
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-931971-47-8

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

Obladi: Oblivious Serializable
Transactions in the Cloud

Natacha Crooks, The University of Texas at Austin; Matthew Burke, Ethan Cecchetti,
Sitar Harel, Rachit Agarwal, and Lorenzo Alvisi, Cornell University

https://www.usenix.org/conference/osdi18/presentation/crooks

Obladi: Oblivious Serializable Transactions in the Cloud

Natacha Crooks?† Matthew Burke† Ethan Cecchetti†

Sitar Harel† Rachit Agarwal† Lorenzo Alvisi†

?University of Texas at Austin †Cornell University

Abstract
This paper presents the design and implementation of

Obladi, the first system to provide ACID transactions while
also hiding access patterns. Obladi uses as its building block
oblivious RAM, but turns the demands of supporting transac-
tions into a performance opportunity. By executing transac-
tions within epochs and delaying commit decisions until an
epoch ends, Obladi reduces the amortized bandwidth costs
of oblivious storage and increases overall system through-
put. These performance gains, combined with new oblivious
mechanisms for concurrency control and recovery, allow
Obladi to execute OLTP workloads with reasonable through-
put: it comes within 5× to 12× of a non-oblivious baseline on
the TPC-C, SmallBank, and FreeHealth applications. Latency
overheads, however, are higher (70× on TPC-C).

1 Introduction
This paper presents Obladi, the first cloud-based key value
store that supports transactions while hiding access patterns
from cloud providers. Obladi aims to mitigate the fundamen-
tal tension between the convenience of offloading data to the
cloud, and the significant privacy concerns that doing so cre-
ates. On the one hand, cloud services [3, 4, 48, 49, 62] offer
clients scalable, reliable IT solutions and present application
developers with feature-rich environments (transactional sup-
port, stronger consistency [23, 52], etc.). Medical practices,
for instance, increasingly prefer to use cloud-based software
to manage electronic health records (EHR) [17, 39]. On the
other hand, many applications that could benefit from cloud
services store personal data that can reveal sensitive informa-
tion even when encrypted or anonymized [53, 54, 74, 83]. For
example, charts accessed by oncologists can reveal not only
whether a patient has cancer, but also, depending on the fre-
quency of accesses (e.g., the frequency of chemotherapy ap-
pointments), indicate the cancer’s type and severity. Similarly,
travel websites have been suspected of increasing the price
of frequently searched flights [83]. Hiding access patterns—
that is, hiding not only the content of an object, but also when
and how frequently it is accessed, is thus often desirable.

Responding to this challenge, the systems community has
taken a fresh look at private data access. Recent solutions,
whether based on private information retrieval [2, 31],
Oblivious RAM [15, 44, 70], function sharing [83], or trusted
hardware [5, 7, 25, 44, 81], show that it is possible to support
complex SQL queries without revealing access patterns.
Obladi addresses a complementary issue: supporting ACID

transactions while guaranteeing data access privacy. This
combination raises unique challenges [5], as concurrency
control mechanisms used to enforce isolation, and techniques
used to enforce atomicity and durability, all make hiding
access patterns more problematic (§3).
Obladi takes as its starting point Oblivious RAM, which

provably hides all access patterns. Existing ORAM imple-
mentations, however, cannot support transactions. First, they
are not fault-tolerant. For security and performance, they
often store data in a client-side stash; durability requires the
stash content to be recoverable after a failure, and preserving
privacy demands hiding the stash’s size and contents,
even during failure recovery. Second, ORAM provides
limited or no support for concurrency [12, 70, 75, 86],
while transactional systems are expected to sustain highly
concurrent loads.
Obladi demonstrates that the demands of supporting transac-

tions can not only be met, but also turned into a performance
opportunity. Its key insight is that transactions actually afford
more flexibility than the single-value operations supported by
previous ORAMs. For example, serializability [61] requires
that the effects of transactions be reflected consistently in the
state of the database only after they commit. Obladi leverages
this flexibility to delay committing transactions until the end
of fixed-size epochs, buffering their execution at a trusted
proxy and enforcing consistency and durability only at epoch
boundaries. This delay improves ORAM throughput without
weakening privacy.

The ethos of delayed visibility is the core that drives Obladi’s
design. First, it allows Obladi to implement a multiversioned
database atop a single-versioned ORAM, so that read opera-
tions proceed without blocking, as with other multiversioned

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 727

databases [10], and intermediate writes are buffered locally:
only the last value of any key modified during an epoch
is written back to the ORAM. Delaying writes reduces the
number of ORAM operations needed to commit a transac-
tion, lowering amortized CPU and bandwidth costs without
increasing contention: Obladi’s concurrency control ensures
that delaying commits does not affect the set of values that
transactions executing within the same epoch can observe.
Second, it allows Obladi to securely parallelize Ring

ORAM [69], the ORAM construction on which it builds.
Obladi pipelines conflicting ORAM operations rather than
processing them sequentially, as existing ORAM implemen-
tations do. This parallelization, however, is only secure if the
write-back phase of the ORAM algorithm is delayed until
pre-determined times, namely, epoch boundaries.
Finally, delaying visibility gives Obladi the ability to

abort entire epochs in case of failure. Obladi leverages this
flexibility, along with the near-deterministic write-back
algorithm used by Ring ORAM, to drastically reduce the
information that must be logged to guarantee durability and
privacy-preserving crash recovery.
The results of a prototype implementation of Obladi

are promising. On three applications (TPC-C [80], Small-
Bank [22], and FreeHealth [42], a real medical application)
Obladi is within 5×-12× of the throughput of non-private
baselines. Latency is higher (70×), but remains reasonable
(in the hundreds of milliseconds).

To summarize, this paper makes three contributions:
1. It presents the design, implementation, and evaluation of

the first ACID transactional system that also hides access
patterns.

2. It introduces an epoch-based design that leverages the
flexibility of transactional workloads to increase overall
system throughput and efficiently recover from failures.

3. It provides the first formal security definition of a trans-
actional, crash-prone, and private database. Obladi uses
the UC-security framework [14], ensuring that security
guarantees hold under concurrency and composition.

Obladi also has several limitations. First, like most
ORAMs that regulate the interactions of multiple clients,
it relies on a local centralized proxy, which introduces
issues of fault-tolerance and scalability. Second, Obladi
does not currently support range or complex SQL queries.
Addressing the consistency challenge of maintaining
oblivious indices [5, 25, 89] in the presence of transactions
is a promising avenue for future work.

2 Threat and Failure Model
Obladi’s threat and failure assumptions aim to model
deployments similar to those of medical practices, where
doctors and nurses access medical records through an on-site
server, but choose to outsource the integrity and availability
of those records to a cloud storage service [17, 39].

Threat Model. Obladi adopts a trusted proxy threat
model [70, 75, 86]: it assumes multiple mutually-trusting
client applications interacting with a single trusted proxy in a
single shared administrative domain. The applications issue
transactions and the proxy manages their execution, sending
read and write requests on their behalf over an asynchronous
and unreliable network to an untrusted storage server. This
server is controlled by an honest-but-curious adversary that
can observe and control the timing of communication to
and from the proxy, but not the on-site communication
between application clients and the proxy. We extend our
threat model to a fully malicious adversary in our technical
report [20]. We consider attacks that leak information
by exploiting timing channel vulnerabilities in modern
processors [13, 36, 43] to be out of scope. Obladi guarantees
that the adversary will learn no information about: (i) the
decision (commit/abort) of any ongoing transaction; (ii) the
number of operations in an ongoing transaction; (iii) the type
of requests issued to the server; and (iv) the actual data they
access. Obladi does not seek to hide the type of application
that is currently executing (ex: OLTP vs OLAP).
Failure Model. Obladi assumes cloud storage is reliable,

but, unlike previous ORAMs, explicitly considers that both
application clients and the proxy may fail. These failures
should invalidate neither Obladi’s privacy guarantees nor the
Durability and Atomicity of transactions.

3 Towards Private Transactions
Many distributed, disk-based commercial database sys-
tems [8, 19, 58] separate concurrency control logic from
storage management: SQL queries and transactional
requests are regulated in a concurrency control unit and
are subsequently converted to simple read-write accesses
to key-value/file system storage. As ORAMs expose a
read-write address space to users, a logical first attempt
at implementing oblivious transactions would simply
replace the database storage with an arbitrary ORAM. This
black-box approach, however, raises both security concerns
(§3.1) and performance/functionality issues (§3.2)

Security guarantees can be compromised by simply enforc-
ing the ACID properties. Ensuring Atomicity, Isolation, and
Durability imposes additional structure on the order of in-
dividual reads and writes, introducing sources of information
leakage [5, 72] that do not exist in non-transactional ORAMs
(§3.1). Performance and functionality, on the other hand, are
hampered by the inability of current ORAMs to efficiently
support highly concurrent loads and guarantee Durability.

3.1 Security for Isolation and Durability
The mechanisms used to guarantee Isolation, Atomicity, and
Durability introduce timing correlations that directly leak
information about the data accessed by ongoing transactions.
Concurrency Control. Pessimistic concurrency controls

like two-phase locking [26] delay operations that would vi-
olate serializability: a write operation from transaction T1

728 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

cannot execute concurrently with any operation to the same
object from transaction T2. Such blocking can potentially
reveal sensitive information about the data, even when ex-
ecuting on top of a construction that hides access patterns:
a sudden drop in throughput could reveal the presence of a
deadlock, of a write-heavy transaction blocking the progress
of read transactions, or of highly contended items accessed by
many concurrent transactions. More aggressive concurrency
control schemes like timestamp ordering or multiversioned
concurrency control [1, 10, 34, 41, 66, 67, 87] allow trans-
actions to observe the result of the writes of other ongoing
transactions. These schemes improve performance in con-
tended workloads, but introduce the potential for cascading
aborts: if a transaction aborts, all transactions that observed
its write must also abort. If a write-heavy transaction Theavy
aborts, it may cause a large number of transactions to rollback,
again revealing information about Theavy and, perhaps more
problematically, about the set of objects that Theavy accessed.

Failure Recovery. When recovering from failure, Durabil-
ity requires preserving the effects of committed transactions,
while Atomicity demands removing any changes caused
by partially-executed transactions. Most commercial sys-
tems [50, 58, 59] preserve these properties through variants
of undo and redo logging. To guarantee Durability, write and
commit operations are written to a redo log that is replayed
after a failure. To guarantee Atomicity, writes performed by
partially-executed transactions are undone via an undo log,
restoring objects to their last committed state. Unfortunately,
this undo process can leak information: the number of undo
operations reveals the existence of ongoing transactions, their
length, and the number of operations that they performed.

3.2 Performance/functionality limitations

Current ORAMs align poorly with the need of modern
OLTP workloads, which must support large numbers of
concurrent requests; in contrast, most ORAMs admit little
to no concurrency [12, 70, 75, 86] (we benchmark the
performance of sequential Ring ORAM in Figure 10a).

