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Abstract
We present PANCAKE, the first system to protect key-value
stores from access pattern leakage attacks with small constant
factor bandwidth overhead. PANCAKE uses a new approach,
that we call frequency smoothing, to transform plaintext ac-
cesses into uniformly distributed encrypted accesses to an
encrypted data store. We show that frequency smoothing
prevents access pattern leakage attacks by passive persis-
tent adversaries in a new formal security model. We inte-
grate PANCAKE into three key-value stores used in produc-
tion clusters, and demonstrate its practicality: on standard
benchmarks, PANCAKE achieves 229× better throughput than
non-recursive Path ORAM — within 3–6× of insecure base-
lines for these key-value stores.

1 Introduction
High-performance data stores, such as key-value stores [1,
19, 32], document stores [43], and graph stores [33, 47], are a
building block for many applications. For ease of management
and scalability, many organizations have recently transitioned
from on-premise to cloud-hosted data stores (e.g., [19]), and
from server-attached to disaggregated storage [21, 28, 35, 65].
While beneficial, these deployment settings lead to significant
security concerns: data accesses that used to be contained
within a trusted domain (an organization’s premises or within
a server) are now visible to potentially untrusted entities.

A now-long line of work has shown that, even if the data is
encrypted, the observed data access patterns can be exploited
to learn damaging information about the data, through access
pattern attacks such as frequency analysis (e.g., [12,26,29,31,
37]). These attacks require only a passive persistent adversary,
that is, one that observes access patterns but does not actively
performs accesses. Existing techniques that are secure against
access pattern attacks, such as oblivious RAMs [23], target
stronger security models where the adversary can actively
perform data accesses; as we discuss in detail in §2, these
techniques have fundamental performance overheads [10, 39,
40, 49, 50, 66] making them impractical for most settings.
Thus, the problem of building high-performance data stores
that are secure against access pattern attacks by persistent
passive adversaries remains open.

We make three core contributions towards resolving this
open problem. First, we introduce a formal security model that
captures (just) passive persistent adversaries in encrypted data
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store settings. Specifically, we model honest users’ queries
to the data store as a sequence of data access requests sam-
pled from a time-varying distribution. The encryption mecha-
nism can obtain an estimate of the distribution; the adversary
both knows the distribution and obtains the transcript of (en-
crypted) queries and responses. Informally, we say that a
mechanism is secure if the adversary is unable to distinguish
the transcript from a sequence of uniformly distributed ac-
cesses to random bit strings. We capture this security goal in
what we call real-or-random indistinguishability under chosen
dynamic-distribution attack (ROR-CDDA).

Our second contribution is frequency smoothing, a mech-
anism that is ROR-CDDA secure, that is, provides security
against access pattern attacks by passive persistent adversaries.
The key insight underlying frequency smoothing is that, for
passive persistent adversaries, data access requests being cho-
sen from a distribution provides a source of “uncertainty”
that can be leveraged in a principled manner. For instance,
if requests were sampled from a uniform distribution, it is
easy to see that the adversary gains no additional informa-
tion from observing accesses patterns. However, most real
world distributions are not uniform. Frequency smoothing
uses the estimate of the data access distribution to transform
a sequence of requests into uniform accesses over encrypted
objects (hereafter, key-value pairs) in the data store.

Frequency smoothing carefully combines four techniques:
selective replication, fake accesses, batching of queries, and
dynamic adaptation. Selective replication creates “replicas”
of key-value pairs that have high access probability relative
to others in the data store. This serves to partially smooth the
distribution over (replicated) key-value pairs. For the remain-
ing non-uniformity, we combine selective replication with the
idea of “fake” queries [42]. These are sampled from a care-
fully crafted fake access distribution to boost the likelihood
of accessing replicated key-value pairs until the resulting dis-
tribution is entirely uniform. Security requires ensuring that
fake and real queries be indistinguishable; to achieve this, we
issue small batches of encrypted queries, where each query
is either real or fake with equal probability. Finally, we show
how one can dynamically adapt to changes in the underly-
ing data access distribution by opportunistically adapting the
replica creation as well as the fake access distribution.

Our third contribution is the design, implementation, and
evaluation of an end-to-end system — PANCAKE— that re-
alizes frequency smoothing, and can be used with existing
data stores. PANCAKE builds upon the encryption proxy sys-
tem model used in many deployment settings, where a proxy



acts as an intermediary between clients and the data store.
PANCAKE uses this proxy to maintain an estimate of the time-
varying access distribution (based on incoming requests from
the clients), as well as securely execute read/write queries
by using pseudorandom functions for keys and authenticated
encryption for values. Assuming the distribution estimates
are sufficiently good (we make this precise in §4), PANCAKE
achieves ROR-CDDA security.

We analyze PANCAKE’s performance both analytically and
empirically. Specifically, we show that PANCAKE’s server-
side storage and bandwidth overheads are within a constant
factor of insecure data stores; while the proxy storage can
be large in the worst-case (depending on the underlying data
access distributions), our empirical evaluation demonstrates
minimal overheads for heavy-tailed, real-world distributions.

We integrate PANCAKE with two key-value stores used in
production clusters — a main-memory based key-value store
Redis [54] and an SSD-based key-value store RocksDB [55].
Evaluation over a variety of workloads demonstrates that PAN-
CAKE consistently achieves throughput within 3−6× of the
respective key-value store that does not protect against access
pattern leakage attacks. Sensitivity analysis against various
workloads, deployment scenarios (within a cloud and across
wide-area networks), query loads, and more, demonstrates
that PANCAKE maintains its performance across a diversity
of evaluated contexts. We also compare PANCAKE perfor-
mance against Path ORAM [63], a representative system from
the ORAM literature. Across various workloads, PANCAKE
achieves significantly better throughput (sometimes by as
much as 229×) than PathORAM. Of course, ORAMs are
designed to prevent a broader range of attacks (e.g., active
injection attacks); our comparison should be interpreted as
highlighting the huge efficiency gap between countermea-
sures in the two threat models. An end-to-end implementation
of PANCAKE along with all the details to reproduce our results
is available at https://github.com/pancake-security.

PANCAKE is a first step toward designing high-performance
data stores that are secure against access pattern attacks by
passive persistent adversaries. We outline limitations, open
research questions, and future research avenues in §7.

2 The PANCAKE Security Model
We introduce a new security model for capturing passive per-
sistent attacks against encrypted data stores. We also discuss
prior approaches for resisting access pattern attacks.

System model. We focus on key-value (KV) stores that
support (single-key) get, put, and delete operations on KV
pairs (k,v) submitted by one or more clients. Our results
can, however, be applied to any data store that supports
read/write/delete operations.

We consider outsourced storage settings where one or more
clients want to utilize a KV store securely. PANCAKE em-
ploys a proxy architecture commonly used by encrypted data

stores in practice [15, 45, 51, 60] and in the academic liter-
ature [53, 57, 62]. This deployment setting assumes multi-
ple client applications route query requests through a single
trusted proxy. The proxy manages the execution of these
queries on behalf of the clients, sending queries to some stor-
age service. Our security model and results apply equally well
to a setting with a single client and no proxy.

We assume all communication channels are encrypted, e.g.,
using TLS. This does not prevent the storage service from
seeing requests. The proxy therefore encrypts each KV pair
(k,v) by applying a pseudorandom function (PRF) to the
key, denoted F(k), and symmetrically encrypting the value,
denoted E(v). We assume that the values are all the same
size, perhaps via padding —i.e., there is no length leakage.
The secret keys needed for F and E are stored at the proxy.
Because F is deterministic, the proxy can perform operations
for key k by instead requesting F(k). This standard approach
is used in a variety of commercial products [5, 15, 45, 51, 60].

Security model. Our security model captures passive persis-
tent adversaries in such encrypted data store settings. The
adversary observes all (encrypted) accesses but does not ac-
tively perform its own (e.g., via a compromised client).

We model honest client requests as queries sampled from
a distribution π over keys: for each key k, the probability of
a query (get, put, or delete) on that key is denoted π(k). The
distribution may change over time. While we primarily focus
on the case where queries are independent draws from π,
we discuss correlated queries and how this relates to ORAM
security in the full version [25].

In our model, the adversary does not have access to cryp-
tographic keys, but can observe all encrypted queries to, and
corresponding responses from, the storage server. The adver-
sary does not change the client queries, the responses, or the
stored data. The adversary knows π, but the random draws
from π that constitute individual accesses are (initially) hid-
den. The adversary wins if it can infer any information about
the resulting sequence of accessed plaintext KV pairs; we for-
malize this further in §4.3. We do not target hiding the time
at which a query is made; fully obfuscating timing requires
a constant stream of accesses to the data store, which is pro-
hibitively expensive in many contexts. (Our approaches can
nevertheless be extended to hide timing in this way.) See §7
for more discussion on the limitations of our security model.

Access pattern attacks. Without further mechanisms, the ba-
sic PRF and encryption approach leaks the pattern of accesses
to the adversary. In various contexts an attacker can com-
bine this leakage with knowledge about π [8, 12, 29, 46] to
mount damaging attacks like frequency analysis: order the
KV pairs by decreasing likelihood of being accessed k1,k2, . . .,
and guess that the most frequently accessed encrypted value
is k1, the second most frequently accessed is k2, etc. In gen-
eral, in our security model the adversary can use knowledge
of the distribution π to:
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• infer key identities,
• identify when specific keys are accessed, and,
• detect and identify changes in key popularities over time.

Our goal is to protect against such access pattern attacks.

