Towards us Tail Latency and Terabit Ethernet:
Disaggregating the Host Network Stack

Qizhe Cai Midhul Vuppalapati
Cornell University Cornell University
Jaehyun Hwang Christos Kozyrakis Rachit Agarwal
Sungkyunkwan University Stanford University Cornell University

ABSTRACT

Dedicated, tightly integrated, and static packet processing pipelines
in today’s most widely deployed network stacks preclude them
from fully exploiting capabilities of modern hardware.

We present NetChannel, a disaggregated network stack archi-
tecture for ps-scale applications running atop Terabit Ethernet.
NetChannel’s disaggregated architecture enables independent scal-
ing and scheduling of resources allocated to each layer in the packet
processing pipeline. Using an end-to-end NetChannel realization
within the Linux network stack, we demonstrate that NetChannel
enables new operating points—(1) enabling a single application
thread to saturate multi-hundred gigabit access link bandwidth; (2)
enabling near-linear scalability for small message processing with
number of cores, independent of number of application threads;
and, (3) enabling isolation of latency-sensitive applications, allow-
ing them to maintain ps-scale tail latency even when competing
with throughput-bound applications operating at near-line rate.

CCS CONCEPTS

« Software and its engineering — Software architectures; «
Computer systems organization; - Networks — Network de-
sign principles;

KEYWORDS
Operating system; Network stack; Terabit Ethernet

ACM Reference Format:

Qizhe Cai, Midhul Vuppalapati, Jaechyun Hwang, Christos Kozyrakis, and Rachit
Agarwal. 2022. Towards us Tail Latency and Terabit Ethernet: Disaggregat-
ing the Host Network Stack. In ACM SIGCOMM 2022 Conference (SSIGCOMM
'22), August 22-26, 2022, Amsterdam, Netherlands. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3544216.3544230

1 INTRODUCTION

In discussions about future host network stacks, there is widespread
agreement that, despite its great success, today’s Linux network
stack is seriously deficient along one or more dimensions. Some of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCOMM °22, August 22-26, 2022, Amsterdam, Netherlands

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9420-8/22/08...$15.00
https://doi.org/10.1145/3544216.3544230

the most frequently cited flaws include its inefficient packet process-
ing pipeline [7, 11, 25, 34, 51], its inability to isolate latency-sensitive
and throughput-bound applications [35, 54, 61], its rigid and com-
plex implementation [6], its inefficient transport protocols [10, 23,
55], to name a few. These critiques have led to many interesting (and
exciting!) debates on various design aspects of the Linux network
stack: interface (e.g., streaming versus RPC [24, 36, 45, 61]), seman-
tics (e.g., synchronous versus asynchronous I/O [40, 44, 45]), and
placement (e.g., in-kernel versus userspace versus hardware [6, 51]).

This paper demonstrates that many deficiencies of the Linux
network stack are not rooted in its interface, semantics and/or
placement, but rather in its core architecture!. In particular,
since the very first incarnation, the Linux network stack has
offered applications the same “pipe” abstraction designed around
essentially the same rigid architecture:

e Dedicated pipes: each application and/or thread submits data
to one end of a dedicated pipe (sender-side socket) and the net-
work stack attempts to deliver the data to the other end of that
dedicated pipe (receiver-side socket);

Tightly-integrated packet processing pipeline: each pipe is
assigned its own socket, has its own independent transport layer
operations (congestion control, flow control, etc.), and is operated
upon by the network subsystem completely independently of
other coexisting pipes;

Static pipes: the entire packet processing pipeline (buffers, pro-
tocol processing, host resource provisioning, etc.) is determined
at the time of pipe creation, and remains unchanged during the
pipe lifetime, again, independent of other pipes and dynamic
resources availability at the host.

Such dedicated, tightly-integrated and static pipelines were
well-suited for the Internet and early-generation datacenter
networks—since performance bottlenecks were primarily in the
network core, careful allocation of host resources (compute,
caches, NIC queues, etc.) among coexisting pipes was unnecessary.
However, rapid increase in link bandwidths, coupled with relatively
stagnant technology trends for other host resources, has now
pushed bottlenecks to hosts [6, 11, 25, 30, 34, 51, 55]. For this new
regime, our measurements in §2 show that dedicated, tightly-
integrated and static pipelines are now limiting today’s network
stacks from fully exploiting capabilities of modern hardware that
supports us-scale latency and hundred(s) of gigabits of bandwidth.

1One exception is per-core performance, which indeed depends on its interface, seman-
tics and placement. This paper is not about per-core performance of network stacks—our
architecture is agnostic to the interface, semantics, and placement of network stacks.

https://doi.org/10.1145/3544216.3544230
https://doi.org/10.1145/3544216.3544230

Socket queues

User space

Socket
Kernel space

Linux Network
Stack

|_| |_| ’-4 |_| NIC Queue
[[[[

HW
NIC

(a) Linux network stack

Virtual Network System

Virtual socket queues

User space

Kernel space

NetScheduler ‘

NetDriver H
(]

H/W

BB B

|_| NIC Queue
L L L

NIC

(b) NetChannel design

Figure 1: NetChannel architecture overview. (a) The Linux network stack architecture uses dedicated, tightly-integrated, and static packet
processing pipelines. (b) NetChannel disaggregates the packet processing pipeline into three loosely-coupled layers: applications interact with
the network stack using a Virtual Network System (VNS) layer that enables data movement between application buffers and kernel buffers
while maintaining correctness of interface semantics; NetDriver abstracts away the network and remote servers as a multi-queue device using
a channel abstraction, and performs dynamic resource scheduling for individual channels; NetScheduler performs fine-grained multiplexing
and demultiplexing (as well as scheduling) of data between VNS buffers and individual NetDriver channels. More discussion in §3.

Experimenting with new ideas has also become more challenging:
performance patches have made the tightly-integrated pipelines
so firmly entrenched within the stack that it is frustratingly hard,
if not impossible, to incorporate new protocols and mechanisms.
Unsurprisingly, existing network stacks are already at the brink of
a breakdown and the emergence of Terabit Ethernet will inevitably
require rearchitecting the network stack. Laying the intellectual
foundation for such a rearchitecture is the goal of this paper.

The NetChannel architecture. NetChannel disaggregates the
tightly-integrated packet processing pipeline in today’s network
stack into three loosely-coupled layers (Figure 1).

