time, i.e., from e to e′ below (see DERIVED RULE unhappened before if causal trans

in model/CalculusSM.v):

⟨G,u : e′≺e⟩ H ⊢ ⪯τ @ e′

⟨G,u : e′≺e⟩ H ⊢ ≺τ @ e
WEAK≺

Let us now derive Eq. 11:

⟨G⟩ H ⊢ Com @ e

Π1 ⟨G⟩ H , x : ∀≺LID @ e, y : L(t) @ e, z : ≺OD(t) @ e ⊢ ≺(OD(t)) @ e
hyp

⟨G⟩ H , x : ∀≺LID @ e, y : L(t) @ e, z : Com @ e ⊢ ≺(OD(t)) @ e
∀E+→E +∨E

⟨G⟩ H , x : ∀≺LID @ e, y : L(t) @ e ⊢ ≺(OD(t)) @ e
cut + thinh

⟨G⟩ H ⊢ ∀≺LID → LID @ e
→I +∀I

⟨G⟩ H ⊢ LID @ e
ind

where Π1 is

⟨G, u : e′≺e⟩ H , x : ∀≺LID @ e ⊢ ∀⪯LID @ e′
STR∀⪯ + hyp

Π2

⟨G, u : e′≺e⟩ H , x : ∀≺LID @ e, k : K+(t) @ e′ ⊢ ≺(OD(t)) @ e
cut + KID + thinh+→E

⟨G, u : e′≺e⟩ H , x : ∀≺LID @ e, z : ND(d) @ e′, i : t∈d @ e′, c : C @ e′, k : K+(t) @ e′ ⊢ ≺(OD(t)) @ e
thinh

⟨G, u : e′≺e⟩ H , x : ∀≺LID @ e, z : ND(d) @ e′, i : t∈d @ e′, c : C @ e′ ⊢ ≺(OD(t)) @ e
cut + DITK + thinh + hyp

⟨G⟩ H , x : ∀≺LID @ e, z : (∃dλd .≺(ND(d) ∧ t∈d ∧ C)) @ e ⊢ ≺(OD(t)) @ e
∃E + ≺E + ∧E

⟨G⟩ H , x : ∀≺LID @ e, y : L(t) @ e, z : (∃dλd .≺(ND(d) ∧ t∈d ∧ C)) @ e ⊢ ≺(OD(t)) @ e
thinh

and where Π2 is:

⟨G, u : e′≺e⟩ H , x : ∀≺LID @ e, k : K+(t) @ e′, d : ⪯(OD(d)) @ e′ ⊢ ≺(OD(t)) @ e
WEAK≺ + hyp

F LOCK TUTORIAL
Webriefly explain here how to use LoCK to prove lemmas.We provide several examples in the follow-

ing files: model/CalculusSM.v, model/CalculusSM2.v, model/CalculusSM derived.v, model/CalculusSM derived2.v,

model/CalculusSM derived3.v, and model/CalculusSM derived3.v. The names of the lemmas in those files

either start with PRIMITIVE for primitive rules, or by DERIVED for derived rules. The example we use

here is DERIVED RULE unlocal before eq hyp true, which we proved in model/CalculusSM.v, and which

we discuss in Sec. 6.5:

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived4.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived4.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM2.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived2.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived3.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived3.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 43

Definition DERIVED RULE unlocal before eq hyp u x (eo : EventOrdering) e R H K a b :=
MkRule1

(fun e’⇒ [⟨(u : e’ ⊑ e), R⟩ H , (x : a @ e’), K ⊢ b])
(⟨R⟩ H , x : ⊑ a @ e), K ⊢ b).

Lemma DERIVED RULE unlocal before eq hyp true :

∀ u x (eo : EventOrdering) e R H K a b,
rule true (DERIVED RULE unlocal before eq hyp u x e R H K a b).

Proof.
start proving derived st.
LOCKelim x.

{ LOCKapply (PRIMITIVE RULE unlocal before hyp true u).
LOCKapply@ u PRIMITIVE RULE local if localle true.

inst hyp e0 st. }

{ LOCKapply (DERIVED RULE add localle refl true u e).
inst hyp e st. }

Qed.

First we start the proof with the tactic: start proving derived st, which allows us to focus on

the conclusion of the rule, and moves the hypotheses of the rule to the hypotheses in Coq (those

hypotheses are called st).
We can then start applying rules. Every time we apply a rule, we use the proof that the rule is

true. For example, LOCKapply (PRIMITIVE RULE unlocal before hyp true u), applies the PRIM-

ITIVE RULE unlocal before hyp rule, which we have proved to be valid in the lemma PRIMI-

TIVE RULE unlocal before hyp true. Incidentally, this rule is the □E elimination rule presented

in Fig. 11. The LOCKelim tactic automatically tries to apply the appropriate (elimination) rule. Here

because the hypothesis x is of the form ⊑τ , which is is defined as ⊏τ ∨ τ (see Sec. 6.2), LOCKelim
automatically applies the or elimination rule. From this, we get two branches, one for each branch

of the or, which is why we have two blocks below that tactic: the first one is the proof of the left

branch, and the second one is the proof of the right branch.

We use a couple more useful tactics in this proof, which we describe next. To prove the left

branch, we use the LOCKapply@ u rule tactic, which is similar to LOCKapply, but in addition gets

either the guards or the hypotheses (depending on whether the name u is a guard name or an

hypothesis name) in the right shape whenever a rule mentions a guard or an hypothesis. For

example DERIVED RULE add localle refl true, is the validity proof of one of our weakening rule

(see the rule called weak in Fig. 11 in Sec. 6.4). The guards in the conclusion of that rule are of the

form G1, y : e′⊏e,G2. The tactic LOCKapply@ helps turn the guards in the current sequent into that

precise shape by pointing to the guard name y (u in our proof above).

Finally inst hyp e st, instantiates the hypotheses of our rule, namely the function (fun e’ ⇒
[⟨(u : e’ ⊑ e), R⟩ H , (x : a @ e’), K ⊢ b]) with the event variable e, and call the instances st.

Let us now end this section with a summary of the tactics we provide as part of LoCK:

• start proving derived st: to start proving a derived rule.

• start proving primitive st ct ht: to start proving a primitive rule.

• inst hyp v st: to instantiate the hypotheses of a rule with v, which must either be an event,

or a node name, or a trusted piece of data, or a non-trusted piece of data, or an identifier.

• LOCKapply: to apply a rule.

• LOCKapply@: to apply a rule on a given guard or hypothesis.

• LOCKintro: an “introduction” tactic, which can be extended at will.

• LOCKelim: an “elimination” tactic, which can be extended at will.

, Vol. 1, No. 1, Article . Publication date: August 2019.

44 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

Fig. 20 OCaml/SGX interaction

• LOCKauto: an “auto” tactic, which can be extended at will, and which currently tries to apply

a few simple rules, such as the “hypothesis” rule.

• LOCKclear: to clear an hypothesis or a guard.

• simseqs j: to get the sequents in the right shape after having applied a rule (one should not

need to use this tactic, because it is done by LOCKapply and LOCKapply@).
• causal norm with u: to focus on a particular guard (one should not need to use this tactic,

because it is done by LOCKapply@).
• norm with x: to focus on a particular hypothesis (one should not need to use this tactic,

because it is done by LOCKapply@).

G OCAML RUNTIME ENVIRONMENTS
We implemented two runtime environments to execute MoC distributed systems. One of them

relies on SGX to execute trusted components, while the other simpler one runs trusted components

as the other “normal” components. We discuss both environments below.

SGX-free runtime. Beside the runtime environment discussed in Sec. 8 and below, that uses Intel

SGX, we developed an additional runtime environment (located in MinBFT/runtime wo sgx) that does

not depend on any trusted environment for two reasons: it enables testing our framework on

platforms that do not contain any trusted execution environment; and it can be very useful for

debugging.