Prior approaches. Access pattern and related attacks have
been treated in the literature before; we briefly overview three
lines of work related to our results.

Oblivious RAMs (ORAMs): Existing ORAM designs pro-
vide security against access pattern attacks even in settings
where the adversary can actively inject its own queries. The
core challenge with ORAM based approaches is their over-
heads — several recent results [10, 39, 40, 49, 50, 66] have
established strong lower bounds on ORAM overheads: for a
data store with n key-value pairs, any ORAM design must
either: (1) use constant proxy storage but incur Ω(logn) band-
width overheads; or, (2) must use Θ(n) storage at the proxy
and incur constant bandwidth overheads. Unfortunately, both
of these design points are inefficient for data stores that store
billions of key-value pairs [4, 11, 20, 24, 64]. At such a scale,
Ω(logn) bandwidth overheads result in orders-of-magnitude
throughput reduction [14]. On the other hand, state-of-the-art
ORAM designs that achieve constant bandwidth overheads
in theory [3] have large constants hidden within the asymp-
totic result (as much as 2100 [3]), resulting in high concrete
overheads. For many applications, ORAM overheads may be
unacceptable.

Snapshot attacks: Another recent line of work has targeted
what’s called a snapshot threat model, where the adversary
does not persistently observe queries and only obtains a one-
time copy (snapshot) of the encrypted data store [38, 48, 52].
One of these [38] propose frequency-smoothed encryption, a
technique similar to our selective replication mechanism. Un-
fortunately, the snapshot threat model is currently unrealistic
for existing storage systems [27]. More generally schemes
designed for it do not resist access pattern attacks by passive
persistent adversaries.

Fake queries: Mavroforakis et al. [42] explore the idea
of injecting fake queries to obfuscate access patterns in the
context of range queries and (modular) order-preserving en-
cryption. In a security model where boundaries between the
queries are not known to the adversary, this can provide secu-
rity albeit with high bandwidth overheads. However, if query
boundaries are known to the adversary (as in our model and
in practice), the adversary can trivially distinguish between
real and fake queries because the last query sent is always
the real one. That said, our work uses the idea of fake queries
from [42], adapting it to our KV store setting (see §4.2) and
combining it with further techniques to ensure security.

3 PANCAKE Overview

We now provide a brief overview of PANCAKE’s core tech-
nique — frequency smoothing. We relegate the discussion of
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Figure 1: Frequency smoothing example. (Left) Original distribu-
tion over keys. (Right) Distribution over replicas after frequency
smoothing. Ratio of real to fake accesses is the ratio of their areas.

PANCAKE’s design details to subsequent sections.

Frequency smoothing. Most data stores already gather statis-
tics about data access patterns for load balancing, debugging
and performance tuning [2, 4]. PANCAKE’s design exploits
that all clients route their queries via the proxy; thus, the
proxy can learn information about the frequency of plaintext
accesses. We provide intuition on frequency smoothing tech-
nique assuming perfect estimates, i.e., π̂ = π. We start with
the case that π does not change over time, and discuss the
dynamic case at the end of the section.

PANCAKE uses the estimate of π to perform frequency
smoothing. The key technical challenge is how to efficiently
transform accesses distributed according to π over (plaintext)
keys to a uniform distribution over encrypted keys. PANCAKE
achieves this through a combination of three techniques: se-
lective replication, fake queries, and batching. In fact, either
selective replication or fake queries along with batching could
be used to smooth frequency, but with prohibitive performance
overheads as we explain below. The trick will be combining
the three together in order to achieve an efficient solution.

Selective replication creates a number of copies of a key k
(called replicas1) proportional to their likelihood of access:
the more likely, the more replicas. When accessing a key, one
of its replicas is chosen at random. Theoretically, a value α can
be selected such that each π(k) = R(k) ·α for some integer
R(k). Key k would get R(k) replicas. This would smooth
the distribution to uniform. However, it leads to impractical
storage overheads for typical distributions — the overhead
for the YCSB workload (§6) would be 15×.

Instead, PANCAKE creates R(k) replicas of k, just enough
to ensure only that π(k)/R(k)≤ 1/n where n is the number
of items in the data store. We refer to α = 1/n as the replica
threshold. As we will show in §4.1, this ensures the total num-
ber of replicas n′, although dependent on the distribution π

itself, is always ≤ 2n. Since an adversary may learn some
distributional information from n′, we add a dummy key D
with 2n−n′ replicas, so that the total number of replicas is
always exactly 2n, regardless of π. For example, given the
distribution (1/2,1/3,1/6) over n = 3 keys a,b,c and threshold
1/3, selective replication creates two replicas of key a (denoted
as (a, 1), (a, 2)), one replica each of b and c (denoted as (b, 1)
and (c, 1), respectively) and two replicas for the dummy key D
(denoted as (D, 1) and (D, 2)). Figure 1 plots the frequencies.

The resulting distribution over replicas is not quite uniform.
1We use the term replica to refer to both the original key and its copies.



In our example, the distribution over (a, 1), (a, 2), (b, 1), (c,
1), (D, 1), (D, 2) is (1/4, 1/4, 1/3, 1/6, 0, 0). PANCAKE therefore
uses an equal proportion of fake queries mixed in with real
ones in order to ensure a uniform distribution over accesses.
To do so, PANCAKE computes a complementary fake access
distribution over replicas so that the sum of the probability of
a fake access and real access for any given replica is equal to
1/2n, where 2n is the total number of replicas. Every time an
access is made, it is chosen to be either fake or real with prob-
ability 1/2. In our example, using a fake access distribution of
(1/12, 1/12, 0, 1/6, 1/3, 1/3) across the four replicas ensures each
replica has a total access probability of exactly 1/6. We will
show that adding fake queries in this manner always ensures
equal probability for any key being accessed.

To support updates to values, every access is a read fol-
lowed by a write of a freshly encrypted value. For keys with
many replicas, we cannot change all replicas immediately as
this would leak that these encrypted values are linked. Instead
PANCAKE updates one of the replicas, caches the new value,
and opportunistically updates the remaining replicas using
subsequent fake or real queries to the replica. This could re-
quire a large cache in the worst case, but we show empirically
in §6 that the cache remains small for typical workloads.

To service a (real) query from a client, PANCAKE performs
a sequence of B accesses randomly chosen from either the
real or the fake distribution, inserting the actual request into
one of those chosen to be real. There is a small chance that
the client’s request cannot be served, in which case PANCAKE
puts the query into a queue until the next client request arrives.
We show that with B = 3, PANCAKE can ensure delivery of
client requests in a timely manner (we make this precise in
the next section), while maintaining that the probability of
accessing any sequence of B encrypted keys is equally likely.

One could achieve security without selective replication by
increasing the ratio of fake queries to real queries, but a larger
value of B will be needed to ensure client requests are not
stalled for arbitrarily long time. This, in turn, would result in
high bandwidth overheads for many distributions. Thus, the
combination of selective replication and fake queries, as in
frequency smoothing, is necessary to ensure small overheads.
With our chosen parameters, we will prove a storage overhead
of 2× and a bandwidth overhead of 3× of insecure KV stores,
independent of the underlying distribution. Moreover, we will
prove that PANCAKE’s protocol is secure if the estimate π̂ is
sufficiently good.

Dynamic query distributions. To allow PANCAKE to main-
tain its security and performance guarantees even when access
distributions change, we extend the above design using an
efficient algorithm that dynamically updates the fake query
probabilities and replica allocations across keys. Recall that
the total number of replicas in PANCAKE is always 2n, regard-
less of the distribution. This means that when the distribution
changes, for every key that must lose a replica, another must

gain a replica. Therefore, handling distribution changes sim-
ply requires reassigning replicas for all such key-pairs.

PANCAKE uses a specialized replica swapping protocol to
efficiently adjust the allocation of replicas in parallel with
servicing client requests. The key challenge is that a request
must be serviced by one of the old replicas, not a newly al-
located one, until all the new replicas have the appropriate
value propagated to them. We show that we can temporarily
lower the ratio of real to fake queries, which, combined with
appropriate temporary caching of values during the transi-
tion, maintains the invariant that every access to the store is
uniformly distributed, guaranteeing security (§5).

4 PANCAKE Design: Static Distribution Case
We now provide details on the design and implementation of
PANCAKE. In this section, we focus on the case of a static
distribution, and extend PANCAKE’s design to efficiently han-
dle dynamic changes in the next section. We start the section
with the data storage (§4.1) and frequency smoothing (§4.2)
mechanisms in PANCAKE, and then provide a formal security
analysis for PANCAKE’s design (§4.3). We close the section
with performance analysis of PANCAKE’s storage require-
ments and bandwidth overheads for query execution (§4.4).

4.1 Data Storage
PANCAKE is backward-compatible with existing data stores
— it requires no modifications on how data is sharded across
multiple cores or machines, and how queries are executed in
the underlying data store. Thus, PANCAKE naturally benefits
from the many properties of existing data store, e.g., elasticity,
fault tolerance, data persistence, etc. The core of the PANCAKE
design is a proxy, which we describe below.

The PANCAKE proxy. The main functionality of the PAN-
CAKE proxy is to initialize the data store, to implement
frequency smoothing, and to execute queries on behalf of
clients (encryption/decryption of query requests/responses).
The proxy maintains several data structures to achieve its
functionalities:

• Observed query distribution (π̂): The proxy maintains
the probability of access for individual keys, based on the
histogram of accesses across keys. This “observed” distri-
bution is an estimate of the underlying distribution, and is
also used to detect changes in distribution over time.

• Fake query distribution (π f ): The proxy also maintains a
fake probability of access for each individual key. We will
discuss below how the fake distribution is computed.

