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ABSTRACT
Packet scheduling over a switch (interconnect) fabric is a well-
studied problem in distributed computing, with known near-optimal
distributed bipartite matching based protocols.

We initiate a theoretical study of distributed flow scheduling in
datacenter networks. Building upon the observation that modern
datacenter networks use Clos-like topologies similar to switch fab-
rics, we introduce a new k-sparse flow-matching (𝑘-SFM) problem, a
variant of the classical matching problem that captures the unique
constraints imposed by flow scheduling in datacenter networks. In
the 𝑘-SFM problem, we are given a weighted graph and an integer
𝑘 . The goal is to assign a fractional flow value to each edge under
the following three constraints: (1) for each edge, the assigned flow
value is no greater than its input weight; (2) for each vertex, the
sum of flow values assigned to edges incident to the vertex is at
most the capacity of the vertex; and (3) for each vertex, at most 𝑘
incident edges are assigned a non-zero flow value. The goal is to
compute a feasible solution with the largest total fractional weight.

We design centralized and distributed algorithms for the 𝑘-SFM
problem on bipartite graphs. For the centralized setting, we present
a greedy 1/2-approximation algorithm. For the distributed set-
ting, we present three algorithms under the CONGEST model: a
randomized 1/4-approximation algorithm that runs in 𝑂 (𝑘 log𝑛)
rounds, a randomized Ω(1)-approximation algorithm that runs in
𝑂 (log𝑘 log𝑛) rounds, and a deterministic 1/(4 + Y)-approximation
algorithm that runs in 𝑂 (𝑘 log2 𝑛 log(1/Y)) rounds. The key idea
in all of our algorithms is that existing approaches for computing
maximum-weight matching can be used as a “coordination” mech-
anism, alongside local and greedy decisions on updating residual
weights, to design near-optimal algorithms for the 𝑘-SFM problem.
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1 INTRODUCTION
Scheduling packets over a switch interconnect fabric is a classical
problem in computer networking [2, 38]: each input port has fixed-
sized packets for one or more output ports, and, in each time unit,
the fabric can transfer at most one packet from each input port and
at most one packet to each output port. A scheduling algorithm
decides the input and output ports that will exchange data in each
time unit. The goal is to maximize throughput, defined as the total
number of packets transferred across the switch fabric per unit time.
The problem of scheduling packets over a switch fabric is often
modeled as a bipartite matching problem [2, 36, 38]—the input and
output ports constitute vertex sets 𝐿 and 𝑅, and each packet at an
input port ℓ ∈ 𝐿 destined to an output port 𝑟 ∈ 𝑅 is represented as
an edge 𝑒 = (ℓ, 𝑟 ) in the graph. Then, in each time step, a schedule
that maximizes throughput over the switch fabric is equivalent to
finding the largest-size matching in the bipartite graph [2, 38]. This
connection, among others, has motivated a large and active body
of research on both switch scheduling [2, 37–40, 48, 49, 52] and
distributed bipartite matching [4, 8, 12, 23, 26, 32, 36, 53].

A recent line of work in the computer networking community
has explored a new connection between the problem of scheduling
packets on switch fabrics, and the problem of scheduling flows (in-
formally defined as a sequence of packets between the same input
and output ports) on datacenter networks [1, 9, 22, 25, 41]. In par-
ticular, building upon the insight that modern datacenter networks
use Clos-like topologies that are similar to switch fabrics [20, 51],
these works adapt distributed bipartite matching algorithms from
the switch scheduling literature to schedule flows on datacenter
networks. However, the specific context of datacenter flow sched-
uling introduces a number of unique challenges (e.g., large number
of input/output ports, different flows having different sizes, etc.); to
handle these challenges, existing protocols use various heuristics—
e.g., trimming down the matching algorithm to use only one round
of matching, allowing each port to match with a small number of
other ports, etc. Using these heuristics, state-of-the-art protocols
for datacenter flow scheduling achieve good empirical performance
across a wide variety of real-world workloads. While interesting,
exploring the connection between packet scheduling on switch
fabrics and flow scheduling on datacenter networks from a theoret-
ical perspective has the potential to allow datacenter flow sched-
uling protocols to benefit from decades of foundational work on
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near-optimal algorithm design for switch scheduling and bipartite
matching.

1.1 Our contributions
We initiate a theoretical study of flow scheduling in datacenter
networks. We make three core contributions:

• We introduce a new problem—𝑘-sparse flow-matching (𝑘-SFM)—
that generalizes the classical matching problem, while capturing
the unique constraints imposed by flow scheduling in datacenter
networks. We provide more details in §2, but briefly, an instance
of 𝑘-SFM is a weighted bipartite graph with edge weights in
(0, 1], and an integer 𝑘 . A feasible solution to an instance of the
𝑘-SFM problem consists of a fractional “flow” value for each edge,
capacitated by the edge weight, such that every vertex is incident
to at most unit total fractional weight, and at most 𝑘 edges with
non-zero support. The objective is to compute a feasible solution
with the largest total fractional weight.
• The 𝑘-SFM problem generalizes two problems that have been
studied extensively in the distributing computing community—
fractional 𝑏-matchings [21, 27, 28, 53] and maximum-weight
flow [13, 24, 44]. Unsurprisingly, the 𝑘-SFM problem turns out to
be strongly NP-hard (§2.4). We thus focus on designing approxi-
mation algorithms. We present a centralized 1/2-approximation
algorithm for the 𝑘-SFM problem; while centralized, this algo-
rithm and its analysis are interesting because they demonstrate
that an iterative weight-refinement procedure, when combined
with the folklore heuristic for maximum-weight matching (one
that greedily adds edges in decreasing order of weights to the
matching as long as vertex capacities are not violated), can pro-
duce a near-optimal centralized solution for the 𝑘-SFM problem.
• Our core result is the design of three distributed algorithms for
the 𝑘-SFM problem under the CONGEST model:
– a randomized 1/4-approximation algorithm that runs in
𝑂 (𝑘 log𝑛) rounds;

– a deterministic 1/(4 + Y)-approximation algorithm that runs
in 𝑂 (𝑘 log2 𝑛 log(1/Y)) rounds;

– a randomized Ω(1)-approximation algorithm that runs in
𝑂 (log𝑘 log𝑛) rounds.

The first two algorithms build upon the weight-refinement idea
from the centralized algorithm, and add on a maximum-weight
matching algorithm as a black-box “coordination” mechanism
to help with the local, greedy, decisions made to achieve an
approximate solution. Here, number of rounds have a linear
dependence on 𝑘 ; this is because we use a maximum-weight
matching algorithm to optimize for the weight constraint in
every round, with an underlying greedy weight-refinement on
the edges that preserves the cardinality constraints. Our third
algorithms overcomes this linear dependence: we consider a dual
approach by using a maximum-cardinality matching algorithm
to optimize for the cardinality constraint in every round, guided
by a greedy vertex weight-refinement procedure that preserves
the weight constraint.

Approx
Number
of rounds

Run-time
complexity

Centralized 1
2 - 𝑂 (𝑚Δ log𝑚)

Distributed
1
4 𝑂 (𝑘 log𝑛) -

1/(4 + Y) 𝑂 (𝑘 log2 Δ log(1/Y)) -

Ω(1) 𝑂 (log𝑘 log𝑛) -
Table 1: Summary of our results for 𝑘-SFM on a graph with𝑚 edges,
𝑛 nodes, and max-degree Δ.

Table 1 summarizes our results. Overall, the centralized algorithm
and the offshoots for the distributed settings (which involve a care-
ful balancing act between the two types of constraints, and lead to
efficient algorithms) help us investigate the rich structure and the
subtle complexities of the 𝑘-SFM problem. Our work is only the
first step in bridging the gap between the scheduling mechanisms
in switch fabrics and in datacenter networks; we outline a number
of intriguing open problems in §6.

2 THE 𝑘-SPARSE FLOW-MATCHING PROBLEM
We begin this section by providing more context on flow scheduling
in datacenter networks (§2.1). We then formally define the 𝑘-SFM
problem in §2.2. We are not aware of prior work on the 𝑘-SFM
problem, but describe the most closely related work in §2.3. Finally,
we prove that the 𝑘-SFM problem is strongly NP-hard (§2.4).

2.1 Context for the 𝑘-SFM problem
The 𝑘-sparse flow-matching (𝑘-SFM) generalizes the matching prob-
lem from the switch scheduling literature (e.g., PIM [2] and iS-
LIP [38]) to capture the constraints imposed by flow scheduling
on datacenter networks. Informally, similar to prior work from the
computer networking community [1, 22, 41, 43], we exploit the fact
that datacenter fabrics can be modeled similar to switch fabrics: a
bipartite graph with end hosts as vertices, and an edge between a
sender and a receiver vertex if they have data to exchange. Similar
to classical distributed switch scheduling algorithms [2, 38], vertices
exchange multiple rounds of “control plane” messages to compute
a matching, upon which the matched vertices can exchange data.