Applications interact with a Virtual Network System (VNS) layer
that offers standardized interfaces, e.g., system calls for streaming
and RPC traffic. Internally, VNS enables data transfer between
application buffers and kernel buffers, while ensuring correctness
for the interface semantics (e.g., in-order delivery for the streaming
interface). The core of NetChannel is a NetDriver layer that
abstracts away the network and remote servers as a multi-queue de-
vice using a channel abstraction. In particular, the NetDriver layer
decouples packet processing from individual application buffers
and cores: data read/written by an application on one core can
be mapped to one or more channels without breaking application
semantics. Each channel implements protocol-specific functional-
ities (congestion and flow control, for example) independently, can
be dynamically mapped to one of the underlying hardware queues,
and the number of channels between any pair of servers can be
scaled independent of number of applications running on these
servers and the number of cores used by individual applications.
Between the VNS and NetDriver layers is a NetScheduler layer that
performs fine-grained multiplexing and demultiplexing (as well as
scheduling) of data from individual cores/applications to individual

%In the hindsight, NetChannel is remarkably similar to the Linux storage stack archi-
tecture [8, 29]. This similarity is not coincidental—for storage workloads, bottlenecks
have always been at the host, and the “right” architecture has evolved over years to
both perform fine-grained resource allocation across applications, and to make it easy
to incorporate new storage technologies.

channels using information about individual core utilization,
application buffer occupancy and channel buffer occupancy.

NetChannel benefits. The primary benefit of NetChannel is to
enable new operating points for existing network stacks without
any modification in existing protocol implementations (TCP,
DCTCP, BBR, etc.). These new operating points are a direct result
of NetChannel’s disaggregated architecture: it not only allows
independent scaling of each layer (that is, resources allocated
to each layer), but also flexible multiplexing and demultiplexing
of data to multiple channels. We provide three examples.
First, for short messages where throughput is bottlenecked by
network layer processing overheads [25, 34], NetChannel allows
unmodified (even single-threaded) applications to scale throughput
near-linearly with number of cores by dynamically scaling cores
dedicated to network layer processing. Second, in the extreme
case of a single application thread, NetChannel can saturate
multi-hundred gigabit links by transparently scaling number of
cores for packet processing on an on-demand basis; in contrast, the
Linux network stack forces application designers to write multi-
threaded code to achieve throughput higher than tens of gigabits
per second [11]. As a third new operating point, we show that
fine-grained multiplexing and demultiplexing of packets between
individual cores/applications and individual channels enabled
by NetChannel, combined with a simple NetScheduler, allows
isolation of latency-sensitive applications from throughput-bound
applications: NetChannel enables latency-sensitive applications
to achieve ps-scale tail latency (as much as 17.5X better than
the Linux network stack), while allowing bandwidth-intensive
applications to use the remaining bandwidth near-perfectly.
NetChannel also has several secondary benefits that relate to the
extensibility of network stacks. For instance, NetChannel alleviates
the painful process of applications developers manually tuning their
code for networking performance (e.g., number of threads, connec-
tions, sockets, etc.) in increasingly common case of multi-tenant

deployments®. NetChannel also simplifies experimentation with
new designs (protocols and/or schedulers) without breaking legacy
hosts—implementation of a new transport protocol (e.g., dcPIM [10],
pHost [23] or Homa [53]) in NetChannel is equivalent to writing a
new “device driver” that realizes only transport layer functionalities
without worrying about functionalities in other layers of the
stack like data copy, isolation between latency-sensitive and
throughput-bound applications, CPU scheduling, load balancing,
etc. Thus, similar to storage stacks (that have simplified evolution of
new hardware and protocols via device drivers, and have simplified
writing applications with different performance objectives via
multiple coexisting block layer schedulers, etc.), NetChannel would
hopefully lead to a broader and ever-evolving ecosystem of network
stack designs. To that end, we have open-sourced NetChannel for
our community; the implementation of NetChannel is available
at https://github.com/Terabit-Ethernet/NetChannel.

What this paper is not about. Going back to our starting point,
there have been a lot of interesting and exciting recent debates on
various design aspects of network stacks including their interface,
semantics and placement. These are important discussions, but
are tangential to our goals.

First, NetChannel architecture is complementary to recent ef-
forts in improving per-core (or, per-connection) performance of the
Linux kernel network stack (e.g., zero-copy mechanisms [15, 16],
and the new io_uring interface [40])—we will demonstrate, in
§5, that applications using the io_uring interface can also benefit
from the NetChannel architecture. Given that single-core CPU
speeds have long been saturated, simple calculations show that
saturating multi-hundred gigabit access link bandwidths would
necessitate using multiple cores. NetChannel architecture thus
focuses on enabling new design points to enable applications
to share and exploit all host resources (e.g., multiple cores, NIC
queues, multi-hundred gigabit bandwidth, etc.).

Second, NetChannel architecture is independent of where
the network stack is placed—in-kernel, userspace or hardware;
one could very well implement NetChannel design on top of a
microkernel-style userspace stack [21, 38, 51]. We choose the Linux
kernel simply because of its maturity, stability, and widespread
deployment; we leave it to future work to explore integration of
NetChannel with userspace and hardware network stacks.

2 MOTIVATION

In this section, we demonstrate that the dedicated, tightly-
integrated, and static packet processing pipelines in today’s host
network stacks lead to deficiencies along multiple dimensions. We
perform measurements for the Linux network stack, with various
transport designs including TCP and its multi-path extension
MPTCP [18], various system interfaces (standard read/write
interface and io_uring), various packet processing optimization
techniques (e.g., packet coalescing and packet steering), and

3Libraries and/or schedulers outside the network stack (e.g., gRPC) may be able to offer
this benefit to some extent, but in many multi-tenant deployments, they may not have
the global visibility of all applications, system-level metrics like CPU utilization, and in
particular, network-layer metrics like congestion information to effectively offer such
a benefit. Nevertheless, our point here is not that similar benefits cannot be achieved
using other systems, but rather that one of the most widely used network stacks, Linux,
is limited by its architecture in offering such a benefit.

different isolation mechanisms. We start by describing our
measurement setup (§2.1), and then highlight several limitations
of today’s Linux network stack (§2.2) using these measurements.
Our key findings are:

o Static and dedicated packet processing pipelines preclude appli-
cations from fully utilizing host CPU resources. Even with all
optimizations enabled, a single TCP long flow fails to saturate
a 100Gbps link (achieving a maximum of ~60Gbps) even when
ample CPU cores are available. We find that, at ~60Gbps, one of
the cores at the receiver side becomes the bottleneck (specifically,
the core where the application runs), and today’s network stacks
provide no way to dynamically scale the compute resources allo-
cated to the packet processing pipeline during runtime (even if
there are other free CPU cores available). Multipath extensions
are no different—while MPTCP enables a single TCP connection
to utilize multiple network paths, processing at the host is still
bound to a single CPU core leaving the bottleneck unchanged.

e Static and dedicated packet processing pipelines also preclude

Linux from dynamically scaling the number of connections when

network layer processing becomes the bottleneck for short mes-

sages (e.g., RPCs). MPTCP also fails to achieve scalability for
network layer processing of short messages due to the same
reason as above.