SGX-based runtime. As mentioned in Sec. 8, using Asphalion, one can extract OCaml code from

distributed systems implemented usingMoC, such that trusted components execute inside Intel SGX

enclaves. We chose to rely on Graphene-SGX [1] to do this because, to the best of our knowledge,

one cannot directly run OCaml code inside SGX enclaves. Instead of using Graphene-SGX, one could

run OCaml’s runtime environment inside SGX enclaves, which would require creating OCALLs

for all system calls made by OCaml’s runtime environment that are not included in the libraries

provided by SGX. Besides the fact that this solution could lead to security issues, it might be very

slow.

Here, using a concrete example, i.e., a createUI call, we explain the interaction between a replica’s

main component and the Graphene-SGX enclave that runs this replica’s USIG component. As

mentioned above, because Graphene-SGX closes enclaves after each call, we implemented a loop

around the USIG service to keep it running forever, as well as a TCP interface to access this

loop. Also, because Graphene-SGX, to the best of our knowledge, provides only a C interface, we

implemented this loop and this TCP interface in C. As shown in Fig. 20, when the main component

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/runtime_wo_sgx

Asphalion 45

of a replica calls the createUI function of its USIG, this call is forwarded to the client of this TCP

interface. Moreover, because we extract MoC code to OCaml, we had to implement an OCaml/C

wrapper around our TCP interface implemented C. Next, the TCP client forwards the value it

received through this call to createUI to the TCP server, which runs inside a Graphene-SGX enclave.

To transfer this OCaml value across the TCP connection, we had to implement a custom serializer

to convert that value to a C structure. Finally, when the TCP server running a Graphene-SGX

enclave receives this C structure, it uses a custom deserializer to convert it back to an OCaml value,

which the server uses to call the OCaml createUI function (again using a C/OCaml wrapper around

the USIG code). Note that similar steps have to executed to deliver the value computed by the USIG,

back to the main component.

H VELISARIOS VS. ASPHALION
As explained above, Velisarios [2] is a framework to reason about homogeneous Byzantine fault-

tolerant systems. It provides: (1) a general model of processes, where each local system is a state

machine; (2) a Byzantine logic of events that supports arbitrary (Byzantine) events, i.e., events for

which no information is available, which could for example have been triggered by malicious or

corrupted nodes; and (3) a knowledge library to reason about Byzantine fault-tolerant systems at

a high-level of abstraction. This knowledge library is shallowly embedded in Coq, and provides

two modal operators: learn and know. As discussed in Sec. 2.3, Asphalion departs from Velisarios

in several ways, but reuses a small part of it, namely Asphalion’s logic of events (HyLoE) extends

the one of Velisarios. The other components of Asphalion (MoC and LoCK) are new.
51
Let us now

discuss some differences between Velisarios and Asphalion.

HyLoE. As in Velisarios, Asphalion provides a logic of events to model runs of distributed

systems as partial orders on events. As in Velisarios, the logic of events implemented in Asphalion

is shallowly embedded in Coq, thereby allowing one to use Coq’s expressiveness to reason about

distributed systems. This is to contrast with other approaches such as TLA or Event-B that rely

on less expressive logics. However, Asphalion’s logic of events extends Velisarios’s so that in

addition to supporting arbitrary events, HyLoE also supports events where trusted components of

compromised processes are called. As explained above Asphalion supports three kinds of events,

the first two being also supported by Velisarios: an event is either (1) a correct event triggered
at a correct location by the receipt of a message; or (2) a Byzantine event that corresponds to an
arbitrary action, and therefore no reliable information can be extracted from that event; or (3) a
hybrid event that corresponds to the call of a trusted component at a possibly compromised node.

HyLoE gives access to the inputs on which those trusted components are called at those “hybrid”

events. See Sec. 4 for more details (especially the TItrust(it) constructor, which is one of the

constructs assigned by trigger to events). This enables reasoning about hybrid systems, because

thanks to those trusted inputs associated with hybrid events, we can now compute the inputs,

states and outputs of trusted components. Note also that HyLoE does not prevent from reasoning

about homogeneous systems, because one can implement systems that do not contain trusted

components.

MoC. Unfortunately, Velisarios only provides a rudimentary language to implement systems.

Distributed systems there are collections of state machines, one per local system, where a state

machine is essentially a Coq function implementing the update function of the machine. MoC

goes well beyond this, by allowing local state machines to be defined as collections of interacting

51
The README.md file in the root directory of our implementation provides a short summary of the files that are part of

Asphalion, but are not part of Velisarios.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/README.md

46 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

components. The components of a local system interact through a monad. MoC’s monad provides

three main operators to build a component: a return operator to turn a Coq expression into a

component; a bind operator to compose two components; and a call operator to allow components

to call their sub-components. Those operators can be combined in any way one wants using any

Coq function one desires, as long as the resulting code has the right component type. A local system

is then a collection of components, with a distinguished component as the main component, and

some of them being flagged as trusted; and a distributed system is a function from node names to

local systems. See Sec. 5 for more details. One simple reason for building this language was to allow

distinguishing between trusted and non-trusted components within a local system. In addition,

an advantage of MoC is that it provides a language to devise more modular implementations and

proofs than what Velisarios allows. In Asphalion, one can prove properties of sub-components and

compose those to prove properties of local systems, and finally of distributed systems. In a Hoare

logic-like fashion, those properties can be expressed as pre/post conditions that describe the inputs,

pre-states, post-states, and outputs of the components or systems. When proving properties of

a component C in isolation, one can simply abstract away the sub-components C relies on and

instead assume properties about those sub-components. Also, thanks to MoC’s support for deep

embeddings, many properties of components can be derived automatically (see Sec. 5.4).

LoCK. As in Velisarios, in Asphalion we decided to rely on a knowledge theory to reason about

distributed systems at a high-level of abstraction. Such theories have applications in many areas,

such as, as mentioned in [3], economics, linguistics, artificial intelligence, theoretical computer

science, and, evidently, distributed computing. One reason is that the way humans, machines, etc.,

manage to achieve tasks, or simply evolve is by making new discoveries and exchanging their

knowledge so that others can know about it and benefit from it. Also, in our experience such

theories match well with the way system experts informally reason about distributed systems. One

immediate benefit of knowledge theories is that they allow reasoning about systems at a high-level

of abstraction, and to focus on the fundamental reasons, in terms of knowledge, as why those

systems are correct. In general, the abstract level of such theories allows reusing the results proved

at that level in multiple applications.

That being said, Asphalion’s knowledge calculus goes well beyond Velisarios’s simple knowledge

library, primarily for the following reasons: (1) In addition to learn and know operators (as in Velis-

arios), which allow reasoning about inputs and states at a high-level of abstraction, LoCK provides

additional modalities, such as a dissemination modality, which allows reasoning about disseminated

knowledge, i.e., outputs. (2) LoCK provides operators to reason about trusted knowledge. (3) As

opposed to Velisarios’s knowledge library, which is shallowly embedded in Coq, LoCK provides an

abstraction barrier that cannot be broken because it is deeply embedded in Coq. In Velisarios, one

has to be careful not to unfold the modalities to not break the abstraction barrier, which is more

unwieldy. (4) LoCK comes with reasoning principles presented as primitive inference rules. Using

these primitive rules, one can derive systems’ properties within LoCK itself. There is no such clear

separation between primitive and derived rules in Velisarios. (5) LoCK is a sequent calculus, for

which we provided a semantics that interprets LoCK expressions as HyLoE formulas. Using this

semantics, we proved the soundness of LoCK, in the sense that all its inference rules are valid.

Regarding Byzantine faults, as in Velisarios’s knowledge library, handling Byzantine behavior

within LoCK is mostly (but not entirely—see below) done through the modal operators it provides.

For example, the semantics of LoCK’s learn operator (as well as the definition of the learn operator in
Velisarios’s knowledge library) requires nodes to verify the authenticity of the pieces of knowledge

they received in order to learn about them. In LoCK, this is not “visible” to the user thanks to the

deep embedding of the calculus, while in Velisarios’s knowledge library, it is not “visible” to the

, Vol. 1, No. 1, Article . Publication date: August 2019.