The 𝑘-SFM captures three additional constraints. The first con-
straint relates to the large input-to-output port latency difference
between switch fabrics (of the order of picoseconds) and datacenter
networks (of the order of microseconds). Small latency in switch fab-
rics allows scheduling at per-packet granularity—multiple rounds
of the matching algorithm require picoseconds, which is much
smaller than the time taken to transmit a single packet (equal to
the ratio of packet size to port bandwidth, usually of the order of
hundreds of nanoseconds) after a matching has been computed.
Tens of microseconds of latency in datacenter networks means that
the overhead of multiple rounds of messaging before transmitting a
single packet will be significantly higher. We will capture this in our
first constraint: to achieve high throughput, it is beneficial for ports
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to exchange multiple packets (say, 𝑝 packets) after matching∗. The
second constraint relates to vastly different sizes across different
flows†. In particular, not all input port may have 𝑝 outstanding
packets to send to an output port; thus, in addition to allowing
multiple rounds of matching, the 𝑘-SFM problem also allows each
port to match with multiple ports. However, the observed flow
performance can degrade significantly if a port is simultaneously
sending/receiving data from more than a certain small number of
ports [10, 41, 50]. We will capture this in the second constraint: we
want to allow each input port to match with a small number of
output ports (e.g., 4 ports, as in some of the existing protocols [41]).
Finally, the third constraint captures the fact that each output port
can receive a fixed total number of packets (in aggregate, from all
input ports that it matches with) per unit time due to bandwidth
constraints at the sender and/or receiver host.

Thus, as we describe formally below, an instance of 𝑘-SFM is
a weighted bipartite graph with edge weights in (0, 1], and an
integer 𝑘 ; the edge weight represents the total number of packets
to be sent between corresponding ports, normalized by 𝑝; if an
input port has more than 𝑝 packets to send to an output port, we
divide the data into flowlets of size 𝑝 . A feasible solution to an
instance of the 𝑘-SFM problem consists of a fractional “flow” value
for each edge, capacitated by the edgeweight, such that every vertex
is incident to at most unit total fractional weight, and at most 𝑘
edges with non-zero support. This corresponds to the restrictions
discussed above—the cardinality constraint at every vertex ensures
that ports send/receive to/from only a small number of other ports,
and the capacity constraint at the vertices ensures that the number
of packets a port sends/receives upon each matching is fixed. The
objective now is to compute a feasible solution with the largest
total fractional weight.

2.2 Formally defining the 𝑘-SFM problem
We consider the input bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) where each
edge 𝑒 ∈ 𝐸 has a positive capacity 𝑤𝑒 ∈ (0, 1] associated with it,
along with an integer 𝑘 that bounds the degree of the support of
feasible solutions. We let 𝑛 denote the number of vertices in the
vertex set 𝑉 = 𝐿 ∪ 𝑅,𝑚 denote the number of edges |𝐸 |, and 𝛿 (𝑣)
denote the set of edges that are incident to the node 𝑣 . Furthermore,
we use Δ = max𝑣∈𝑉 |𝛿 (𝑣) | to denote the maximum degree of a node
in the graph 𝐺 . In the rest of the paper, we use the terms node and
vertex interchangeably.

The goal is to select a fractional matching in the graph such
that every node is incident to at most 𝑘 edges in the support
of this fractional matching. In other words, a feasible solution
to the problem is a flow value 0 ≤ 𝑓𝑒 ≤ 𝑤𝑒 assigned to each
edge 𝑒 ∈ 𝐸 such that at each node 𝑣 we satisfy the capacity
constraint

∑
𝑒∈𝛿 (𝑣) 𝑓𝑒 ≤ 1, ∀𝑣 ∈ 𝑉 , and the cardinality con-

straint, which restricts the number of edges with positive support,
|{𝑒 ∈ 𝛿 (𝑣) : 𝑓𝑒 > 0}| ≤ 𝑘, ∀𝑣 ∈ 𝑉 , and the objective is to find a
feasible matching which maximizes

∑
𝑒 𝑓𝑒 . We shall refer to this as

∗𝑝 can be computed such that, upon each matching, the overhead of multiple
rounds of the matching algorithm is a small fraction of the time taken to transmit
these packets.

†Traffic analysis studies from real-world production datacenters show that the
amount of data that hosts exchange can vary over multiple orders of magnitude [6, 47].

the 𝑘-sparse flow matching problem (𝑘-SFM). We note that the con-
straint set is an intersection of a fractional 𝑏-matching constraint
and a maximum weight flow constraint and thus generalizes both
of these problems.

We let 𝑂𝑃𝑇𝑘 denote the value of the optimal solution to this
instance, and let {𝑓𝑂𝑃𝑇𝑘

𝑒 }𝑒∈𝐸 denote the optimal solution. Note
that for a given graph and edge-capcities, the optimum value, as a
function of 𝑘 is non-decreasing in 𝑘 . For brevity, we will drop the
subscript 𝑘 when it is clear from the context.

For a feasible solution {𝑓𝑒 }𝑒∈𝐸 , we will denote the total fractional
weight at a node 𝑣 as 𝑏𝑣 =

∑
𝑒∈𝛿 (𝑣) 𝑓𝑒 . Likewise, we define 𝑏𝑂𝑃𝑇

𝑣

for the total fractional node weights in the optimum solution.
For the distributed results in §4 and §5, we assume the standard

CONGEST model, where nodes in the graph are processors that at
each time step can transfer messages of size𝑂 (log𝑛) to neighboring
vertices, and can perform local computation. We also assume that
the nodes have unique identifiers of 𝑂 (log𝑛) bits.

2.3 Prior Work
Maximum (weighted) matching and its cardinality-bounded vari-
ants (e.g., 𝑏-matchings) are cornerstone problems in combinatorial
optimization. These problems have been studied extensively, start-
ing with the breakthrough work of Edmonds [17], who showed that
the maximum weighted matchings can be computed in polynomial
time for general graphs. Indeed, maximum-weight 𝑏-matchings,
being generalizations of both maximum cardinality matchings and
maximum-weight matchings, are considered to belong to a "well-
solved class of integer linear programs" [18] in the sense that they
can all be solved in (strongly) polynomial time. There are excellent
surveys on matching theory by Lovász and Plummer [45], and by
Pulleyblank [46].

Matching algorithms have a wide range of real-world applica-
tions, including matching children to schools [15, 31], donor organs
to patients [7, 14], reviewers to manuscripts [11, 34], in protein
structure alignments [29], computer vision [5], to name a few. De-
spite these problems admitting polynomial-time exact algorithms,
there has been a flurry of activity in developing approximation
algorithms since they are usually more scalable than their exact
counterparts for (massive) real-world graphs. The best sequential
approximation algorithm for weighted matchings is the (1 − Y)-
approximation algorithm based on the scaling approach designed
by Duan and Pettie [16] and runs in 𝑂 (𝑚Y log 1

Y ), where𝑚 is the
number of edges in the graph.

In contrast to the centralized setting, where maximum cardi-
nality and weighted 𝑏-matching problems belong to the class of
"well-solved" combinatorial problems, designing distributed algo-
rithms for matching problems is far more complex. For instance,
even the most natural 1

2 -approximate centralized greedy algorithm
which repeatedly adds the heaviest remaining edge to the current
matching has no straightforward counterpart in the distributed
setting. The classical result here is that of Israeli and Itai [26], who
provide an elegant randomized distributed algorithm for comput-
ing a 1

2 -approximate maximum (cardinality) matching in a graph
in 𝑂 (log𝑛) time. This result was the best known (from a worst-
case complexity point of view) until the improvement by Lotker
et al. [35] where they give a randomized (1 − Y)-approximation
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algorithm that runs in𝑂 (log𝑛/Y3) rounds. For the case of weighted
matchings, Lotker et al. [36] provide a randomized ( 14 − Y)- ap-
proximation using 𝑂 (log𝑛) time, and explain how to get ( 12 − Y)-
approximate maximum weighted matching using 𝑂 (log2 𝑛). This
was improved upon in [35], where the authors provide a random-
ized ( 12 − Y)-approximation algorithm that runs in 𝑂 (log 1

Y log𝑛)
rounds. There have since been improvements for special cases of
bounded degree graphs [19].

When considering distributed approximation algorithms, a nat-
ural tradeoff is between the approximation factor and the round
complexity of the algorithm. In this context, several lower bounds
are known. For instance, it is known that no single-round dis-
tributed graph matching algorithm can achieve approximation fac-
tor Ω(`1/3), where ` is the size of an optimal matching [3]; in fact, a
recent result [30] establishes that any (deterministic or randomized)
distributed algorithm that computes a constant approximation to
maximum matching on a bipartite graph with 𝑛 nodes must use
Ω(

√︁
log𝑛/log log𝑛) rounds.

When considering the problem of computing an approximate
maximum weighted 𝑏-matching, one of the first constant factor
approximation algorithms was from Panconesi et al. [42], who
provide a randomized 1

6+Y -approximation algorithm that requires
𝑂 ( log

3 𝑛
Y3

log2 𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
) rounds. Around the same time, independent

work by Koufogiannakis and Young [28] provides a randomized 1
2 -

approximation requiring O(log𝑛) rounds for the case of maximum
weighted b-matchings, which runs in expectation and with high
probability, and thus meeting the best known results for the case
of weighted matchings.