More problematically, ORAMs provide no support for
fault-tolerance. Adding support for Durability presents two
main challenges. First, most ORAMs require the use of
a stash that temporarily buffers objects at the client and
requires that these objects be written out to server storage
in very specific ways (as we describe further in §4). This
process aligns poorly with guaranteeing Durability for
transactions. Consider for example a transaction T1 that
reads the version of object x written by T2 and then writes
object y. To recover the database to a consistent state, the
update to x should be flushed to cloud storage before the
update to y. It may however not be possible to securely flush
x from the stash before y. Second, ORAMs store metadata
at the client to ensure that cloud storage observes a request
pattern that is independent of past and currently executing

operations. As we show in §8, recovering this metadata after
a failure can lead to duplicate accesses that leak information.

3.3 Introducing Obladi
These challenges motivate the need to co-design the trans-
actional and recovery logic with the underlying ORAM data
structure. The design should satisfy three goals: (i) security—
the system should not leak access patterns; (ii) correctness—
Obladi should guarantee that transactions are serializable;
and (iii) performance—Obladi should scale with the number
of clients. The principle of workload independence underpins
Obladi’s security: the sequence of requests sent to cloud
storage shoud remain independent of the type, number, and
access set of the transactions being executed. Intuitively, we
want Obladi’s sequence of accesses to cloud storage to be
statistically indistinguishable from a sequence that can be
generated by an Obladi simulator with no knowledge of
the actual transactions being run by Obladi. If this condition
holds, then observing Obladi’s accesses cannot reveal to
the adversary any information about Obladi’s workload. We
formalize this intuition in our security definition in §9.
Much of Obladi’s novelty lies not in developing new con-

currency control or recovery mechanisms, but in identifying
what standard database techniques can be leveraged to
lower the costs of ORAM while retaining security, and what
techniques instead subtly break obliviousness.
To preserve workload independence while guaranteeing

good performance in the presence of concurrent requests,
Obladi centers its design around the notion of delayed
visibility. Delayed visibility leverages the observation that,
on the one hand, ACID consistency and Durability apply
only when transactions commit, and, on the other, commit
operations can be delayed. Obladi leverages this flexibility
to delay commit operations until the end of fixed-size epochs.
This approach allows Obladi to (i) amortize the cost of
accessing an ORAM over many concurrently executing re-
quests; (ii) recover efficiently from failures; and (iii) preserve
workload independence: the epochs’ deterministic structure
allows Obladi to decouple its externally observable behavior
from the specifics of the transactions being executed.

4 Background
Oblivious Remote Access Memory is a cryptographic
protocol that allows clients to access data outsourced to an un-
trusted server without revealing what is being accessed [29];
it generates a sequence of accesses to the server that is com-
pletely independent of the operations issued by the client. We
focus specifically on tree-based ORAMs, whose construc-
tions are more efficiently implementable in real systems: to
date, they have been implemented in hardware [27, 46] and
as the basis for blockchain ledgers [15] with reasonable over-
heads. Most tree-based ORAMs follow a similar structure:
objects (usually key-value pairs) are mapped to a random leaf
(or path) in a binary tree and physically reside (encrypted) in

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 729

a

b

b 2

Stash

Position
Mapb 1

b a 4

Server
Storage

Client
Storage

a

1 2 3 4

Path Index
Valid Bit
Invalid Bit
Real Object
Dummy Slot
Empty Real Slot

 1

Figure 1: Ring ORAM - Read (Z=1, S=2)

some tree node (or bucket) along that path. Objects are log-
ically removed from the tree and remapped to a new random
path when accessed. These objects are eventually flushed
back to storage (according to their new path) as part of an
eviction phase. Through careful scheduling, this write-back
phase does not reveal the new location of the objects; objects
that cannot be flushed are kept in a small client-side stash.
Ring ORAM. Obladi builds upon Ring ORAM [69], a

tree-based ORAM with two appealing properties: a constant
stash size and a fully deterministic eviction phase. Obladi
leverages these features for efficient failure recovery.
As shown in Figure 1, server storage in Ring ORAM

consists of a binary tree of buckets, each with a fixed number
Z + S of slots. Of these, Z are reserved for storing actual
encrypted data (real objects); the remaining S exclusively
store dummy objects. Dummy objects are blocks of encrypted
but meaningless data that appear indistinguishable from
real objects; their presence in each bucket prevent the server
from learning how many real objects the bucket contains and
which slots contains them. A random permutation (stored
at the client) determines the location of dummy slots. In
Figure 1, the root bucket contains a real slot followed by two
dummy slots; the real slot contains the data object a; its left
child bucket instead contains dummy slots in positions one
and three, and an empty real slot in second position.
Client storage, on the other hand, is limited to (i) a constant

sized stash, which temporarily buffers objects that have yet
to be replaced into the tree and, unlike a simple cache, is
essential to Ring ORAM’s security guarantees; (ii) the set of
current permutations, which identify the role of each slot in
each bucket and record which slot have already been accessed
(and marked invalid); and (iii) a position map, which records
the random leaf (or path) associated with every data object. In
Ring ORAM, objects are mapped to individual leaves of the
tree but can be placed in any one of the buckets along the path
from the root to that leaf. For instance, object a in Figure 1 is
mapped to path 4 but stored in the root bucket, while object b
is mapped to path 2 and stored in the leaf bucket of this path.
Ring ORAM maintains two core invariants. First, each data

object is mapped to a new leaf chosen uniformly at random
after every access, and is stored either in the stash, or in a
bucket on the path from the tree’s root to that leaf (path in-
variant). Second, the physical positions of the Z+S dummy

and real objects in each bucket are randomly permuted with
respect to all past and future writes to that bucket (i.e., no
slot can be accessed more than once between permutations)
(bucket invariant). The server never learns whether the
client accesses a real or a dummy object in the bucket, so the
exact position of the object along that path is never revealed.
Intuitively, the path invariant removes any correlation

between two accesses to the same object (each access will
access independent random paths), while the bucket invariant
prevents the server from learning when an object was last
accessed (the server cannot distinguish an access to a real
slot from a dummy slot). Together, these invariants ensure
that, regardless of the data or type of operation, all access
patterns will look indistinguishable from a random set of
leaves and slots in buckets.
Access Phase. The procedures for read and write requests

is identical. To access an object o, the client first looks up
o’s path in the position map, and then reads one object from
each bucket along that path. It reads o from the bucket in
which it resides and a valid dummy object from each other
bucket, identified using its local permutation map. Finally,
o is remapped to a new path, updated to a new value (if the
request was a write), and added to the stash; importantly, o
is not immediately written back out to cloud storage.
Figure 1 illustrates the steps involved in reading an object

b, initially mapped to path 2. The client reads a dummy
object from the first two buckets in the path (at slots two
and three respectively), and reads b from the first slot of
the bottom bucket. The three slots accessed by the client are
then marked as invalid in their respective buckets, and b is
remapped to path 1. To write a new object c, the client would
have to read three valid dummy objects from a random path,
place c in the stash, and remap it to a new path.
Access Security. Remapping objects to independent

random paths prevents the server from detecting repeated
accesses to data, while placing objects in the stash prevents
the server from learning the new path. Marking read slots as
invalid forces every bucket access to read from a distinct slot
(each selected according to the random permutation). The
server consequently observes uniformly distributed accesses
(without repetition) independently of the contents of the
bucket. This lack of correlation, combined with the inability
to distinguish real slots from dummy slots, ensures that the
server does not learn if or when a real object is accessed.
Accessing dummy slots from buckets not containing the
target object (rather than real slots), on the other hand, is
necessary for efficiency: in combination with Ring ORAM’s
eviction phase (discussed next) it lets the stash size remain
constant by preventing multiple real objects from being
addded to the stash on a single access.
Eviction Phase and Reshuffling. The aforementioned

protocol falls short in two ways. First, if objects are placed
in the stash after each access, the stash will grow unbounded.
Second, all slots will eventually be marked as invalid. Ring

730 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

a

b

bc b 1
c 2

a 4a

Read remaining unread
real objects into stash

1 2 3 4

Figure 2: Eviction - Read Phase

ORAM sidesteps these issues through two complementary
processes: eviction and bucket reshuffling. Every A accesses,
the evict path operation evicts objects from the client stash to
cloud storage. It deterministically selects a target path, flushes
as much data as possible, and permutes each bucket in the
path, revalidating any invalid slots. Evict path consists of a
read and write phase. In the read phase, it retrieves Z objects
from each bucket in the path: all remaining valid real objects,
plus enough valid dummies to reach a total of Z objects read.
In the write phase, it places each stashed object—including
those read by the read phase—to the deepest bucket on the
target path that intersects with the object’s assigned path.
Evict path then permutes the real and dummy values in each
bucket along the target path, marking their slots as valid, and
writes their contents to server storage. Figure 2 and 3 show
the evict path procedure applied to path 4. In the read phase,
evict path reads the unread object a from the root node and
dummies from other buckets on the path. In the write phase
(Fig. 3), a is flushed to leaf 4, as its path intersects completely
with the target path. Finally, we note that randomness may
cause a bucket to contain only invalid slots before its path
is evicted, rendering it effectively unaccessible. When this
happens, Ring ORAM restores access to the bucket by
performing an early reshuffle operation that executes the read
phase and write phase of evict path only for the target bucket.

Eviction Security. The read phase leaks no information
about the contents of a given bucket. It systematically reads
exactly Z valid objects from the bucket, selecting the valid
real objects from the z real objects in the bucket, padding the
remaining Z−z required reads with a random subset of the
S dummy blocks. The random permutation and randomized
encryption ensure that the server learns no information
about how many real objects exist, and how many have been
accessed. Similarly, the write phase hides the values and
locations of objects written. At every bucket, the storage
server observes only a newly encrypted and permuted set of
objects, eliminating any correlation between past and future
accesses to that bucket. Together, the read and write phases
ensure that no slot is accessed more than once between
reshuffles, guaranteeing the bucket invariant.

Similarly, the eviction process leaks no information about
the paths of the newly evicted objects: since all paths intersect
at the root and the server cannot infer the contents of any indi-

b

c

a

bc
2

a

Shuffle
buckets

1 2 3 4

b 1
c 2

a 4

Figure 3: Eviction - Write Phase

vidual bucket, any object in the stash may be flushed during
any evict path. Moreover, since all paths intersect at the root,
any object in the stash may be flushed during any evict path.

5 System Architecture
Obladi, like most privacy-preserving systems [70, 76, 86]
consists of a centralized trusted component, the proxy, that
communicates with a fault-tolerant but untrusted entity,
cloud storage (Figure 4). The proxy handles concurrency
control, while the untrusted cloud storage stores the private
data. Obladi ensures that requests made by the proxy to
the cloud storage over the untrusted network do not leak
information. We assume that the proxy can crash and that
when it does so, its state is lost. This two-tier design allows
applications to run a lightweight proxy locally and delegate
the complexity of fault-tolerance to cloud storage.
The proxy has two components: (i) a concurrency control

unit and (ii) a data manager comprised of a batch manager
and an ORAM executor. The batch manager periodically
schedules fixed-size batches of client operations that the
ORAM executor then executes on a parallel version of Ring
ORAM’s algorithm. The executor accesses one of two units
located on server storage: the ORAM tree, which stores
the actual data blocks of the ORAM; and the recovery unit,
which logs all non-deterministic accesses to the ORAM to
a write-ahead log [51] to enable secure failure recovery (§8).