• Key → replica counts: PANCAKE’s selective replication
mechanism may create one or more replicas for KV pairs.
The proxy maintains a map k→ R(k) from keys to their
number of replicas, for all keys with R(k)> 1.

• UpdateCache: To securely handle write queries, we use a
data structure that stores a map k→ (v,UpdateMap), where



UpdateMap is a bitmap of length R(k) denoting whether or
not a particular replica of k has been updated or not. We
provide more details below.

• Query queue: This stores outstanding client queries.

The rest of the section details how the PANCAKE proxy uses
these data structures to realize its functionalities. But first we
make two observations about proxy storage and scalability.

Regarding PANCAKE proxy storage requirements, we note
that storing the probability for a key as floating-point values
requires 8 bytes of storage per key; given that the size of
values in many real-world applications is of the order of kilo-
bytes [4], storing the real and the fake distributions requires
a tiny fraction of the entire dataset size. For instance, with
4 kilobyte values, the fraction works out to a mere 0.39%.
Similarly, the key→ replica counts data structure is also tiny.
The size of UpdateCache, on the other hand, depends on the
query distribution as well as the write rates; we evaluate the
UpdateCache size empirically for realistic workloads in §6.

The PANCAKE proxy is implemented to efficiently scale
with multiple cores. For the multi-core implementation, the
first four data structures are shared by all PANCAKE proxy
cores, while each core maintains its own query queue (for
queries “assigned” to that core). Our proxy implementation
ensures high performance (highly concurrent read-write rates)
for data structures shared across cores. The first three data
structures are updated at coarse-grained timescales (e.g., due
to significant changes in the query distributions) and thus,
simple arrays suffice for our purposes. UpdateCache, on the
other hand, requires concurrent read/write operations; to this
end, our implementation uses a Cuckoo hashmap [41] that
can support 40 million read/write operations per second on a
commodity server.

4.2 Frequency Smoothing
We now describe PANCAKE’s frequency smoothing tech-
niques for static distributions, specifically the algorithms to
initialize the data store (with selective replication) and execute
queries (with real queries, fake queries, and batching).

Initializing the data store. PANCAKE transforms a plain-
text data store KV = {(ki,vi)} with n KV pairs into a data
store KV′ with n′ ≥ n encrypted KV pairs. At the same time,
PANCAKE transforms accesses distributed according to π over
the keys of KV to a sequence of uniform accesses over the
encrypted keys of KV′. To distinguish between plaintext keys
and encrypted ones, we refer to the latter as labels. PANCAKE
use an estimate π̂ of π. During initialization, π̂ can be assumed
to be uniform, and the techniques from §5 can later be used
to transition to a more accurate estimate. Alternatively, in
many settings one will provide a warm start by initializing
PANCAKE with a π̂ learned from performance or other logs.

In generating KV′, we use selective replication to add repli-
cas to KV′ for keys accessed frequently according to π̂. If

we set a threshold α, then for each (k,v) ∈ KV we gener-
ate R(k, π̂,α) = dπ̂(k)/αe replicas: key-value pairs ((k, j),v)
where j ranges over 1 to R(k, π̂,α). When π̂ and α are clear
from context, we will omit them and simply write R(k).

Each replica (k, i) is then protected by applying a se-
cretly keyed pseudorandom function F (e.g., HMAC) to the
replica identifier to generate a label F(k, i). We apply authen-
ticated encryption E to the value. Thus ultimately KV′ =
{(F(ki, j),E(vi)} for 1≤ i≤ n and where 1≤ j ≤ R(ki) for
each i. For simplicity, we have omitted in our notation the two
required cryptographic secret keys, and that we cryptographi-
cally bind labels and value ciphertexts together by using the
label as associated data with E. A straightforward calculation
shows that for any π̂ and α, n′ ≤ n+1/α.

The second initialization task is to compute a fake dis-
tribution π f over replicas. Here we adapt a technique from
Mavroforakis et al. [42]. In particular we pick a constant
0 < δ ≤ 1 (this choice is explained in more detail below)
and then craft π f so that the probability p(k, j) of accessing
any replica (k, j) is: (1) equal to 1/n′ and (2) a convex com-
bination of the probability of truly accessing a replica and
performing a fake access. Namely we ensure that

p(k, j) = δ · π̂(k)
R(k)

+(1−δ) ·π f (k, j) =
1
n′

. (1)

This corresponds to the following randomized process. Flip a
δ-biased coin. If it comes up heads, randomly choose a replica
for some real query drawn according to π; otherwise, choose
a replica to access according to the fake distribution π f .

The constant δ must be chosen so that δ≤ R(k)/(n′ · π̂(k))
for every key k; otherwise, it may not be possible to assign
valid (non-negative) probability π f (k, j) to satisfy Equation 1
for some key k. We use δ = 1/(n′α), which is always valid.

Note that δ corresponds to the proportion of real queries:
if α is set too high, then most queries would be fake. At the
same time, since n′ ≤ 1/α+n, setting α too low would cause
KV′ to grow too large. We set α = 1/n since it corresponds
to a sweet spot: n′ ≤ 2n, i.e., KV′ is at most twice as large as
KV, and δ≥ 1/2, i.e., at least half the queries are real.

Dummy replicas. We note that the approach outlined above
would result in a different number of total replicas for dif-
ferent distributions (although upper-bounded by 2n), which
leaks information about the distribution. To avoid this leak,
PANCAKE preemptively initializes KV′ with enough dummy
replicas so that the total number of replicas is always 2n.

Dummy replicas are KV pairs (F(D, j),E(D)), for j =
1, . . . ,2n−n′ (n′ is the number of “real” replicas for π̂), where
the dummy key D is unique and does not exist in the original
set of keys. Dummy replicas are accessed only with fake
accesses; therefore, π̂(D) = 0 and the fake access probability
is π f (D) = α/(2nα−1) (derived from Eq. 1). Note that since
the total number of replicas is now 2n, the proportion of real
queries δ = 1/(2nα) = 1/2 for α = 1/n.



Init(π̂,KV,α):

n← |KV|
KV′← /0

n′← 0
For (k,v) ∈ KV:

R(k)← dπ̂(k)/αe
For j ∈ [1, . . . ,R(k)]:

π f (k, j)← α−π̂(k)/R(k)
2nα−1

KV′ ∪←{(F(k, j),E(v))}
n′← n′+R(k)

For j ∈ {1, . . . ,2n−n′}:
π f (D, j)← α

2nα−1

KV′ ∪←{(F(D, j),E(D))}
δ← 1

2nα

Return KV′,π f ,R,δ

Batch(k):

j←${1, . . . ,R(k)}
AddToQueue(k, j)
For i = 1 to B:

qtype←δ {0,1}
If qtype = 0:

(ki, ji)←$ π f

Else:
If QueueNotEmpty:

(ki, ji)← Dequeue()
Else:

ki←$ π̂

ji←${1, . . . ,R(ki)}
`←{F(k1, j1), . . . ,F(kB, jB)}
Return `

Figure 2: PANCAKE’s initialization and batch access algorithms
for a plaintext data store KV, distribution estimate π̂, and threshold α.

A pseudocode description of PANCAKE’s initialization (in-
cluding dummy replicas) appears in Figure 2.

Query execution. Intuitively, we will follow the randomized
process associated to Equation 1 to mix fake and real accesses.
To increase the probability that a client’s real access is handled
right away, PANCAKE in fact sends a small batch of accesses
to KV′ for each client request. In particular, when a client
submits an access request for key k ∈ KV, PANCAKE runs the
Batch algorithm shown in Figure 2. It randomly chooses a
replica j of k, adds (k, j) to the query queue, and prepares
a batch of B accesses to KV′. By default we set B = 3 (we
will justify our choice in §4.4). For each of these accesses,
it samples a bit qtype according to δ that determines whether
the access is real (heads) or fake (tails). For each qtype that
comes up heads (real) in the batch we attempt to send a value
from the query queue. If the query queue is empty, then the
client simulates a real access by sampling a key from π̂ itself
(denoted k←$ π̂) and choosing a replica at random. For each
fake access, the client samples a replica according to π f . The
resulting batch of replicas have the pseudorandom function F
applied before being sent to the server. Note that Batch im-
poses bandwidth overhead exactly B× over a KV store that
just uses encryption and leaks access patterns.

Note that the batching done in the PANCAKE proxy does
not require all queries in the batch to be sent to the same
shard/server; the batching is completely independent of the
sharding mechanism used on the server and queries in the
batch are independently forwarded to respective shards. Upon
retrieving the associated values, PANCAKE decrypts the ones
requested by clients and returns them.

It is critical that PANCAKE only sends a single batch for
each client request. If instead the proxy sent batches until the
query queue was empty, frequency information about which
keys clients access would leak. For example, if one uses B = 1
and kept submitting until the queue is empty, then the final
access to KV′ must be a client request. Thus PANCAKE defers
handling a query until a later batch if necessary, increasing

latency. We show experimentally that for most loads this la-
tency increase is acceptably low (§6.3). In practice PANCAKE
can vary B as a function of load: decrease B at high load (to
lower bandwidth overhead) and increase B at low load (to
lower latency). Such changes to B do not reveal anything new
to an adversary, who can anyway estimate aggregate load.