The results mentioned above all require randomization, and
while the landscape for deterministic distributed graph algorithms
is in general bleaker, it is worthwhile to consider the parallel im-
provements in deterministic algorithms for the matching problems
we discuss. One of the first results comes from Linial [33] who
provides a poly log𝑛-round deterministic algorithms for maximum
cardinality matchings. When considering weights, Panconesi and
Sozio [42] provide a primal-dual distributed 1

6+Y -approximation
algorithm for weighted matchings, which takes𝑂 ( log

4 𝑛
Y log 𝑤𝑚𝑎𝑥

𝑤𝑚𝑖𝑛
)

rounds, where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the maximum and minimum
weight of any edge in the graph, respectively. This was recently
improved by Fischer [21] using linear programming(LP) rounding
methods, with their deterministic distributed algorithm for com-
puting a 1

2+Y -approximation of a maximum weighted 𝑏-matching
in 𝑂 (log2 Δ log 1

Y ) rounds, where Δ is the maximum degree of a
vertex in the graph.

Finally, several recent protocols from the computer networking
community focus on flow scheduling in datacenter networks [1, 9,
22, 25, 41]. Most of these focus on heuristics and empirical improve-
ments [1, 22, 25, 41]; the closest to our work is dcPIM [9]. dcPIM
also explores connections between switch scheduling and datacen-
ter scheduling, but focuses on a complementary problem where
sparsity in datacenter traffic matrices (and thus, in the resulting
bipartite graph) can be exploited to improve the theoretical bounds
for classical switch scheduling protocols.

2.4 Strong NP-hardness
We prove that the 𝑘-SFM problem is strongly NP-hard through
a reduction from Numerical 3-dimensional matching (N3DM), a
strongly NP-hard decision problem. An instance of N3DM consists
of 3 sets of positive integers, 𝐴 = {𝑎1, . . . , 𝑎𝑛}, 𝐵 = {𝑏1, . . . , 𝑏𝑛},
and 𝐶 = {𝑐1, . . . , 𝑐𝑛}, such that

𝑛∑︁
𝑖=1

𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 = 𝑛𝐷.

The objective is to determine if there exist permutations 𝜎, 𝜋 :
[𝑛] ↦→ [𝑛] such that

𝑎𝜎 (𝑖) + 𝑏𝜋 (𝑖) + 𝑐𝑖 = 𝐷, ∀𝑖 ∈ [𝑛] .

Given such an instance of N3DM, we construct the following
instance of the 𝑘-sparse flow matching problem, consisting of the
bipartite graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸) and 𝑘 = 3.

The left partition 𝐿 consists of 3𝑛 nodes, 𝐿 = 𝐿1 ∪ 𝐿2 ∪ 𝐿3 with
𝐿𝑖 = {𝑢𝑖1, . . . , 𝑢

𝑖
𝑛}, 𝑖 ∈ {1, 2, 3}. The right partition consists of the

following 5𝑛 nodes,𝑅 = 𝐴′∪𝐵′∪𝐶 ′1∪𝐶
′
2∪𝐶

′
3, with𝐴

′ = {𝑎1, . . . , 𝑎𝑛},
𝐵′ = {𝑏1, . . . , 𝑏𝑛}, and 𝐶 ′𝑖 = {𝑐

𝑖
1, . . . , 𝑐

𝑖
𝑛}, 𝑖 ∈ {1, 2, 3}.

The edge set 𝐸 consists of 3𝑛 + 6𝑛2 edges, 𝐸 = 𝐸𝐴 ∪ 𝐸𝐵 ∪ 𝐸𝐶 ,
where 𝐸𝐴 = {(𝑢, 𝑎) |𝑎 ∈ 𝐴′, 𝑢 ∈ 𝐿}, 𝐸𝐵 = {(𝑢,𝑏) |𝑏 ∈ 𝐵′, 𝑢 ∈ 𝐿}, and
𝐸𝐶 = {(𝑢𝑖

𝑗
, 𝑐𝑖𝑗 ) |𝑖 ∈ {1, 2, 3}, 𝑗 ∈ [𝑛]}.

The edge weights are defined as follows - every edge of the form
(𝑢, 𝑎𝑖 ) has weight 2𝐷+𝑎𝑖

15𝐷 , every edge of the form (𝑢,𝑏𝑖 ) has weight
4𝐷+𝑏𝑖
15𝐷 , and every edge of the form (𝑢, 𝑐𝑖𝑗 ) has weight

8𝐷+𝑐 𝑗
15𝐷 .

Theorem 1. An instance {𝐴, 𝐵,𝐶} of N3DM has a solution if and
only if the constructed 𝑘-SFM instance has a solution of value 3𝑛.

Proof. If the N3DM instance has a solution, i.e. permutations
𝜎, 𝜋 s.t.

𝑛∑︁
𝑖=1

𝑎𝜎 (𝑖) + 𝑏𝜋 (𝑖) + 𝑐𝑖 = 𝐷, ∀𝑖 ∈ [𝑛],

then we can construct a solution to the 𝑘-SFM instance of value
3𝑛 where every vertex 𝑢𝑖

𝑗
on the left is incident to the three edges

(𝑢𝑖
𝑗
, 𝑎𝜎 ( 𝑗) ), (𝑢𝑖𝑗 , 𝑏𝜋 ( 𝑗) ), and (𝑢

𝑖
𝑗
, 𝑐𝑖𝑗 ). It is easy to note that the total

weight incident to every vertex on the left is exactly 1, and that
every vertex in 𝐴′ and 𝐵′ have degree 3 in the matching, but since
the weight of each indicent edge to 𝐴′ and 𝐵′ is less than 1

3 , this
leads to a feasible 𝑘-SFM solution of value 3𝑛.

Now suppose that the 𝑘-SFM instance has a solution of value 3𝑛.
Note that the maximum value of any feasible solution is bounded
by

OPT ≤ 3
𝑛∑︁
𝑖=1

2𝐷 + 𝑎𝑖
15𝐷 + 3

𝑛∑︁
𝑖=1

4𝐷 + 𝑏𝑖
15𝐷 + 3

𝑛∑︁
𝑖=1

8𝐷 + 𝑐𝑖
15𝐷

= 3
[
14𝑛𝐷
15𝐷 +

1
15𝐷

∑︁
𝑖

(𝑎𝑖 + 𝑏𝑖 + 𝑐𝑖 )
]

= 3𝑛

where the inequality uses the fact that every node in 𝐶 ′ has degree
one and every node in 𝐴′ ∪ 𝐵′ can have degree at most 3 (due to
the cardinality constraint).
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Thus if the 𝑘-SFM instance has a solution of value 3𝑛, then we
can see that every edge of the form (𝑢𝑖

𝑗
, 𝑐𝑖𝑗 ) is in the solution with

its full weight, and every node in 𝐴′ ∪ 𝐵′ has exactly 3 outgoing
edges, each of full weight. Since the nodes in 𝐶 ′ are each incident
to exactly one node in 𝐿, the remaining weight that every node in
𝐿 can have after matching the vertices in 𝐶 ′ is strictly smaller than
7𝐷
15𝐷 , and thus each can be matched to at most one edge with an
endpoint in 𝐵′. Similarly, after each vertex is matched with a vertex
in 𝐵′, the remaining weight (and cardinality constraint as well) at
every node in 𝐿 ensures that it can only be matched to at most one
node in 𝐴′. The corresponding matchings in 𝐿1, 𝐿2, and 𝐿3 each
leads to a feasible solution to the N3DM instance.

□

3 A CENTRALIZED APPROXIMATION
ALGORITHM

Since the 𝑘-SFM problem is strongly NP-hard, we explore approx-
imate solutions. In this section, we provide a centralized greedy
1
2 -approximation algorithm to the 𝑘-sparse flow-matching (𝑘-SFM)
problem. The algorithm and its analysis demonstrates the power
of an adaptive greedy approach that, at each step of the algorithm,
makes a myopic augmentation to the solution based on centrally co-
ordinated information. Of course, although this finds near-optimal
solutions, its design suggests a significant impediment to a dis-
tributed solution; in Section 4, we will show that matchings, which
in essence allow for a maximal set of “non-interfering” such aug-
mentations, provide a mechanism that these potential impediments
can be overcome with only a slight degradation in the quality of
the solution obtained.

The algorithm runs for𝑚 rounds, processing one edge in each
round; the basic idea of the algorithm is to maintain, for each edge
𝑒 ∈ 𝐸, a residual weight that reflects an updated upper bound on
the fraction that can be feasibly assigned to 𝑒 , and in each round,
we consider an edge of maximum residual weight, and add that
edge (fractionally) provided that it does not violate either endpoints’
cardinality or weight constraints. Note that the residual edge weight
of each edge is monotone nonincreasing: the residual weight of an
edge not considered in earlier rounds is modified to be the smaller
of its input weight and the maximum weight it can be assigned in
a feasible solution that augments the current solution.

More specifically, suppose we are in round 𝑟 , and the edge set
considered previously is 𝐹 (𝑟 ) , of cardinality 𝑟 − 1, and the cur-
rent fractional solution is {𝑓 (𝑟 )𝑒 }𝑒∈𝐹 (𝑟 ) . We define the current total
fractional weight at each node,

𝑏
(𝑟 )
𝑣 =

∑︁
𝑒∈(𝛿 (𝑣)∩𝐹 (𝑟 ) )

𝑓
(𝑟 )
𝑒 .