6 Proxy Design
The proxy in Obladi has three goals: guarantee good
performance, preserve correctness, and guarantee security.
To meet these goals, Obladi designs the proxy around
the concept of epochs. The proxy partitions time into a
set of fixed-length, non-overlapping epochs. Epochs are
the granularity at which Obladi guarantees durability and
consistency. Each transaction, upon arriving at the proxy, is
assigned to an epoch and clients are notified of whether a
transaction has committed only when the epoch ends. Until
then, Obladi buffers all updates at the proxy.
This flexibility boosts performance in two ways. First, it

allows Obladi to implement a multiversioned concurrency
control (MVCC) algorithm on top of a single versioned
Ring ORAM. MVCC algorithms can significantly improve
throughput by allowing read operations to proceed with

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 731

Cloud Storage

Oram Tree
Oram

Executor

Clients

Clients

Bucket 1

Recovery Unit

Execute t1

UntrustedTrusted

Position
Map

Data Handler

Stash

Proxy

Execute t2

Concurrency
Control Unit

Batch Manager

Batch 1

Batch n

Bucket 2 Bucket 3

WAL

...

Timestamp
Ordering

Logic

V
er

si
on

 C
ac

he

Timestamp
Ordering
Metadata

Batch 2

Figure 4: System Architecture

limited blocking. These performance gains are especially
significant in the presence of long-running transactions or
high storage access latency, as is often the case for cloud
storage systems. Second, it reduces traffic to the ORAM, as
only the database state at the end of the epoch needs to be
written out to cloud storage.

Importantly, Obladi’s choice to enforce consistency
and durability only at epoch boundaries does not affect
correctness; transactions continue to observe a serializable
and recoverable schedule (i.e., committed transactions do
not see writes from aborted transactions).
For transactions executing concurrently within the same

epoch, serializability is guaranteed by concurrency control;
transactions from different epochs are naturally serialized
by the order in which the proxy executes their epochs. No
transaction can span multiple epochs; unfinished transactions
at epoch boundaries are aborted, so that no transaction is
ongoing during epoch changes.
Durability is instead achieved by enforcing epoch

fate-sharing [82] during proxy or client crashes: Obladi guar-
antees that either all completed transactions (i.e., transactions
for which a commit request has been received) in the epoch
are made durable or all transactions abort. This way, no
committed transaction can ever observe non-durable writes.
Finally, the deterministic pattern of execution that epochs

impose drastistically simplifies the task of guaranteeing work-
load independence: as we describe further below, the fre-
quency and timing at which requests are sent to untrusted stor-
age are fixed and consequently independent of the workload.
The proxy processes epochs with two modules: the

concurrency control unit (CCU) ensures that execution
remains serializable, while the data handler (DH) accesses
the actual data objects. We describe each in turn.

6.1 Concurrency Control
Obladi, like many existing commercial databases [57, 65],
uses multiversioned concurrency control [10]. Obladi
specifically chooses multiversioned timestamp ordering
(MVTSO) [10, 68] because it allows uncommitted writes
to be immediately visible to concurrently executing
transactions. To ensure serializability, transactions log the
set of transactions whose uncommitted values they have
observed (their write-read dependencies) and abort if any of
their dependencies fail to commit. This optimistic approach

Client

Execute t1 Execute t2

r1(b0)

r1(a0)

w(c1)

r2(b0)

w(d2)

w(a1)

c

Execute t3

r3(d0)

w(c3)

r3(a1)

c

Ti
m

e

s
s s

Execute t4

w(d4)

s

w(c4)

Client Client Client

Batch Manager

TSO
Abort

Epoch
Finished
Abort a0

r1(a0) r2(b0) r3(d0)

b0

a1 d0

r1(b0) PAD
r2(d0)

PAD

d4

c4

w(a1) w(c3) PAD

Version
Cache

Read
Batch

Read
Batch
Write
Batch

Epoch i+1 starts ...

Δ

Epoch i

Figure 5: Batching Logic - rx(ay) denotes that transaction tx reads
the version of object a written by transaction ty

is critical to Obladi’s performance: it allows transactions
within the same epoch to see each other’s effects even as
Obladi delays commits until the epoch ends. In contrast,
a pessimistic protocol like two-phase locking [26], which
precludes transactions from observing uncommitted writes,
would artificially increase contention by holding exclusive
write-locks for the duration of an epoch. When a transaction
starts, MVTSO assigns it a unique timestamp that determines
its serialization order. A write operation creates a new object
version marked with its transaction’s timestamp and inserts
it in the version chain associated with that object. A read
operation returns the object’s latest version with a timestamp
smaller than its transaction’s timestamp. Read operations
further update a read marker on the object’s version chain
with their transaction’s timestamp. Any write operation with
a smaller timestamp that subsequently tries to write to this
object is aborted, ensuring that no read operation ever fails to
observe a write from a transaction that should have preceded
it in the serialization order.
Consider for example the set of transactions executing

in Figure 5. Transaction t1’s update to object a (w(a1)) is
immediately observed by transaction t3 (r3(a1)). t3 becomes
dependent on t1 and can only commit once t1 also commits.
In contrast, t2’s write to object d causes t2 to abort: a
transaction with a higher timestamp (t3) had already read
version d0, setting the version’s read marker to 3.

6.2 Data Handler
Once a version is selected for reading or writing, the DH
becomes responsible for accessing or modifying the actual
object. Whereas it suffices to guarantee durability and con-
sistency only at epoch boundaries, security must hold at all
times, posing two key challenges. First, the number of re-
quests executed in parallel can leak information, e.g., data
dependencies within the same transaction [11, 70]. Second,
transactions may abort (§6.1), requiring their effects to be
rolled back without revealing the existence of contended ob-
jects [5, 72]. To decouple the demands of these workloads
from the timing and set of requests that it forwards to cloud
storage, Obladi leverages the following observation: transac-
tions can always be re-organized so that all reads from cloud
storage execute before all writes [19, 38, 47, 88]. Indeed,
while operations within a transaction may depend on the data

732 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

returned by a read from cloud storage, no operation depends
on the execution of a write. Accordingly, Obladi organizes the
DH into a read phase and a write phase: it first reads all nec-
essary objects from cloud storage, before applying all writes.
Read Phase. Obladi splits each epoch’s read phase into

a fixed set of R fixed-sized read batches (bread) that are
forwarded to the ORAM executor at fixed intervals (∆epoch).
This deterministic structure allows Obladi to execute
dependent read operations without revealing the internal
control flow of the epoch’s transactions. Read operations are
assigned to the epoch’s next unfilled read batch. If no such
batch exists, the transaction is aborted. Conversely, before
a batch is forwarded to the ORAM executor, all remaining
empty slots are padded with dummy requests. Obladi further
deduplicates read operations that access the same key. As
we describe in §7, this step is necessary for security since
parallelized batches may leak information unless requests
all access distinct keys [12, 86]. Deduplicating requests also
benefits performance by increasing the number of operations
that can be served within a fixed-size batch.
Write Phase. While transactions execute, Obladi buffers

their write operations into a version cache that maintains
all object versions created by transactions in the epoch. At
the end of an epoch, transactions that have yet to finish
executing (recall that epochs terminate at fixed intervals) are
aborted and their operations are removed. The latest versions
of each object in the version cache according to the version
chain are then aggregated in a fixed-size write batch (bwrite)
that is forwarded to the ORAM executor, with additional
padding if necessary.
This entire process, including write buffering and dedupli-

cation, must not violate serializability. The DH guarantees
that write buffering respects serializability by directly serv-
ing reads from the version cache for objects modified in the
current epoch. It guarantees serializability in the presence
of duplicate requests by only including the last write of the
version chain in a write batch. Since Obladi’s epoch-based
design guarantees that transactions from a later epoch are
serialized after all transactions from an earlier epoch, interme-
diate object versions can be safely discarded. In this context,
MVTSO’s requirement that transactions observe the latest
committed write in the serialization order reduces to transac-
tions reading the tail of the previous epoch’s version chain.
In the presence of failures, Obladi guarantees serializability

and recoverability by enforcing epoch fate sharing: either
all transactions in an epoch are made durable or none are. If
a failure arises during epoch ei, the system simply recovers
to epoch ei−1, aborting all transactions in epoch ei. Once
again, this flexibility arises from Obladi delaying commit
notifications until epoch boundaries.
Example Execution. We illustrate the batching logic once

again with the help of Figure 5. Transactions t1, t2, t3 first
execute read operations. These operations are aggregated into
the first read batch of epoch i. The values returned by these

reads are then cached into the version cache. t2 then executes
a write operation, which Obladi also buffers into the version
cache. When executing r2(d0)), t3 reads object d directly
from the version cache (we discuss the security of this step in
the next section). Similarly, r1(a1) reads the buffered uncom-
mitted version of a. In contrast, Obladi schedules r1(b0) to
execute as part of the next read batch as b0 is not present in the
version cache. The read batch is then padded to its fixed bread
size and executed. t4 contains no read operations: its write
operations are simply executed and buffered at the version
cache. Obladi then finalizes the epoch by aborting all trans-
actions (and their dependencies) that have not yet finished
executing: t4 is consequently aborted. Finally, Obladi aggre-
gates the last version of every update into the write batch
(skipping version c1 of object c for instance, instead only
writing c2), before notifying clients of the commit decision.

6.3 Reducing Work
Obladi reduces work in two additional ways: it caches reads
within an epoch and allows Ring ORAM to execute write
operations without also executing dummy queries. While
these optimizations may appear straightforward, ensuring
that they maintain workload independence requires care.
Caching Reads. Ring ORAM maintains a client-side stash

(§4) that stores ORAM blocks until their eviction to cloud
storage. Importantly, a request for a block present in the
stash still triggers a dummy request: a dummy object is
still retrieved from each bucket along its path. While this
access may appear redundant at first, it is in fact necessary
to preserve workload independence: removing it removes
the guarantee that the set of paths that Obladi requests from
cloud storage is uniformly distributed. In particular, blocks
present in the stash are more likely to be mapped to paths
farther away from the one visited by the last evict path, as
they correspond to paths that could not be flushed: buckets
have limited space for real blocks and blocks mapped to
paths that only intersect near the top of the tree are less likely
to find a free slot to which they can be flushed. The degree
to which this effect skews the distribution leaks information
about the stash size, and, consequently, about the workload.
To illustrate, consider the execution in Figure 6. Objects
mapped to paths 1 and 2 (a, b, and f) were not flushed from
the stash in the previous eviction of path 4. When these
objects are subsequently accessed, naively reading them
from the stash without performing dummy reads skews the
set of paths accessed toward the right subtree (paths 3 and 4)
Obladi securely mitigates some of this work by drawing

a novel distinction between objects that are in the stash as
a result of a logical access and those present because they
could not be evicted. The former can be safely accessed
without performing a dummy read, while the latter cannot.
Objects present in the stash following a logical access are
mapped to independently uniformly distributed paths. Ring
ORAM’s path invariant ensures that, without caching, the