Asphalion 47

user as long as the user does not unfold these definitions. In addition, both theories provide an

operator pertaining to Byzantine behavior, to essentially state that a node has a correct trace, in

the sense that it has been correct so far. In Velisarios, this is done through an operator to directly

state that a node has a correct trace, while this concept is defined within LoCK from more primitive

constructs.

Summary. To summarize, Asphalion provides the following features over Velisarios:

• (MoC,HyLoE,LoCK) a notion of trusted components (see Sec. 5.1, 4.2, and 6)

• (MoC) a programming language to implement local systems as collections of interacting

components, some of which are trusted, while the others are non-trusted (see Sec. 5.1)

• (HyLoE) a logic of events to reason about collections of both trusted and non-trusted com-

ponents (see Sec. 4.2)

• (LoCK) a knowledge calculus to reason about collections of both trusted and non-trusted

components (see Sec. 6)

• (MoC) support for compositional programming (see Sec. 5.1)

• (MoC,HyLoE,LoCK) support for compositional reasoning (see Sec. 5.2)

• (MoC,HyLoE) a mechanism to automatically derive properties of systems through deep

embeddings (see Sec. 5.4)

• (MoC,HyLoE) a lifting mechanism to lift properties of trusted components to the level of

local systems through deep embeddings (see Sec. 5.4)

• (LoCK) a lifting mechanism to lift properties of trusted components to the level of distributed

systems (see Sec. 6.7)

• (LoCK) a knowledge calculus with primitive knowledge constructs, and primitive inference

rules to reason about these constructs (see Sec. 6)

• (LoCK) a strictly enforced abstraction barrier (see Sec. 6)

• (LoCK) operators and rules to reason about trusted knowledge (see Sec. 6)

I WALK TROUGH THE CODE
As mentioned above, Asphalion relies on three novel languages, HyLoE, MoC and LoCK, and we

proved the agreement property of two different implementations of the MinBFT protocol as case

studies: a USIG-based version and a TrInc-based version. In this section, we provide a walk through

Asphalion’s code-base, by briefly describing the files that belong to HyLoE, the ones that belong

to MoC, the ones that belong to LoCK, and the ones that are part of our MinBFT formalizations.

We refer the reader to the README.md located in the root directory of our implementation for more

information. In addition, Sec. J, provides a summary of the notation used in this paper, with pointers

to our implementation.

HyLoE related file:

• model/EventOrdering.v contains HyLoE, our variant of Velisarios’s logic of event, which also

supports hybrid faults.

MoC related files:

• model/ComponentSM.v contains MoC, our monadic model of hybrid executable interacting com-

ponents, which are shallowly embedded in Coq.

• model/ComponentSM2.v contains a deep embedding of a simple language of interacting compo-

nents, that contains only return, bind, and call.

• model/ComponentSM3.v contains results regarding this simple language, most notably about

lifting properties of (trusted) sub-components.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/README.md
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM2.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM3.v

48 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

• model/ComponentSM5.v contains a deep embedding of a slightly more complex language of

interacting components, that contains in addition to return, bind, and call constructor, a

spawn constructor to spawn new components.

• model/ComponentSM6.v provides means to prove properties about collections of components

compositionally.

• model/ComponentSMExample1.v and model/ComponentSMExample2.v contain simple examples of sys-

tems.

• model/RunSM.v contains a simulator for our component language.

• model/ComponentAxiom.v contains our main axiom regarding hybrid systems.

LoCK related files:

• model/CalculusSM.v contains our calculus of hybrid knowledge.

• model/CalculusSM derived.v contains further rules.

• model/CalculusSM tacs.v contains tactics that can be used within LoCK proofs.

MinBFT related files:

• MinBFT/MinBFTheader.v contains basic concepts necessary to implement MinBFT such as node

names and messages.

• MinBFT/USIG.v contains an implementation of the USIG trusted component (this is currently

loaded by MinBFT/MinBFTg.v because it also contains generic definitions such as the IO-interface

of the trusted component, which is the same in both the USIG version and the TrInc version).

• MinBFT/TrIncUSIG.v contains an implementation of the TrInc trusted component (this is cur-

rently loaded by MinBFT/MinBFTg.v because it contains generic definitions).

• MinBFT/MinBFTg.v contains a generic definition of MinBFT (the MinBFT system, including its

components—the USIG component is left abstract here), that can be instantiated for both the

USIG version and the TrInc version.

• MinBFT/MinBFTtacts.v contains generic tactics that can be used to prove properties of our

generic MinBFT implementation.

• MinBFT/MinBFTkn0.v contains a partial instantiation of our knowledge theory that can be used

to prove properties of our generic MinBFT implementation.

• MinBFT/MinBFTrep.v, MinBFT/MinBFTprops0.v, MinBFT/MinBFTbreak.v, MinBFT/MinBFTgen.v contain sim-

ple generic definitions and properties about our generic MinBFT implementation.

• MinBFT/MinBFTcount gen1.v to MinBFT/MinBFTcount gen5.v contain complex (inductive) generic

properties about our generic MinBFT implementation.

• MinBFT/MinBFT.v contains our USIG-based instantiation of our generic MinBFT implementation.

• MinBFT/MinBFTcount.v contains generic definitions and proofs of our USIG-based version of

MinBFT that rely on the generic MinBFT/MinBFTcount gen files.

• MinBFT/MinBFTsubs.v, MinBFT/MinBFTstate.v, MinBFT/MinBFTbreak0.v, MinBFT/MinBFTtacts2,v,

MinBFT/MinBFTprops1.v, MinBFT/MinBFTprops2.v, MinBFT/MinBFTview.v are definitions and proofs con-

cerning our USIG-based version of MinBFT.

• The MinBFT/MinBFTass files contain proofs that the assumptions we made in the generic LoCK

lemma we used to derive MinBFT’s agreement property, are indeed correct.

• MinBFT/MinBFTagreement.v (and the more general MinBFT/MinBFTagreement iff.v) contains a proofs

of the agreement property of our USIG-based version of MinBFT.

• MinBFT/TrInc.v contains our TrInc-based instantiation of our generic MinBFT implementation.

• MinBFT/TrInccount.v contains generic definitions and proofs of our USIG-based version of

MinBFT that rely on the generic MinBFT/MinBFTcount gen files.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM5.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM6.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSMExample1.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSMExample2.v
https://github.com/vrahli/Asphalion/blob/master/model/RunSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentAxiom.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_derived.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM_tacs.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTheader.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/USIG.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTg.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncUSIG.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTg.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTg.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTtacts.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTkn0.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTrep.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTprops0.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTbreak.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTgen.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTcount_gen1.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTcount_gen5.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFT.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTcount.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTcount_gen
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTsubs.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTstate.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTbreak0.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTtacts2,v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTprops1.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTprops2.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTview.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTass_
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTagreement.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTagreement_iff.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrInc.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrInccount.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/MinBFTcount_gen

Asphalion 49

• MinBFT/TrIncsubs.v, MinBFT/TrIncstate.v, MinBFT/TrIncbreak.v, MinBFT/TrInctacts,v, MinBFT/TrIncprops1.v,

MinBFT/TrIncprops2.v, MinBFT/TrIncview.v are definitions and proofs concerning our TrInc-based

version of MinBFT.

• The MinBFT/TrIncass files contain proofs that the assumptions we made in the generic LoCK

lemma we used to derive MinBFT’s agreement property, are indeed correct.

• MinBFT/TrIncagreement.v (and the more general MinBFT/TrIncagreement iff.v) contains a proofs

of the agreement property of our TrInc-based version of MinBFT.

J NOTATION
To help readers relate our paper with our implementation, we provide in Table 1—3 a summary

of the notation we use throughout our paper. Table 1 summarizes the HyLoE notation; Table 2

summarizes the MoC notation; and Table 3 summarizes the LoCK notation. In addition, Table 4

provides pointers to the rules in our implementations.

