Nuprl’s Inductive Logical Forms

Mark Bickford, Robert L. Constable, Rich Eaton, and
Vincent Rahli
http://www.nuprl.org

ST

securityandtrust.lu

October 7, 2015

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 1/27

http://www.nuprl.org

Nuprl Environment

Distributed)]
Runs in the cloud J)
Structure editor Ji

Tactic language: Classic ML

e S

Shared library

Database based)]

o & = = E DaAe
Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 2/27

Nuprl & Friends

Getting access to Nuprl:
http://www.nuprl.org/html/NuprlSystem.html

Virtual Machines: http://www.nuprl.org/vms/

MetaPRL: http://metaprl.org (dead?)

JonPRL: http://www. jonprl.org/

Vincent Rahli

=]
Nuprl’s Inductive Logical Forms

=

October 7, 2015

3/27

http://www.nuprl.org/html/NuprlSystem.html
http://www.nuprl.org/vms/
http://metaprl.org
http://www.jonprl.org/

Nuprl Stack

(Refiner J
(Inference rules J

(Allen's PER semantics J

[Howe's computational equality J

[An untyped applied lambda-calculus J

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 4/27

Howe's Computational Equality

< is a simulation relation J

Greatest fixpoint of the following relation: t [R] u if whenever

t computes to a value ¢(b), then u also computes to a value
O(b') such that b R b'.

~ is a bisimulation relation (a~b=a<b A b= a) J

Purely by computation:

map (f ,map(g,/)) ~ map(fog,l)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 5/27

Howe's Computational Equality

Used for automated program optimization

< and ~ are congruences

Restricts the computation system

Vincent Rahli

Nuprl’s Inductive Logical Forms

A
October 7, 2015

6/27

Howe's Computational Equality

Type checking and type inference are undecidable

Proving that terms are well-formed can sometimes be
cumbersome

Howe's untyped equality saves us from having to prove
well-formedness

It turned out that many equalities could be stated using
Howe's untyped equality

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015

7/21

Constructive Domain Theory

Let L be fix(Ax.x).

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 8/27

Constructive Domain Theory

Let L be fix(Ax.x).

Least element

Vil <t

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015

9/27

Constructive Domain Theory

Let L be fix(Ax.x).

Least element)
Vil <t
Least upper bound principle)

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 10/27

Constructive Domain Theory

Let L be fix(Ax.x).

Least element J
Vil <t
Least upper bound principle J

G(£ix(f)) is the lub of the < chain G(f"(L)) for n € N

Compactness]

if G(£ix(f)) converges, then there exists a natural number n
such that G(f"(L)) converges

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 11/27

Nuprl Types

Based on Martin-Lof's extensional type theory]

Equality: a=be T
Dependent product: a:A — BJa]
Dependent sum: a:A x BJa]

Universe: U;

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 12/27

Nuprl Types

Less “conventional types” J

Partial: A

Domain: Base
Disjoint union: A+B

Simulation: t; < t
Intersection: Na:A.BJa]

Bisimulation: t; ~ t
Union: Ua:A.BJa]

Image: Img(A,f)
Subset: {a: A| B[a]}

PER: per(R)
Quotient: T//E

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 13/27

Nuprl Types

Image type (Nogin & Kopylov)]

Subset: {a: A| B[a]} £ Img(a:A x B[a],)

Union: Ua:A.B[a] = Img(a:A x Bla],)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 14/27

Nuprl Types
PER type]

Void = per(A_,_.1 < 0)

Top = per(A_,-.0 < 0)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 15/27

Nuprl Types
PER type]

Void = per(A_,_.1 < 0)

Top = per(A_,-.0 < 0)

halts(t) = Ax < (let x :=t in Ax)

AT B = Nx:Base. N y:halts(x).isaxiom(x, A, B)

T//E =per(Ax,y.(xe T)N(y € T)M(E x y))