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 733

2

1 2 3 4

a 1
b 2

c 3
d

e
4

4
f 2

a b c
d e f

e

d

c Evicting Path 4 Following Evict Path,
Requests for a,b,c,d,e,f

With dummy requests
a b c d e f
1 2 3 4 4 2

Without dummy requests
a b c d e f

3 4 4

Storage observes uniform distribution of paths

2

2

Dummy
request

Real
request

Storage observes distribution of paths that
skews towards right subtree

Figure 6: Skew introduced by caching arbitrary objects

set of accessed paths is uniformly distributed. Removing
an independent uniform subset of those paths (namely,
the dummy requests) will consequently not change the
distribution. Thus, caching these objects, and filling out a
read batch with other real or dummy requests, preserves
the uniform distribution of paths and leaks no information.
Obladi consequently allows all read objects to be placed in
the version cache for the duration of the epoch. Objects a,
b, d are, for instance, placed in the version cache in Figure 5,
allowing read r2(d0) to read d directly from the cache. In
contrast, objects present in the stash because they could not
be evicted are mapped to paths that skew away from the
latest evict path. Caching these objects would consequently
skew the distribution of requests sent to the storage away
from a uniform distribution, as illustrated in Figure 6.
Dummiless Writes. Ring ORAM must hide whether re-

quests correspond to read or write operations, as the specific
pattern in which these operations are interleaved can leak in-
formation [89]; that is why Ring ORAM executes a read oper-
ation on the ORAM for every access. In contrast, since trans-
actions can always perform all reads before all writes, no in-
formation is leaked by informing the storage server that each
epoch consists of a fixed-size sequence of potentially dummy
reads followed by a fixed-size sequence of potentially dummy
writes. Obladi thus modifies Ring ORAM’s algorithm to di-
rectly place the new version of an object in the stash, without
executing the corresponding read. Note, though, that Obladi
continues to increment the evict path count on write opera-
tions, a necessary step to preserve the bounds on the stash
size, which is important for durability (§8).

6.4 Configuring Obladi
Obladi’s good performance hinges on appropriately config-
uring the size/frequency of batches and ORAM tree for a
target application. Table 1 summarizes the parameter space.
Ring ORAM. Configuring Ring ORAM first requires

choosing an appropriate Z parameter. Larger values of
Z reduce the total size of the ORAM on cloud-storage
by decreasing the required height of the ORAM tree
and decrease eviction frequency (reducing network/CPU
overhead). In contrast, this increase the maximum stash
size. Traditional ORAMs thus choose the largest value of
Z for which the stash size fits on the proxy. Obladi adds
an additional consideration: for durability (as we describe

N Number of real objects
Z Number of real slots
S Number of dummy slots
A Frequency of evict path
L Number of levels in the ORAM tree
R Number of read batches

bread Size of a read batch
bwrite Size of a write batch

∆ Batch frequency
Table 1: Obladi’s configuration parameters

in §8), the stash must be synchronously written out every
epoch. One must thus take into account the throughput
loss associated with the stash writeback time. Given an
appropriate value of Z, Obladi then chooses L, S, and A
according to the analytical model proposed in [69].

Epochs and batching. Identifiying the appropriate size
and number of batches hinges on several considerations.
First, Obladi must provision sufficiently many read batches
(R) to handle control flow dependencies within transactions.
A transaction that executes in sequence five dependent read
operations, will for instance require five read batches to exe-
cute (it will otherwise repeatedly abort). Second, the ratio of
reads (R∗bread) to writes (wwrite) must closely approximate
the application’s read/write ratio. An overly large write batch
will waste resources as it will be padded with many dummy
requests. A write batch that is too small will lead to frequent
aborts caused by the batch filling up. Third, the size of a
read or write batch (respectively bread and bwrite) defines the
degree of parallelism that can be extracted. The desired batch
size is thus a function of the concurrent load of the system,
but also of hardware considerations, as increasing parallelism
beyond an I/O or CPU bottleneck serves no purpose. Finally,
the number and frequency of read batches within an epoch in-
creases overall latency, but reduces amortized resource costs
through caching and operation pipelining (introduced in §7).
Latency-sensitive applications may favor smaller batch sizes,
while others may prefer longer epochs, but lower overheads.

Security Considerations. Obladi does not attempt to hide
the size and frequency of batches from the storage server (we
formalize this leakage in §9). Carefully tuning the size and
frequency of batches to best match a given application may
thus leak information about the application itself. An OLTP
application, for instance, will likely have larger batch sizes
(bread), but fewer read batches (R), as OLTP applications sus-
tain a high concurrent load of fairly short transactions. OLAP
applications will prefer small or non-existent write batches
(bwrite), as they are predominantly read-only, but require
many read batches to support the complex joins/aggregates
that they implement. Obladi does not attempt to hide the type
of application that is being run. It does, however, continue
to hide what data is being accessed and what transactions
are currently being run at any given point in time. While
Obladi’s configuration parameters may, for instance, suggest

734 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

that a medical application like FreeHealth is being run, they
do not in any way leak information about how, when, or
which patient records are being accessed.

7 Parallelizing the ORAM
Existing ORAM constructions make limited use of paral-
lelism. Some allow requests to execute concurrently between
eviction or shuffle phases [12, 70, 86], while others target
intra-request parallelism to speed up execution of a single re-
quest [44]. Obladi explicitly targets both forms of parallelism.
Parallelizing Ring ORAM presents three challenges: (i) pre-
serving the correct abstraction of a sequential datastore, (ii)
enforcing security by concealing the position of real blocks
in the ORAM (thereby maintaining workload independence),
and (iii) preserving existing bounds on the stash size. While
these issues also arise in prior work [70], the idiosyncrasies
of Ring ORAM add new dimensions to these challenges.
Correctness. Obladi makes two observations. First, while

all operations conflict at the Ring ORAM tree’s root, they
can be split into suboperations that access mostly disjoint
buckets (§4). Second, conflicting bucket operations can be
further parallelized by distinguishing accesses to the bucket’s
metadata from those to its physical data blocks.
Obladi draws from the theory of multilevel serializabil-

ity [84], which guarantees that an execution is serializable if
the system enforces level-by-level serializability: if operation
o is ordered before o′ at level i, all suboperations of o must
precede conflicting suboperations of o′. Thus, if Obladi
orders conflicting operations at a level i, it enforces the same
order at level i+ 1 for all their conflicting suboperations;
conversely, if two operations do not conflict at level i, Obladi
executes their suboperations in parallel. To this end, Obladi
simply tracks dependencies across operations and orders
conflicting suboperations accordingly. Obladi extracts further
parallelism in two ways. First, since in Ring ORAM reads to
the same bucket between consecutive eviction or reshuffling
operations always target different physical data blocks
(even when bucket operations conflict on metadata access),
Obladi executes them in parallel. Second, Obladi’s own
batching logic ensures that requests within a batch touch
different objects, preventing read and write methods from
ever conflicting. Together, these techniques allow Obladi to
execute most requests and evictions in parallel.
We illustrate the dependency tracking logic in Figure 7.

The read operation to path 1 conflicts with the evict path for
path 2, but only at the root (bucket 1). Thus, reads to buckets
2 and 3 can proceed concurrently, even though accesses to
the root’s metadata must be serialized, as both operations
update the bucket access counter and valid/invalid map (§4).
Security. For security, Obladi’s parallel evict path operation

must flush the same blocks flushed by a sequential imple-
mentation. Reproducing this behavior without sacrificing
parallelism is challenging. It requires that all real objects

Read Path 1
Read Bucket 2

Real Block b

 Metadata

Read Bucket 1

Dummy

 Metadata

Remap Real
Block b to

 Path 3

Evict Path 2

Read Bucket 3

All Unread

 Metadata

Read Bucket 1

All Unread

 Metadata

Bucket 1

Bucket 2 Bucket 3

Path 1 Path 2

Write Bucket 1

Write All

 Metadata

Write Bucket 3

Write All

 Metadata

Figure 7: Multilevel Pipelining for a read of path 1 and an evict
path of path 2 executing in parallel. Solid green lines represent
physical dependencies and dashed red lines represent data
dependencies. Inner blocks represent nested operations

brought in during the last A accesses be present in the
stash when data is flushed, which may introduce data
dependencies. Unlike dependencies that arise between
operations that access the same physical location in cloud
storage, these dependencies are not a deterministic function
of an epoch’s operations already known to the adversary.
Consider, for instance, block b in Figure 7. In a sequential

implementation, b would enter the stash as a result of reading
path 1 and be flushed to bucket 3 by the following evict path.
Thus, evict path would have to wait until b is placed in the
stash. Honoring these dependencies opens a timing channel:
delay in flushing certain blocks can reveal object placement.
As blocks holding real objects can exist anywhere in the
tree and be remapped to any path, it follows that it is never
secure to execute an eviction operation until all previous
access operations have terminated.
Obladi mitigates this restriction by again leveraging delayed

visibility and the idea to separate read and write operations
within an epoch—but with an important difference. In §6.2
the proxy created separate batches for logical read and write
operations; to improve parallelism, Obladi, expanding on an
idea used by Shroud [44], assigns to separate phases within
an epoch the physical read and write operations that underlie
each of those logical operations. The read phase computes
all necessary metadata and executes the set of physical read
operations for all logical read path, early reshuffle, and evict
path operations. This set is workload independent, so its
operations need not be delayed. Physical writes, however,
are only flushed at the end of an epoch. The proxy can again
apply write deduplication: if a bucket is repeatedly modified
during an epoch, only the last version must be written back.
Reads that should have read an intermediate write are served
locally from the buffered buckets.
The adversary thus always observes a set of reads to random

paths followed by a deterministic set of writes independent
of the contents of the ORAM and, consequently, of the work-
load. Data dependencies between read and evict operations
no longer create a timing channel. Meanwhile parallelism re-
mains high, as the physical blocks accessed in each phase are
guaranteed to be distinct—Ring ORAM directly guarantees
this for reads, while bucket deduplication does it for writes.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 735

8 Durability
Obladi guarantees durability at the granularity of epochs: af-
ter a crash, it recovers to the state of the last failure-free epoch.
Obladi adds two demands to the need of recovering to a con-
sistent state: recovery should leak no information about past
or future transactions, and it should be efficient, accessing
minimal data from cloud storage. Obladi guarantees the for-
mer by ensuring that recovery logic and data logged for recov-
ery maintain workload independence (§3). It strives towards
the latter by leveraging the determinism of Ring ORAM.
Consistency. Obladi recovery logic relies on two well-

known techniques: write-ahead logging [51] and shadow
paging [30]. Obladi mandates that transactions be durable
only at the end of an epoch; thus, on a proxy failure, all
ongoing transactions can be aborted, and the system reverted
to the previous epoch. To make this possible, Obladi must (i)
recover the proxy metadata lost during the proxy crash, and
(ii) ensure that the ORAM does not contain any of the aborted
transactions’ updates. To recover the metadata, Obladi logs
three data structures before declaring the epoch committed:
the position map, the permutation map, and the stash. The po-
sition map and the permutation map identify the position of
real objects in the ORAM tree (respectively, in a path and in
a bucket); logging them prevents the recovery logic from hav-
ing to scan the full ORAM to recover the position of buckets.
Logging the stash is necessary for correctness. As eviction
may be unable to flush the entire stash, some newly written
buckets may be present only in the stash, even at epoch bound-
aries. Failing to log the stash could thus lead to data loss.
To undo partially executed transactions, Obladi adapts the

traditional copy-on-write technique of shadow paging [30]:
rather than updating buckets in place, it creates new versions
of each bucket on every write. Obladi then leverages the
inherent determinism of Ring ORAM to reconstruct a
consistent snapshot of the ORAM at a given epoch. In Ring
ORAM, the current version of a bucket (i.e. the number of
times a bucket has been written) is a deterministic function of
the number of prior evict paths. The number of evict paths per
epoch is similarly fixed (evict paths happen every A accesses,
and epochs are of fixed size). Obladi can then trivially revert
the ORAM on failures by setting the evict path counter to
its value at the end of the last committed epoch. This counter
determines the number of evict paths that have occurred, and
consequently the object versions of the corresponding epoch.
Security. Obladi ensures that (i) the information logged for

durability remains independent of data accesses, and (ii) that
the interactions between the failed epoch, the recovery logic,
and the next epoch preserve workload independence.
Obladi addresses the first issue by encrypting the position

map and the contents of the permutations table. It similarly
encrypts the stash, but also pads it to its maximum size,
as determined in canonical Ring ORAM [69], to prevent
it from indicating skew (if a small number of objects are
accessed frequently, the stash will tend to be smaller).