Starting with all residual edge weights equal to their actual weights,
𝑤
(0)
𝑒 = 𝑤𝑒 , we now consider the residual weight of an edge 𝑒 =

(𝑢, 𝑣) ∉ 𝐹 (𝑟 ) in round 𝑟 ,𝑤 (𝑟 )𝑒 = min{𝑤 (𝑟−1)𝑒 , 1 − 𝑏 (𝑟 )𝑢 , 1 − 𝑏 (𝑟 )𝑣 }.
We then choose the edge with the largest residual edge weight

in this round and continue.
We now prove that the greedy algorithm described produces a

feasible fractional matching of value at least half as large as that of
the optimal solution.

The idea behind the proof is to account for the weight of every
edge in an optimum solution with the weight of the edges in the
solution returned by the algorithm. To this end, consider the edges
𝑒 in the optimum solution, chosen with value 𝑓𝑂𝑃𝑇

𝑒 . Now if the
same edge is chosen in 𝐴𝐿𝐺 with a value at least this large, and
so 𝑓 𝐴𝐿𝐺𝑒 ≥ 𝑓𝑂𝑃𝑇

𝑒 , then we can account for these edges easily. We
now know that every remaining edge in 𝑂𝑃𝑇 has a strictly smaller
weight in 𝐴𝐿𝐺 than in 𝑂𝑃𝑇 . When considering this edge in some
iteration 𝑟 , the chosen weight can be smaller either due to a weight
constraint or a cardinality constraint becoming tight at one of the
endpoints (or both). We will now consider both cases separately.
For the former, let 𝐸1 be the set of edges we consider. We can map
each such edge 𝑒 ∈ 𝐸1 to a tight vertex 𝑣𝑒 in𝐴𝐿𝐺 . We can see that if
a weight constraint is tight then the corresponding vertex is already
incident to a large weight, i.e., 𝑏 (𝑟 )𝑣𝑒 ≥ 1− 𝑓 𝐴𝐿𝐺𝑒 . It is now easy to see
that the total weight of these edges in the optimum solution is at
most the total incident weight to the corresponding tight vertices,
i.e., ∑︁

𝑒∈𝐸1

𝑓𝑂𝑃𝑇
𝑒 ≤

∑︁
𝑣:∃𝑒∈𝐸1

𝑣=𝑣𝑒

𝑏𝑣

We can thus account for the edges in 𝐸1 by using at most 2 copies
of the edges incident to the tight vertices.

Finally, consider 𝐸2, the set of edges in𝑂𝑃𝑇 that were not added
to 𝐴𝐿𝐺 due to a cardinality constraint becoming tight at a vertex
𝑣𝑒 , 𝑒 ∈ 𝐸2. Since the cardinality constraint is tight, we know that
𝐴𝐿𝐺 has 𝑘 edges incident to that vertex, and we can pair up every
edge 𝑒 ∈ 𝐸2 with an edge 𝑝 (𝑒) ∈ 𝐴𝐿𝐺 such that 𝑒 ∩ 𝑝 (𝑒) = 𝑣𝑒 . The
easy case is if the paired edge has a weight in 𝐴𝐿𝐺 larger than the
weight to be covered (𝑓𝑂𝑃𝑇

𝑒 ). For the harder case, the paired edge
in 𝐴𝐿𝐺 has a smaller weight than 𝑒 - since we choose edges in non-
increasing order of residual weights, it is clear that at the iteration
that 𝑝 (𝑒) was considered, say iteration 𝑟 , the residual weight of 𝑒
was smaller than or equal to the residual weight of 𝑝 (𝑒). This can
only be because one of the vertices of 𝑒 had more than 1 − 𝑤 (𝑟 )𝑒

weight! We can thus account for the weight of the edges in 𝐸2
using the weight of the heavily loaded endpoints for each edge. The
analysis described above yields a constant factor approximation,
and we define the partition of edges in 𝑂𝑃𝑇 with more care below
to avoid frivolous over-counting, yielding the 1

2 -approximation.

Theorem 2. Let ALG be the value of the solution produced by the
greedy algorithm. Then 𝐴𝐿𝐺 ≥ 1

2𝑂𝑃𝑇 .

Throughout this analysis, fix one optimal solution and let 𝐹𝑂𝑃𝑇 =

{𝑒 ∈ 𝐸 : 𝑓𝑂𝑃𝑇
𝑒 > 0} be the set of edges with strictly positive support

in this optimal solution. The value of the optimal solution is thus

𝑂𝑃𝑇 =
∑︁

𝑒∈𝐹𝑂𝑃𝑇

𝑓𝑂𝑃𝑇
𝑒 =

1
2
∑︁
𝑣∈𝑉

𝑏𝑂𝑃𝑇
𝑣

Similarly, we define 𝐹𝐴𝐿𝐺 to be the set of edges with strictly positive
support in the solution returned by the greedy algorithm.

Wewill account for the total weight
∑

𝑣 𝑏
𝑂𝑃𝑇
𝑣 by noting that each

edge 𝑒 = (𝑢, 𝑣) ∈ 𝐹𝑂𝑃𝑇 contributes 𝑓𝑂𝑃𝑇
𝑒 twice to this summation,

once at the vertex 𝑢 and once at the vertex 𝑣 . We will keep track of
this by considering edge-vertex pairs, whereby each edge 𝑒 = (𝑢, 𝑣)
has two edge-vertex pairs associated with it; in this case, (𝑒,𝑢)
(which contributes to 𝑏𝑂𝑃𝑇

𝑢 ) and (𝑒, 𝑣) (which contributes to 𝑏𝑂𝑃𝑇
𝑣 ).
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Let 𝐿 be the list of all edge-vertex pairs corresponding to the
edges in 𝐹𝑂𝑃𝑇 . Thus we can see that

𝑂𝑃𝑇 =
1
2
∑︁
𝑣

𝑏𝑂𝑃𝑇
𝑣 =

1
2

∑︁
(𝑒,𝑣) ∈𝐿

𝑓𝑂𝑃𝑇
𝑒 .

We will define four disjoint sets that will consist of edge-vertex
pairs from 𝐿 and help in the analysis.
(1) Let 𝑆 ≜ {𝑣 ∈ 𝑉 | 𝑏𝐴𝐿𝐺𝑣 ≥ 𝑏𝑂𝑃𝑇

𝑣 } be the set of vertices for
which the total fractional weight in the solution returned by
the greedy algorithm is at least the total fractional weight in
the optimum solution. For each node 𝑣 ∈ 𝑆 , consider each edge
𝑒 = (𝑢, 𝑣) ∈ 𝛿 (𝑣) ∩ 𝐹𝑂𝑃𝑇 . In the optimum solution, this edge
contributes 𝑓𝑂𝑃𝑇

𝑒 to both endpoints of 𝑒 , 𝑢 and 𝑣 . We will use
the fractional weight of the edges incident at 𝑣 in the greedy
solution to account for the edge-vertex pairs, (𝑒,𝑢) and (𝑒, 𝑣).
Add (𝑒, 𝑣) to the set 𝐴, and remove both (𝑒,𝑢) and (𝑒, 𝑣) from
the list 𝐿.

(2) For each edge-vertex pair (𝑒, 𝑣) ∈ 𝐿 such that 𝑓 𝐴𝐿𝐺𝑒 ≥ 𝑓𝑂𝑃𝑇
𝑒 ,

we can account for the fractional weight 𝑓𝑂𝑃𝑇
𝑒 using the

corresponding weight in the greedy solution. Letting 𝑢 denote
the other endpoint of the edge 𝑒 , we add both (𝑒,𝑢) and (𝑒, 𝑣)
to the set 𝐵, and remove them from the list 𝐿.

Consider any edge-vertex pair (𝑒, 𝑣) with 𝑒 = (𝑢, 𝑣) that remains
in 𝐿 at this point. Since (1) did not remove this pair, we can
conclude that both 𝑏𝐴𝐿𝐺𝑢 < 𝑏𝑂𝑃𝑇

𝑢 ≤ 1 and 𝑏𝐴𝐿𝐺𝑣 < 𝑏𝑂𝑃𝑇
𝑣 ≤ 1.

Furthermore, since (2) did not delete (𝑒, 𝑣), we can conclude
that 𝑓 𝐴𝐿𝐺𝑒 < 𝑓𝑂𝑃𝑇

𝑒 ≤ 𝑤𝑒 . But when the edge 𝑒 was processed
by the greedy algorithm, why didn’t we set 𝑓 𝐴𝐿𝐺𝑒 to be a larger
value than its current value? It must be the case, therefore, that
making 𝑓 𝐴𝐿𝐺𝑒 positive would violate the cardinality constraint
at 𝑢, 𝑣 , or both.
Let 𝑆2 ≜ {𝑣 ∈ 𝑉 : |𝛿 (𝑣) ∩ 𝐹𝐴𝐿𝐺 | = 𝑘} be the set of vertices that
have 𝑘 edges incident to it with positive support in the greedy
solution.
For each vertex 𝑣 ∈ 𝑆2, let 𝐸𝑂𝑃𝑇

𝑣 ≜ 𝛿 (𝑣) ∩ 𝐹𝑂𝑃𝑇 be the set of
edges with positive support in the optimum solution incident
to the vertex. Note that |𝐸𝑂𝑃𝑇

𝑣 | ≤ 𝑘, 𝑣 ∈ 𝑆2. Similarly, we define
𝐸𝐴𝐿𝐺𝑣 ≜ 𝛿 (𝑣) ∩ 𝐹𝐴𝐿𝐺 , 𝑣 ∈ 𝑆2 and note tha |𝐸𝐴𝐿𝐺𝑣 | = 𝑘, 𝑣 ∈ 𝑆2.
Now for each vertex 𝑣 ∈ 𝑆2, we will pair every edge 𝑒 ∈ 𝐸𝑂𝑃𝑇

𝑣

with an edge in 𝐸𝐴𝐿𝐺𝑣 , and let 𝑝 : 𝐸 × 𝑉 ↦→ 𝐸 be the pairing
function. Note that the cardinalities of the sets 𝐸𝐴𝐿𝐺𝑣 and 𝐸𝑂𝑃𝑇

𝑣 ,
𝑣 ∈ 𝑆2 ensures that the function is well defined. Of course, not
all edges in 𝐹𝐴𝐿𝐺 will be an image of some pairing.