Tightly-integrated nature of packet processing pipelines lead to

poor performance isolation when Latency-sensitive (L-apps) and

Throughput-bound (T-apps) applications are co-located. When

L-apps and T-apps share a core, today’s network stacks provide

no mechanism to steer L-app packet processing and T-app packet

processing to different cores—this results in high tail latency for

L-apps due to head-of-line blocking; we observe as much as 37x

increase in L-apps tail latency during such contention.

2.1 Measurement Setup

We set up a testbed using two servers directly connected with a
100Gbps link so as to push bottlenecks to the host network stack.
Each server has 4 NUMA nodes with 8 CPU cores per-NUMA node.
Direct Cache Access (Intel’s Data Direct I/O (DDIO) [30]) is enabled
and configured to use the maximum possible number of L3 cache
ways. We use Linux kernel v5.6 for TCP and MPTCP kernel v0.95
for MPTCP*. To emulate multi-pathing of the MPTCP kernel over a
single 100Gbps link, we increase the number of subflows manually.

To understand performance bottlenecks for long flows and short
messages, we use a long-lived TCP connection for transmitting
stream data and 4KB RPCs respectively, avoiding extra overheads
of creating/destroying connections. When measuring the perfor-
mance interference between T-apps and L-apps, for T-apps, we
generate long flow traffic similar to Iperf [19], and for L-apps,
we use a ping-pong style RPC workload (message size for both
request/response is 4KB).

We measure total throughput of long flows and short messages;
to better understand performance bottlenecks, we also perform CPU
profiling and classify kernel functions into different categories as

4The full implementation of MPTCP has been maintained separately from the upstream
kernel using different version numbers. As of now, the most recent version of MPTCP
kernel is based on Linux kernel 4.19 [18]. Efforts to push MPTCP into the upstream
kernel are still in progress [47].

https://github.com/Terabit-Ethernet/NetChannel

[Mechanism [Description]

TCP Segmentation Offload. Offloads the segmentation

TS0 (T of “big” packets (up to 64KB) into frames to the NIC.
Generic Receive Offload. Aggregates MTU-sized
GRO (Rx) frames into a “big” packet (up to 64KB) before passing

them to the TCP/IP layer.

Jumbo Frames Using larger MTU size (9000B)

(Tx/Rx)

RFS (Rx) accelerated Receive Flow Steering. Steers received
4 frames to the core that the application is running on.
DCA (Rx) Direct Cache Access. Allows NICs to DMA receiving

frames directly to the processor’s L3 cache.

Table 1: Packet processing optimization techniques used in many
modern network stacks.

in prior work [11]. We also measure throughput-per-core of T-apps
and P99.9 tail latency of L-apps for co-located T-apps and L-apps.

2.2 Limitations of Existing Kernel Stack

We use three measurement scenarios to showcase limitations of
today’s Linux network stack.

(1) Static and dedicated pipeline = lack of scalability for
long flows. We run an application that transmits a stream of data
through a single TCP socket using standard read/write system
calls. Fig. 2(a) shows the network stack is unable to saturate the
100Gbps link for this application, even after enabling various
prevalent offload and aggregation-based optimizations like Jumbo
Frames, TSO, GRO, aRFS (see Table 1), new upcoming interfaces
like io_uring, and multiple subflows for MPTCP. Jumbo Frames
and TSO/GRO help reduce the per-packet processing overheads
since they allow the processing pipeline to operate on larger
size packet buffers (or skbs). aRFS allows NICs to steer received
frames to the application core; along with DCA, it generally
improves throughput by performing data copy directly from the
L3 cache when applications are running on the cores in the same
NUMA node as the NIC. For a more detailed discussion of these
optimizations and their impact, refer to [11].

To dig deeper, we perform CPU profiling as shown in Fig. 2(b);
our results suggest that, despite DCA being enabled, the core
bottleneck is data copy from kernel to userspace at the receiver-side
consistent with observations in recent work [11]. Data copy is
performed on the application core that executes the recv() system
calls. Additionally, with aRFS enabled, interrupts (IRQs) are steered
to the application core, and hence other network layer processing
such as TCP/IP, Net-device subsystem (netdev), etc., also happens
on the application core.

We find that by disabling aRFS and manually steering interrupts
to a different core on the same NUMA node as the application,
the network stack achieves slightly higher throughput of ~60Gbps
(Fig. 2(a) second bar). Part of the processing (TCP/IP, netdev, etc.)
is now offloaded to a different CPU core, hence freeing up more
CPU cycles for data copy on the application core.

Even with Linux’s recent io_uring [40] feature, with aRFS
and with manual NUMA-local IRQ steering (bars 3 and 4 in
Fig. 2(a) respectively), we find that the total throughput does not
improve—in particular, data copy remains the dominant overhead

TCP TCP

' '
read/write syscalls E io_uring E MPTCP
' '
70 T .
= 60 Xy i
o ' '
g s | |
.g- 40 | ; »
5 30 [-
=3
8 20 -
<
LV -1
0
aRFS Manual IRQ aRFS Manual IRQ 2 4 8
steering steering # of subflows
(a) Total throughput (Gbps)
datacopy lock 8 netdev W skb =
etc. mm sched teplip
TCP ' TCP '
read/write syscalls | io_uring | MPTCP
' '
T !
1.4 3
@ | H
R
o
% N
g 08 -
S o6l
o
5 04 [S S B ...
o
O 02 - e ...
0
aRFS Manual IRQ aRFS Manual IRQ 2 4 8
steering steering # of subflows

(b) Receiver-side CPU breakdown

Figure 2: Static pipeline of the Linux network stack (using both TCP
and MPTCP) fails to saturate 100Gbps access link bandwidths since it
is unable to scale compute resources allocated to packet processing
pipelines. More discussion in §2.2.