Supporting writes. PANCAKE handles updates (writes) to
keys in KV by borrowing a standard technique from the
ORAM literature [23]: treat each access as a read followed
by a write. After the client receives the B encrypted values
from the server corresponding to the batch, it decrypts, possi-
bly updates, then re-encrypts the values and sends them back
to the server. Each access therefore consists of a fixed-size
batch of reads followed by a fixed-size batch of writes to the
same labels. When a key has multiple replicas and its value is
updated, the client adds it to the UpdateCache to track which
of its replicas still need to be updated (updating all replicas at
once leaks information). PANCAKE consults the UpdateCache
every time it does a writeback to ensure all updates propagate.
Once all of a key’s replicas have been updated, its entry is
removed from the cache. Note that PANCAKE can use any
access (fake or real) to opportunistically propagate updates.

4.3 Security Analysis

Intuitively, PANCAKE security stems from the following three
points. (1) The cryptographic security of F as a pseudorandom
function and E as a (randomized) authenticated encryption
scheme. This ensures that the keys F(k, j) appear random and
that nothing leaks about values. (2) Assuming client requests
are distributed according to π and that our estimate π̂ of π

is sufficiently good, each individual access is uniformly dis-
tributed over KV′ by Equation 1. (3) Fake and real queries
cannot be distinguished by the server (i.e., none of the coin
tosses qtype can be inferred). The third point requires that the
number and timing of accesses observed by the server be inde-
pendent of the coin tosses. We do not attempt to hide the time
at which an access is made by a client, but the timing should
be independent of which key a client requests and which ac-
cesses are fake or real — thus, similar to ORAM designs [9],
PANCAKE implementations must be constant-time.

Formal analysis. To provide a formal analysis, we intro-
duce a security definition called real-versus-random indis-
tinguishability under chosen distribution attack or ROR-CDA.
A formal game-based definition of ROR-CDA is given in Ap-
pendix A. Briefly, in the real world the adversary is given
PANCAKE’s encryption of the KV store KV′ and a transcript τ

generated by running Batch on q samples from π (where
Batch uses π̂). In the ideal world, the adversary is given a
database consisting of random bit strings and a transcript
of q ·B uniformly random accesses.

Achieving this security goal rules out attacks based on
access pattern leakage. Take frequency analysis as an example.
If ROR-CDA holds, the frequency with which any label is



accessed is independent of the label itself. Thus, frequency
analysis and any other attacks which rely on computing the
most likely access will fail — all accesses are equally likely,
so it is impossible to do better than baseline guessing.

The following theorem establishes the ROR-CDA security
of PANCAKE. The theorem reduces to the pseudorandom func-
tion security [22] of F , the real-versus-random indistinguisha-
bility [56] of E, and to the computational indistinguishability
of π and π̂.

Theorem 1 Let q≥ 0 and Q = q ·B. Let π, π̂ be distributions.
For any q-query ROR-CDA adversary A against PANCAKE
we give adversaries B,C,D such that

Advror-cda
PANCAKE(A)≤Advprf

F (B)+Advror
E (C)+Advdist

Q,π,π̂(D)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D each use Q queries and run in time that
of A plus a small overhead linear in Q.

Discussion. Details of our formal analysis, including the
proof of Theorem 1, are presented in Appendix A. Here we
make some salient observations.

Our theorem is “parameterized” by q, π, π̂. It applies to
any distribution π, and provides security up to the ability to
accurately estimate it. In the best case, estimation is perfect,
π̂ = π, and Theorem 1 is optimal in the sense that the only
way to break PANCAKE is to break one of the underlying
cryptographic tools. Even if our estimate is not perfect, it just
needs to be good enough to be indistinguishable from the real
distribution for a limited number of samples. While there exist
distributions that are hard to estimate [7, 30, 59], real-world
ones with heavy skew allow for sufficiently good estimation.

Our security model is highly pessimistic in that we assume
the adversary has perfect knowledge of π. In reality they will
not, and so we expect that in practice PANCAKE will provide
even greater security than what our theory suggests.

4.4 Performance Analysis
PANCAKE incurs a bandwidth overhead of B×, the size of
each batch. With α = 1/n, the server stores 2n replicas (in-
cluding dummy replicas), so the server storage overhead is 2×.
Note that PANCAKE bandwidth and server storage overheads
are independent of the underlying data access distributions.

PANCAKE proxy storage and query latency overheads are
related to query queue length, which itself is a function of
batch size B. Experimentally, we observe a near-zero queue
length for B≥ 3 (§6.3). This is supported by results in queuing
theory: if we model the number of query arrivals per unit
time as Poisson with mean λ, with δ = 1/2 the number of
departures per unit time with our scheme is also Poisson with
mean λ ·B/2. Thus, our queue is well-modeled as M/M/1
with ρ = λ/(λ ·B/2) = 2/B. Applying standard results on
steady-state behavior of such queues [16], as the number of
queries goes to infinity, Pr [ i queries in queue ] = (1− 2

B )(
2
B )

i.

Thus the probability that a query waits for i queries ahead of
it in the queue is exponentially vanishing in i.

The size of PANCAKE’s UpdateCache depends on the query
distribution, the threshold α, and the fraction of write queries.
A loose bound on UpdateCache size is the number of keys
with access probability greater than α. Intuitively, a patholog-
ical worst-case could occur when n− 1 out of n keys have
access probability slightly higher than 1/n; in this case, each
of the n− 1 keys would have 2 replicas, and UpdateCache
size could grow to O(n) with very high write rates. We dele-
gate a formal analysis of the worst-case UpdateCache size for
specific distributions to future work, but note that our evalu-
ation demonstrates that, for standard benchmark workloads
comprising skewed distributions, the UpdateCache size turns
out to be a small fraction (< 5%) of the dataset size (§6.3).

5 Handling Dynamic Distributions
In the previous section, we showed how PANCAKE transforms
any static distribution of key-value accesses into a uniformly-
distributed one. For some applications, however, distributions
will change over time. We now describe how PANCAKE adapts
to changes in the query distribution. We start by describing
the core dynamic adaptation technique in PANCAKE under
the assumption that changes in distribution can be detected
instantaneously (§5.1), prove PANCAKE security under this
assumption (§5.2), and, finally, discuss some pragmatic issues
of detecting changes in the underlying distribution (§5.3).

5.1 Adapting to Changes in Distribution

Once the new query distribution estimate π̂′ is identified,
PANCAKE must adapt to π̂′ by smoothing it. We note that
if all keys need the same number of replicas with π̂′ as
they need with π̂, PANCAKE easily adapts to π̂′ by recom-
puting the fake query distribution π f as per Equation 1. How-
ever, when a key’s probability π̂′(k) increases so much that
π̂′(k)≥ R(k, π̂,α) ·α, then PANCAKE must change its number
of replicas. Figure 3 shows an example for frequency smooth-
ing of π̂ and π̂′; note that while key a gains a replica, the
dummy key D loses one.

Adapting to changes in the query distribution while preserv-
ing both efficiency and security is challenging. One approach
is downloading the entire database and re-running Init from
Figure 2 with fresh keys. This is secure but prohibitively
bandwidth-intensive, and queries cannot be serviced during
reinitialization. One could instead act only on the replicas for
keys whose probabilities have changed; this is insecure since
accesses are non-uniform during the change. In Figure 3, if
we only download a, add a new replica for it and delete one
for D, then an adversary can infer that a grew in popularity.

Our solution builds on the latter approach, ensuring effi-
ciency and security using an online replica swapping mecha-
nism described next. To make replica swapping performant
and secure, it must work in conjunction with two other tech-
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niques: adjusting the fake query distribution and caching
replicas at the proxy.

Replica swapping. Our key insight in adapting to change in
query distributions is that since the total number of replicas
for any distribution is always exactly 2n (including dummy
replicas), a transition from π̂ to π̂′ ensures that for each key
ki that gains a replica, there must be another key k j that loses
a replica. Therefore, handling changes in query distributions
simply requires, for all such keys, reading k j’s value and writ-
ing it to one of k j’s replicas, a process we refer to as replica
swapping. PANCAKE performs these swaps without revealing
any information about the change by piggybacking the replica
swaps atop normal client accesses. Maintaining uniform ac-
cesses during replica swapping requires changes to the Batch
procedure and the fake access distribution as described in §4;
we describe these changes next.

During replica swapping, the modified Batch uses two lists:
G and L. G is the set of replicas that need to be created and L
is the set of replicas that need to be removed. Formally, if S
is the set of keys that must gain replicas, T is the set of keys
that must lose replicas, and R(k, π̂′,α) = dπ̂′(k)/αe, then,

G= {(k, j) |k ∈ S, j ∈ [R(k, π̂,α)+1, . . . ,R(k, π̂′,α)]}
L= {(k, j) |k ∈ T, j ∈ [R(k, π̂′,α)+1, . . . ,R(k, π̂,α)]}

A pseudocode procedure for generating these lists from π̂ and
π̂′ is given in the full version [25], along with a description of
the modified Batch. It is not hard to see that |G|= |L| always
(since |S|= |T |), and that swapping each replica in L for one
in G results in all keys having the right number of replicas
under π̂′. This swapping is done opportunistically by Batch:
when a replica in L is read in a batch, either by a real or a
fake query, its value is updated to the value associated with a
replica in G during the writeback. For security reasons, PRF
labels for replicas in G are not changed. Instead, PANCAKE

maintains a mapping between the label of replicas in L and the
replica in G it will be swapped with. On subsequent queries
during the transition, Batch consults the mapping for the right
labels. This metadata can be deleted after periodic rotation of
the cryptographic keys. We describe key rotation in the full
version [25]. When all swaps have occurred, we switch back
to the normal Batch procedure for π̂′.