(3) As argued above, for each edge 𝑒 such that (𝑒, ·) ∈ 𝐿, at least
one of its endpoints is in the set 𝑆2. Each such remaining edge-
vertex pair (𝑒,𝑢), where 𝑢 ∈ 𝑆2, has a pair 𝑝 (𝑒,𝑢) ∈ 𝐸𝐴𝐿𝐺𝑢 . Now
if 𝑓 𝐴𝐿𝐺

𝑝 (𝑒,𝑢) ≥ 𝑓𝑂𝑃𝑇
𝑒 , we can account for the fractional weight of 𝑒

in the optimum solution using edges incident to 𝑢 in the greedy
solution.
If the other endpoint 𝑣 of this edge 𝑒 = (𝑢, 𝑣) does not belong
to 𝑆2, then we will account for that endpoint using the same
accounting as for vertex 𝑢. So in such a case, add (𝑒,𝑢) to
the set 𝐶 , and remove both (𝑒,𝑢) and (𝑒, 𝑣) from the list 𝐿.
Otherwise, if 𝑣 ∈ 𝑆2, we add (𝑒,𝑢) to the set 𝐶 ′ and remove

(𝑒,𝑢) from the list 𝐿. (Note that (𝑒, 𝑣) will also be processed
and removed in this step).

Now consider a remaining edge-vertex pair (𝑒, 𝑣) ∈ 𝐿, where
𝑒 = (𝑢, 𝑣). We now claim that at least one of 𝑢 and 𝑣 is not in
𝑆2. To see why, suppose instead that both endpoints 𝑢 and 𝑣

belong to 𝑆2. Then both of the edges 𝑝 (𝑒,𝑢) and 𝑝 (𝑒, 𝑣) exist.
Now consider the iteration in the algorithm when the edge
𝑝 (𝑒, 𝑣) was considered, say iteration 𝑟 . If𝑤 (𝑟 )𝑒 < 𝑤𝑒 , then either
max{𝑏𝐴𝐿𝐺𝑢 , 𝑏𝐴𝐿𝐺𝑣 } = 1, and thus both (𝑒,𝑢) and (𝑒, 𝑣) would
have been deleted from 𝐿 in (1). Therefore, 𝑤 (𝑟 )𝑒 = 𝑤𝑒 . Now
since, at iteration 𝑟 , the edge 𝑒 was not chosen, we know that

𝑤𝑒 = 𝑤
(𝑟 )
𝑒 ≤ 𝑤

(𝑟 )
𝑝 (𝑒,𝑣) ≤ 𝑤𝑝 (𝑒,𝑣) ,

and similarly

𝑤𝑒 = 𝑤
(𝑟 )
𝑒 ≤ 𝑤

(𝑟 )
𝑝 (𝑒,𝑢) ≤ 𝑤𝑝 (𝑒,𝑢) .

However, this would imply that both (𝑒,𝑢) and (𝑒, 𝑣) would
have been removed from 𝐿 in (3). This proves the claim.

(4) Consider a remaining edge-vertex pair (𝑒, 𝑣) ∈ 𝐿 where 𝑒 =

(𝑢, 𝑣) . (Note that from the way we have removed entries from
𝐿 so far, the edge-vertex pair (𝑒,𝑢) is also necessarily in 𝐿 at
this stage). From the above discussion, we know that exactly
one of 𝑢 and 𝑣 is in the set 𝑆2. Without loss of generality, let us
assume that 𝑣 ∈ 𝑆2, 𝑢 ∉ 𝑆2.
Now consider the iteration 𝑟 in which the edge 𝑝 (𝑒, 𝑣) was
considered (and subsequently chosen). Combining the facts
that 𝑓 𝐴𝐿𝐺

𝑝 (𝑒,𝑣) = 𝑤
(𝑟 )
𝑝 (𝑒,𝑣) and that𝑤 (𝑟 )𝑒 ≤ 𝑤

(𝑟 )
𝑝 (𝑒,𝑣) , we can observe

that
1 − 𝑏 (𝑟 )𝑢 ≤ 𝑤

(𝑟 )
𝑒 ≤ 𝑤

(𝑟 )
𝑝 (𝑒,𝑣) = 𝑓 𝐴𝐿𝐺

𝑝 (𝑒,𝑣) . (1)

We will need to account for two copies of 𝑓𝑂𝑃𝑇
𝑒 , one for each

endpoint, and we will use the fractional weights at the node 𝑢
to do so. We add (𝑒,𝑢) to the set 𝐷 and remove both (𝑒,𝑢) and
(𝑒, 𝑣) from 𝐿. n.b. the vertex in the edge-vertex pair added to 𝐷 is
the endpoint not in 𝑆2.

At this point, the list 𝐿 is empty. The 1
2 -approximation now follows

by noting that the definition of the various sets above ensures that
for each set, the vertices in that set pay for the weight of the edges
𝑂𝑃𝑇 using at most twice the weight of that node in𝐴𝐿𝐺 . The formal
details of the proof are in the full version of the paper.

4 A DISTRIBUTED 1
4 -APPROXIMATION

ALGORITHM
In this section, we extend the ideas developed in the centralized
greedy algorithm to design a distributed algorithm for the problem.
Recall that the centralized algorithm runs for𝑚 rounds, where in
each round we select the edge with the highest residual weight.
To reduce the number of rounds, we will select a larger number
of edges in every round, and then modify the edge weights as
before in between each round. More specifically, the algorithm runs
for 𝑘 rounds, where in each round we use a (known) distributed
algorithm to compute a near-optimal maximum-weight matching.
In between each round, we adjust the weights as in the centralized
section, and this ensures that the resulting solution does not violate
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the capacity constraint. Furthermore, since each node is a part of at
most 𝑘 matchings, it is easy to see that the cardinality constraints
also hold.

A precise description of our distributed algorithm is described
below in Algorithm 1.

Algorithm 1: Distributed Algorithm

𝑤
(0)
𝑒 = 𝑤𝑒 ,∀𝑒 ∈ 𝐸;

𝐹 = ∅; // set of edges already considered

𝑏
(0)
𝑣 = 0,∀𝑣 ∈ 𝑉 ; // cumulative total fractional

weight at each node

𝑓 𝐴𝐿𝐺𝑒 = 0,∀𝑒 ∈ 𝐸;
for 𝑟 = 1 to 𝑘 do

Compute a 𝛿-approximate maximum-weight matching,
𝑀𝐴𝐿𝐺
𝑟 ;

𝐹 ← 𝐹 ∪𝑀𝐴𝐿𝐺
𝑟 ;

𝑏
(𝑖)
𝑣 ← 𝑏

(𝑟−1)
𝑣 +∑𝑒∈𝑀𝐴𝐿𝐺

𝑟 ∩𝛿 (𝑣) 𝑤
(𝑟−1)
𝑒 ;

𝑤
(𝑟 )
𝑒 ← min{𝑤 (𝑟−1)𝑒 , 1 − 𝑏 (𝑟 )𝑢 , 1 − 𝑏 (𝑟 )𝑣 },∀𝑒 = (𝑢, 𝑣) ∉ 𝐹 ;

𝑓 𝐴𝐿𝐺𝑒 ← 𝑤
(𝑟 )
𝑒 , ∀𝑒 ∈ 𝑀𝐴𝐿𝐺

𝑟 ;
end

Now we analyze the value of our solution,𝑀 =
⋃

𝑀𝐴𝐿𝐺
𝑖

, when
compared to the value of the optimal solution, OPT .

Theorem 3. Let 𝐴𝐿𝐺 be the value of the solution returned by Al-
gorithm 1 when using a 𝛿-approximate maximum-weight matching
subroutine, and 𝑂𝑃𝑇 the value of the optimal solution for the same

instance. Then 𝐴𝐿𝐺 ≥
(
2 + 1

𝛿

)−1
·𝑂𝑃𝑇 .

As in the previous section, we shall compare
∑

𝑣 𝑏
𝐴𝐿𝐺
𝑣 to∑

𝑣 𝑏
𝑂𝑃𝑇
𝑣 , and place the edges in OPT in different sets based on

their properties.
We let 𝐹𝑂𝑃𝑇 = {𝑒 ∈ 𝐸 : 𝑓𝑂𝑃𝑇

𝑒 > 0} be the set of edges in
the optimal solution with positive support and 𝐹𝐴𝐿𝐺 = {𝑒 ∈ 𝐸 :
𝑓 𝐴𝐿𝐺𝑒 > 0} be the set of edges in the solution returned by Algorithm
1 with positive support.