HyLoE Notation Meaning & File

a set of events

Event
see Event field in the EventOrdering class (model/EventOrdering.v)
a set of authenticated pieces of data

AuthData
see the AuthenticatedData record (model/Crypto.v)

a set of keys

Keys
see class Keys (model/Crypto.v)
a causal ordering relation

≺
see happenedBefore field in the EventOrdering class (model/EventOrdering.v)
the location where the event e happens

loc(e)
see loc field in the EventOrdering class (model/EventOrdering.v)
explains why event e happened

trigger(e)
see trigger field in the EventOrdering class (model/EventOrdering.v)
an event happened at a correct node that followed the given protocol

TImsg(msg)
see constructor trigger info data in the trigger info (model/EventOrdering.v)

an event happened at a compromised node and the trusted component was called

TItrust(it)
see constructor trigger info trusted in the trigger info (model/EventOrdering.v)

an event happened at a compromised node and the trusted component was not called

TIarbitrary
see constructor trigger info arbitrary in the trigger info (model/EventOrdering.v)

local direct predecessor of e
pred(e)

see direct pred field in the EventOrdering class (model/EventOrdering.v)
the keys available at e

keys(e)
see keys field in the EventOrdering class (model/EventOrdering.v)
a list of the authenticated pieces of data included in nfo

nfo2auth(nfo)
see bind op list, get contained authenticated data and trigger op

(model/EventOrdering.v)

pred(e) = None
first?(e) = true

see definition isFirst (model/EventOrdering.v)

pred(e2) = Some(e1)e1 ⊂ e2
see direct pred field in the EventOrdering class (model/EventOrdering.v)
e′ if e′ ⊂ e, and e otherwise

pred=(e)
see definition local pred (model/EventOrdering.v)

e1 ≺ e2 ∨ e1 = e2e1 ⪯ e2
see definition happenedBeforeLe (model/EventOrdering.v)

e1 ≺ e2 ∧ loc(e1) = loc(e2)e1 ⊏ e2
see definition localHappenedBefore (model/EventOrdering.v)

e1 ⪯ e2 ∧ loc(e1) = loc(e2)e1 ⊑ e2
see definition localHappenedBeforeLe (model/EventOrdering.v)

Table 1. Summary of our HyLoE notation

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncsubs.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncstate.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncbreak.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrInctacts,v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncprops1.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncprops2.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncview.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncass_
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncagreement.v
https://github.com/vrahli/Asphalion/blob/master/MinBFT/TrIncagreement_iff.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/Crypto.v
https://github.com/vrahli/Asphalion/blob/master/model/Crypto.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v

50 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

MoC Notation Meaning & File

the type of the state of component cn
S(cn)

see stateFun class (model/ComponentSM.v)

the type of inputs of component cn
I(cn)

see cio I field in the ComponentIO record (model/ComponentSM.v)

the type of output of component cn
O(cn)

see cio O field in the ComponentIO record (model/ComponentSM.v)

the collection of components at level n
Componentn

see definition n proc (model/ComponentSM.v)

level n component monad of type T
Mn(T)

see definition M n (model/ComponentSM.v)

type of the update function of the component called cn
Updn(cn)

see definition M Update (model/ComponentSM.v)

return operator of our component monad

ret(a)
see definition ret (model/ComponentSM.v)

bind operator of our component monad

m >>= f
see definition bind (model/ComponentSM.v)

call operator of our component monad

call
see definition call proc (model/ComponentSM.v)

local system ls after it has executed the list of events locally preceding e, excluding e
ls@−e

see definition M run ls before event (model/ComponentSM.v)

local system ls after it has executed the list of events locally preceding e, including e
ls@+e

see definition M run ls on event (model/ComponentSM.v)

accesses the state of a component named cn of a local system ls
ls⇂cn

see definition state of component (model/ComponentSM.v)

returns the component comp if its name is cn, otherwise it is undefined
comp⇂cn

see definition on state of component (model/ComponentSM.v)

returns the state of ls’s component called cn before the event e
ls@−e⇂cn

see definition M byz state ls before event of trusted (model/ComponentSM.v)

returns the state of ls’s component called cn after the event e
ls@+e⇂cn

see definition M byz state ls on event of trusted (model/ComponentSM.v)

computes the state of a component cn of a system S before a given event e
S@−e⇂cn

see definition M byz state sys before event (model/ComponentSM.v)

computes the state of a component cn of a system S after a given event e
S@+e⇂cn

see definition M byz state sys on event (model/ComponentSM.v)

returns the outputs of ls’s main component at e when all the events preceding e are

non-Byzantine, and returns the outputs of the trusted component otherwise

ls { e
see definition M byz output ls on event (model/ComponentSM.v)

S(loc(e)) { e
S { e

see definition M byz output sys on event (model/ComponentSM.v)

the d occurs within the outputs computed by ls { e
d ∈ ls { e

this is simply the membership relation as one can see in (model/ComponentSM.v)

return operator of our simple deep embedding (see Sec. 5.4)

RET(a)
see constructor PROC RET in the Proc (model/ComponentSM2.v)
bind operator of our simple deep embedding (see Sec. 5.4)

BIND(p1, p2)
see constructor PROC BIND in the Proc (model/ComponentSM2.v)
call operator of our simple deep embedding (see Sec. 5.4)

CALL(cn, i)
see constructor PROC CALL in the Proc (model/ComponentSM2.v)

Table 2. Summary of our MoC notation

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM2.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM2.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM2.v

Asphalion 51

LoCK Notation Meaning

a set of pieces of data

Data
see kc data field in the KnowledgeComponents class (model/CalculusSM.v)
a set of trusted pieces of data

Trust
see kc trust field in the KnowledgeComponents class (model/CalculusSM.v)
a set of data identifiers

Identifier
see kc id field in the KnowledgeComponents class (model/CalculusSM.v)
relates trusted pieces of data and identifiers

trustHasId
see kc trust has id field in the KnowledgeComponents class (model/CalculusSM.v)
the distributed system one wants to reason about

sys
see kc sys field in the KnowledgeComponents class (model/CalculusSM.v)
the name of the component holding the knowledge

mem
see kc mem field in the KnowledgeComponents class (model/CalculusSM.v)
the name of the trusted component

trust
see IOTrusted class (model/EventOrdering.v) and see trustedStateFun class

(model/ComponentSM.v)

identifies the node that generated a given piece of data

owner
see kc data owner field in the KnowledgeComponents class (model/CalculusSM.v)
returns true if the authenticated piece of data auth can indeed be authenticated at e, and
false otherwise

verify(e, auth)
see definition kc verify (model/CalculusSM.v)

relates trusted pieces of data and non-trusted pieces of data

genFor
see kc generated for field in the KnowledgeComponents class (model/CalculusSM.v)
expresses what it means to hold some information

know
see kc knows field in the KnowledgeComponents class (model/CalculusSM.v)
returns the trusted identifier maintained by the trusted component

trusted2id
see kc trust has id field in the KnowledgeComponents class (model/CalculusSM.v)
initial value of the identifier maintained by the trusted component

initId
see kc init id field in the KnowledgeComponents class (model/CalculusSM.v)
extracts the pieces of data contained within an authenticated piece of data

auth2data
see kc auth2data field in the KnowledgeComponents class (model/CalculusSM.v)
standard first-order logic operators

⊤, ⊥, ∧, ∨, →, ∃, ∀
see constructors: KE TRUE, KE FALSE, KE AND, KE OR, KE IMPLIES, KE EX, KE ALL,
respectively (model/CalculusSM.v)

HyLoE-specific operators to state properties relating different points in space/time⊂, ≺, ⊏
see constructors: KE RIGHT BEFORE, KE HAPPENED BEFORE, KE LOCAL BEFORE,
respectively (model/CalculusSM.v)

the HyLoE-specific operator to talk about initial event�
see constructor KE FIRST (model/CalculusSM.v)

the HyLoE-specific operators to relate space/time coordinates

@
see constructor KE AT (model/CalculusSM.v)

knowsK+
see constructor KE KNOWS (model/CalculusSM.v)

learnsL
see constructor KE LEARNS (model/CalculusSM.v)

ownsO
see constructor KE HAS OWNER (model/CalculusSM.v)

disseminateD
see constructor KE DISS (model/CalculusSM.v)

knows identifierI+
see constructor KE ID AFTER (model/CalculusSM.v)

has identifierHI
see constructor KE HAS ID (model/CalculusSM.v)

generatedG
see constructor KE GEN FOR (model/CalculusSM.v)