(bars 3 and 4 in Fig. 2(b))°. In fact, we observe a slight degradation
in total throughput with io_uring because it dispatches some of
the socket receive calls to a separate kernel thread which contends
with the application thread for the common socket lock.

With MPTCP, we observe that using aRFS gives the best possible
throughput. Independent of the number of subflows, all the pro-
cessing happens on the core where the application runs. The total
throughput is reduced when the number of subflows increases due
to the increase in the amount of network layer processing. Without
aRFS, interrupts for subflows get mapped to arbitrary CPU cores
potentially on different NUMA nodes resulting in poor throughput®.

Overall, independent of the configuration used, the packet
processing pipeline of today’s network stack is static (both data
copy and network layer processing are bound to a single core).
As a result, it is unable to dynamically scale resources allocated
to a packet processing pipeline to utilize the full network link
bandwidth, despite the availability of idle CPU cores. Even if data
copy were to be eliminated (via zero-copy mechanisms [15, 16]),
simple calculations show that the network stack will not be able
to saturate emerging multi-hundred gigabit links using a single

SWhile io_uring enables “zero-copy” of the metadata associated with socket oper-
ations, payload data is copied as usual. While there is ongoing work on exploiting
io_uring for zero-copy send [17], we are not aware of any work on zero-copy receive
(which is usually the bottleneck [11]).

®We were not able to manually steer subflow IRQs to different cores in the same NUMA
using 4-tuples, because the kernel determines the source ports of subflows at runtime.

0.6 T T T T
read/write syscalls 55252
~ 05 io_urin;
£ _uring
S 04
g 5
%‘ 0.3 9
M
o
5 02
o M
(O]
0.1 b E E —
M
o LB : Bl B! ”e ®
. 4 N . .
ca"ow a\\“os‘ d’ﬁs\‘\% s‘{s‘e“\b‘(\q’«\ t\é\\ocvlo‘\\oc a&\\(\% o
& @«\C © o aso" o 3\\od o o
(<X S § ¢
B kr.‘?\ o ¢ 6\2‘(\0

Figure 3: In today’s Linux network stack, sender-side network layer
processing (including protocol and netdevice subsystem processing)
overheads are the bottleneck for short message processing. More dis-
cussion in §2.2.

core, as the packet processing pipeline is still bound to one core.
The requirement of multi-core processing is, thus, inevitable.

(2) Staticand dedicated pipeline = lack of scalability for short
message processing. We run a client application which sends 4KB
RPC requests to a server. The sustained throughput using a single
socket is roughly ~ 9.88Gbps. We find that the sender-side is the
bottleneck. The sender-side CPU breakdown in Figure 3, shows that
TCP/IP processing and netdevice subsystem processing are the dom-
inant overheads, accounting for almost a half of the total CPU cycles
used. Once again, all of this processing is bound to a single CPU
core and is unable to dynamically scale even if additional CPU cores
are available—a result of the static nature of today’s network stack.

We tried this experiment using io_uring as well, but observed
no improvement in throughput (achieving a maximum of 8.5Gbps;
there is a small degradation in throughput [27, 64])). This is unsur-
prising given that system call cost and context-switch overheads
(included in scheduling)—the main overheads that io_uring is sup-
posed to minimize—account for a very tiny fraction of CPU cycles
in this scenario, as seen in Figure 3. MPTCP cannot help in this case
for two reasons. First, since sender-side network layer processing
still happens on the application core, running multiple subflows on
a single core does not help. Second, MPTCP cannot dynamically
scale the number of subflows at runtime based on the CPU load.

While the application could overcome the network layer
processing bottleneck by sending data over multiple sockets from
different threads, it is difficult for application developers to estimate
how many sockets they will need, especially in multi-tenant
and virtualized deployments [11]. Moreover, the application
and userspace libraries linked to the application (e.g., gRPC)
have limited information about congestion in the network and
utilization of CPU cores, making it hard to make informed packet
scheduling decisions across sockets. An ideal networking stack
should dynamically and transparently allocate new connections on
idle cores and multiplex packets to different connections so that the
application can achieve higher throughput without manually man-
aging the number of connections. Further, this should happen only
when the throughput is limited by CPU, not by congestion control,
to maintain protocol-side properties such as TCP-friendliness.

(3) Tightly-integrated pipeline = lack of performance isola-
tion. To understand performance interference between L-apps and

T T
Linux Latency BESA -
Linux + Prioritization Latency &~N1 @2
- Linux Throughput —+— @
= Linux + Prioritization Throughput =—+— e
> 5
g 2000 100 2
& %
S 1500 90 o
- <
|<_e 1000 LN\ — 80 E
g8
500 B NN - 70 |2
0 60
Isolated Interference
(a) P99.9 latency (us) and total throughput (Gbps)
100 T
< Linux EXXX]
& 80 | Linux + Prioritization EXXJ
o
g
2 60
=)
o
U oy
<
<]
Q
T 20 [BB QY e B ANNN -
o
Isolated Interference

(b) Per-Core CPU Usage

Figure 4: Tightly integrated pipeline of the Linux network stack fails
toprovide pus-scaleisolation for L-apps when they are co-located with
T-apps. L-apps can suffer from extremely high tail latency. More dis-
cussion in §2.2.

T-apps when they are co-located, we run 1 L-app and 8 T-apps on the
same NUMA node (number of applications > number of cores). We
do not pin the applications to specific cores, thus allowing the CPU
scheduler to dynamically move applications across all of the cores
within the NUMA node. We enable all optimizations including aRFS.

Fig. 4(a) (Linux) shows the tail latency (99.9th percentile) of the L-
app and the overall throughput achieved, when the applications are
run in isolation (Isolated) versus when they are co-located (Interfer-
ence). In the latter case, the L-app experiences a 37X inflation in tail
latency, relative to when it is run in isolation. This dramatic inflation
in tail latency is due to the tight integration of network layer pro-
cessing with the application cores. Since there are more applications
than cores, it is inevitable that at certain points in time, the L-app
will share a CPU core with one or more T-apps. When this happens
the kernel runs the corresponding network layer processing for
both applications on the same core, hence causing interference—the
network layer processing for the L-app can get blocked behind net-
work layer processing for the T-app, causing inflation in tail latency.