As a concrete example of replica swapping, consider Fig-
ure 3. The set G contains the replica (a,2), while L contains
(D,3). Note that both G and L could contain dummy repli-
cas, depending on how the distribution changes. Batch would
swap the replicas for keys a and D on the first access to
(D,3) ∈ L by writing back an encryption of key a’s value
(because (a,2) ∈ G) instead of a re-encryption of the dummy
value D. To enable this, PANCAKE would maintain a mapping
that indicates the label of (a,2) is F(D,3).

Adjustments to fake access distribution. Two more modifi-
cations are needed during the transition. First, we must use a
different fake access distribution to ensure that reads to keys
that have gained replicas always succeed. To see why this is
necessary, consider again the example in Figure 3. If a query
tries to read key a by accessing replica (a,2) before the value
of (D,3) is changed, the read will return D’s value instead
of a’s. Thus replica (a,1) must be read, but forcing this makes
(a,1)’s probability too high, violating security.

PANCAKE handles this by temporarily increasing the
threshold α to α′ = maxk{π′(k)/R(k, π̂,α)}, and using a tem-
porary fake access distribution π̃′f to satisfy Equation 1 with

α′. For each (k, j) ∈ G, we set π̃′f (k, j) = α′
2nα′−1 , and k’s

existing replicas have π̃′f =
α′−π̂′(k)/R(k,π̂,α)

2nα′−1 . For other keys,

π̃′f (k, j) is set to α′−π̂′(k)/R(k,π̂′,α)
2nα′−1 .

Since α′ ≥ α, the real access probability δ = 1/2nα′ is
lower during replica swapping. As such, this may lead to



some real queries being delayed to later batches. This may
increase latency for some queries during replica swapping,
but we show in §6.2 that replica swapping completes in a few
minutes even for drastic changes in the distribution.

Replica caching. PANCAKE computes the mapping between
each label in L and the replica in G it will be swapped with
when the distribution change is detected. However, the actual
values of replicas in G must be propagated to those in L during
subsequent accesses to them. Without any additional mecha-
nism, reads to keys with replicas in G may access incorrect
values. To ensure correctness, when a replica in G is read
during Batch, its value is cached at the proxy. This value is
then propagated to the replica in L when it is next accessed,
while the actual read is served from the cache.

Insertion and deletion of keys. We have assumed so far that
the support size is fixed; interestingly, the replica swapping
procedure can support changes in the set of keys. This can be
viewed as a distribution change where supp(π̂′) 6= supp(π̂).
As long as PANCAKE is initialized with enough replicas to
handle the maximum support size, new keys can be inserted
by swapping a dummy replica for the new key, and vice versa
for deletion. Some additional metadata is needed, but similar
to the PRF label mapping it can be deleted as soon as cryp-
tographic keys are rotated (details in the full version [25]).

5.2 Security Analysis
We prove that PANCAKE’s accesses remain uniform even for
time-varying distributions, under the assumption that changes
in distributions can be detected instantaneously. We formalize
our goal as a generalization of the static ROR-CDA security
notion. We call this new notion “real-or-random security un-
der chosen dynamic distribution attack”, or ROR-CDDA. It
is similar to its static analogue except that it uses two distribu-
tions π and π′: after an adversarially chosen number of queries
the distribution changes from π to π′. We let Advror-cdda(A) be
the ROR-CDDA advantage of an adversary A. It captures the
ability of A to distinguish between a real PANCAKE execution
during a distribution change (ROR-CDDA1) and uniformly
random accesses (ROR-CDDA0). The following theorem cap-
tures the ROR-CDDA security of PANCAKE.

Theorem 2 Let q≥ 0 and Q = q ·B. Let π,π′, π̂, π̂′ be distri-
butions. For any q-query ROR-CDDA adversary A against
PANCAKE we give adversaries B,C,D1,D2 such that

Advror-cdda
PANCAKE(A)≤ Advprf

F (B)+Advror
E (C)

+ Advdist
Q,π,π̂(D1)+Advdist

Q,π′,π̂′(D2)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D1,D2 each use at most Q queries and run
in time that of A plus a small overhead linear in Q.

Discussion. Full details of the definitions and a proof of The-
orem 2 appear in Appendix A. We discuss here only one

salient point regarding ROR-CDDA. ROR-CDDA models
the shift from π to π′ as happening and being detected instan-
taneously. This may not be realistic in some cases, even with
state-of-the-art techniques in detecting distribution changes
(as used in PANCAKE, discussed in next subsection). Thus, we
cannot rule out the case where PANCAKE processes queries
from π′ before the change is detected (treating them like
samples from π̂). The distribution of these queries would be
non-uniform, with bias related to the difference between π

and π′. If the adversary knows the bias, using it in an attack
would be possible but challenging—indeed, we are not aware
of any published attacks that even consider the possibility of
distribution changes.

5.3 Detecting Changes in Query Distribution
Detecting distribution changes using statistical tests is a well
studied problem [34, 36, 61, 67]. While it is possible to have
PANCAKE receive external signals (e.g., from an analyst)
when the distribution changes, our implementation incorpo-
rates the two-sample Kolmogorov–Smirnov (KS) test [36,61],
a standard statistical tool, to detect such changes automatically.
Specifically, recall that PANCAKE maintains a histogram H of
observed accesses to maintain an estimate π̂ for distribution π.
In order to track changes to the distribution, PANCAKE addi-
tionally maintains a running histogram Hrunning over a sliding
window of the w latest accesses at the proxy. PANCAKE then
uses KS test to determine when the underlying distribution
corresponding to Hrunning differs from π̂. If the test indicates
a change, PANCAKE uses the current Hrunning snapshot to in-
form the estimate π̂′ for the new distribution π′.

Detecting changes in distributions, and responding to these
changes involves balancing security and efficiency. If the test
is too sensitive the system will waste resources adjusting to
spurious changes; on the other hand, as discussed above, an
insensitive test could leak information about queries. While it
is possible to use other statistical tests [67], or an ensemble of
tests to navigate this tradeoff between performance and secu-
rity, no statistical test is perfect. We present several evaluation
results related to detecting and adapting to changes in query
distribution, along with sensitivity analysis, in §6.2.

6 Evaluation
We now evaluate PANCAKE across a wide variety of scenarios,
including main-memory and secondary storage-based data
stores, static and dynamic distributions, deployment settings
and workloads. We start by briefly describing the evaluation
methodology, followed by detailed discussion of our results.

Compared approaches. We compare PANCAKE against two
approaches: (1) an insecure baseline that provides no secu-
rity guarantees, and (2) non-recursive PathORAM [63] (with
Z = 4), a state-of-the-art ORAM. The former serves as an
upper bound on PANCAKE performance, since it corresponds
to a data store with no security overheads. The latter, on the
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Figure 4: Performance for in-memory server storage (Redis). (a, b) PANCAKE’s throughput is over 220× higher than PathORAM and
within ∼6.8–7.6× of the insecure baseline for a single-threaded proxy; note that the y-axis is in log-scale. (c, d) With multiple proxy threads,
PANCAKE’s peak throughput is within 3.4–6.3× and latency within 2.3–2.6× of the insecure baseline.

other hand, is the state-of-the-art design that provides security
under our model (as well as under stronger models where an
adversary can actively inject its own queries). As discussed
earlier, our comparison against the latter should be interpreted
as highlighting the huge efficiency gap between countermea-
sures in the two threat models. We use batch size B = 3 for
PANCAKE’s Batch algorithm.

We compare these approaches using two representative stor-
age backends: an in-memory KV store Redis [54], and a per-
sistent SSD-based KV store RocksDB [55]. Our PathORAM
deployment used an open-source implementation [14,58]. For
PathORAM and PANCAKE, client queries are forwarded to
the data store via a proxy server; for the insecure baseline,
client queries are forwarded to the backend storage server
without any intermediary proxy.

The PathORAM implementation used in our evaluation [14,
58] is single-threaded. TaoStore [57] and ConcurORAM [13]
implement multi-threaded PathORAM; we omit results for
them since they employ specialized storage backends adapted
for ORAMs, eschewing fair comparison with backends we
investigate. We note, however, that the performance reported
in [13, 57] is at least an order of magnitude lower than PAN-
CAKE even with specialized storage backends.

Experimental setup. Our experiments run on Amazon EC2.
The storage backend runs on a single t3.2xlarge instance
with 8 vCPUs, 32GB RAM, and 1Gbps network and disk
bandwidth. We use 1Gbps links and proxy/client machines
with sufficient resources (r4.8xlarge instances with 32 vCPUs,
244GB RAM, 10Gbps network bandwidth) to highlight the
impact of network bandwidth as a bottleneck.

Dataset and workloads. We use the Yahoo! Cloud Serv-
ing Benchmark (YCSB) [17], a standard benchmark for KV
stores, to generate the datasets and workloads. The dataset
contains 220 KV pairs, with 8B keys and 1KB values. We
confine our dataset size to 1GB since PathORAM has pro-
hibitively large initialization times (> 24 hours) and storage
overheads (> 10×) with larger datasets, while PANCAKE per-
formance is essentially independent of dataset size.

We evaluate system throughput and latency using two
YCSB workloads: Workload A (50% reads, 50% writes) and

C (100% reads). These workloads represent two extremes in
read-write proportions; other YCSB workloads either have
intermediate read-write proportions (e.g., Workload B, D)
or contain queries not supported by PANCAKE (e.g., Work-
load E). YCSB uses a Zipf distribution over key accesses (with
skewness parameter = 0.99, i.e., very skewed), which is rep-
resentative of access patterns in real-world deployments [17].