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/EventOrdering.v
https://github.com/vrahli/Asphalion/blob/master/model/ComponentSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

52 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

“we” own the data dO(d)
see definition KE OWNS (model/CalculusSM.v)

“we” disseminated the data dOD(d)
see definition KE DISS OWN (model/CalculusSM.v)

if one learns some trusted piece data, it must have been disseminated by the corresponding

trusted component

LID
see definition ASSUMPTION learns if gen (model/CalculusSM.v)

if we know some trusted information, then we either knew it before, or we just learned it,

or we just disseminated it

KLD
see definition ASSUMPTION learns or gen (model/CalculusSM.v)

the identifiers maintained by trusted components monotonically increase

Mon
see definition ASSUMPTION monotonicity (model/CalculusSM.v)

an identifier generated by a trusted component i must be between the one it recorded

before and the one it recorded after it generated i
New

see definition ASSUMPTION generates new (model/CalculusSM.v)

a trusted pieces of data disseminated by a trusted component at a given point in space/time

must be unique

Uniq
see definition ASSUMPTION disseminates unique (model/CalculusSM.v)

∃ ⟨KTi, f ⟩, ∃ ⟨KTd, f ⟩, ∃ ⟨KTt, f ⟩, and ∃ ⟨KTn, f ⟩, respectively i.e., existential quantifier

for our different kinds of values∃if , ∃df , ∃tf , ∃nf
see KE EX ID, KE EX DATA, KE EX TRUST, and KE EX NODE, respectively

(model/CalculusSM.v)

∀⟨KTi, f ⟩, ∀⟨KTd, f ⟩, ∀⟨KTt, f ⟩, and ∀⟨KTn, f ⟩, respectively i.e., universal quantifier for

our different kinds of values∀if , ∀df , ∀tf , ∀nf
see KE ALL ID, KE ALL DATA, KE ALL TRUST, and KE ALL NODE, respectively

(model/CalculusSM.v)

∃iλi. . . . ∃iλin .τ , i.e., universal multi-quantifier for node (and similarly for the other

values)∃iλi1, . . . , in .τ
see KE EX IDs (model/CalculusSM.v)

∀iλi. . . . ∀iλin .τ , i.e., universal multi-quantifier for node (and similarly for the other

values)∀iλi1, . . . , in .τ
see KE ALL IDs (model/CalculusSM.v)

negation¬τ
see KE NOT (model/CalculusSM.v)

happened before or equal, i.e., ≺τ ∨ τ⪯τ
see KE HAPPENED BEFORE EQ (model/CalculusSM.v)

happened locally before or equal, i.e., ⊏τ ∨ τ⊑τ
see KE LOCAL BEFORE EQ (model/CalculusSM.v)

direct predecessor or equal, i.e., ⊂τ ∨ (τ ∧ �)⊆τ
see KE RIGHT BEFORE EQ (model/CalculusSM.v)

identifier is less than or equal to, i.e., i1 < i2 ∨ i1 = i2i1 ≤ i2
see KE ID LE (model/CalculusSM.v)

interpretation of LoCK expressionsJτ Ke
see interpret (model/CalculusSM.v)

syntax of sequents

⟨G⟩ H ⊢ σ
see MkSeq (model/CalculusSM.v)

append operation on sequent hypotheses

H1, H2

this is simply the append operation on lists (model/CalculusSM.v)
Table 3. Summary of our LoCK notation

Paper name Implementation name

□E for (≺) see PRIMITIVE RULE unhappened before hyp in model/CalculusSM.v

□I for (≺) see PRIMITIVE RULE unhappened before if causal in model/CalculusSM.v

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 53

□E for (⊏) see DERIVED RULE unlocal before hyp in model/CalculusSM.v52

□I for (⊏) see DERIVED RULE unlocal before if causal in model/CalculusSM.v

□It see PRIMITIVE RULE unhappened before if causal trans eq in

model/CalculusSM.v

if¬� see PRIMITIVE RULE introduce direct pred in model/CalculusSM.v

if� see PRIMITIVE RULE introduce direct pred eq in model/CalculusSM.v

weak for (≺, ⪯) see PRIMITIVE RULE causal if causalle true in model/CalculusSM.v

weak for (⊏, ⊑) see PRIMITIVE RULE local if localle in model/CalculusSM.v

weak for (⊏, ≺) see PRIMITIVE RULE local if causal in model/CalculusSM.v

weak for (⊑, ⪯) see PRIMITIVE RULE localle if causalle in model/CalculusSM.v

weak for (⊂, ⊏) see PRIMITIVE RULE direct pred if local pred in model/CalculusSM.v

weak for (≡, ⊑) see PRIMITIVE RULE localle if eq in model/CalculusSM.v

subH see PRIMITIVE RULE subst causal eq hyp in model/CalculusSM.v

subC see PRIMITIVE RULE subst causal eq concl in model/CalculusSM.v

≡refl see PRIMITIVE RULE add eq refl in model/CalculusSM.v

¬� see PRIMITIVE RULE not first in model/CalculusSM.v

�dec see PRIMITIVE RULE first dec in model/CalculusSM.v

ind see PRIMITIVE RULE pred induction in model/CalculusSM.v

tri see PRIMITIVE RULE tri if same loc in model/CalculusSM.v

sym see PRIMITIVE RULE id eq sym in model/CalculusSM.v

trans for (=, <, <) see PRIMITIVE RULE id lt trans eq lt in model/CalculusSM.v

trans for (<, =, <) see PRIMITIVE RULE id lt trans lt eq in model/CalculusSM.v

trans for (<, <, <) see PRIMITIVE RULE id lt trans lt lt in model/CalculusSM.v

trans for (=, =, =) see PRIMITIVE RULE id eq trans true in model/CalculusSM.v

Kdec see PRIMITIVE RULE decidable knows in model/CalculusSM.v

irrefl see PRIMITIVE RULE id lt elim in model/CalculusSM.v

1owner see PRIMITIVE RULE has owner implies eq in model/CalculusSM.v

1data see PRIMITIVE RULE collision resistant in model/CalculusSM.v

1id see PRIMITIVE RULE ids after imply eq ids in model/CalculusSM.v

⊤I see PRIMITIVE RULE true in model/CalculusSM.v

⊥E see PRIMITIVE RULE false elim in model/CalculusSM.v

→E see PRIMITIVE RULE implies elim in model/CalculusSM.v

→I see PRIMITIVE RULE implies intro in model/CalculusSM.v

∨E see PRIMITIVE RULE or elim in model/CalculusSM.v

∨Il see PRIMITIVE RULE or intro left in model/CalculusSM.v

∨Ir see PRIMITIVE RULE or intro right in model/CalculusSM.v

∧E see PRIMITIVE RULE and elim in model/CalculusSM.v

∧I see PRIMITIVE RULE and intro in model/CalculusSM.v

∃E (for KTi) see PRIMITIVE RULE exists id elim in model/CalculusSM.v

∃E (for KTd) see PRIMITIVE RULE exists data elim in model/CalculusSM.v

∃E (for KTt) see PRIMITIVE RULE exists trust elim in model/CalculusSM.v

∃E (for KTn) see PRIMITIVE RULE exists node elim in model/CalculusSM.v

∃I (for KTi) see PRIMITIVE RULE id count intro in model/CalculusSM.v

∃I (for KTd) see PRIMITIVE RULE exists data intro in model/CalculusSM.v

∃I (for KTt) see PRIMITIVE RULE exists trust intro in model/CalculusSM.v

∃I (for KTn) see PRIMITIVE RULE exists node intro in model/CalculusSM.v

∀E (for KTi) see PRIMITIVE RULE all id elim in model/CalculusSM.v

∀E (for KTd) see PRIMITIVE RULE all data elim in model/CalculusSM.v

∀E (for KTt) see PRIMITIVE RULE all trust elim in model/CalculusSM.v

∀E (for KTn) see PRIMITIVE RULE all node elim in model/CalculusSM.v

∀I (for KTi) see PRIMITIVE RULE all id intro in model/CalculusSM.v

52
This rule, as well as □I, are not primitive anymore because ⊏ is not a primitive operator of LoCK anymore. However, we

still present it as such for simplicity (see KE LOCAL BEFORE in model/CalculusSM.v).