To account for the cost of the optimal solution, we initialize 𝐿
with all of the edges in the optimal solution with positive support
(and so 𝐿 ≜ 𝐹𝑂𝑃𝑇 ), so that we have 𝑂𝑃𝑇 =

∑
𝑒∈𝐿 𝑓𝑂𝑃𝑇

𝑒 .
We will define three disjoint sets which will form a partition of

the edges in 𝐿.
(1) First consider each edge 𝑒 ∈ 𝐿 that is incident to a vertex 𝑣 ∈ 𝑉

such that 𝑏𝐴𝐿𝐺𝑣 = 1. We will account for this edge using the
total fractional weight of edges incident to the vertex 𝑣 in 𝐹𝐴𝐿𝐺 .
Add the edge 𝑒 to the set 𝐴 and remove it from 𝐿. Define the set
𝑉𝐴 ≜ {𝑣 : 𝑏𝐴𝐿𝐺𝑣 = 1}.

(2) Consider the remaining edges in 𝐿. We will now split them
into sets based on whether the edge is present in the solution
returned by Algorithm 1.

Claim 1. For each remaining edge 𝑒 ∈ 𝐿 ∩ 𝐹𝐴𝐿𝐺 , we have that
𝑓𝑂𝑃𝑇
𝑒 ≤ 𝑓 𝐴𝐿𝐺𝑒 .

Proof. Suppose not, and thus 𝑓 𝐴𝐿𝐺𝑒 < 𝑓𝑂𝑃𝑇
𝑒 ≤ 𝑤𝑒 .

It is easy to observe from the algorithm that if an edge 𝑒 = (𝑢, 𝑣)
with a residual weight 𝑤 (𝑟 )𝑒 < 𝑤𝑒 is chosen in round 𝑟 , then
max{𝑏𝐴𝐿𝐺𝑢 , 𝑏𝐴𝐿𝐺𝑣 } = 1. Noting that the fractional weight of
an edge chosen in round 𝑟 equals its residual weight in that
round, we can see that any edge 𝑒 = (𝑢, 𝑣) ∈ 𝐿∩𝐹𝐴𝐿𝐺 such that
𝑓 𝐴𝐿𝐺𝑒 < 𝑤𝑒 implies 𝑒 ∈ 𝐴, and thus would have been removed
from 𝐿 in (1), which is the desired contradiction. □

Thus we see that we can account for edges in 𝐿 ∩ 𝐹𝐴𝐿𝐺 using
the fractional weight of the same edge in our solution. We add
the edges in 𝐿 ∩ 𝐹𝐴𝐿𝐺 to the set 𝐵 and remove them from 𝐿.

(3) Consider the bipartite graph with edge set consisting of the
edges remaining in 𝐿. By the feasibility of 𝐹𝑂𝑃𝑇 , this is a bipar-
tite graph of maximum degree at most 𝑘 , and hence can be edge-
colored with 𝑘 colors; that is, we can partition the remaining
edges in 𝐿 into a set of at most 𝑘 matchings,𝑀𝑂𝑃𝑇

1 , . . . , 𝑀𝑂𝑃𝑇
𝑘

.
For an 𝑖 ∈ [𝑘], consider the matchings𝑀𝐴𝐿𝐺

𝑖
and𝑀𝑂𝑃𝑇

𝑖
. The

removal of edges in (2) implies that the edges in𝑀𝑂𝑃𝑇
𝑖

are not in
𝐹𝐴𝐿𝐺 , and thus are present in round 𝑖 when the matching𝑀𝐴𝐿𝐺

𝑖
was selected. The idea now is to use the fact that in round 𝑖 we
augment the solution with a 𝛿-approximate maximum-weight
matching, which accounts for the fractional weight (in the opti-
mal solution) of the edges in𝑀𝑂𝑃𝑇

𝑖
. The important point to note,

however, is that the approximate maximum-weight matching
is computed with respect to the residual weights of the edges
in 𝑀𝐴𝐿𝐺

𝑖
, and thus using this idea, we can only account for∑

𝑒∈𝑀𝑂𝑃𝑇
𝑖

𝑤
(𝑖)
𝑒 . To account for the remaining fractional weight

ofmax{0, 𝑓𝑂𝑃𝑇
𝑒 −𝑤 (𝑖)𝑒 } for an edge 𝑒 ∈ 𝑀𝑂𝑃𝑇

𝑖
, note that for an

edge 𝑒 = (𝑢, 𝑣) such that 𝑤 (𝑖)𝑒 < 𝑓𝑂𝑃𝑇
𝑒 ≤ 𝑤𝑒 , the fact that the

residual weight of this edge is strictly smaller than its weight
implies that max{𝑏 (𝑖)𝑢 , 𝑏

(𝑖)
𝑣 } = 1 −𝑤 (𝑖)𝑒 .

We assume, without loss of generality that 𝑏 (𝑖)𝑣 ≥ 𝑏
(𝑖)
𝑢 , and so

𝑏𝐴𝐿𝐺𝑣 ≥ 𝑏
(𝑖)
𝑣 = 1 −𝑤 (𝑖)𝑒 . (2)

We will pair up this edge 𝑒 with the vertex 𝑣 using the pairing
function 𝑝 : 𝐹𝑂𝑃𝑇 ↦→ 𝑉 so that 𝑝 (𝑒) = 𝑣 . Let𝐶 be the remaining
edges in 𝐿, and hence 𝐹𝑂𝑃𝑇 = 𝐴 ∪ 𝐵 ∪𝐶 .
Furthermore, we define the set 𝑉𝐶 ≜ {𝑣 ∈ 𝐶 : ∃𝑒 s.t. 𝑝 (𝑒) = 𝑣}
to be the image set of the pairing function 𝑝 . Note that𝑉𝐶∩𝑉𝐴 =

∅, from (1).

This partition of the set of edges into the three sets 𝐴, 𝐵, and 𝐶

allows us to prove the theorem. The proof is similar to the one for
the centralized algorithm, and involves accounting for the weight
of the edges in the optimal solution with the weight of the edges in
each set. We present details in the full version of the paper.

We can combine the theorem with the result from Koufogian-
nakis and Young [28] on a distributed 1

2 -approximate solution for
the maximum-weight matching that runs in 𝑂 (log𝑛) rounds in
expectation and with high probability, and with the result from
Fisher [21] on the 1

2+Y -approximate maximum-weight matching
that runs in 𝑂 (log2 Δ log 1

Y ) rounds, to get the following approxi-
mation guarantees for Algorithm 1.



PODC ’22, July 25–29, 2022, Salerno, Italy Rachit Agarwal, Shijin Rajakrishnan, and David B. Shmoys

Corollary 4. There is a randomized distributed 1
4 -approximate

solution that runs in 𝑂 (𝑘 log𝑛) rounds both in expectation and with
high probability.

Corollary 5. There is a deterministic distributed 1
4+Y -

approximate solution that runs in 𝑂 (𝑘 log2 Δ log 1
Y ) rounds.

5 A 𝑂 (log𝑛 log𝑘)-ROUND DISTRIBUTED
ALGORITHM

In this section, we present a Ω(1)-approximate distributed algo-
rithm for 𝑘-SFM that runs in 𝑂 (log𝑘 log𝑛) rounds. Our approach
is to prove that we incur only a constant-factor loss in the approxi-
mation when considering a more discrete version of the problem.
In the “all-or-nothing” variant of the problem, the flow 𝑓𝑒 on an
edge 𝑒 has to belong to the set {0,𝑤 (𝑒)}. In other words, a feasi-
ble solution consists of a set of edges in the graph such that the
cardinality constraints are satisfied at every node and the sum of
weights of the edges in the solution incident at a node is at most 1.
Thus, solving the all-or-nothing variant yields us an approximation
algorithm to the 𝑘-SFM problem as well.

Our current understanding of the problem makes it easier to
solve the all-or-nothing variant, primarily due to the following ob-
servation where we consider two special instances: if the weights
of all the edges in the graph are at most 1

𝑘
, then the sparsity con-

straint dominates the weight constraint at a node, and conversely,
if the weights of all the edges in the graph are at least 1

𝑘
, then

the weight constraint dominates the cardinality constraint. Thus
in these special cases, we can consider the simpler problems that
deal with only one constraint. We can leverage this observation
by constructing two subinstances by partitioning the set of input
edges into “heavy”-weight and “light”-weight edges. Of course,
for this split to be useful we need three things - distributed algo-
rithms for each subinstance, a method to combine the solutions
from the subinstances, and a bound on the approximation-factor
loss in considering the all-or-nothing variant.

We will now exhibit each of these parts, to prove the following
main result.

Theorem 6. There is a randomized distributed Ω(1)-approximate
algorithm to the 𝑘-SFM that runs in 𝑂 (log𝑘 log𝑛) rounds both in
expectation and with high probability.

We will begin by analyzing the loss in considering the all-or-
nothing variant.