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 16/27

Nuprl Refinements

Nuprl's proof engine is called a refiner (TB)

A generic goal directed reasoner:

proof

2 a rule interpreter

proof

2 a proof manager tree

Example of a rule

HtE a:A — Bla] |ext Ax.b]|
BY [lambdaFormation]
H,x: AF B[x] |ext b]
HEAeTU; |_ext AXJ

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015

17/27

Nuprl PER Semantics Implemented in Coq

P

Lambda-PRL—CTT84;
C 2

(191

Constuctive Mathematics
as a Programming Logic I:
Some Principles of Type Theory
Quotient and Set Types

Constable

Howe

85) (1989)
Equality in Lazy

Computation System

Computational Equivalence "fom Comy

Constable
Knoblock

unication System:

Kreitz et al
(1999)
Elanabelat el o e S

ponents
BLE

Bickford

(2008)

Unguessable Atom:
A Logical Foundation for Securlty

Anand
Rahli
(2014)

Towards a Formally Verified
Proof Assistant

Constable etal. |
(1986)
Implementing Mathematics
with the Nuprl Proof
tem

Jackson
(1995)
Enhancing the Nuprl Proof
Development System and Azplying It to

Nuprl Book—-CTT86

Abstract Algebra
Rewriting package

Kopylov
04)

Type Theoretical Foundations for

Data Structures, Classes, and Objects

Intersection and Union Types

(Rahli, Bickford, Anand

(2013)
Formal Program Optimization in Nuprl
using Computational Equivalence
and Partial Types

\ Semantics (VPrl))
-

L

{ J R
! | } L easoning
‘ >
Constable (Constable \ (D \ ’ Hickey) (Conseabie)
(1971) ndler (1996) (2001) !
Constructive Mathematics (1985) Semantic Foundations for The MetaPRL Logical o)
ematc Recursive Definitions Embedding HOL in Nuprl Programming Environment. Intuitionistic Completeness
Program Writers) n Type Theory Set Theoretical Semantics MetapRL of First-Order Logic
Recursive and Subtype Types e e
o Schiper et al
(T comstabie) crary (Allen et al | o
Allen 2008) Developing Correctly Replicated
) (1987) (1998) Innovation in Computation Type Theroy | [- P212%3ses Lsing Formal Tools
" " T i Using Nuprl
A Non-Type Theoretic Semantics | | TYPeTheoretic Methodology no b
for Type-Theoretic Language L J
Programming Languages
(R EEnEies Partial Types and Objects

Stuart Allen had his own meta-theory that was meant to be
meaningful on its own and needs not be framed into type
theory. We chose to use Coq and Agda.

Vincent Rahli

Nuprl’s Inductive Logical Forms

October 7, 2015

18/27

Intuitionistic Type Theory

We’'ve proved these rules correct using our Coq model:

Bar induction)

2 On free choice sequences of closed terms without atoms

2 We can build indexed W types

Brouwer's Continuity Principle for numbers]

NFB— NNf:BlEnN.Ng:B.f =y, g — F(f) =n F(g)

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 19/27

Verification of Distributed Systems

N
L

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 20/27

Verification of Distributed Systems

A logic of events (LoE) and a general process model
(GPM) implemented in Nuprl.

Specified, verified, and generated consensus protocols
(e.g., 2/3-Consensus & Paxos) using EventML.

Aneris: a total ordered broadcast service.

ShadowDB: a replicated database with 2 parametrizable

replication protocols (PBR & SMR) built on top of Aneris.

Improved performance without introducing bugs.
We get decent performance.