The second concern requires more care: workload inde-
pendence must hold before, during, and after failures. Ring
ORAM guarantees workload independence through two in-
variants: the bucket invariant and the path invariant (§4).
Preserving bucket slots from being read twice between evic-
tions is straightforward. Obladi simply logs the invalid/valid
map to track which slots have already been read and recovers
it during recovery; there is no need for encryption, as the set
of slots read is public information. Ensuring that the ORAM
continues to observe a uniformly distributed set of paths is in-
stead more challenging. Specifically, read requests from par-
tially executed transactions can potentially leak information,
even when recovering to the previous epoch. Traditionally,
databases simply undo partially executed transactions, mark
them as aborted, and proceed as if they had never existed.
From a security standpoint, however, these transactions were
still observed by the adversary, and thus may leak informa-
tion. Consider a transaction accessing object a (mapped to
path 1) that aborts because of a proxy failure. Upon recovery,
it is likely that a client will attempt to access a again. As
the recovery logic restores the position map of the previous
epoch, that new operation on a will result in another access
to path 1, revealing that the initial access to path 1 was likely
real (rather than padded), as the probability of collisions be-
tween two uniformly chosen paths is low. To mitigate this
concern while allowing clients to request the same objects
after failure, Obladi durably logs the list of paths and slot
indices that it accesses, before executing the actual requests,
and replays those paths during recovery (remapping any real
blocks). While this process is similar to traditional database
redo logging [51], the goal is different. Obladi does not try to
reapply transactions (they have all aborted), but instead forces
the recovery logic to be deterministic: the adversary always
sees the paths from the aborted epoch repeated after a failure.
Optimizations. To minimize the overhead of checkpoint-

ing, Obladi checkpoints deltas of the position, permutation,
and valid/invalid map, and only periodically checkpoints
the full data structures. While the number of changes to the
permutation and valid/invalid maps directly follows from the
set of physical requests made to cloud storage, the size of the
delta for the position map reveals how many real requests
were included in an epoch—padded requests do not lead
to position map updates. Obladi thus pads the map delta to
the maximum number of entries that could have changed in
an epoch (i.e., the read batch size times the number of read
batches, plus the size of the single write batch).

9 System Security
We now outline Obladi’s security guarantees, deferring a
formal treatment to the associated technical report [20]. To
the best of our knowledge, we are the first to formalize the
notion of crashes in the context of oblivious RAM.
Model We express our security proof within the Universal

Composability (UC) framework [14], as it aligns well with

736 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

the needs of modern distributed systems: a UC-secure system
remains UC-secure under concurrency or if composed with
other UC-secure systems. Intuitively, proving security in the
UC model proceeds as follows. First, we specify an ideal
functionality F that defines the expected functionality of
the protocol for both correctness and security. For instance,
Obladi requires that the execution be serializable, and that
only the frequency of read and write batches be learned.
We must ensure that the real protocol provides the same
functionality to honest parties while leaking no more
information than F would. To establish this, we consider
two different worlds: one where the real protocol interacts
with an adversary A, and one where F interacts with SA,
our best attempt at simulatingA.A’s transcript—including
its inputs, outputs, and randomness—and SA’s output are
given to an environment E, which can also observe all
communications within each world. E’s goal is to determine
which world contains the real protocol. To prompt the
worlds to diverge, E can delay and reorder messages, and
even control external inputs (potentially causing failures).
Intuitively, E represents anything external to the protocol,
such as concurrently executing systems. We say that the real
protocol is secure if, for any adversaryA, we can construct
SA such that E can never distinguish between the worlds.
Assumptions The security of Obladi relies on four

assumptions. (i) Canonical Ring ORAM is linearizable (ii)
MVTSO generates serializable executions. (iii) The network
will retransmit dropped packets. The adversary learns of the
retransmissions, but nothing more.
Ideal Functionality To define the ideal functionality FOb,

recall that the proxy is considered trusted while interactions
with the cloud storage are not. This allows FOb to replace
the proxy and intermediate between clients and the storage
server, performing the same functions as the proxy (we do not
try to hide the concurrency/batching logic). We must, how-
ever, define FOb to obliviously hide data values and access
patterns. To this end, when the proxy logic finalizes a batch,
FOb simply informs the storage server that it is executing a
read or write batch. SinceFOb is a theoretical ideal, we allow
it to manage all storage internally, so it then updates its local
storage and furnishes the appropriate response to each client.
In this setup, modeling proxy crashes is straightforward.

Crashes can occur at any time and cause the proxy to lose all
state. So, on an external input to crash, FOb simply clears its
state. Since we accept thatAmay learn of proxy crashes,FOb
also sends a message to the storage server that it has crashed.
Proof Sketch The correctness of the system is straightfor-

ward, as FOb behaves much the same as the proxy.
To prove security, we must demonstrate that, for any

algorithm A defining the behavior of the storage server,
we can accurately simulate A’s behavior using only the
information provided by FOb. Note that the simulator SA
can run A internally, as A is simply an algorithm. Thus
we can define SA to operate as follows. When SA receives

Patients
PatientID

CreatorID

IsActive

[Metadata]

Users
UserID

Role

Login

[Metadata]

Episodes
EpisodeID

PatientID

CreatorID

[Metadata]

Episode
Contents

ContentID

EpisodeID

ContentType

XMLContent

Prescriptions
PrescriptionID

PatientID

DrugID

[Metadata]

Drugs
DrugID

Name

Interactions

[Metadata]

PMH
PMHID

PatientID

Type

[Metadata]

Figure 8: FreeHealth Database Architecture

notification of a batch, it constructs a parallel ORAM batch
from uniformly random accesses of the correct type. It
provides these accesses toA and producesA’s response.

The security of this simulation hinges on two key proper-
ties: (i) the caching and deduplication logic do not affect the
distribution of physical accesses, and (ii) the physical access
pattern of a parallelized batch is entirely determined by the
physical accesses proscribed by sequential Ring ORAM for
the same batch. The first follows from Ring ORAM’s guaran-
tee that each access will be an independent uniformly random
path—removing an independently-sampled element does not
change the distribution of the remaining set. The second fol-
lows from the parallelization procedure simply aggregating
all accesses and performing all reads followed by all writes.

These properties ensure that the random access pattern
produced by SA is identical to the access pattern produced
by the proxy when operating on real data. Thus the simulated
Amust behave exactly as it would when provided with real
data, and produce indistinguishable output.

10 Implementation

Our prototype consists of 41,000 lines of Java code. We
use the Netty library for network communication (v4.1.20),
Google protobuffers for serialization (v3.5.1), the Bouncy
Castle library (v1.59) for encryption, and the Java MapDB
library (v3) for persistence. We additionally implement
a non-private baseline (NoPriv). NoPriv shares the same
concurrency control logic (TSO), but replaces the proxy
data handler with non-private remote storage. NoPriv neither
batches nor delays operations; it buffers writes at the local
proxy until commit, and serves writes locally when possible.

11 Evaluation

Obladi leverages the flexibility of transactional commits to
mitigate the overheads of ORAM. To quantify the benefits
and limitations of this approach, we ask:

1. How much does Obladi pay for privacy? (§11.1)

2. How do epochs affect these overheads? (§11.2)

3. Can Obladi recover efficiently from failures? (§11.3)

Experimental Setup The proxy runs on a c5.xlarge Ama-
zon EC2 instance (16 vCPUs, 32GB RAM), and the storage
on an m5.4xlarge instance (16 vCPUs, 64GB RAM). The
ORAM tree is configured with Z=100 and optimal values
of S and A (respectively, 196 and 168) [69]. We report the
average of three 90 seconds runs (30 seconds ramp-up/down).

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 737

TPC-C FreeHealth Smallbank

103

104

T
h

ro
u

gh
p

u
t

(T
rx

/
s)

Obladi

NoPriv

MySQL

ObladiW

NoPrivW

(a) Throughput
TPC-C FreeHealth Smallbank

101

102

L
at

en
cy

(m
s)

Obladi

NoPriv

MySQL

ObladiW

NoPrivW

(b) Latency
Figure 9: Application Performance

Benchmarks We evaluate the performance of our system
using three applications: TPC-C [22, 80], SmallBank [22],
and FreeHealth [28, 42]. Our microbenchmarks use the
YCSB [18] workload generator. TPC-C, the defacto
standard for OLTP workloads, simulates the business logic
of e-commerce suppliers. We configure TPC-C to run with
10 warehouses [87]. In line with prior transactional key-value
stores [79], we use a separate table as a secondary index on
the order table to locate a customer’s latest order in the
order status transaction, and on the customer table
to look up customers by their last names (order status
and payment). Smallbank [22] models a simple banking
application supporting money transfers, withdrawals, and
deposits. We configure it to run with one million accounts.
Finally, we port FreeHealth [28, 42], an actively-used cloud
EHR system (Figure 8). FreeHealth supports the business
logic of medical practices and hospitals. It consists of 21
transaction types that doctors use to create patients and look
up medical history, prescriptions, and drug interactions.