Using prioritization techniques to prioritize L-app traffic does
not solve the problem. Prioritization can be performed at two layers
today—(1) transmission of L-app packets can be prioritized at the
qdisc [39] layer on the sender-side using the pfifo_fast scheduling
policy [43]; and, (2) the L-app process can be prioritized at the CPU
scheduler (on both sender and receiver-side) by setting the niceness
value of L-app’s processes to —20 (the highest CPU scheduling
priority in Linux’s CFS scheduler [46]). Despite applying both
of these prioritization techniques, as shown in Fig. 4(a) (Linux +

Prioritization), we observe no noticeable improvement in the tail
latency of the L-app. qdisc prioritization does not help because
there is not much queueing at the qdisc layer to begin with. This
is because of the TCP Small Queue (TSQ) [14] feature which limits
the number of in-flight bytes at the qdisc layer in order to minimize
bufferbloat. CPU scheduling prioritization does not help for two
reasons. First, a majority of the network layer processing happens
in IRQ threads (Rx packet processing at the receiver-side, and TSQ
processing at the sender-side) whose scheduling is not impacted
by the priority of application threads. Second, even if there were
a mechanism to prioritize IRQ processing, it would not fully solve
the problem, as IRQ processing is non-preemptive in nature; thus,
L-apps could still get blocked by T-apps.

Since prioritization mechanisms are not effective, the only way
to achieve isolation is by separating the network layer processing
for L-apps and T-apps onto separate cores. However, due to tight-
integration of the processing pipeline with application cores, to-
day’s network stack is unable to do so—indeed, as shown in Fig. 4(b),
the average per-core CPU utilization is only 40%-50% in the above
experiments. An ideal network stack should allow separation and
isolation of network layer processing for L-apps and T-apps, even
if the two classes of applications are sharing the same CPU core.

3 NetChannel DESIGN

As discussed earlier, the dedicated, tightly-integrated, and static
packet processing pipelines in today’s Linux network stack leads
to several limitations. To resolve this, NetChannel disaggregates
the pipeline by rearchitecting the network stack into three layers:
(1) Virtual Network System (VNS) layer, (2) NetDriver layer, and
(3) NetScheduler layer.

The VNS layer (discussed in §3.1) provides interfaces to
applications (e.g., socket, RPC) while ensuring correctness of
the interface semantics. These interfaces are “virtual”, since
unlike in today’s Linux network stack, they only buffer data
from/to applications and are disaggregated from the rest of
the packet processing pipeline. At the bottom, the NetDriver
layer (discussed in §3.2) abstracts the network as a multi-queue
“device” through a generic channel abstraction exposed to the
upper layer. Decoupling application interfaces (in the VNS layer)
from channels (in the NetDriver layer), enables flexible and
fine-grained multiplexing/demultiplexing and scheduling of data
between the two. This multiplexing/demultiplexing is controlled by
the NetScheduler layer (discussed in §3.3) which enables pluggable
schedulers that can be designed to achieve various objectives
including dynamic scaling of the packet processing pipeline across
CPU cores, and performance-isolation of L-apps from T-apps.

3.1 Virtual Network System (VNS) Layer

The VNS layer offers application interfaces while maintaining
the necessary semantics of each interface. In order to support
unmodified applications, NetChannel supports the standard POSIX
socket interface through virtual sockets. From the application’s
perspective, these virtual sockets have the exact same semantics as
normal sockets, i.e., reliable in-order delivery between endpoints.
As usual, applications can interact with these sockets using
standard system calls (e.g., connect, send, recv, epoll) or even using

io_uring [40]. While VNS also supports other interfaces such as
RPCs, we focus our discussion here on the socket interface since
it has the strongest requirements in terms of semantics.

Ensuring correctness of interface semantics. Each virtual
socket internally maintains a pair of Tx and Rx buffers. When ap-
plications send/receive data to/from virtual sockets, data is copied
from/to userspace to/from the virtual socket Tx/Rx buffers. Data in
the virtual socket Tx buffer is forwarded to the NetDriver layer for
transmission, while data received over the network is forwarded
from the NetDriver layer to the virtual socket Rx buffer. While we
can rely on the network transport (underlying the channels in Net-
Driver layer) to guarantee reliable delivery, VNS needs to do some
book-keeping to ensure in-order delivery of bytes between a pair of
virtual sockets. This is because, as we will discuss in §3.2, data from
a virtual socket can be multiplexed/demultiplexed to/from more
than one underlying channel in the NetDriver layer, in which case,
it is possible for data to arrive in the virtual socket Rx buffer out-of-
order. To that end, on the sender side, VNS embeds a sequence num-
ber (§4) in each data packet representing its order within the virtual
socket stream. On the receiver-side, it can then use these sequence
numbers to ensure data is delivered in-order—packets are buffered
in the virtual socket Rx buffer until they are next in-sequence.

Decoupling data copy from application threads. VNS also
maintains per-core worker threads for data copy between userspace
and the kernel (for interfaces that require it). Data copy operations
for virtual sockets can be divided into smaller parts (each with a tar-
get buffer address and length) and distributed across worker threads
of multiple cores. This enables utilizing multiple cores to scale data
copy processing for throughput-bound applications with long flows.

3.2 NetDriver Layer

The NetDriver layer abstracts away the network and remote
servers as a multi-queue device and exposes channels which are
analogous to queues of this device. In this subsection, we discuss
the channel abstraction, NetDriver mechanisms for decoupling
network layer processing from sockets, NetDriver mechanisms to
enable ease of integration of new network transport designs, and
other details relevant to managing buffer overflow and avoiding
head-of-line blocking.