Lemma 1. Let 𝐺 = (𝐿 ∪ 𝑅, 𝐸), (𝑤𝑒 )𝑒∈𝐸 , and 𝑘 be an input instance
to the 𝑘-SFM problem. Let OPT be the value of the optimal solution to
this instance, and let OPTaon be the value of the optimal solution to
this instance for the all-or-nothing variant. Then OPTaon ≥ 1

6OPT.

The proof of this lemma consists of comparing, node-by-node,
the node-weights due to incident edges in the solutions OPT and
OPTaon. The difficult case is when a node has a small incident
weight in OPTaon and not in OPT. However if a node has small
incident weight, then it must have 𝑘 edges incident to it, preventing
it from adding incident edges in OPT \OPTaon. We can then create
disjoint augmenting paths with such edges and use the optimality of
the solutionOPTaon to bound the weight of the edges in the current
solution with the weight of the incident edges in OPT \OPTaon.

Proof. As before, we define 𝑏OPTaon𝑣 to be the total weight inci-
dent on a node 𝑣 in OPTaon.

Our goal is to account for every edge in OPT (some of which
might be taken fractionally). Let 𝑆1 := {𝑣 ∈ 𝑉 : 𝑏OPTaon𝑣 ≥ 1

3 }. We
can account for any edge 𝑒 = (𝑢, 𝑣) ∈ OPT that is incident on a
node in 𝑆1, by losing at most a factor 6 (since the total weight of
the edges incident on that node in OPT is at most 1, and the total
weight incident on that node in OPTaon is at least 1

3 , and edges
might be counted twice, one for each endpoint).

Consider a remaining edge 𝑒 = (𝑢, 𝑣) in OPT to be accounted
for - from the above step, both endpoints of the edge 𝑒 cannot be
in the set 𝑆1. We can now argue for why the edge 𝑒 is not included
in OPTaon - it either leads to a weight violation or a cardinality
violation (or both).

First consider the case where adding this edge leads to a weight
violation, say at endpoint 𝑢. This implies that 𝑏OPTaon𝑢 +𝑤𝑒 > 1, and
thus𝑤𝑒 > 1 − 𝑏OPTaon𝑢 > 2

3 . But if this is true, then dropping all the
edges incident to 𝑢 and 𝑣 in OPTaon and adding the edge 𝑒 instead
leads to a strictly better solution to the all-or-nothing case, which
is a contradiction to the optimality of OPTaon, and therefore this
case cannot arise.

Therefore the edge 𝑒 can only be part of a cardinality violation
(if added), and in this scenario, we can create disjoint augmenting
paths of length 2 (if only one endpoint is 𝑘-tight in OPTaon) or of
length 3 (if both endpoints are 𝑘-tight in OPTaon). The augmenting
paths imply that the weight of the edge 𝑒 is bounded by the sum
of the weights of the edges in the augmenting path and in OPTaon.
Adding this over all the remaning edges implies that the cost of
these edges 𝑒 is at most twice the cost of the edges in OPTaon

incident on vertices not in 𝑆2, which proves our claim. □

Next, we consider a distributed approximation algorithm for an
instance consisting only of heavy-weight edges.

Consider the graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), edge weights 𝑤 : 𝐸 ↦→ R
and the non-negative integer 𝑘 , where the edge weights are all
at least 1

𝑘
. Note that in this case, we only need to ensure that a

feasible solution 𝐹 satisfies the weight constraint at a node, since
this ensures the cardinality constraint is also satisfied,

|{𝑒 ∈ 𝛿 (𝑣) ∩ 𝐹 }| = 𝑘
∑︁

𝑒∈𝛿 (𝑣)∩𝐹

1
𝑘
≤ 𝑘

∑︁
𝑒∈𝛿 (𝑣)∩𝐹

𝑤𝑒 ≤ 𝑘.

We partition the set of edges into different weight classes, C1,
C2, . . . ,C𝑅 , where C𝑟 = {𝑒 ∈ 𝐸 : 1

(1+Y)𝑟 < 𝑤𝑒 ≤ 1
(1+Y)𝑟−1 }. We

can observe that the number of weight classes is 𝑅 =
log𝑘

log(1+Y) . We
define modified weights for every edge, which consist of rounding
up the weights to the upper limit of the weight class to which it
belongs, i.e., for an edge 𝑒 that belongs to the weight class 𝑟 , we let
the modified weight be𝑤 ′𝑒 = 1

(1+Y)𝑟−1 .
From the definition of the weight classes, it is easy to see that

for every edge,𝑤 ′𝑒 ≤ (1 + Y)𝑤𝑒 .
We run the following distributed algorithm for 𝑅 rounds, where

in each round we run a distributed maximum cardinality algorithm.

Lemma 2. On an all-or-nothing instance consisting only of heavy-
weight edges and optimal value OPT, the algorithm 2, when using
a 𝛿-approximate maximum-cardinality 𝑏-matching subroutine that
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Algorithm 2: Distributed algorithm for heavy-weight
edges

𝑐
(1)
𝑣 = 1, ∀𝑣 ∈ 𝑉 ; // dynamic total weight at each
node

𝐹 = ∅;
for 𝑟 = 1 to 𝑅 do

𝑏
(𝑟 )
𝑣 := ⌊𝑐 (𝑟 )𝑣 (1 + Y)𝑟−1⌋;
Solve the max-cardinality 𝑏-matching instance on
𝐺 (𝑟 ) = (𝐿 ∪ 𝑅,C𝑟 ), with cardinality constraints
{𝑏 (𝑟 )𝑣 }{𝑣∈𝑉 } , to obtain the solution 𝐹 (𝑟 ) ;

𝐹 ← 𝐹 ∪ 𝐹 (𝑟 ) ;
𝑐
(𝑟+1)
𝑣 = 𝑐

(𝑟 )
𝑣 −

∑
𝑒∈𝐹 (𝑟 )∩𝛿 (𝑣) 𝑤𝑒 ;

end

runs in _ rounds, returns a set of edges 𝐹 such that

𝑤 (𝐹 ) ≥ 𝛿

3 + 2Y ·𝑤 (OPT)

and runs in at most _ log𝑘
log(1+Y) rounds.

The main idea of the proof of this lemma is that we are consid-
ering a greedy algorithm, where we select a maximal set of edges
of a weight class, in decreasing order of weight. This is similar to
the constant-factor greedy approximation algorithm for the maxi-
mum weight matching problem, but where we have to deal with a
𝑏-matching and selecting multiple edges at every round.

Proof. The bound on the total number of rounds is immediate
from the bound on the matching subroutine used within Algorithm
2.

Consider the optimal solution OPT. We divide the set of edges
in this solution into 𝑅 groups based on the weight class the edge
falls into, so that

𝑤 (OPT) = 𝑤 (OPT(1) ) + · · · +𝑤 (OPT(R) ) .

Now consider a round 𝑟 , and let𝑀 (𝑟 ) be the opt solution to the
𝑏-matching instance at that round, so that |𝐹 (𝑟 ) | ≥ 𝛿 |𝑀 (𝑟 ) |.

Let OPT(𝑟 )1 = OPT(𝑟 ) ∩ 𝑀 (𝑟 ) and OPT(𝑟 )2 = OPT(𝑟 ) \ OPT(𝑟 )1 .
We can then see that we can bound the weight of the edges in the
first set,

𝑤 (OPT(𝑟 )1 ) ≤ 𝑤 ′(𝑀 (𝑟 ) ) ≤ 1
𝛿
𝑤 ′(𝐹 (𝑟 ) ).

Now consider an edge 𝑒 = (𝑢, 𝑣) ∈ OPT(𝑟 )2 . From the fact that it
is not included in𝑀 (𝑟 ) , we can see that at least one of the endpoints,
say𝑢, is 𝑏 (𝑟 ) -tight, i.e., |𝑀 (𝑟 ) ∩𝛿 (𝑢) | = 𝑏

(𝑟 )
𝑢 . We assign edge 𝑒 to the

vertex 𝑢. We do a similar assignment for all the edges in OPT(𝑟 )2 .
Consider a node 𝑢 and the set of edges assigned to it, 𝐸𝑢 . Let 𝑒

be the edge assigned to 𝑢 in the latest round (and so 𝑒 belongs to
the smallest-weight weight-class among the edges in 𝐸𝑢 ), and let 𝑟
be the index of the corresponding weight-class. Now since the 𝑏 (𝑟 )
values were chosen so that adding one more violates the weight
constraint, we can see that𝑤 ( [𝐹 (1) ∪· · ·∪𝐹 (𝑟−1) ∪𝑀 (𝑟 ) ] ∩𝛿 (𝑢)) ≥
1 −𝑤 ′𝑒 ≥ 1 − 1

(1+Y)𝑟−1 ..

