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http://www.nuprl.org

Nuprl Environment

Distributed )]
Runs in the cloud J)
Structure editor Ji

Tactic language: Classic ML

e S

Shared library

Database based )]
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Nuprl & Friends

Getting access to Nuprl:
http://www.nuprl.org/html/NuprlSystem.html

Virtual Machines: http://www.nuprl.org/vms/

MetaPRL: http://metaprl.org (dead?)

JonPRL: http://www. jonprl.org/
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http://www.nuprl.org/html/NuprlSystem.html
http://www.nuprl.org/vms/
http://metaprl.org
http://www.jonprl.org/

Nuprl Stack

( Refiner J
( Inference rules J

( Allen's PER semantics J

[ Howe's computational equality J

[ An untyped applied lambda-calculus J
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Howe's Computational Equality

< is a simulation relation J

Greatest fixpoint of the following relation: t [R] u if whenever

t computes to a value ¢(b), then u also computes to a value
O(b') such that b R b'.

~ is a bisimulation relation (a~b=a<b A b= a) J

Purely by computation:

map (f ,map(g,/)) ~ map(fog,l)
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Howe's Computational Equality

Used for automated program optimization

< and ~ are congruences

Restricts the computation system
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Howe's Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can sometimes be
cumbersome

Howe's untyped equality saves us from having to prove
well-formedness

It turned out that many equalities could be stated using
Howe's untyped equality
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Constructive Domain Theory

Let L be fix(Ax.x).
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Constructive Domain Theory

Let L be fix(Ax.x).

Least element

Vil <t
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Constructive Domain Theory

Let L be fix(Ax.x).

Least element )
Vil <t
Least upper bound principle )

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N
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Constructive Domain Theory

Let L be fix(Ax.x).

Least element J
Vil <t
Least upper bound principle J

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N

Compactness ]

if G(£ix(f)) converges, then there exists a natural number n
such that G(f"(L)) converges
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Nuprl Types

Based on Martin-Lof's extensional type theory ]

Equality: a=be T
Dependent product: a:A — BJa]
Dependent sum: a:A x BJa]

Universe: U;
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Nuprl Types

Less “conventional types” J

Partial: A

Domain: Base
Disjoint union: A+B

Simulation: t; < t
Intersection: Na:A.BJa]

Bisimulation: t; ~ t
Union: Ua:A.BJa]

Image: Img(A,f)
Subset: {a: A| B[a]}

PER: per(R)
Quotient: T//E
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Nuprl Types

Image type (Nogin & Kopylov) ]

Subset: {a: A| B[a]} £ Img(a:A x B[a], )

Union: Ua:A.B[a] = Img(a:A x Bla], )
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Nuprl Types
PER type ]

Void = per(A_,_.1 < 0)

Top = per(A_,-.0 < 0)
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Nuprl Types
PER type ]

Void = per(A_,_.1 < 0)

Top = per(A_,-.0 < 0)

halts(t) = Ax < (let x :=t in Ax)

AT B = Nx:Base. N y:halts(x).isaxiom(x, A, B)

T//E =per(Ax,y.(xe T)N(y € T)M(E x y))
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Nuprl Refinements

Nuprl's proof engine is called a refiner (TB)

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Example of a rule

HtE a:A — Bla] |ext Ax.b]|
BY [lambdaFormation]
H,x: AF B[x] |ext b]
HEAeTU; |_ext AXJ
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Nuprl PER Semantics Implemented in Coq
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Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.
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Intuitionistic Type Theory

We’'ve proved these rules correct using our Coq model:

Bar induction )

2 On free choice sequences of closed terms without atoms

2 We can build indexed W types

Brouwer's Continuity Principle for numbers ]

NFB— NNf:BlEnN.Ng:B.f =y, g — F(f) =n F(g)
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Verification of Distributed Systems

N
L
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Verification of Distributed Systems

A logic of events (LoE) and a general process model
(GPM) implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., 2/3-Consensus & Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable

replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.
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Our Methodology

manual informal high-level specification ] ; ‘manual

EventML

logical
simplifier

correctness
properties

manual
proof
satisfiablity proof M

Y

specification

automated
proof

Runtime

SML
interpreter

Ocaml Lisp
interpreter translator
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Combinators

EventML
combinator

generate generate

Process
combinator

implements [l ogic of Events

combinator
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Combinators

LeaderState

proposal
recognizer

_—

Commander(p1l)

EventML for Paxos Synod:

sé-ent Leader = SpawnFirstScout
|| ((LeaderPropose || LeaderAdopted) >>= Commander)
|| (LeaderPreempted >>= Scout) ;;

main Leader @ Idrs || Acceptor @ accpts
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Inductive Logical Forms

We use causal induction + inductive logical forms (ILFs) +
state machine invariants

@ decides (r2,s)

y

decision on p sent to i ate

ILF instance

ILF instance <=>

J

e happens at a leader location

States + Inputs (decision is triggered by a p2b message)

A
N (s )
N

commander has received a p2b message
from a majority of acceptors

ILF instance

M

p comes from a proposal

\/ p comes from an acceptor

Inconstistent
states or inputs

(
>
.

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 25/27



Inductive Logical Forms
E.g., logical explanation of why decisions are made by Paxos:

V[Cmd:{T:Type| valueall-type(T)} ]. V[accpts,ldrs:bag(Id)]. V[ldrs_uid:Id —
Vles:E0’]. V[e:E]l. V[i:Id]. V[p:Proposall.
[(decision’send(Cmd) i p € pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps) (e) decision of p sent to i at e |
<> [loc(e) L€ ldrs e happens at a leader location |
(header(e) = *‘pax_mb p2b* )
21 (msgtype(e) = P2b)

V [reps:bag(Id)].

the decision is triggered by a p2b message l

N i LE reps the recipient of the decision message is a replica
A (l3e’:{e’:El e <loce }
[(3z:Pvalue proposal p is extracted from a pvalue z |

((((header(e’) = [propose]) either pvalue z is made from a proposal and current ballot

A (msgtype(e’) = Proposal)

Al (4 (proposal_slot (proposal_cmd LeaderStateFun(e’))))

A (=71 (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

A\ (z = (mk_pvalue (proposal slot LeaderStateFun(e’)) msgval(e’))))

V([ ((header(e’) = ‘‘pax_mb adopted‘‘) or either pvalue z received in an adopted message or in leader state h

A (msgtype(e’) = pax_mb_AState(Cmd))

A ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

(A z | € map(Asp.(mk_pvalue (astate_ballot msgval(e’)) sp);
update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

L (pmax(ldrs_uid) (astate_pvals msgval(e’)))))) b,

A [(no commander_output (accpts;reps) z@Loc this decision is the first output of the commander

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

letween e’ and e)

A [((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

A |((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

A (((pval_ballot z) = (p2b_ballot msgval(e))) the acceptor that sent the p2b message has accepted pvalue z

A [(#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts)) |

A (p = (pval_proposal z))))) the commander has received a p2b messages from a majority of acceptors
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Inductive Logical Forms

We found bugs using our ILFS

Could be used for blame tracking

Translate to English explanations?
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