6.1 Performance for Static Distributions

We first compare the performance for different approaches
with various storage backends under static query distributions.

In-memory server storage (Redis, Figure 4). With a sin-
gle proxy thread, PANCAKE and PathORAM performance is
bottlenecked by the proxy. For this evaluation setting, PathO-
RAM achieves throughput ∼1600× lower compared to the
insecure baseline. This is because PathORAM issues 160 stor-
age backend requests (= Z log2 N, Z = 4, N = 220) for every
client request, along with complex tree and stash management.

PANCAKE achieves significantly better throughput (as
much as 229× better) compared to PathORAM. In compar-
ison to the insecure baseline, PANCAKE average latency is
within 2.3–2.6× and throughput is within 6.8–7.6× (Fig-
ure 4(a), 4(b)). This is a cumulative effect of three fac-
tors: (1) 3× bandwidth overhead due to batch size B = 3,
(2) 2× overhead since each request generates a read and a
write request in PANCAKE, and (3) overheads due to encryp-
tion/decryption. Our evaluation confirms that adding encryp-
tion/decryption to the insecure baseline brings PANCAKE’s
relative throughput overhead to 6×. We note that PANCAKE’s
99th percentile latency (not shown in graphs) is relatively
higher (within 4.1–5.6× the insecure baseline) due to queue-
ing delays from PANCAKE’s Batch algorithm. We note that if
reducing tail latency were the goal, one can achieve that at the
cost of higher bandwidth overheads by increasing B (§6.3).

With multiple proxy threads, PANCAKE peak throughput is
within 3.4× of baseline for the read-only workload (YCSB
Workload C) — a factor of 2 better than the single proxy
thread. This reduction in relative overhead is due to the shift
in performance bottleneck to the network bandwidth in the
multi-threaded setting. We note that all network links are full-
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Figure 5: Performance for SSD-based server storage (RocksDB). (a, b) PANCAKE’s throughput is 17.3× higher than PathORAM and within
∼10.7–11.3× of the insecure baseline for a single-threaded proxy; note that the y-axis is in log scale for (a). (c, d) Using multiple proxy
threads, PANCAKE’s peak throughput is within 3.3–5.3× and average latency within 2–2.4× of the insecure baseline.
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Figure 6: Handling dynamic distributions. (a, b) PANCAKE detects larger distribution changes in fewer queries, relative to smaller changes.
(c) PANCAKE can adapt from a skewed to uniform distribution with UpdateCache size < .05% of server storage over evaluated workloads.

duplex. As such, although every read request generates a read
and a write request in PANCAKE, write requests saturate the
network bandwidth to the server, while read responses saturate
the bandwidth from the server, i.e., reads and writes saturate
different directions of the link. In contrast, the read-only work-
load for the insecure baseline is only able to saturate one direc-
tion of the link. For the 50% read, 50% write workload (YCSB
Workload A), PANCAKE’s throughput remains the same, while
baseline throughput increases by ∼1.8×, since the baseline
can now also exploit full-duplex links. The throughput ver-
sus latency variation (Figure 4(d)) shows that the throughput
reported in Figure 4(c) corresponds to the knee point in the
curve (i.e., the sweet spot for latency and throughput) for both
the insecure baseline and PANCAKE.

SSD-based server storage (RocksDB, Figure 5). With
RocksDB, PathORAM achieves throughput ∼196× worse
than the insecure baseline. Compared to the in-memory case,
the slight improvement relative to the insecure baseline is due
to PathORAM overheads overlapping with higher overheads
of accessing data off SSD. As such, the proxy overheads ac-
count for a smaller fraction of the end-to-end performance.
PANCAKE’s performance is ∼17.3× better than PathORAM
and within ∼11.3× of the baseline.

With multiple proxy threads, PANCAKE peak throughput is
within 3.3× of the insecure baseline for read-only workload
and within 5.3× for the 50% read, 50% write workload simi-
lar to the in-memory case. Figure 5(d) confirms that through-
put in Figure 5(c) corresponds to the performance knee-point.

Storage overheads. PANCAKE’s server storage requirements

are ∼4× lower than the non-recursive PathORAM implemen-
tation that we use (= 2 ·Z ·N, for Z = 4) and within 2× of
the insecure baseline, consistent with the theoretical storage
overheads for both approaches. PANCAKE’s proxy storage
requirement is a small fraction of the total storage footprint
(∼1%), similar to PathORAM (∼0.33%) for all evaluated
workloads. PANCAKE proxy storage overheads due to the
UpdateCache is dependent on write-rates and skew in the
distribution; we evaluate these in §6.3.

6.2 Adapting to Dynamic Distributions
We evaluate PANCAKE’s ability to detect and adapt to changes
in distribution in isolation (i.e., without the effect of writes)
using YCSB Workload-C (read-only). We present results for
the in-memory storage backend. We set the sliding window
size w for the running histogram Hrunning to 10 million queries,
and the confidence interval for the KS test to 95%.

Detecting distribution change. We quantify the cost of de-
tecting distribution change in terms of the number of queries
that must be observed before the change is detected. Fig-
ure 6(a) measures this as the skewness for the Zipf distribution
is varied; as expected, the test detects larger changes in distri-
bution (e.g., skewness drop from 0.99 to 0.0) in fewer queries,
relative to much smaller changes (e.g., skewness drop from
0.99 to 0.9). This is consistent with the KS test’s sensitivity.

In Figure 6(b), we shift the Zipf key popularities by κ, i.e.,
the most popular key becomes the κth most popular key, the
second most popular key becomes the (κ+ 1)th most pop-
ular, and so on, while the κ least popular keys become the
most popular keys. This models changes in real-world access
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Figure 7: (a) Due to asymmetric and unpredictable available download and upload speeds over the Internet, both the insecure baseline and
PANCAKE observe reduced throughput (0.65–0.85×) for the WAN setting when compared to the cloud setting. (b, c) UpdateCache size
increases with write rate for a fixed Zipf distribution (skewness = 0.99) and decreases as skew increases for a fixed write-rate (50%), but
remains well below 10% of server storage for all evaluated workloads.

patterns where some items can suddenly become more popu-
lar [4]. Again, we observe that larger changes in distribution
(e.g., shift by κ = 256) is detected in fewer queries (e.g., a
few hundred thousand) than smaller changes (e.g., shift by
κ = 1, which may require millions of queries).

The results for both settings show that PANCAKE’s mech-
anism for detecting changes in distribution works well in
practice, e.g., at 100K queries per second, PANCAKE can de-
tect changes in 1–2 seconds.

Adapting to distribution change. We evaluate PANCAKE
overheads in adapting to dynamic distributions when the un-
derlying distribution changes. In particular, we change the
distribution from high skewed (skewness parameter = 0.99)
to smaller skews, with the extreme case of a pure uniform
access pattern (skewness parameter = 0).

Our results show that PANCAKE can adapt to even drastic
changes in distribution (Zipf to pure uniform) in less than
∼ 25 minutes (for updating newly assigned replicas across
all keys), while using < 0.05% of the server storage at the
proxy (Figure 6(c)). This is interesting for two reasons: (1)
PANCAKE observes only a negligible increase in proxy storage
during the adaptation period, and (2) the adaptation occurs in
the background, i.e., without stopping query execution, and
in fact piggybacks on the query execution to carry out the
adaptation. As such, higher query rates would lead to even
faster adaptation to changes in distribution.

6.3 Performance Sensitivity to Parameters
We now analyze the sensitivity of PANCAKE’s performance
and storage overheads to various parameters. We highlight
differences in our experimental setup wherever necessary.

Effect of proxy location (Figure 7(a)). We measure the im-
pact of proxy location relative to the storage server by placing
the proxy in a university network, connected to the cloud stor-
age via the Internet. The proxy server has a 16-core 2.60GHz
Intel Xeon CPU, 128GB RAM and 1Gbps access link to
the Internet. Figure 7(a) measures the throughput for this
setup (which we refer to as WAN proxy) using multiple proxy
threads. The throughput for WAN-Proxy is slightly lower
than Cloud-Proxy (Figure 4(c)), since the available bandwidth

over the Internet was lower than 1Gbps and often unstable.
Moreover, the measured upload bandwidth was lower than
the download bandwidth over the Internet, which resulted in
slightly lower throughput (∼ 0.65×) for PANCAKE, and the
insecure baseline for Workload A (50% reads, 50% writes).

Impact of write rates (Figure 7(b)) and request distribu-
tions (Figure 7(c)) on UpdateCache. We quantify the proxy
storage overhead due to UpdateCache by measuring its size
for varying fractions of write rates and for varying skew in
underlying distribution across keys. Figure 7(b) shows that
UpdateCache size is well below 10% of the server storage
even with 100% writes. For the more realistic case of lower
write rates, the storage overhead is much lower, e.g., with 20%
write rate, the overhead reduces to < 3% of server storage.

While most real-world distributions are heavily skewed [4],
the fraction of keys with > 1 replica in PANCAKE increases
with decrease in skew. This can lead to an increase in Update-
Cache size, since PANCAKE caches values for such keys while
propagating writes to their replicas. We evaluate this overhead
by measuring UpdateCache size for workloads with different
degrees of skew for the YCSB Workload A (50% read-50%
write). Figure 7(c) shows that decreasing skewness from 0.99
to 0.8 increases UpdateCache size from 5% to 9% of server
storage, i.e., UpdateCache size remains a small fraction of
server storage even at low skew.