Channel abstraction. In NetDriver, each channel consists of
a pair of Tx/Rx queues, and an instance of an independent net-
work layer processing pipeline of an underlying network trans-
port that implements functionalities such as reliable delivery, flow
control, and congestion control (for example, in the case of TCP,
a channel would map to a single underlying TCP connection).
The channel API (Table 2) is simple and generic enabling it
to encapsulate a wide range of transports. In particular, it can
support both connection-oriented stream-based transports (e.g.,
TCP, DCTCP [5]), and connection-less message-oriented transports
(pHost [23], Homa [53] or dcPIM [10]). For example, in the case of
the former, upon a channel API create call, a connection can be
created. Subsequently, arbitrary chunks of data in the stream can be
transmitted through channel enqueue calls. In the case of the latter,

API method [Arguments Description
create() metadata Create a new channel instance
destroy() channel Destroy a channel instance
channel, List<packet buffer>, Enqueue data for transmission through a given channel.
enqueue() . . N
metadata Given as a list of packet buffers along with metadata.
Dequeue upto count bytes of data received through a given channel.
dequeue() channel, count 4 P . Y . £nag
Returns a list of packet buffers along with metadata.

Table 2: Summary of core channel API calls that need to be implemented by network drivers. For a more exhaustive list, see [12]. The metadata
argument in both create and enqueue calls is opaque from the perspective of the channel interface, and can be used to encode transport-specific

information such as host address and port number.

no connection will be created during channel creation, and indi-
vidual messages can directly be transmitted through the channel
enqueue call (passing destination information in the metadata).

Decoupled network layer processing. channels in NetDriver
are decoupled from instances of virtual interfaces (e.g., virtual
sockets) in the VNS layer. This architectural choice enables
decoupling network layer processing from individual sockets and
cores that applications use—NetDriver allows creating one or more
channels between a given pair of servers, independent of the
number of applications running on these servers, and the number of
sockets/cores used by these applications. Further, it allows flexible
fine-grained multiplexing and demultiplexing of data from/to
virtual socket to/from channels. This enables several interesting
operating points. For instance, if one channel has high CPU load,
the subsequent data from a virtual socket can be dynamically sched-
uled to different channels. Such dynamic multiplexing can enable
utilizing multiple cores to scale network layer processing, while also
enabling utilization of multiple network paths similar to MPTCP.

Integrating new transport designs. Given that NetDriver is
an abstraction of a multi-queue device, integrating a network
transport is now equivalent to writing a new device driver. This
essentially makes it easier to integrate and experiment with
new protocols. Protocol developers do not need to worry about
implementing cumbersome APIs related to socket interfaces (e.g.,
epoll) and things like data copy processing, instead focusing only
on implementing their own network protocol logic plus simple
APIs of the channel abstraction as shown in Table 2.

Piggybacking on transport-level flow control. To avoid Rx
buffer overflow of virtual sockets, NetDriver naturally piggybacks
on the flow control of the underlying transport protocol(s) through
backpressure, without having to introduce a new flow control
protocol. When a virtual socket’s Rx buffer becomes full, VNS stops
receiving data from channels, leading to accumulation of data
in the channel’s Rx buffer, eventually triggering the flow control
mechanism of the underlying transport. VNS resumes receiving
data when the virtual socket’s Rx buffer is available again as the
application reads the data.

Alleviating HoL blocking. Since it is possible for a single
channel to be shared by multiple virtual sockets, we need to
handle corner-case scenarios where one virtual socket causes
head-of-line (HoL) blocking for the others. This can happen if
an application does not read data from a virtual socket for an
extended period of time (e.g., because it is malfunctioning, or busy

(o)

Core0

9]
o
=
®
a
T
o
9]
o
=
o
N
i
i

Virtual Virtual

Socket socket Channel

Shared Memory Budget: 4

Flow control

Figure 5: Alleviating HoL blocking (1) Packets received by a channel
are pushed into their corresponding virtual socket response queue,
preventing HoL blocking at the channel Rx queue. (2) If the Rx buffer
of the virtual socket has free space, the packets will be pushed from
the response queue to the Rx buffer. Otherwise, packets are buffered
in the response queue. (3) Response queues of virtual sockets and
channels share the memory budget. (4) When the virtual socket Rx
buffer becomes full and the timer expires, the virtual socket sends a
“stop” message to the peer virtual socket. More discussion in §3.2.

with other work). This is problematic because other virtual sockets
may lose an opportunity to use that channel since its Rx buffer
is full (potentially causing NetScheduler to unnecessarily create
a new channel, which will be explained in §3.3).

To address this issue, NetChannel maintains a response queue
per virtual socket (Figure 5)—the high-level idea is to stop data trans-
mission only for the virtual socket whose Rx buffer is full while
keeping the channel’s Rx buffer unblocked for other virtual socket
traffic. Maintaining these response queues incurs negligible mem-
ory overhead as each is simply a linked list of pointers. Whenever a
new packet arrives in the channel’s Rx buffer, it is forwarded to the
response queue of the virtual socket that the packet belongs to im-
mediately. This resolves the HoL blocking issue at the channel’s Rx
buffer. Next, the packet is pulled from the response queue to the vir-
tual socket Rx buffer. We allow the response queues to use the mem-
ory budget of the channel’s buffer, so that the channel’s underly-
ing flow control is triggered when the number of entries in the re-
sponse queue increases. If the virtual socket Rx buffer becomes full,

the worker thread sets a timer, and sends a stop control message to
the peer virtual socket to avoid further data transmission when the
timer expires. When the virtual socket receives a corresponding ACK
for the stop message, it explicitly moves all packets in the response
queue to the virtual socket Rx buffer, so the channel’s buffer mem-
ory is freed (the virtual socket buffer size is temporarily increased in
this corner-case scenario). It sends a resume message and stops the
timer when the virtual socket again has free space in the Rx buffer.

3.3 NetScheduler Layer

NetScheduler performs three main tasks: (1) fine-grained multi-
plexing and scheduling of application data to channels to achieve
various performance objectives, (2) scaling number of channels
between a pair of hosts dynamically, and (3) scheduling of data
copy requests across per-core data copy worker threads at fine-
grained timescales. Given its location in the kernel, NetScheduler
has visibility into various kinds of metrics such as the occupancy
level of queues, number of virtual sockets, CPU core utilization,
application priority, and so forth. We note that our goal is not to
design scheduling policies, but rather, to provide mechanisms to
enable different policies. One can implement any scheduling policy
within our NetScheduler framework. Here, we discuss some simple
example policies that enable new operating points. The specific
policies used in our current implementation are discussed in §4.