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

54 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

∀I (for KTd) see PRIMITIVE RULE all data intro in model/CalculusSM.v

∀I (for KTt) see PRIMITIVE RULE all trust intro in model/CalculusSM.v

∀I (for KTn) see PRIMITIVE RULE all node intro in model/CalculusSM.v

⊂E see PRIMITIVE RULE unright before hyp in model/CalculusSM.v

□E for ⊂ see PRIMITIVE RULE unright before hyp if causal in model/CalculusSM.v

□I for ⊂ see PRIMITIVE RULE unright before if causal in model/CalculusSM.v

STR⊑ see PRIMITIVE RULE split local before eq2 in model/CalculusSM.v

STR⪯ see PRIMITIVE RULE split happened before eq2 in model/CalculusSM.v

STRl⪯ see PRIMITIVE RULE at implies localle in model/CalculusSM.v

STRl≺ see PRIMITIVE RULE at implies local in model/CalculusSM.v

split⊏ see PRIMITIVE RULE split local before in model/CalculusSM.v

splitPred⊏ see PRIMITIVE RULE split local before2 in model/CalculusSM.v

≡sym see PRIMITIVE RULE causal eq sym in model/CalculusSM.v

≡pred= see PRIMITIVE RULE weaken direct pred to local pred in model/CalculusSM.v

@loc see PRIMITIVE RULE at change localle in model/CalculusSM.v

loc see PRIMITIVE RULE at implies same node in model/CalculusSM.v

change for i1 = i2 see PRIMITIVE RULE id eq change event in model/CalculusSM.v

change for d1 = d2 see PRIMITIVE RULE data eq change event in model/CalculusSM2.v

change for t1 = t2 see PRIMITIVE RULE trust eq change event in model/CalculusSM.v

change for a1 = a2 see PRIMITIVE RULE node eq change event in model/CalculusSM2.v

change for i1 < i2 see PRIMITIVE RULE id lt change event in model/CalculusSM.v

change for HI(t, i) see PRIMITIVE RULE has id change event in model/CalculusSM.v

change for O(d, a) see PRIMITIVE RULE has owner change event in model/CalculusSM.v

change for G(d, t) see PRIMITIVE RULE gen for change event in model/CalculusSM.v

valSub for (HI(t, i)) see PRIMITIVE RULE trust has id subst in model/CalculusSM.v

valSub for (O(d, a)) see PRIMITIVE RULE subst node in has owner in model/CalculusSM.v
Table 4. Pointers to our rules

K FURTHER RELATEDWORK
In addition to the logics, models, and tools mentioned in Sec. 9, there are many more systems, tools,

and techniques related to our work on hybrid systems. We mention some of those below.

K.1 Trustworthy Component-Based Programs
Orthogonal but complementary to our work is the one done on guaranteeing the trustworthiness

of component-based local programs: in our work we assume that trusted local components cannot

be compromised, and derive distributed properties from the properties of these components. Let us

mention here a few relevant projects.

CAmkES [4, 5, 6, 7, 8] is a component based platform to reason about embedded systems built

on top of seL4 [9]. It supports compositional programming and verification, and automatically

generates verified “glue” code to connect the different components of a system.

SCC/RSCC [10, 11] are secure compartimentalizing compilation techniques for unsafe languages

such as C. Applications are divided into components that communicate via procedure calls, and the

compiler ensures that compromised components cannot contaminate the other components.

K.2 Verification of Distributed Systems

Actor Services [12] allows verifying the distributed and functional properties of programs com-

municating via asynchronous message passing at the level of the source code (they use a simple

Java-like language). It supports modular reasoning and proving liveness. To the best of our knowl-

edge, it does not deal with faults.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM2.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM2.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v
https://github.com/vrahli/Asphalion/blob/master/model/CalculusSM.v

Asphalion 55

Chapar [13] is a framework for modular certification of causal consistency of replicated key-value

store implementations and their client programs. The framework is written in Coq, allowing to

extract OCaml code (which implies that there is no gap between the verified and the executed

code). Moreover, Chapar includes a model checker, which can be used to check results on the client

side. Using Chapar, the authors proved the causal-consistency of two key-value stores. As opposed

to Asphalion, Chapar relies on the distributed snapshot semantics of distributed systems, and is

specifically tailored to reason about causal consistency (as opposed to the strong linearizability

consistency property of BFT-SMR protocols).

Sally [14] is a model checker for infinite-state systems that can automatically discover k-inductive
strengthening of properties. It has been used to check properties of synchronous Byzantine fault-

tolerant protocols.

Aneris [15, 16] is a higher-order, concurrent separation logic that supports modular reasoning of

distributed systems through a novel technique called node-local reasoning. This technique allows

reasoning about each node of a system in isolation, and then combining those to prove properties of

the entire system. Using Aneris, the authors, among other things, proved correct an implementation

of two-phase commit.

K.3 Interfacing With Trusted Components
Orthogonal but related to our work, many models, systems, and tools have been developed to

provide safe and secure interfaces between trusted components and payload systems. Given the fact

that IBM’s CCA API is a standard API used by banks, many researchers have focused on studying

whether it is secure [17, 18, 19, 20, 21]. Many other generic model checking-based bug finding tools

have been develop to ensure that APIs are secure, such as [22, 23, 24].

Moreover, temporal rules are a standard technique to ensure that clients can only use APIs in a

safe manner [25, 26].

K.4 Trusted Component/Environment Verification
Several new trusted environments have been developed this past decade, such as [27, 28, 29]. As a

result, many papers [30, 31, 32, 33, 34, 35, 36, 34, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46], to mention only

a few, concentrated on proving different properties about these trusted components/environments

(e.g. confidentiality, integrity, linearizability, remote equivalence). Although, some of these papers

were about proving properties of the security protocols, e.g. [44, 45, 46], to the best of our knowledge

none of them is about proving properties of BFT-SMR protocol.

APPENDIX REFERENCES
[1] Chia-che Tsai, Donald E. Porter, and Mona Vij. “Graphene-SGX: A Practical Library OS for Unmodified

Applications on SGX”. In: USENIX ATC 2017. USENIX Association, 2017, pp. 645–658. url: https:

//www.usenix.org/conference/atc17/technical-sessions/presentation/tsai.

[2] Vincent Rahli, Ivana Vukotic, Marcus Völp, and Paulo Jorge Esteves Veríssimo. “Velisarios: Byzantine

Fault-Tolerant Protocols Powered by Coq”. In: ESOP 2018. Vol. 10801. LNCS. Springer, 2018, pp. 619–650.
url: https://doi.org/10.1007/978-3-319-89884-1_22.

[3] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning About Knowledge. Jan. 2003.
[4] Ihor Kuz, Yan Liu, IanGorton, andGernotHeiser. “CAmkES: A componentmodel for securemicrokernel-

based embedded systems”. In: Journal of Systems and Software 80.5 (2007), pp. 687–699. url: https:
//doi.org/10.1016/j.jss.2006.08.039.

[5] Matthew Fernandez, Gerwin Klein, Ihor Kuz, and Toby Murray. CAmkES Formalisation of a Component
Platform. Tech. rep. Australia: NICTA and UNSW, Nov. 2013.

, Vol. 1, No. 1, Article . Publication date: August 2019.

https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1016/j.jss.2006.08.039
https://doi.org/10.1016/j.jss.2006.08.039

56 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

[6] Matthew Fernandez, Peter Gammie, June Andronick, Gerwin Klein, and Ihor Kuz. CAmkES Glue Code
Semantics. Tech. rep. Australia: NICTA and UNSW, Nov. 2013.