Effect of batch-size B (Figure 8(a)-8(b)). Recall from §4.4
that, for a batch size of B, PANCAKE incurs bandwidth over-
head of B×; Figure 8(a) shows that when network bandwidth
is the bottleneck, PANCAKE throughput degrades proportion-
ally to the value of B. At the same time, larger B values leads
to lower tail latency, since requests wait in the query queue
for fewer batches — while B = 2 leads to an unstable queu-
ing system (Figure 8(b)), B > 2 observes little or no queuing
delays. B thus exposes a tradeoff between tail latency and
throughput, where B = 3 provides a sweet spot for both. We
do not evaluate latency vs. batch size since latency is tied to
query inter-arrival times. For fixed inter-arrival times, latency
overheads can be extrapolated from Figure 8(b).
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Figure 8: (a, b) Impact of batch size on PANCAKE throughput and
query queue size. See §6.3 for discussion.

7 Discussion
PANCAKE is a first step toward designing high-performance
data stores that are secure against access pattern attacks by
passive persistent adversaries. In this section, we discuss sev-
eral possible avenues for future research.

Correlated accesses. Our security analysis for PANCAKE re-
lies on the assumption that queries are independent; in some
application contexts, queries can be correlated. To the best
of our knowledge, frequency analysis for correlated queries
has not been explored. We present some preliminary results
in the full version [25]; specifically, we show that security
in a variant of ROR-CDA that allows arbitrary correlations
is equivalent to ORAM security, and must therefore suffer
from the same lower bounds on ORAM efficiency. However,
this result relies on the adversary being able to construct very
specific and artificial query correlations. We believe that we
need new technical tools to explore access patterns attacks
under realistic query correlations.

Stronger adversaries. PANCAKE targets a security model
where the attacker does not tamper with data or do rollback
attacks. PANCAKE’s use of authenticated encryption means
tampering is detectable, and preventing rollbacks is possible
via authenticated operation counters. However, unlike ORAM,
PANCAKE does not provide security against adversaries that
can inject their own queries [12, 68]. We discuss how such
chosen-query attacks could work on PANCAKE, and how it
mitigates such attacks to some extent in the full version [25].
Informally, we show that PANCAKE does no worse than other
efficient schemes against such attacks.

Dynamic distributions. For the case of dynamic distribu-
tion, PANCAKE’s security is proven under the assumption that
changes in distribution happen instantaneously and can be
detected instantaneously. While our evaluation suggests that
PANCAKE can detect changes in distribution within a few
seconds, it would be nice to generalize our analysis to capture
more gradual changes in distribution.

Improved proxy implementation. The current PANCAKE
implementation uses a stateful proxy that stores distributions
(π̂, π f ), key→replica counts, and pending writes in the Up-
dateCache. It would be interesting to explore implementations
that allow the proxy to be more scalable (e.g., using a dis-

tributed proxy implementation) and fault tolerant (e.g., using
techniques similar to [18]).

Variable-sized values. Similar to existing ORAM designs, to
avoid attacks based on length leakage, current PANCAKE de-
sign assumes that values stored in the data store are fixed-size
or have been padded to a fixed maximum length. While this is
useful for many applications (e.g., values have fixed size when
storing tweets, and storage systems like DynamoDB have up-
per bounds on value sizes), forcing values to be padded can
cause prohibitive space overheads if there is a large difference
between the largest and smallest values. It would be interest-
ing to extend PANCAKE design to avoid storage overheads
while protecting against attacks based on length leakage.

Hiding access patterns in cache-based systems. Many real-
world systems execute queries on SSD-based storage with
in-memory cache (e.g., MySQL server with memcached as
a cache [44]). The problem of hiding access pattern seems
to be at odds with achieving high performance in such de-
ployment settings — intuitively, for workloads with skewed
access patterns, it is possible to achieve performance gains
by serving popular keys from the faster cache [69] at the cost
of leaking that keys in cache are accessed more frequently
than those not in cache. Hiding access patterns requires all
keys to be accessed uniformly thus invalidating the benefits
of a cache without any additional mechanism. Our prelim-
inary evaluation, presented in the full version [25], shows
that depending on the distribution and available cache size,
existing systems including PANCAKE can observe as much as
an order-of-magnitude throughput degradation compared to
the insecure baseline that can effectively exploit the benefits
of cache. It would be interesting to explore techniques that
avoid such performance degradation while providing security
against access pattern attacks.

8 Conclusion
In this paper, we explored a novel frequency-smoothing based
countermeasure against access pattern attacks on outsourced
storage in a new formal security model. We instantiated this
approach in a new system called PANCAKE, the first to resist
access pattern attacks by persistent passive adversaries while
maintaining low constant factor overheads in storage and
bandwidth. As such, PANCAKE’s throughput is 229× higher
than PathORAM, and within 3–6× of insecure baselines.
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A Security Proofs

In this appendix, we give some technical preliminaries and
then prove Theorems 1 and 2.

Technical preliminaries. Throughout, we will use the con-
crete security approach [6]. For a (keyed) function F : K×
{0,1}∗ → {0,1}m and adversary A, we define the pseudo-
random function (PRF) advantage relative to two games. In
game PRF1, A has access to an oracle that accepts inputs
from {0,1}∗ and outputs the PRF value on that point and a
uniformly random key (which is the same for all queries). In
game PRF0, A’s oracle is a (lazy-sampled) random function
from {0,1}∗ to {0,1}m. We define A’s PRF advantage to be

Advprf
F (A) =

∣∣∣Pr
[

PRF1A⇒ 1
]
−Pr

[
PRF0A⇒ 1

]∣∣∣
where the probability is taken over the random choice of key
(in PRF1) or lazy-sampled random function (in PRF0) and
the adversary’s internal random coins. Below, we will leave
implicit the coin spaces involved in probabilities.

An authenticated encryption with associated data (AEAD)
scheme E = (KeyGen,Enc,Dec) is a triple of algorithms. The
function E.KeyGen takes no inputs and outputs elements of
K. The function E.Enc takes a key from K, a plaintext from
M, (optionally) some associated data from A, and outputs
ciphertexts in C. The function E.Dec takes a key from K, a
ciphertext from C, (optionally) some associated data from A,
and outputs a plaintext in M or ⊥.

We additionally require AEAD schemes to have a function
len which takes a positive integer ` representing a plaintext
length and outputs the length of any ciphertext of a plaintext
of length `. Essentially, the length of any plaintext’s cipher-
text must be computable given only the plaintext length and
nothing else. Most natural AEAD schemes have this property.

For an AEAD scheme E and adversary A, we define the
real-or-random (ROR) advantage of A against E relative to
two games, ROR1 and ROR0. In the first A has access to an
E.Enc oracle with uniformly random key, and in the second
A’s oracle returns uniformly random bit strings of length
len(|m|) where |m| is the length of the input. We define A’s
ROR advantage against E as

Advror
E (A) =

∣∣∣Pr
[

ROR1A⇒ 1
]
−Pr

[
ROR0A⇒ 1

]∣∣∣ .
For a distribution π and adversary D that outputs a bit,

let DISTD
q,π be the game that samples q times from π, runs

D on the resulting outputs, and outputs D’s output. For two
distributions π,π′ with supp(π) = supp(π′), we measure their
q-sample indistinguishability from an adversary D via the
advantage measure

Advdist
q,π,π′(D) =

∣∣∣Pr
[

DISTD
q,π⇒ 1

]
−Pr

[
DISTD

q,π′

]∣∣∣ .
This just captures the computational indistinguishability of
the two distributions, given q samples from them.

Frequency smoothing KV schemes. Recall from §4 that
PANCAKE has two algorithms: Init and Batch. To model dis-
tribution estimation errors and adjustments made when distri-
butions change (as per §5), we extend our formalism by intro-
ducing two further algorithms. More precisely, an encrypted
KV scheme EKV = (Init,Batch) is a pair of algorithms:

• A randomized initialization algorithm Init that takes
as input an estimated distribution π̂, a KV store KV,
and a threshold α, and outputs an encrypted KV store
KV′, a fake distribution π f , a function R, and a real
query probability δ. We denote running this algorithm
by (KV′,π f ,R,δ)←$ Init(π̂,KV,α).

• A randomized, stateful batch query algorithm Batch that
takes as input a key k, the function R that maps keys to
replica counts, and outputs a batch of B labels. We denote
running this algorithm by (`1, . . . , `B)←$ Batch(k). Note
that to avoid notational clutter we omit from the notation
the values π̂,π f ,δ and the state that Batch relies upon.

We have assumed distributions have efficient representations,
and abuse notation by using the same variables π, π̂, π f , etc.,
as both distributions and their representations. For any fixed
distribution π, we assume that Init always outputs an en-
crypted KV store of a constant size n′. PANCAKE satisfies
these assumptions; its algorithms were described in the body.

Notice that our formalization here only handles read
queries. As discussed in the body, we perform writes by
always doing write-backs. Thus, security analysis can be
reduced to the read-only case, greatly simplifying our for-
malization and security definitions.

Security for static distributions. We now formalize our
ROR-CDA definition for a fixed scheme EKV = (Init,Batch).

https://bit.ly/2zLrDsI
https://bit.ly/2zLrDsI


ROR-CDA1Aq,π,π̂:

KV←$A1

(KV′,π f ,δ)←$ Init(π̂,KV,α)
kF←$K;kAE←$K

For i in 1 to q:
wi←$ π

`1, . . . , `B←$ Batch(wi)

For j in 1 to B:
τB[ j]← (` j,KV

′[` j])

τ[i]← τB

b←$A2(KV
′,τ)

Return b

ROR-CDA0Aq :

KV←$A1

KV′← /0

For i in 1 to n′:
`i←${0,1}m

vi←$C

KV′← KV′ ∪{(`i,vi)}
For i in 1 to q:

For j in 1 to B:
`←$ Labels(KV′)
v← KV′[`]
τB[ j]← (`,v)

τ[i]← τB

b←$A2(KV
′,τ)

Return b

Figure 9: Security game for key value store schemes in the static
distribution case. The threshold α is an implicit parameter of the left
game. The procedures Init and Batch are as defined in Figure 2.