11.1 End-to-end Performance
Figure 9 summarizes the results from running the three
end-to-end applications in two setups: a local setup in which
the latency between proxy and server is low (0.3ms) (Obladi,
NoPriv), and a more realistic WAN setup with 10ms latency
(ObladiW, NoPrivW). We additionally compare those
results with a local MySQL setup. MySQL, unlike NoPriv,
cannot buffer writes. We consequently do not evaluate
MySQL in the WAN setting.
TPC-C Obladi comes within 8× of NoPriv’s throughput,

as NoPriv is contention-bottlenecked on the high rate of
conflicts between the new-order and payment transac-
tions on the district table. NoPriv’s performance is itself
slightly higher than MySQL as the use of MVTSO allows for
the new-order and payment transactions to be pipelined.
In contrast, MySQL acquires exclusive locks for the dura-
tion of the transactions. Latency, however, spikes to 70× over
NoPriv because of the inflexible execution pattern Obladi
needs for security. Transactions in TPC-C vary heavily in
size. Epochs must be large enough to accommodate all trans-
actions, and hence artificially increase the latency of short
instances. Moreover, write operations must be applied atom-
ically during epoch changes. For a write batch size of 2,000,

this process takes on average 340ms, further increasing la-
tency for individual transactions. The write-back process also
limits throughput, even preventing non-conflicting operations
from making progress (in contrast, NoPriv can benefit from
writes never blocking reads in MVTSO). Epoch changes
also introduce additional aborts for transactions that straddle
epochs. The additional 10ms latency of the WAN setting has
comparatively little effect, as the large write batch size of
TPC-C is the primary bottleneck: throughput remains within
9x of NoPrivW. Also NoPrivW’s performance does not de-
grade: since MVTSO exposes uncommitted writes immedi-
ately, increasing commit latency does not increase contention.

Smallbank Transactions in Smallbank are more homoge-
neous (between three and six operations); thus, the length
of an epoch can be set to more closely approximate most
transactions, reducing latency overheads (17× NoPriv).
NoPriv is CPU bottlenecked for Smallbank; the relative
throughput drop for Obladi is higher (12×) because of
the overhead of changing epochs and the blocking that it
introduces. Transaction dependency tracking becomes a
bottleneck in NoPriv, resulting in a 15% throughput loss
over MySQL. Increasing latency between proxy and storage
causes both systems’ throughput to drop. ObladiW’s 35%
drop is due to the increased duration of epoch changes
(during which no other transactions can execute) while
NoPrivW’s 30% drop stems from the larger dependency
chains that arise from the relatively long commit phase.

FreeHealth Like SmallBank, FreeHealth consists of fairly
short transactions and can thus choose a fairly small epoch
(five read batches), reducing the impact on latency (20×
NoPriv). Unlike Smallbank, however, FreeHealth consists
primarily of read operations, and so it can choose a much
smaller write batch (200), minimizing the cost of epoch
changes and maximizing throughput (only a 4× drop over
NoPriv and a 5.5× over NoPrivW for ObladiW). Both No-
Priv and Obladi are contention-bottlenecked on the creation
of episodes, the core units of EHR systems that encapsulate
prescriptions, medical history, and patient interaction.

11.2 Impact of Epochs

Though epochs create blocking and cause aborts, they are
key to reducing the cost of accessing ORAM, as they allow
to (i) securely parallelize the ORAM and (ii) delay and buffer
bucket writes. To quantify epochs’ impact on performance as
a function of their size and the underlying storage properties,
we instantiate an ORAM with 100K objects and choose
three different storage backends: a local dummy (storing
no real data) that responds to all reads with a static value
and ignores writes (dummy); a remote server backend with
an in-memory hashmap (server, ping time 0.3ms) and a
remote WAN server backend with an in-memory hashmap
(server WAN, ping time 10ms); and DynamoDB (dynamo,
provisioned for 80K req/s, read ping 1ms, write 3ms).

738 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Dummy Server Server WAN Dynamo

101

102

103

104

105
T

h
ro

u
gh

p
u

t
(o

p
s/

s)
Sequential

Parallel

ParallelCrypto

(a) Parallelism (Batch Size 500)
1 10 100 500 1000 2000 5000 10000

0

2000

4000

6000

8000

10000

12000

14000

T
h

ro
u

gh
p

u
t

(o
p

s/
s)

Dummy

Server

Server WAN

Dynamo

(b) Batch Size Throughput

1 10 100 500 1000 2000 5000 10000
0

1000

2000

3000

4000

5000

L
a
te

n
cy

(m
s)

Dummy

Server

Server WAN

Dynamo

(c) Batch Size Latency
Dummy Server Server WAN Dynamo

0

2000

4000

6000

8000

10000

T
h

ro
u

gh
p

u
t

(o
p

s/
s)

Normal

Write Back

(d) Delayed Visibility

21 23 25 27

Batch Size

0.0

0.5

1.0

1.5

2.0

2.5

R
el

at
iv

e
In

cr
ea

se

Dummy

Server

Server WAN

Dynamo

(e) Epoch Size Impact - ORAM

0

2
5

5
0

7
5

10
0

12
5

15
0

Epoch Size (ms)

0

500

1000

1500

2000

T
h

ro
u

gh
p

u
t

(t
rx

/
s)

SmallBank

FreeHealth

TPC-C

(f) Epoch Size Impact - Proxy
Figure 10: Performance impact of various features

Parallelization We first focus on the performance impact
of parallelizing Ring ORAM (ignoring other optimizations).
Graph 10a shows that, unsurprisingly, the benefits of
parallelism increase with the latency of individual requests.
Parallelizing the ORAM for dummy, for instance, yields no
performance gain; in fact, it results in a 3× slowdown (from
72K req/s to 24K req/s). Sequential Ring ORAM on dummy
is CPU-bound on metadata computation (remapping paths,
shuffling buckets, etc.), so adding coordination mechanisms
to guarantee multi-level serializability only increases the cost
of accessing a bucket. As storage access latency increases and
the ORAM becomes I/O-bound, the benefits of parallelism
become more salient. For a batch size of 500, throughput
increases by 12× for server, as much as 51× for dynamo,
and 510× for WAN server. The available parallelism is a
function of both the size/fan-out of the tree and the under-
lying resource bottlenecks of the proxy. Graph 10b captures
the parallelization speedup for both intra- and inter-request
parallelism, while Graph 10b quantifies the latency impact
of batching. The parallelization speedup achieved for a
batch size of one captures intra-request parallelism: the
eleven levels of the ORAM can be accessed concurrently,
yielding an 11× speedup. As batch sizes increase, Obladi can
leverage inter-request parallelism to process non-conflicting

physical operations in parallel, with little to no impact on
latency. Dynamo peaks early (at 1750 req/s) because its
client API uses blocking HTTP calls, and dummy’s storage
eventually bottlenecks on encryption, but server and WAN
server are more interesting. Their throughput is limited
by the physical and data dependencies on the upper levels
of the tree (recall that paths always conflict at the root (§7)).
Work Reduction To amortize ORAM overheads across

a large number of operations, Obladi relies on delayed visi-
bility to buffer bucket writes until the end of an epoch, when
they can be executed in parallel, discarding intermediate
writes. Reads to those buckets are directly served from the
proxy, reducing network communication and CPU work (as
encryption is not needed). Graph 10d shows that enabling this
optimization for an epoch of eight batches (a setup suitable
for FreeHealth and TPC-C) yields a 1.5× speedup on both
dynamo and the server, a 1.6× speedup on the WAN server,
but only minimal gains for dummy (1.1×). When using a
small number of batches, throughput gains come primarily
from combining duplicate operations in buckets near the top
of the tree. For example, the root bucket is written 27 times in
an epoch of size eight (once per eviction, every 168 requests).
As these operations conflict, they must be executed sequen-
tially and quickly become the bottleneck (other buckets have
fewer operations to execute). Our optimization lets Obladi
write the root bucket only once, significantly reducing latency
and thus increasing throughput. As epochs grow in size, in-
creasingly many buckets are buffered locally until the end of
the epoch (§7), allowing reads to be served locally and further
reducing I/O with the storage. Consider Graph 10e: through-
put increases almost logarithmically; metadata computation
eventually becomes a bottleneck for dummy, while server
and server WAN eventually run out of memory from
storing most of the tree (our AWS account did not allow us
to provision dynamo adequately for larger batches). Larger
epochs reduce the raw amount of work per operation: with
one batch, Obladi requires 41 physical requests per logical
operation, but only requires 24 operations with eight batches.
For real transactional workloads, however, epochs are not
a silver bullet. Graph 10f suggests that applications are very
sensitive to identifying the right epoch duration: too short
and transactions cannot make progress, repeatedly aborting;
too long and the system will remain unnecessarily idle.

11.3 Durability
Table 11b quantifies the efficiency of failure recovery and
the cost it imposes on normal execution for ORAMS of
different sizes (we show space results for only the WAN
server as Dynamo follows a similar trend). During normal
execution, durability imposes a moderate throughput drop
(from 0.83× for 10K to 0.89× for 1M). This slowdown
is due to the need to checkpoint client metadata and to
synchronously log read paths to durable storage before
reading. As seen in Graph 11a, computing diffs mitigates the

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 739

1 4 16 64 256
0

1000

2000

3000

4000

5000

6000

7000

8000
T

h
ro

u
g
h

p
u

t
(o

p
s/

s)

Server

Server WAN

Dynamo

(a) Checkpoint Frequency (100K)

10K 100K 1M
Levels 7 11 14

Slowdown 0.83 0.88 0.89
RecTime 1452 2604 6080
Network 182 681 848

Pos 8 74 1610
Perm 15 218 1424
Paths 864 1104 1341

(b) Server Wan Recovery Time (ms)
Figure 11: Durability

impact of checkpointing. Recovery time similarly increases
as the ORAM grows, from 1.5s to 6.1s (Table 11b, RecTime).
The costs of decrypting the position and permutation maps
(Pos and Perm) are low for small datasets, but grow linearly
with the number of keys. Read path logging (Paths) instead
starts much larger, but grows only with the depth of the tree.

12 Related Work
Batching Obladi amortizes ORAM costs by grouping
operations into epochs and committing at epoch boundaries.
Batching can mitigate expensive security primitives, e.g., it re-
duces server-side computation in private information retrieval
(PIR) schemes [9, 31, 33, 45], amortizes the cost of shuffling
networks in Atom [40] and the cost of verifying integrity
in Concerto [6]. Changing when operations output commit
is a popular performance-boosting technique: it yields
significant gains for state-machine replication [35, 37, 64],
file systems [55], and transactional databases [21, 47, 82].
ORAM parallelism Obladi extends recent work on

parallel ORAM constructions [11, 44, 86] to extract
parallelism both within and across requests. Shroud [44]
targets intra-request parallelism by concurrently accessing
different levels of tree-based ORAMs. Chung et al [12] and
PrivateFS [86] instead target inter-request parallelism, respec-
tively in tree-based [73] and hierarchical [85] ORAMs. Both
works execute requests to distinct logical keys concurrently
between reshuffles or evictions and deduplicate concurrent
requests for the same key to increase parallelism. Obladi
leverages delayed visibility to separate batches into read and
write phases, extracting concurrency both within requests
and across evictions. Furthermore, Obladi parallelizes across
requests by deduplicating requests at the trusted proxy.
ObliviStore [77] and Taostore [70] instead approach

parallelization by focusing on asynchrony. ObliviStore [77]
formalizes the security challenges of scheduling requests
asynchronously; the oblivious scheduling mechanism that
it presents for that model however is computationally
expensive and requires a large stash, making ObliviStore
unsuitable for implementing ACID transactions. Like
ObliviStore, Taostore leverages asynchrony to parallelize
Path ORAM [78], a tree-based construction from which
Ring ORAM descends. Taostore, however, targets a different
threat model: it assumes both that requests must be processed

immediately, and that the timing of responses is visible to
the adversary. Request latencies thus necessarily increase
linearly with the number of clients [86].