Dynamic scheduling of application data to channels. At
any given point, there can be one or more active channels
between a pair of hosts. Upon receiving data from an application,
NetScheduler determines the target channel to send the data on
at per-skb granularity using a configurable scheduling policy (e.g.,
round-robin, shortest-queue-first, etc.) to achieve fine-grained load
balancing across channels. As we show in §5, this enables scaling
network layer processing across cores.

Dynamic scaling and placement of channels. NetScheduler
scales the number of channels to a given remote host dynamically
by monitoring scheduling metrics at coarse-grained timescales. An
example policy is to increase the number of channels when the
average CPU utilization across channel workers is persistently high.
Further, NetScheduler also controls the mapping of channels to
cores. This can be exploited to achieve performance isolation by
separating channels for L-app and T-app processing and mapping
these channels to different cores. As we show in §5, this enables
performance isolation when L-apps and T-apps are co-located.

Dynamic scheduling of data copy requests. NetScheduler
schedules data copy requests generated by virtual sockets over
multiple per-core worker threads at per-request granularity. It uses
the cores in the same NUMA node as the application core to avoid
cross-NUMA data copy overheads. As we show in §5, this makes it
possible to selectively parallelize data copy across cores for T-apps.

4 NetChannel IMPLEMENTATION

We have implemented NetChannel in Linux kernel v5.6. Through-
out the implementation, our goal was to re-use existing kernel
network stack infrastructure as much as possible. To that end,
most of our current implementation re-uses existing code in the

kernel. In this section, we discuss some interesting details of our
NetChannel implementation.

Application interfaces. At VNS, our goal is to support unmod-
ified application interfaces. We thus implement the virtual socket
interface by adding a new flag— IPPROTO_VIRTUAL_SOCK in the
standard socket interface to create virtual sockets. Applications
can specify NetChannel-related attributes via setsockopt() —
e.g., the SO_APP_TYPE attribute determines the application class
(e.g., latency-sensitive, throughput-bound, etc.). The RPC interfaces
are similar to those in prior work [41].

Virtual socket connections. The virtual socket interface uses
the following procedure to set up connections (similar to existing
socket interface): clients initiate connect system calls and the
corresponding listen sockets on the remote host accept the
connection requests and return a new socket per request (accept
system call). Underneath, virtual sockets perform a handshake
using NCSYN and NCSYN_ACK control packets to set up a connection.
Note that since the underlying channels in NetDriver already
provide reliability, virtual sockets only require a 2-way handshake,
unlike TCP’s 3-way handshake.

NetChannel headers. Since one virtual socket can use multiple
channels and/or multiple virtual sockets can share the same
channel, NetChannel needs to uniquely identify packets to their
corresponding virtual sockets. To do so, NetChannel wraps an
additional header atop of the packet payload. The NetChannel
header consists of (1) a pair of virtual socket source and destination
ports, to uniquely identify virtual socket-level connections; (2)
virtual socket sequence number, to perform packet reordering
when multiple channels are used; and (3) packet type, to
distinguish data packets from control packets (e.g., NCSYN and
NCSYN_ACK). Use of NetChannel header allows virtual sockets
to work in conjunction with underlying channels without any
modifications in the channel’s header.

Reducing page allocation overheads for DMA. To re-
duce page allocation overheads during DMA (caused by
get_page_from_freelist() calls), our implementation sets up
a dedicated page pool for each receive queue of NIC. While a large
page pool size may help reduce the page allocation overhead, it
may also increase L3 cache miss rate due to DCA effects [11]. We
use 256 as the default page pool size. We found that it is sufficient
to achieve reasonably low page allocation overhead while still
maintaining a low DCA cache miss rate. Even for a NIC with 256
receive queues, the memory overhead of maintaining these page
pools is 256 X 256 X 4KB = 256MB, which is negligible relative to
the DRAM sizes of modern servers.

Scheduling policy. Our current NetScheduler implementation
adopts a simple round-robin scheduling policy for scheduling of (1)
application data to channels and (2) data copy requests to workers.
For (1), we use only channels of the same type as the application
(i.e., L-app or T-app channels). To avoid overloading already busy
channels/workers, we exclude those which have queue occupancy
higher than a certain threshold. Through simple sensitivity analysis,
we found 2MB and 640KB to be good thresholds for (1) and (2)
respectively, and use these by default for our evaluation (§5).

Linux (Default) 6558
Linux (Netchannel) 553

Linux (Default) 6553
Linux (NetChannel) E5—X1

120 3 2000
—_ N 40 T T T T T
‘2 100 8 25 NE - 35 read/write syscalls TRo.]
6 80 < _‘_ §) | 69‘ 30 io_uring : ? 1500
b € < 2 * * <
5 P 5 Q
2 60 i3 5 & 15 N 3 2 g 1000
% a ® 15 R
> 40 2N YO8N =} | NS RQ S %0 S 20\ NQ 3 -
2 =) £ 0 =
£ 2 IR % S 5 os i AR NH F 5 < 500
0
0 S 0 S Without | 2 3 4 10§ s KXl
read/write io_uring read/write io_uring Netchannel 4 Channels lsolated Interference

syscalls syscalls

Figure 6: NetChannel enables Linux to achieve new operation points (left-right, a-d). (a, b) For a single long flow, it can saturate 100Gbps (a), by
utilizing multiple cores for data copy processing (b). (c) It enables near-linear scaling of short-message throughput with an increasing number
of channels. (d) It is able to provide performance isolation even when an L-app is co-located with 8 T-apps over 8 cores. More discussion in §5.2.

5 NetChannel EVALUATION

In this section, we demonstrate that NetChannel is able to achieve
new operating points that were previously unachievable by the
Linux network stack, in particular, saturating a 200Gbps link
using a single socket, increasing short message throughput almost
linearly with cores, and achieving us-scale tail latency for L-apps
even when they are co-located with T-apps. We describe our
evaluation setup in §5.1. We use the same experimental scenarios
in §2 and provide insights on how NetChannel alleviates the
previously discussed limitations of today’s Linux network stack
(§5.2), followed by an investigation of the overheads of our current
NetChannel prototype (§5.3). Next, we demonstrate NetChannel’s
effectiveness with real-world applications (§5.4), and finally show
that it can scale to Terabit Ethernet (§5.5).