We measure the success of an adversary A in attack-
ing EKV by its ability to distinguish between the games
ROR-CDA1 and ROR-CDA0 as defined in Figure 9. The
game ROR-CDA1 is parameterized by the number of queries
q, the true distribution π and the estimated distribution π̂. We
also take α as an implicit parameter. The adversary runs and
chooses a plaintext distribution, then Init is executed followed
by a sequence of queries drawn according to π. A transcript
of accesses is generated by Batch. The adversary runs again
with input the encrypted database and transcript. The two
adversary executions can share state.

In game ROR-CDA0, the adversary sees a randomly gen-
erated encrypted database and queries chosen uniformly at
random. The advantage of A with q queries against EKV is
defined as

Advror-cda
EKV (A) = |Pr[ROR-CDA1Aq ⇒ 1]

− Pr[ROR-CDA0Aq ⇒ 1]| .

Next we state a key result, that PANCAKE achieves
ROR-CDA security assuming estimation is sufficiently good.
In particular this shows optimal security should π̂ = π.

Theorem 1 Let q≥ 0 and Q = q ·B. Let π, π̂ be distributions.
For any q-query ROR-CDA adversary A against PANCAKE
we give adversaries B,C,D such that

Advror-cda
PANCAKE(A)≤Advprf

F (B)+Advror
E (C)+Advdist

Q,π,π̂(D)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D each use Q queries and run in time that
of A plus a small overhead linear in Q.

Proof. We prove Theorem 1 using a series of standard
cryptographic game transitions and reductions. We start with
the game ROR-CDA1, replacing Init and Batch with the al-
gorithms used in PANCAKE (see Figure 2). Game G1 is the

same as ROR-CDA1 except we replace the PRF F with a
truly random function. The difference between the success of
adversary A in these two games can be upper bounded by the
advantage of a PRF adversary B:∣∣∣Pr

[
ROR-CDA1Aq ⇒ 1

]
−Pr [G1⇒ 1 ]

∣∣∣≤ Advprf
F (B) .

We then move to game G2, which is the same as G1 except
we replace the authenticated encryption function E with a
random function outputting strings in the ciphertext space.
The difference between the success rate of A in G2 and G1 can
be upper bounded by a real-or-random adversary C against
the encryption scheme E:

|Pr [G1⇒ 1 ]−Pr [G2⇒ 1 ]| ≤ Advror
E (C) .

Finally we let G3 be the same as G2 except that we replace π̂

with π everywhere. A straightforward reduction gives that∣∣∣Pr
[

ROR-CDA1Aq ⇒ 1
]
−Pr [G1⇒ 1 ]

∣∣∣≤ Advdist
Q,π,π̂(D) .

We now come to the core of the argument, that G3 is identi-
cally distributed to ROR-CDA0. In G3 all labels and values
are random strings. Further, each of the accesses is a uni-
formly random choice from all possible labels.

To see this, observe that each access in a batch is inde-
pendent and sampled from π with probability δ or π f with
probability 1−δ. By construction of the scheme as described
in Equation 1, the probability of any replica being accessed is
the same. Let τ̂ be a random variable representing the output
of Batch on input a sample from π, and τ̂i be the ith access in
the output. Then for all i and any replica (k, j)

Pr[τ̂i = (k, j)] = Pr[τ̂i = (k, j) | qtype = 0] · (1−δ)

+ Pr[τ̂i = (k, j) | qtype = 1] ·δ

=
α− π(k)

R(k)

n′α−1
· n
′α−1
n′α

+
π(k)
R(k)

· 1
n′α

=
1
n′

.

The theorem follows by the independence of the τ̂i, and com-
bining terms. �

Security analysis for dynamic distributions. Next we ana-
lyze security for dynamic distributions. First we must extend
the formalization of frequency-smoothing KV schemes from
above to account for the extended semantics. Specifically the
batch algorithm Batch can now take an optional additional
input π̂′, representing an updated distribution estimate. This
signals to Batch that it must adjust to the new distribution.
We denote running Batch as before when given this addi-
tional input by `1, . . . , `B←$ Batch(π̂′,k). Recall that Batch
is stateful and so when it gets a new estimate π̂′, it also has
access to the old estimate π̂ as well as other state values. For
PANCAKE, the Batch algorithm would use this information
to run MakeReplicaLists and to setup its replica bookkeeping
(refer to the full version for more detail). We now introduce



ROR-CDDA1Aq,π,π′,π̂,π̂′ :

(KV,c)←$A1

(KV′,π f ,δ)←$ Init(π̂,KV,α)
For i in 1 to c:

wi←$ π

`1, . . . , `B←$ Batch(wi)

For j in 1 to B:
τB[ j]← (` j,KV

′[` j])

τ[i]← τB

For i in c to q:
wi←$ π′

`1, . . . , `B←$ Batch(π̂′,wi)

For j in 1 to B:
τB[ j]← (` j,KV

′[` j])

τ[i]← τB

b←$A2(KV
′,τ)

Return b

ROR-CDDA0Aq :

(KV,c)←$A1

n← supp(π)
KV′← /0 ; KV′′← /0

For i in 1 to n′:
`i←${0,1}m

vi←$C

KV′← KV′ ∪{(`i,vi)}
For i in 1 to q:

For j in 1 to B:
τB[ j]←$ Labels(KV′)

τ[i]← τB

b←$A2(KV
′,τ)

Return b

Figure 10: Security games for dynamic key value store schemes. The
threshold α is an implicit parameter of the left game.

a security definition ROR-CDDA or, real-or-random indistin-
guishability under chosen-dynamic-distribution attack. Game
ROR-CDDA1 is now parameterized by the query number and
four distributions π, π̂,π′, π̂′. The adversary runs and can pick
both a plaintext KV store and a change point c ∈ [0,q]. After
the first c queries, keys switch from being sampled accord-
ing to π to being sampled according to π′ and Batch is run
with the additional input π̂′. The ROR-CDDA0 is the same as
ROR-CDA0 except for the syntactic change that A1 outputs
the additional value c. Otherwise the distribution over KV′ (a
KV store of uniform bit strings) and τ (qB uniform requests)
are the same as before.

The ROR-CDDA advantage of an adversary A against a
scheme EKV is defined as

Advror-cdda
EKV (A) =

∣∣∣Pr
[

ROR-CDDA1Aq,π,π′,π̂,π̂′ ⇒ 1
]

− Pr
[

ROR-CDDA0Aq ⇒ 1
]∣∣∣ .

One could easily extend this definition to handle a longer
sequence of changes: our results extend to this setting as well.
We note that the definition also implies that the transcript
of queries is indistinguishable from one that is independent
of the change point, meaning this information is hidden by
schemes that meet the definition.

We now prove the following theorem about the dynamic
version of PANCAKE.

Theorem 2 Let q≥ 0 and Q = q ·B. Let π,π′, π̂, π̂′ be distri-
butions. For any q-query ROR-CDDA adversary A against
PANCAKE we give adversaries B,C,D1,D2 such that

Advror-cdda
PANCAKE(A)≤ Advprf

F (B)+Advror
E (C)

+ Advdist
Q,π,π̂(D1)+Advdist

Q,π′,π̂′(D2)

where F and E are the PRF and AE scheme used by PANCAKE.
Adversaries B,C,D1,D2 each use at most Q queries and run
in time that of A plus a small overhead linear in Q.

Proof. Similar to the proof of Theorem 1 above, we use
game hops to replace the PRF labels and AE ciphertexts with
random strings, and upper-bound the difference in advantage
via the PRF and AE adversaries B and C. We also replace
π̂ with π and π̂′ with π′ in game hops whose difference is
upper bounded by the appropriate reductions to distinguishers
D1 and D2. This brings us to a game G where labels and ci-
phertexts are random strings, but batches are generated using
Batch with π on input samples from π (before the change) or
with π′ on input samples from π′ (after the change).

We claim that the distribution of accesses in game G is
uniformly random, the same as in ROR-CDDA0. Because the
keys accessed in a batch are independent, it suffices to show a
single access of a batch is uniform. Let τ̂i be the ith access of
a batch generated by a query sampled from π′. Let (k, j) be
any replica. Then to compute Pr[τ̂i = (k, j)], there are a few
cases. First recall that,

Pr[τ̂i = (k, j)] = Pr[τ̂i = (k, j) | qtype = 0]Pr[qtype = 0]
+Pr[τ̂i = (k, j) | qtype = 1]Pr[qtype = 1]

where qtype = 0 means a fake query and qtype = 1 means a
real query. There are three possible cases:

Case 1: k gained replicas and j is one of its existing replicas.
Then the RHS above is equal to:

α′−π′(k)/R(k)
2nα′−1

(
1− 1

2nα′

)
+

π′(k)
R(k)

· 1
2nα′

=
1

2n

Case 2: (k, j) ∈ G. Then,

Pr[τ̂i = (k, j)] =
α′

2nα′−1
· 2nα′−1

2nα′
=

α′

2nα′
=

1
2n

.

Case 3: (k, j) is either in L or is any other replica. In this case,
Pr[τ̂i = (k, j)] = 1/2n follows from Eq. 1. �
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