Hiding access patterns for non-transactional systems
Many systems seek to provide access pattern protections for
analytical queries: Opaque [89] and Cipherbase [5] support
oblivious operators for queries that scan or shuffle full tables.
Both rely on hardware enclaves for efficiency: Opaque runs
a query optimizer in SGX [32], while Cipherbase leverages
secure co-processors to evaluate predicates more efficiently.
Others seek to hide the parameters of the query rather than
the query itself: Olumofin et al. [56] do it via multiple rounds
of keyword-based PIR operations [16]; Splinter [83] reduces
the number of round-trips necessary by mapping these
database queries to function secret sharing primitives. Finally,
ObliDB [25] adds support for point queries and efficient
updates by designing an oblivious B-tree for indexing. The
concurrency control and recovery mechanisms of all these
approaches introduce timing channels and structure writes
in ways that leak access patterns [5].

Encryption Many commercial systems offer the possibility
to store encrypted data [24, 71]. Efficiently executing
data-dependent queries like joins, filters, or aggregations
without knowledge of the plaintext is challenging: systems
like CryptDB [63], Monomi [81], and Seabed [60] tailor
encryption schemes to allow executing certain queries
directly on encrypted data. Others leverage trusted hardware
[7]. In contrast, executing transactions on encrypted data is
straightforward: neither concurrency control nor recovery
requires knowledge of the plaintext data.

13 Conclusion

This paper presents Obladi, a system that, for the first
time, considers the security challenges of providing ACID
transactions without revealing access patterns. Obladi
guarantees security and durability at moderate cost through
a simple observation: transactional guarantees are only
required to hold for committed transactions. By delaying
commits until the end of epochs, Obladi inches closer to
providing practical oblivious ACID transactions.

Acknowledgements We thank our shepherd, Jay Lorch,
for his commitment to excellence, and the anonymous
reviewers for their helpful comments. We are grateful
to Sebastian Angel, Soumya Basu, Vijay Chidambaram,
Trinabh Gupta, Paul Grubbs, Malte Schwarzkopf, Yunhao
Zhang, and the MIT PDOS reading group for their feedback.
This work was supported by NSF grants CSR-1409555 and
CNS-1704742, and an AWS EC2 Education Research grant.

References

[1] AGRAWAL, D., AND EL ABBADI, A. Locks with Constrained Shar-
ing (Extended Abstract).

740 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[2] AGUILAR-MELCHOR, C., BARRIER, J., FOUSSE, L., AND KIL-
LIJIAN, M.-O. XPIR: Private Information Retrieval for Every-
one. Cryptology ePrint Archive, Report 2014/1025, 2014. http:
//eprint.iacr.org/2014/1025.

[3] AMAZON. S3: Simple storage service. https://aws.amazon.com/
s3/.

[4] AMAZON. Simple db. https://aws.amazon.com/simpledb/.

[5] ARASU, A., BLANAS, S., EGURO, K., KAUSHIK, R., KOSSMANN,
D., RAMAMURTHY, R., AND VENKATESAN, R. Orthogonal Security
With Cipherbase. In Conference on Innovative Data Systems Research
(CIDR) (2013).

[6] ARASU, A., EGURO, K., KAUSHIK, R., KOSSMANN, D., MENG,
P., PANDEY, V., AND RAMAMURTHY, R. Concerto: A High Concur-
rency Key-Value Store with Integrity. In ACM SIGMOD International
Conference on Management of Data (SIGMOD) (2017).

[7] BAJAJ, S., AND SION, R. TrustedDB: A Trusted Hardware Based
Database with Privacy and Data Confidentiality. In ACM SIGMOD
International Conference on Management of Data (SIGMOD) (2011).

[8] BAKER, J., BOND, C., CORBETT, J. C., FURMAN, J., KHORLIN,
A., LARSON, J., LEON, J.-M., LI, Y., LLOYD, A., AND YUSH-
PRAKH, V. Megastore: Providing Scalable, Highly Available Storage
for Interactive Services. In Conference on Innovative Data Systems
Research (CIDR) (2011).

[9] BEIMEL, A., ISHAI, Y., AND MALKIN, T. Reducing the servers’
computation in private information retrieval: PIR with preprocessing.
Journal of Cryptology (JOFC) 17, 2 (2004), 125–151.

[10] BERNSTEIN, P. A., AND GOODMAN, N. Multiversion Concurrency
Control — Theory and Algorithms. ACM Trans. Database Syst. 8, 4
(1983), 465–483.

[11] BINDSCHAEDLER, V., NAVEED, M., PAN, X., WANG, X., AND
HUANG, Y. Practicing Oblivious Access on Cloud Storage: The
Gap, the Fallacy, and the New Way Forward. In ACM Conference on
Computer and Communications Security (CCS) (2015).

[12] BOYLE, E., CHUNG, K.-M., AND PASS, R. Oblivious Parallel RAM
and Applications. In Theory of Cryptography Conference (TCC)
(2016).

[13] BULCK, J. V., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI,
B., PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM,
Y., AND STRACKX, R. Foreshadow: Extracting the Keys to the Intel
SGX Kingdom with Transient Out-of-Order Execution. In USENIX
Security Symposium (USENIX) (2018).

[14] CANETTI, R. Universally composable security: A new paradigm
for cryptographic protocols. In IEEE Symposium on Foundations of
Computer Science (FOCS) (2001).

[15] CECCHETTI, E., ZHANG, F., JI, Y., KOSBA, A., JUELS, A., AND
SHI, E. Solidus: Confidential Distributed Ledger Transactions via
PVORM. In ACM Conference on Computer and Communications
Security (CCS) (2017).

[16] CHOR, B., GILBOA, N., AND NAOR, M. Private information retrieval
by keywords, 1997.

[17] CLOUD, C. 5 advantages of a cloud-based EHR.

[18] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKRISHNAN, R.,
AND SEARS, R. Benchmarking Cloud Serving Systems with YCSB.
In ACM Symposium on Cloud Computing (SoCC) (2010).

[19] CORBETT, J. C., DEAN, J., EPSTEIN, M., FIKES, A., FROST,
C., FURMAN, J. J., GHEMAWAT, S., GUBAREV, A., HEISER, C.,
HOCHSCHILD, P., HSIEH, W., KANTHAK, S., KOGAN, E., LI, H.,
LLOYD, A., MELNIK, S., MWAURA, D., NAGLE, D., QUINLAN,
S., RAO, R., ROLIG, L., SAITO, Y., SZYMANIAK, M., TAYLOR, C.,
WANG, R., AND WOODFORD, D. Spanner: Google’s Globally Dis-
tributed Database. ACM Transactions on Computer Systems (TOCS)
31, 3 (2013), 8:1–8:22.

[20] CROOKS, N., BURKE, M., CECCHETTI, E., HAREL, S., AGARWAL,
R., AND ALVISI, L. Obladi: Oblivious Serializable Transactions in
the Cloud. CoRR abs/1809.10559 (2018).

[21] CROOKS, N., PU, Y., ALVISI, L., AND CLEMENT, A. Seeing is
Believing: A Client-Centric Specification of Database Isolation. In
ACM Symposium on Principles of Distributed Computing (PODC)
(2017).

[22] DIFALLAH, D. E., PAVLO, A., CURINO, C., AND CUDRE-
MAUROUX, P. OLTP-Bench: An Extensible Testbed for Bench-
marking Relational Databases.

[23] DYNAMODB. DynamoDB. https://aws.amazon.com/
dynamodb/.

[24] DYNAMODB. Encryption at rest. https://docs.aws.
amazon.com/amazondynamodb/latest/developerguide/
EncryptionAtRest.html.

[25] ESKANDARIAN, S., AND ZAHARIA, M. An Oblivious General-
Purpose SQL Database for the Cloud. CoRR abs/1710.00458 (2017).

[26] ESWARAN, K. P., GRAY, J. N., LORIE, R. A., AND TRAIGER, I. L.
The Notions of Consistency and Predicate Locks in a Database System.
Commun. ACM 19, 11 (1976), 624–633.

[27] FLETCHER, C. W., REN, L., KWON, A., AND V. DI, M. A Low-
Latency, Low-Area Hardware Oblivious RAM Controller. In Annual
IEEE Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM) (2015).

[28] FREEHEALTH.IO. FreeHealth EHR. https://freehealth.io/.
Accessed 2018-05-01.

[29] GOLDREICH, O., AND OSTROVSKY, R. Software protection and
simulation on oblivious RAMs. Journal of the ACM (JACM) 43, 3
(1996), 431–473.

[30] GRAY, J., MCJONES, P., BLASGEN, M., LINDSAY, B., LORIE, R.,
PRICE, T., PUTZOLU, F., AND TRAIGER, I. The Recovery Manager
of the System R Database Manager. ACM Computing Surveys (CSUR)
13, 2 (1981), 223–242.

[31] GUPTA, T., CROOKS, N., MULHERN, W., SETTY, S., ALVISI, L.,
AND WALFISH, M. Scalable and Private Media Consumption with
Popcorn. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2016).

[32] INTEL. Intel Software Guard Extension - SGX. https://software.
intel.com/en-us/sgx.

[33] ISHAI, Y., KUSHILEVITZ, E., OSTROVSKY, R., AND SAHAI, A.
Batch Codes and Their Applications. In ACM Symposium on Theory
of Computing (STOC) (2004).

[34] JONES, E. P., ABADI, D. J., AND MADDEN, S. Low Overhead
Concurrency Control for Partitioned Main Memory Databases. In
ACM SIGMOD International Conference on Management of Data
(SIGMOD) (2010).

[35] KAPRITSOS, M., WANG, Y., QUEMA, V., CLEMENT, A., ALVISI,
L., AND DAHLIN, M. All about Eve: Execute-Verify Replication for
Multi-Core Servers. In USENIX Symposium on Operating Systems
Design and Implementation (OSDI) (2012).

[36] KOCHER, P., HORN, J., FOGH, A., , GENKIN, D., GRUSS, D.,
HAAS, W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER,
T., SCHWARZ, M., AND YAROM, Y. Spectre Attacks: Exploiting
Speculative Execution. In IEEE Symposium on Security and Privacy
(SP) (2019).

[37] KOTLA, R., ALVISI, L., DAHLIN, M., CLEMENT, A., AND WONG,
E. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Transac-
tions on Computer Systems (TOCS) 27, 4 (2010), 7:1–7:39.

[38] KUNG, H. T., AND ROBINSON, J. T. On Optimistic Methods for
Concurrency Control. ACM Trans. Database Syst. 6, 2 (1981), 213–
226.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 741

http://eprint.iacr.org/2014/1025
http://eprint.iacr.org/2014/1025
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/simpledb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/EncryptionAtRest.html
https://freehealth.io/
https://software.intel.com/en-us/sgx
https://software.intel.com/en-us/sgx

[39] KUO, A. M.-H. Opportunities and challenges of cloud computing to
improve health care services. Journal of Medical Internet Research
(JMIR) 13, 3 (2011).