We can also observe that since we add edges in decreasing or-
der of weight classes, the fact that the optimal solution to the 𝑏-
matching at that round could not add an edge that is in the optimum
solution implies that the node has at least one edge incident to it
from a higher weight class, and therefore𝑤 ( [𝐹 (1) ∪ · · · ∪ 𝐹 (𝑟−1) ] ∩
𝛿 (𝑢)) ≥ 1

(1+Y)𝑟−2 .
Combining both, we can see that

𝑤 (𝐹 ∩ 𝛿 (𝑢)) ≥ 𝛿 ·𝑤 ( [𝐹 (1) ∪ · · · ∪ 𝐹 (𝑟−1) ∪𝑀 (𝑟 ) ] ∩ 𝛿 (𝑢))

≥ 𝛿 ·max{1 − 1
(1 + Y)𝑟−1

,
1

(1 + Y)𝑟−2
} ≥ 𝛿 · 1 + Y2 + Y ,

and therefore,

𝑤 (OPT(𝑟 )2 ) =
∑︁
𝑢∈𝑉

∑︁
𝑒∈𝐸𝑢

𝑤𝑒 ≤
1
𝛿
· 2 + Y1 + Y ·

∑︁
𝑢∈𝑉

𝑤 ′(𝐹 (𝑟 ) ∩ 𝛿 (𝑢))

≤ 1
𝛿
· 2 + Y1 + Y ·𝑤

′(𝐹 (𝑟 ) ) .

We can sum over all the rounds to get,

𝑤 (OPT) =
∑︁

𝑟 ∈[𝑅 ]
𝑤 (OPT(𝑟 ) ) ≤ 1

𝛿
· 3 + 2Y1 + Y

∑︁
𝑟 ∈[𝑅 ]

𝑤 ′(𝐹 (𝑟 ) ) (3)

≤ 1
𝛿
· (3 + 2Y) ·𝑤 (𝐹 ), (4)

and therefore the weight of the solution we obtain is bounded by

𝑤 (𝐹 ) ≥ 𝛿

3 + 2Y ·𝑤 (OPT) .

□

We now consider the (simpler) case of an instance consisting
only of light-weight edges.

Lemma 3. Given an input instance for the all-or-nothing variant
consisting only of light edges and a 𝛿-approximate maximum-weight
𝑏-matching subroutine that runs in _ rounds, we can construct, in _

rounds, a 𝛿-approximate solution to this instance.

Proof. Consider the subinstance of the all-or-nothing flow-
matching problem, consisting of the graph 𝐺 = (𝐿 ∪ 𝑅, 𝐸), edge
weights𝑤 : 𝐸 ↦→ R and the non-negative integer 𝑘 , where the edge
weights are all at most 1

𝑘
. Note that in this case, we only need to

ensure that a feasible solution 𝐹 satisfies the cardinality constraint
at a node, since this ensures the weight constraint is also satisfied,∑︁

𝑒∈𝛿 (𝑣)∩𝐹
𝑤𝑒 ≤

∑︁
𝑒∈𝛿 (𝑣)∩𝐹

1
𝑘
=

1
𝑘
|{𝛿 (𝑣) ∩ 𝐹 }| ≤ 1.

The bound on the number of rounds and the approximation
guarantee is thus an immediate consequence of using the provided
subroutine for the maximum-weight 𝑏-matching problem. □

The final piece of the puzzle is in combining the two solutions
we have obtained so far - one consisting of the heavy-weight edges
and the other consisting of the light-weight edges.

The following lemma provides the means to handle the situation
where we have the edge sets 𝐹𝐻 and 𝐹𝐿 , where 𝑤𝑒 > 1

𝑘
for all

𝑒 ∈ 𝐹𝐻 and𝑤𝑒 ≤ 1
𝑘
for all 𝑒 ∈ 𝐹𝐿 .
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Lemma 4. Given disjoint edge sets 𝐹𝐻 , 𝐹𝐿 ⊆ 𝐸, where 𝑤𝑒 > 1
𝑘

for all 𝑒 ∈ 𝐹𝐻 and 𝑤𝑒 ≤ 1
𝑘
for all 𝑒 ∈ 𝐹𝐿 , we can construct

an edge set 𝐹 in a constant number of rounds, such that 𝑤 (𝐹 ) ≥
1
2 max{𝑤 (𝐹𝐿),𝑤 (𝐹𝐻 )}.

Proof. Weuse the following algorithm -we start with the heavy-
weight solution 𝐹𝐻 , and each node 𝑢 selects a maximal set of edges
from the light-weight solution incident on that node, 𝐸𝑢 ⊆ 𝐹𝐿 (𝑢)
that it can add without violating either the cardinality or the weight
constraint at that node. We then only keep the edges from 𝐹𝐿 that
both endpoints would like, i.e, the final solution we consider is
𝐹 = 𝐹𝐻 ∪ {𝑒 = (𝑢, 𝑣) ∈ 𝐹𝐿 : 𝑒 ∈ 𝐸𝑢 and 𝑒 ∈ 𝐸𝑣} := 𝐹𝐻 ∪ 𝐹 ′𝐿 .

It is immediate that𝑤 (𝐹 ) ≥ 𝑤 (𝐹𝐻 ) and so we only have to see
how𝑤 (𝐹 ) compares to𝑤 (𝐹𝐿).

Consider a node 𝑢. We will bound the weight of the edges not
chosen by that node, 𝐹𝐿 (𝑢) \ 𝐸𝑢 by the weight of the heavy edges
at that node, 𝐹𝐻 (𝑢). To prove this, consider an edge 𝑒 ∈ 𝐹𝐿 (𝑢) \ 𝐸𝑢 .
Since the node𝑢 selects a maximal set of edges from 𝐹𝐿 , the reason 𝑒
is not selected is because it either violates a cardinality constraint or
a weight constraint. First, suppose it violates a cardinality constaint
(note that if at least one edge in 𝐹𝐿 (𝑢) \ 𝐸𝑢 viotes a cardinality
constraint, then all the edges in that set do). We can then pair up
every edge in 𝐹𝐿 (𝑢) \𝐸𝑢 with an edge in 𝐹𝐻 (𝑢), and since the edges
in the heavy-weight set have a larger weight than the edges in 𝐹𝐿 ,
the claim follows. On the other hand, suppose that every edge in
𝐹𝐿 (𝑢) \ 𝐸𝑢 was part of a weight constraint violation.

Since 𝐹𝐿 is a feasible solution, we know that 𝑤 (𝐹𝐿 (𝑢) \ 𝐸𝑢 ) +
𝑤 (𝐸𝑢 ) ≤ 1, and maximality of the chosen edges implies that
𝑤 (𝐹𝐻 (𝑢)) +𝑤 (𝐸𝑢 ) +𝑤𝑒 > 1, which together imply that𝑤 (𝐹𝐿 (𝑢) \
𝐸𝑢 ) ≤ 𝑤 (𝐹𝐻 (𝑢)) +𝑤 (𝑒) ≤ 2𝑤 (𝐹𝐻 (𝑢)).

Now we can bound the total weight of the light-weight edges as

𝑤 (𝐹𝐿) = 𝑤 (𝐹 ′𝐿) +
⋃
𝑢∈𝑉

𝑤 (𝐹𝐿 (𝑢) \ 𝐸𝑢 )

≤ 𝑤 (𝐹 ′𝐿) +
⋃
𝑢∈𝑉

2𝑤 (𝐹𝐻 (𝑢)) ≤ 2𝑤 (𝐹 ′𝐿 ∪ 𝐹𝐻 ) = 2𝑤 (𝐹 ).

Therefore, we need only a constant number of rounds to arrive at
the combined solution, and we can bound the value of the final set
of edges as𝑤 (𝐹 ) ≥ max{ 12𝑤 (𝐹𝐿),𝑤 (𝐹𝐻 )}. □

We are now ready to prove the main theorem, restated here.

Theorem 6. There is a randomized distributed Ω(1)-approximate
algorithm to the 𝑘-SFM that runs in 𝑂 (log𝑘 log𝑛) rounds both in
expectation and with high probability.

Proof of Theorem 6. Note that we have not optimized for the
constant in what follows.

We can combine lemmas 2, 3, and 4, together with the 1
2 -approx

maximum-weight 𝑏-matching algorithm from [28] that runs in
𝑂 (log𝑛) rounds both in expectation and in high probability to
obtain a 1

12+Y -approximate solution to the all-or-nothing variant
that runs in 𝑂 (log𝑛 log𝑘

log(1+Y) ) rounds. Combining this with lemma
1 gives us a 1

72+Y -approximate solution to the 𝑘-SFM problem in
𝑂 (log𝑛 log𝑘

log(1+Y) ) rounds. □

6 CONCLUSION
This paper initiates a theoretical study of flow scheduling in dat-
acenter networks. Motivated by the fact that modern datacenter
networks use Clos-like topologies similar to switch fabrics, we ex-
plore new connections between the classical problem of packet
scheduling in switch fabrics, and the increasingly important prob-
lem of flow scheduling in datacenter networks. To model the latter,
we introduced and studied a new variant of the matching problem,
that we refer to as 𝑘-sparse flow-matching problem, in which a
vertex in the graph has both a weight and a cardinality constraint
associated with it. We present constant-factor centralized and dis-
tributed approximation algorithms for this problem.

Our work opens up several avenues of future research. The most
natural question is to improve the approximation bound and/or
the number of rounds needed to achieve near-optimal solutions in
the distributed setting. It is a priori conceivable that, in distributed
settings, it should be possible to achieve performance similar to
the best known upper bounds for the 𝑏-matching problem (which
the 𝑘-SFM problem generalizes). Furthermore, our current under-
standing of the analysis of the faster distributed algorithm with
𝑂 (log𝑛 log𝑘) rounds does not preclude results with a smaller con-
stant factor approximation.
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