[7] Matthew Fernandez. “Formal Verification of a Component Platform”. PhD thesis. Sydney, Australia:

UNSW Computer Science & Engineering, July 2016.

[8] Gerwin Klein, June Andronick, Matthew Frenandez, Ihor Kuz, Toby Murray, and Gernot Heiser.

“Formally Verified Software in the Real World”. Communicatons of the ACM. 2018. url: http://ssrg.

nicta.com/publications/csiro_full_text/Klein_AKMHF_toappear.pdf.

[9] Gerwin Klein et al. “seL4: Formal Verification of an OS Kernel”. In: SOSP 2009. ACM, 2009, pp. 207–220.

url: http://doi.acm.org/10.1145/1629575.1629596.

[10] Yannis Juglaret, Catalin Hritcu, Arthur Azevedo de Amorim, Boris Eng, and Benjamin C. Pierce.

“Beyond Good and Evil: Formalizing the Security Guarantees of Compartmentalizing Compilation”. In:

CSF 2016. IEEE Computer Society, 2016, pp. 45–60. url: https://doi.org/10.1109/CSF.2016.11.

[11] Carmine Abate, Arthur Azevedo de Amorim, Roberto Blanco, Ana Nora Evans, Guglielmo Fachini,

Catalin Hritcu, Théo Laurent, Benjamin C. Pierce, Marco Stronati, and Andrew Tolmach. “When Good

Components Go Bad: Formally Secure Compilation Despite Dynamic Compromise”. In: CCS 2018.
ACM, 2018, pp. 1351–1368. url: http://doi.acm.org/10.1145/3243734.3243745.

[12] Alexander J. Summers and Peter Müller. “Actor Services - Modular Verification of Message Passing

Programs”. In: ESOP 2016. Vol. 9632. LNCS. Springer, 2016, pp. 699–726. url: https://doi.org/10.1007/978-
3-662-49498-1_27.

[13] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. “Chapar: certified causally consistent distributed

key-value stores”. In: POPL 2016. ACM, 2016, pp. 357–370. url: http://doi.acm.org/10.1145/2837614.

2837622.

[14] Bruno Dutertre, Dejan Jovanovic, and Jorge A. Navas. “Verification of Fault-Tolerant Protocols with

Sally”. In: NFM 2018. Vol. 10811. LNCS. Springer, 2018, pp. 113–120. url: https://doi.org/10.1007/978-3-
319-77935-5%5C_8.

[15] Moren Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, and Lars Birkedal. “Aneris: A Logic for

Node-Local, Modular Reasoning ofDistributed Systems”. 2018. url: https://iris-project.org/pdfs/2019-

aneris-submission.pdf.

[16] Morten Krogh-Jespersen. “Towards Modular ReasoningforStateful and ConcurrentPrograms”. PhD

thesis. Aarhus University, 2018.

[17] Gavin Keighren. “Model Checking Security APIs”. PhD thesis. School of informatics, Univeristy of

Edinburg, 2006.

[18] Ronald Togl. “On Trusted Computing Interfaces”. PhD thesis. Faculty of Computer Science, Graz

University of Technology, 2013.

[19] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amerson Lin, Ronald L. Rivest,

and Ross J. Anderson. “Robbing the Bank with a Theorem Prover - (Abstract)”. In: SP 2007. Vol. 5964.
LNCS. Springer, 2007, p. 171. url: https://doi.org/10.1007/978-3-642-17773-6_21.

[20] Paul Youn, Ben Adida, Mike Bond, Jolyon Clulow, Jonathan Herzog, Amerson Lin, Ronald L. Rivest,

and Ross Anderson. Robbing the bank with a theorem prover. Tech. rep. UCAM-CL-TR-644. University

of Cambridge, Computer Laboratory, Aug. 2005. url: http://www.cl.cam.ac.uk/techreports/UCAM-

CL-TR-644.pdf.

[21] Judicaël Courant and Jean-François Monin. “Defending the bank with a proof assistant”. In:WITS 2006.
In WITS proceedings. Vienna, Mar. 2006.

[22] Vinod Ganapathy, Sanjit A. Seshia, Somesh Jha, Thomas W. Reps, and Randal E. Bryant. “Automatic

discovery of API-level exploits”. In: ICSE 2005. ACM, 2005, pp. 312–321. url: http://doi.acm.org/10.

1145/1062455.1062518.

[23] Hao Chen and David A. Wagner. “MOPS: an infrastructure for examining security properties of

software”. In: CCS 2002. ACM, 2002, pp. 235–244. url: http://doi.acm.org/10.1145/586110.586142.

[24] Athanasios (Thanassis) Avgerinos. “Exploiting Trade-offs in Symbolic Execution for Identifying

Security Bugs”. PhD thesis. Carnegie Mellon University, 2014.

[25] Rajeev Alur, Pavol Cerný, P. Madhusudan, andWonhong Nam. “Synthesis of interface specifications for

Java classes”. In: POPL 2005. ACM, 2005, pp. 98–109. url: http://doi.acm.org/10.1145/1040305.1040314.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://ssrg.nicta.com/publications/csiro_full_text/Klein_AKMHF_toappear.pdf
http://ssrg.nicta.com/publications/csiro_full_text/Klein_AKMHF_toappear.pdf
http://doi.acm.org/10.1145/1629575.1629596
https://doi.org/10.1109/CSF.2016.11
http://doi.acm.org/10.1145/3243734.3243745
https://doi.org/10.1007/978-3-662-49498-1_27
https://doi.org/10.1007/978-3-662-49498-1_27
http://doi.acm.org/10.1145/2837614.2837622
http://doi.acm.org/10.1145/2837614.2837622
https://doi.org/10.1007/978-3-319-77935-5%5C_8
https://doi.org/10.1007/978-3-319-77935-5%5C_8
https://iris-project.org/pdfs/2019-aneris-submission.pdf
https://iris-project.org/pdfs/2019-aneris-submission.pdf
https://doi.org/10.1007/978-3-642-17773-6_21
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf
http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-644.pdf
http://doi.acm.org/10.1145/1062455.1062518
http://doi.acm.org/10.1145/1062455.1062518
http://doi.acm.org/10.1145/586110.586142
http://doi.acm.org/10.1145/1040305.1040314

Asphalion 57

[26] Thomas Ball, Vladimir Levin, and Sriram K. Rajamani. “A decade of software model checking with

SLAM”. In: Commun. ACM 54.7 (2011), pp. 68–76. url: http://doi.acm.org/10.1145/1965724.1965743.

[27] TPM. url: https://trustedcomputinggroup.org/work-groups/trusted-platform-module/.

[28] SGX. 2019. url: https://software.intel.com/en-us/sgx.

[29] ARM TrustZone. 2019. url: https://www.arm.com/products/security-on-arm/trustzone.

[30] Chris Hawblitzel, Jon Howell, Jacob R. Lorch, Arjun Narayan, Bryan Parno, Danfeng Zhang, and

Brian Zill. “Ironclad Apps: End-to-End Security via Automated Full-System Verification”. In: OSDI ’14.
USENIX Association, 2014, pp. 165–181. url: https://www.usenix.org/conference/osdi14/technical-

sessions/presentation/hawblitzel.

[31] Rohit Sinha, Sriram K. Rajamani, Sanjit A. Seshia, and Kapil Vaswani. “Moat: Verifying Confidentiality

of Enclave Programs”. In: CCS 2015. ACM, 2015, pp. 1169–1184. url: http://doi.acm.org/10.1145/

2810103.2813608.

[32] Aaron Bembenek, Lily Tsai, and Ezra Zigmond. “Better Trust Zone : Verifying Security of Enclave-

Aware Calculi”. In: 2017.

[33] Andrew Ferraiuolo, AndrewBaumann, Chris Hawblitzel, and Bryan Parno. “Komodo: Using verification

to disentangle secure-enclave hardware from software”. In: SOSP 2017. ACM, 2017, pp. 287–305. url:

http://doi.acm.org/10.1145/3132747.3132782.