[40] KWON, A., CORRIGAN-GIBBS, H., DEVADAS, S., AND FORD, B.
Atom: Horizontally Scaling Strong Anonymity. In ACM Symposium
on Operating System Principles (SOSP) (2017).

[41] LARSON, P.-A., BLANAS, S., DIACONU, C., FREEDMAN, C., PA-
TEL, J. M., AND ZWILLING, M. High-performance Concurrency
Control Mechanisms for Main-memory Databases. In Proceedings of
the VLDB Endowment (PVLDB) (2011).

[42] LIBRE, M. FreeHealth EHR. https://https://freemedsoft.
com/fr/. Accessed 2018-05-01.

[43] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown: Reading Kernel Mem-
ory from User Space. In USENIX Security Symposium (USENIX)
(2018).

[44] LORCH, J., PARNO, B., MICKENS, J., RAYKOVA, M., AND SCHIFF-
MAN, J. Shroud: Ensuring Private Access to Large-Scale Data in the
Data Center. In Conference on File and Storage Technologies (FAST)
(2013).

[45] LUEKS, W., AND GOLDBERG, I. Sublinear Scaling for Multi-Client
Private Information Retrieval. In Financial Cryptography and Data
Security (FC) (2015).

[46] MAAS, M., LOVE, E., STEFANOV, E., TIWARI, M., SHI, E.,
ASANOVIC, K., KUBIATOWICZ, J., AND SONG, D. PHANTOM:
Practical Oblivious Computation in a Secure Processor. In ACM Con-
ference on Computer and Communications Security (CCS) (2013).

[47] MEHDI, S. A., LITTLEY, C., CROOKS, N., ALVISI, L., BRONSON,
N., AND LLOYD, W. I Can’t Believe It’s Not Causal! Scalable Causal
Consistency with No Slowdown Cascades. In USENIX Symposium
on Networked Systems Design and Implementation (NSDI) (2017).

[48] MICROSOFT. Azure tables. https://azure.microsoft.com/
en-us/services/storage/tables/.

[49] MICROSOFT. Documentdb - nosql service for json. https://azure.
microsoft.com/en-us/services/documentdb/.

[50] MICROSOFT. SQL Server. https://www.microsoft.com/
en-cy/sql-server/sql-server-2016.

[51] MOHAN, C., HADERLE, D., LINDSAY, B., PIRAHESH, H., AND
SCHWARZ, P. ARIES: A Transaction Recovery Method Supporting
Fine-granularity Locking and Partial Rollbacks Using Write-ahead
Logging. ACM Trans. Database Syst. 17, 1 (1992), 94–162.

[52] MONGODB. Agility, Performance, Scalibility. Pick three. https:
//www.mongodb.org/.

[53] NARAYANAN, A., AND SHMATIKOV, V. Robust De-anonymization
of Large Sparse Datasets. In IEEE Symposium on Security and Privacy
(SP) (2008).

[54] NARAYANAN, A., AND SHMATIKOV, V. Myths and fallacies of
“personally identifiable information”. Commun. ACM 53, 6 (June
2010), 24–26.

[55] NIGHTINGALE, E. B., VEERARAGHAVAN, K., CHEN, P. M., AND
FLINN, J. Rethink the Sync. ACM Transactions on Computer Systems
(TOCS) 26, 3 (2008), 6:1–6:26.

[56] OLUMOFIN, F., AND GOLDBERG, I. Privacy-preserving Queries over
Relational Databases. In Privacy Enhancing Technologies Symposium
(PETS) (2010).

[57] ORACLE. InnoDB. https://dev.mysql.com/doc/refman/8.0/
en/innodb-storage-engine.html/.

[58] ORACLE. MySQL. https://www.mysql.com/.

[59] ORACLE. MySQL Cluster. https://www.mysql.com/products/
cluster/.

[60] PAPADIMITRIOU, A., BHAGWAN, R., CHANDRAN, N., RAMJEE, R.,
HAEBERLEN, A., SINGH, H., MODI, A., AND BADRINARAYANAN,
S. Big Data Analytics over Encrypted Datasets with Seabed. In
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI) (2016).

[61] PAPADIMITRIOU, C. H. The Serializability of Concurrent Database
Updates. Journal of the ACM (JACM) 26, 4 (1979), 631–653.

[62] PLATFORM, G. C. Cloud spanner. http://cloud.google.com/
spanner/.

[63] POPA, R. A., REDFIELD, C. M. S., ZELDOVICH, N., AND BAL-
AKRISHNAN, H. CryptDB: Protecting Confidentiality with Encrypted
Query Processing. In ACM Symposium on Operating System Princi-
ples (SOSP) (2011).

[64] PORTS, D. R., LI, J., LIU, V., SHARMA, N. K., AND KRISHNA-
MURTHY, A. Designing Distributed Systems Using Approximate
Synchrony in Data Center Networks. In USENIX Symposium on
Networked Systems Design and Implementation (NSDI) (2015).

[65] POSTGRESQL. http://www.postgresql.org/.

[66] REDDY, P. K., AND KITSUREGAWA, M. Speculative Locking Proto-
cols to Improve Performance for Distributed Database Systems. IEEE
Transactions on Knowledge and Data Engineering (TKDE) 16, 2
(2004), 154–169.

[67] REED, D. P. Implementing Atomic Actions on Decentralized Data
(Extended Abstract). In ACM Symposium on Operating System Prin-
ciples (SOSP) (1979).

[68] REED, D. P. Implementing Atomic Actions on Decentralized Data.
ACM Transactions on Computer Systems (TOCS) 1, 1 (1983), 3–23.

[69] REN, L., FLETCHER, C., KWON, A., STEFANOV, E., SHI, E., VAN
DIJK, M., AND DEVADAS, S. Constants Count: Practical Improve-
ments to Oblivious RAM. In USENIX Security Symposium (USENIX)
(2015).

[70] SAHIN, C., ZAKHARY, V., EL ABBADI, A., LIN, H., AND TESSARO,
S. TaoStore: Overcoming Asynchronicity in Oblivious Data Storage.
In IEEE Symposium on Security and Privacy (SP) (2016).

[71] SERVER, M. S. Always Encrypted. https://www.microsoft.
com/en-us/research/project/always-encrypted/.

[72] SHEFF, I., MAGRINO, T., LIU, J., MYERS, A. C., AND VAN RE-
NESSE, R. Safe Serializable Secure Scheduling: Transactions and the
Trade-Off Between Security and Consistency. In ACM Conference on
Computer and Communications Security (CCS) (2016).

[73] SHI, E., CHAN, T.-H. H., STEFANOV, E., AND LI, M. Oblivious
RAM with O((logN)3) Worst-Case Cost. In International Conference
on The Theory and Application of Cryptology and Information Security
(2011).

[74] SINGEL, R. Netflix spilled your Brokeback Mountain secret, lawsuit
claims. Wired (Dec. 2009). http://www.wired.com/images_
blogs/threatlevel/2009/12/doe-v-netflix.pdf.

[75] STEFANOV, E., AND SHI, E. ObliviStore: High Performance Oblivi-
ous Cloud Storage. In IEEE Symposium on Security and Privacy (SP)
(2013).

[76] STEFANOV, E., AND SHI, E. ObliviStore: High Performance Oblivi-
ous Distributed Cloud Data Store. In Network and Distributed System
Security Symposium (NDSS) (2013).

[77] STEFANOV, E., SHI, E., AND SONG, D. Towards Practical Oblivious
RAM.

[78] STEFANOV, E., VAN DIJK, M., SHI, E., FLETCHER, C., REN, L.,
YU, X., AND DEVADAS, S. Path ORAM: An Extremely Simple
Oblivious RAM Protocol. In ACM Conference on Computer and
Communications Security (CCS) (2013).

[79] SU, C., CROOKS, N., DING, C., ALVISI, L., AND XIE, C. Bringing
Modular Concurrency Control to the Next Level. In ACM SIGMOD
International Conference on Management of Data (SIGMOD) (2017).

742 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://https://freemedsoft.com/fr/
https://https://freemedsoft.com/fr/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/storage/tables/
https://azure.microsoft.com/en-us/services/documentdb/
https://azure.microsoft.com/en-us/services/documentdb/
https://www.microsoft.com/en-cy/sql-server/sql-server-2016
https://www.microsoft.com/en-cy/sql-server/sql-server-2016
https://www.mongodb.org/
https://www.mongodb.org/
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html/
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html/
https://www.mysql.com/
https://www.mysql.com/products/cluster/
https://www.mysql.com/products/cluster/
http://cloud.google.com/spanner/
http://cloud.google.com/spanner/
http://www.postgresql.org/
https://www.microsoft.com/en-us/research/project/always-encrypted/
https://www.microsoft.com/en-us/research/project/always-encrypted/
http://www.wired.com/images_blogs/threatlevel/2009/12/doe-v-netflix.pdf
http://www.wired.com/images_blogs/threatlevel/2009/12/doe-v-netflix.pdf

[80] TRANSACTION PROCESSING PERFORMANCE COUNCIL. The TPC-
C home page. http://www.tpc.org/tpcc.

[81] TU, S., KAASHOEK, M. F., MADDEN, S., AND ZELDOVICH, N.
Processing Analytical Queries over Encrypted Data. In Proceedings
of the VLDB Endowment (PVLDB) (2013).

[82] TU, S., ZHENG, W., KOHLER, E., LISKOV, B., AND MADDEN, S.
Speedy Transactions in Multicore In-memory Databases. In ACM
Symposium on Operating System Principles (SOSP) (2013).

[83] WANG, F., YUN, C., GOLDWASSER, S., VAIKUNTANATHAN, V.,
AND ZAHARIA, M. Splinter: Practical Private Queries on Public
Data. In USENIX Symposium on Networked Systems Design and
Implementation (NSDI) (2017).

[84] WEIKUM, G. Principles and Realization Strategies of Multilevel
Transaction Management. ACM Trans. Database Syst. 16, 1 (1991),
132–180.

[85] WILLIAMS, P., SION, R., AND CARBUNAR, B. Building Castles out
of Mud: Practical Access Pattern Privacy and Correctness on Untrusted
Storage. In ACM Conference on Computer and Communications
Security (CCS) (2008).

[86] WILLIAMS, P., SION, R., AND TOMESCU, A. PrivateFS: A Par-
allel Oblivious File System. In ACM Conference on Computer and
Communications Security (CCS) (2012).

[87] XIE, C., SU, C., LITTLEY, C., ALVISI, L., KAPRITSOS, M., AND
WANG, Y. High-performance ACID via Modular Concurrency Con-
trol. In ACM Symposium on Operating System Principles (SOSP)
(2015).

[88] ZHANG, I., SHARMA, N. K., SZEKERES, A., KRISHNAMURTHY,
A., AND PORTS, D. R. K. Building Consistent Transactions with
Inconsistent Replication. In ACM Symposium on Operating System
Principles (SOSP) (2015).

[89] ZHENG, W., DAVE, A., BEEKMAN, J. G., POPA, R. A., GONZA-
LEZ, J. E., AND STOICA, I. Opaque: An Oblivious and Encrypted
Distributed Analytics Platform. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI) (2017).

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 743