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015

21/27

Our Methodology

manual informal high-level specification] ; ‘manual

EventML

logical
simplifier

correctness
properties

manual
proof
satisfiablity proof M

Y

specification

automated
proof

Runtime

SML
interpreter

Ocaml Lisp
interpreter translator

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 22/27

Combinators

EventML
combinator

generate generate

Process
combinator

implements [l ogic of Events

combinator

Vincent Rahli

Nuprl’s Inductive Logical Forms October 7, 2015 23/27

Combinators

LeaderState

proposal
recognizer

_—

Commander(p1l)

EventML for Paxos Synod:

sé-ent Leader = SpawnFirstScout
|| ((LeaderPropose || LeaderAdopted) >>= Commander)
|| (LeaderPreempted >>= Scout) ;;

main Leader @ Idrs || Acceptor @ accpts

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015

24/27

Inductive Logical Forms

We use causal induction + inductive logical forms (ILFs) +
state machine invariants

@ decides (r2,s)

y

decision on p sent to i ate

ILF instance

ILF instance <=>

J

e happens at a leader location

States + Inputs (decision is triggered by a p2b message)

A
N (s)
N

commander has received a p2b message
from a majority of acceptors

ILF instance

M

p comes from a proposal

\/ p comes from an acceptor

Inconstistent
states or inputs

(
>
.

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 25/27

Inductive Logical Forms
E.g., logical explanation of why decisions are made by Paxos:

V[Cmd:{T:Type| valueall-type(T)}]. V[accpts,ldrs:bag(Id)]. V[ldrs_uid:Id —
Vles:E0’]. V[e:E]l. V[i:Id]. V[p:Proposall.
[(decision’send(Cmd) i p € pax_mb_main(Cmd;accpts;ldrs;ldrs_uid;reps) (e) decision of p sent to i at e |
<> [loc(e) L€ ldrs e happens at a leader location |
(header(e) = *‘pax_mb p2b*)
21 (msgtype(e) = P2b)

V [reps:bag(Id)].

the decision is triggered by a p2b message l

N i LE reps the recipient of the decision message is a replica
A (l3e’:{e’:El e <loce }
[(3z:Pvalue proposal p is extracted from a pvalue z |

((((header(e’) = [propose]) either pvalue z is made from a proposal and current ballot

A (msgtype(e’) = Proposal)

Al (4 (proposal_slot (proposal_cmd LeaderStateFun(e’))))

A (=71 (in_domain (proposal_slot msgval(e’)) (proposal_cmd (proposal_cmd LeaderStateFun(e’))))))

A\ (z = (mk_pvalue (proposal slot LeaderStateFun(e’)) msgval(e’))))

V([((header(e’) = ‘‘pax_mb adopted‘‘) or either pvalue z received in an adopted message or in leader state h

A (msgtype(e’) = pax_mb_AState(Cmd))

A ((astate_ballot msgval(e’)) = (proposal_slot LeaderStateFun(e’)))

(A z | € map(Asp.(mk_pvalue (astate_ballot msgval(e’)) sp);
update_proposals (proposal_cmd (proposal_cmd LeaderStateFun(e’)))

L (pmax(ldrs_uid) (astate_pvals msgval(e’)))))) b,

A [(no commander_output (accpts;reps) z@Loc this decision is the first output of the commander

o (Loc,p2b’base(), CommanderState(accpts) (pval_ballot z) (proposal_slot (pval_proposal z)))

letween e’ and e)

A [((pval_ballot z) = (bl_ballot (p2b_bl msgval(e))))

A |((proposal_slot (pval_proposal z)) = (p2b_slot msgval(e)))

A (((pval_ballot z) = (p2b_ballot msgval(e))) the acceptor that sent the p2b message has accepted pvalue z

A [(#(CommanderStateFun(pval_ballot z;proposal_slot (pval_proposal z);es.e’;e)) < threshold(accpts)) |

A (p = (pval_proposal z))))) the commander has received a p2b messages from a majority of acceptors

Vincent Rahli Nuprl’s Inductive Logical Forms October 7, 2015 26/27

Inductive Logical Forms

We found bugs using our ILFS

Could be used for blame tracking

Translate to English explanations?

Vincent Rahli

Nuprl’s Inductive Logical Forms

October 7, 2015

o>

27/27