[34] Anupam Datta, Jason Franklin, Deepak Garg, and Dilsun Kirli Kaynar. “A Logic of Secure Systems

and its Application to Trusted Computing”. In: SP 2009. IEEE Computer Society, 2009, pp. 221–236.

url: https://doi.org/10.1109/SP.2009.16.

[35] Rebekah Leslie-Hurd, Dror Caspi, andMatthew Fernandez. “Verifying Linearizability of Intel® Software

Guard Extensions”. In: CAV 2015. Vol. 9207. LNCS. Springer, 2015, pp. 144–160. url: https://doi.org/10.
1007/978-3-319-21668-3_9.

[36] Andrew Ferraiuolo, Rui Xu, Danfeng Zhang, Andrew C. Myers, and G. Edward Suh. “Verification of a

Practical Hardware Security Architecture Through Static Information Flow Analysis”. In: ASPLOS
2017. ACM, 2017, pp. 555–568. url: http://doi.acm.org/10.1145/3037697.3037739.

[37] Limin Jia, Shayak Sen, Deepak Garg, and AnupamDatta. “A Logic of Programs with Interface-Confined

Code”. In: CSF 2015. IEEE Computer Society, 2015, pp. 512–525. url: https://doi.org/10.1109/CSF.2015.

38.

[38] Pramod Subramanyan, Rohit Sinha, Ilia A. Lebedev, Srinivas Devadas, and Sanjit A. Seshia. “A Formal

Foundation for Secure Remote Execution of Enclaves”. In: CCS 2017. ACM, 2017, pp. 2435–2450. url:

http://doi.acm.org/10.1145/3133956.3134098.

[39] Jianxiong Shao, Yu Qin, and Dengguo Feng. “Formal analysis of HMAC authorisation in the TPM2.0

specification”. In: IET Information Security 12.2 (2018), pp. 133–140. url: https://doi.org/10.1049/iet-

ifs.2016.0005.

[40] Jianxiong Shao, Yu Qin, Dengguo Feng, andWeijinWang. “Formal Analysis of Enhanced Authorization

in the TPM 2.0”. In: ASIA CCS’15. ACM, 2015, pp. 273–284. url: http://doi.acm.org/10.1145/2714576.

2714610.

[41] Guangdong Bai, Jianan Hao, Jianliang Wu, Yang Liu, Zhenkai Liang, and Andrew P. Martin. “Trust-

Found: Towards a Formal Foundation for Model Checking Trusted Computing Platforms”. In: FM 2014.
Vol. 8442. LNCS. Springer, 2014, pp. 110–126. url: https://doi.org/10.1007/978-3-319-06410-9%5C_8.

[42] Stéphanie Delaune, Steve Kremer, Mark Dermot Ryan, and Graham Steel. “A Formal Analysis of

Authentication in the TPM”. In: FAST 2010. Vol. 6561. LNCS. Springer, 2010, pp. 111–125. url: https:
//doi.org/10.1007/978-3-642-19751-2%5C_8.

[43] Bai Guangdong. “Formally Analyzing and Verifying Secure System Design and Implementation”.

PhD thesis. National Univeristy of Singapore, 2015.

[44] Stéphanie Delaune, Steve Kremer, Mark Dermot Ryan, and Graham Steel. “Formal Analysis of Protocols

Based on TPM State Registers”. In: CSF 2010. IEEE Computer Society, 2011, pp. 66–80. url: https:

//doi.org/10.1109/CSF.2011.12.

[45] Sergiu Bursuc, Christian Johansen, and Shiwei Xu. “Automated Verification of Dynamic Root of Trust

Protocols”. In: POST 2017. Vol. 10204. LNCS. Springer, 2017, pp. 95–116. url: https://doi.org/10.1007/978-
3-662-54455-6%5C_5.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://doi.acm.org/10.1145/1965724.1965743
https://trustedcomputinggroup.org/work-groups/trusted-platform-module/
https://software.intel.com/en-us/sgx
https://www.arm.com/products/security-on-arm/trustzone
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/hawblitzel
http://doi.acm.org/10.1145/2810103.2813608
http://doi.acm.org/10.1145/2810103.2813608
http://doi.acm.org/10.1145/3132747.3132782
https://doi.org/10.1109/SP.2009.16
https://doi.org/10.1007/978-3-319-21668-3_9
https://doi.org/10.1007/978-3-319-21668-3_9
http://doi.acm.org/10.1145/3037697.3037739
https://doi.org/10.1109/CSF.2015.38
https://doi.org/10.1109/CSF.2015.38
http://doi.acm.org/10.1145/3133956.3134098
https://doi.org/10.1049/iet-ifs.2016.0005
https://doi.org/10.1049/iet-ifs.2016.0005
http://doi.acm.org/10.1145/2714576.2714610
http://doi.acm.org/10.1145/2714576.2714610
https://doi.org/10.1007/978-3-319-06410-9%5C_8
https://doi.org/10.1007/978-3-642-19751-2%5C_8
https://doi.org/10.1007/978-3-642-19751-2%5C_8
https://doi.org/10.1109/CSF.2011.12
https://doi.org/10.1109/CSF.2011.12
https://doi.org/10.1007/978-3-662-54455-6%5C_5
https://doi.org/10.1007/978-3-662-54455-6%5C_5

58 Ivana Vukotic, Vincent Rahli, and Paulo Esteves-Veríssimo

[46] Shiwei Xu, Sergiu Bursuc, and Julian P. Murphy. “New abstractions in applied pi-calculus and auto-

mated verification of protected executions”. In: IACR Cryptology ePrint Archive 2013 (2013), p. 686.
url: http://eprint.iacr.org/2013/686.

, Vol. 1, No. 1, Article . Publication date: August 2019.

http://eprint.iacr.org/2013/686

	Abstract
	1 Introduction
	2 Overview
	2.1 High-Level Architecture of Asphalion
	2.2 High-Level Reasoning
	2.3 Rationale for Designing Asphalion
	2.4 Benefits and Limitations
	2.5 Notation

	3 Running example
	4 HyLoE: A Hybrid Logic of Events
	4.1 Basic HyLoE Concepts
	4.2 Accounting for Trusted Components in HyLoE Through Hybrid Events
	4.3 Hybrid Event Orderings

	5 MoC: Component-Based Programming
	5.1 Components as State Machines, Local and Distributed Systems
	5.2 Relating MoC Systems and HyLoE Events
	5.3 Example: a Compositional Proof of a Simple Micro Property
	5.4 Lifting Through ``Deep'' Restrictions

	6 LoCK: A Hybrid Knowledge Calculus
	6.1 LoCK's Parameters
	6.2 LoCK's Syntax
	6.3 LoCK's Semantics
	6.4 LoCK's Rules
	6.5 Examples of Derivations Within LoCK
	6.6 Typical System Assumptions and Consequences
	6.7 Distributed Lifting
	6.8 Example: Micro's Agreement

	7 Case Studies: USIG- and TrInc-based MinBFT
	7.1 MinBFT Recap
	7.2 Implementation and Verification of MinBFT
	7.3 Differences from the Original Proof

	8 Evaluation
	9 Related Work
	9.1 Logics and Models
	9.2 Tools

	10 Conclusions and Future Work
	Acknowledgments
	A Simple Example of a MoC Local System
	B A Deep-Embedding to Spawn Sub-Components
	C Additional LoCK Rules
	D Trusted Knowledge Dissemination
	E Opening the bold0mu mumu LIDLIDLIDLIDLIDLID
	E.1 Primitive Principles Behind bold0mu mumu LIDLIDLIDLIDLIDLID
	E.2 A Proof of the LID Derived Rule

	F LoCK Tutorial
	G OCaml Runtime Environments
	H Velisarios vs. Asphalion
	I Walk trough the code
	J Notation
	K Further Related Work
	K.1 Trustworthy Component-Based Programs
	K.2 Verification of Distributed Systems
	K.3 Interfacing With Trusted Components
	K.4 Trusted Component/Environment Verification