Before diving in, we make three important notes. First, NetChan-
nel supports unmodified applications (§3), and one can run any ap-
plication on top of it. In order to focus on the network stack, we use
lightweight applications which perform minimal compute similar
to prior works [11, 38], and additionally demonstrate NetChannel’s
effectiveness with two real world applications (Redis and SPDK).
Second, our goal is not to show that NetChannel beats state-of-
the-art network stack performance in absolute terms, but rather to
demonstrate the benefits enabled by NetChannel architecture and
understand its overheads. In order to do so, we naturally compare
our prototype with the baseline system that it is implemented on top
of (Linux). As we discuss in §6, NetChannel’s ideas could very well
be implemented on top of userspace stacks, hence making it com-
plementary to these systems. Third, while parallelizing parts of the
packet processing pipeline across multiple cores, NetChannel natu-
rally introduces some (although relatively minimal) CPU overheads.
Since the processing speed of a single CPU core has long since been
saturated, utilizing multiple cores is essential. Hence, paying a small
cost in per-core overheads to enable this is worthwhile.

5.1 Evaluation Setup

Hardware setup. Our experimental testbed consists of two
servers connected directly via a 100Gbps link. Each server has
a 4 NUMA nodes with 8 cores per NUMA node (Intel Xeon Gold
6234 3.3GHz CPU), 32KB/1MB/25MB L1/L2/L3 caches, 384GB

DRAM and a 100Gbps NVIDIA Mellanox ConnectX-5 NIC. Both
servers run Ubuntu 20.04 (Linux kernel v5.6). By default, we enable
TSO, GRO, Jumbo Frames (9000B), aRFS, and Dynamically-Tuned
Interrupt Moderation (DIM) [52] while disabling hyperthreading
and IOMMU, since doing so maximizes performance. Direct Cache
Access (Intel DDIO) is enabled and configured to use the maximum
possible number of L3 cache ways for all experiments.

Evaluated workloads. Similar to §2, T-apps generate long-lived
flows (i.e., stream traffic) and L-apps generate ping-pong style
4KB RPC requests/responses. Both of these applications perform
minimal application-level processing, ensuring that the network
stack is the bottleneck. We consider both scenarios of standard
read/write system calls, and io_uring [40]. In all experiments, we
only cores in the NUMA node where the NIC is attached. We also
evaluate NetChannel with two real-world applications, Redis [59],
and SPDK [33].

Performance metrics. We measure performance in terms of
throughput for T-apps and P99.9 tail latency for L-apps. In order
to quantify CPU efficiency and understand overheads, we use
throughput-per-core which is measured as the total throughput
/ CPU utilization (we take the maximum of the client-side and
server-side CPU utilization when computing CPU utilization).

5.2 New operating points

We now demonstrate how NetChannel enables three new operating
points using the experimental scenarios from §2.2.

Scalability for long flows. In the extreme case of a T-app using
a single TCP socket, Linux fails to saturate the 100Gbps link due to
its static packet processing pipeline (§2.2), despite the availability
of CPU cores. As shown in Figure 6(a), while using standard
read/write system calls, NetChannel enables Linux to saturate the
100Gbps link by making use of multiple cores (Figure 6(b)). This
is because NetChannel allows independent scaling of data copy
processing (which is the bottleneck in this scenario) at VNS, so that
NetScheduler can use two data copy worker threads on two differ-
ent cores while maintaining one channel at NetDriver layer. In the
io_uring case as well, we find that NetChannel enables Linux to
nearly saturate 100Gbps by utilizing multiple cores (Figure 6(a, b)).

Linux (Default) 6558
Linux (Netchannel) 553

Linux (Default) 6553
Linux (NetChannel) E5—X1

N
o

w
o

=)
T

2 @ 2

& & & n

[©) Q [©

> 40 <S4._ < 40 9 0
[

5 o 5 8

g & g ¢

%) ®

3 3 3

o o £ 0

£ 0 E o0 =

Throughput-per-core (Gbps)
N
o
T

2 3

Channels

o

Isolated Interference

Figure 7: Understanding NetChannel overheads (left-right, a-d). NetChannel incurs minimal throughput-per-core overheads while emulating
today’s Linux pipeline (a), and while scaling data copy processing across cores (b). (c) throughput-per-core does not change independent of the
number of channels. (d) it is able to isolate L-app latency with minimal throughput-per-core degradation. More discussion in §5.3.

Scalability for short messages. The second scenario in §2.2
considers a short message scenario with 4KB RPCs where network
layer processing overheads are more dominant. To push these
overheads to an extreme, we disable throughput optimization
techniques including TSO/GRO and Jumbo Frames (both with and
without NetChannel for a fair comparison). NetChannel enables
Linux to dynamically scale network layer processing by allowing
data from a single virtual socket to be multiplexed across multiple
channels (§3). To demonstrate this, we measure throughput in
this scenario while increasing the number of channels (each
running on a separate core). With standard read/write system calls,
we find that throughput increases near-linearly with the addition
of channels (Figure 6(c)). We discuss overheads in §5.3. With
io_uring as well, we see that throughput increases with the ad-
dition of channels (Figure 6(c)). For the same number of channels,
we observe slightly lower throughput than with read/write syscalls
due to io_uring having extra overheads on the application core.

Enabling performance isolation. In the third scenario that cap-
tures performance interference, we run 8 T-apps and one L-app over
8 cores. We focus on the case of standard read/write system calls.
Since io_uring does not improve per-application performance,
as observed in previous experiments, we omit it in the interest of
brevity. As discussed in §2.2, with today’s Linux network stack, the
L-app suffers from high tail latency inflation due to network layer
processing interference between T-apps and the L-app. NetChannel
enables isolating network layer processing for L-apps from T-apps,
even if they share the same core, by decoupling virtual sockets
from channels— channels can be flexibly mapped to different
cores. In this experiment, NetScheduler uses up to 4 channels
for T-apps and a single channel for L-app as the L-app generates
low load. These channels are assigned to different cores in order
to separate network layer processing for the T-apps from that for
the L-app. As shown in Figure 6(d), we see that with NetChannel,
Linux is able to achieve 17.5X lower tail latency for L-app, hence
demonstrating that NetChannel can indeed enable performance
isolation. We also repeated this experiment with 8 L-apps instead
of 1, and confirmed that benefits remain — NetChannel enables
Linux to achieve 9.5% lower tail latency in this case.

5.3 Understanding NetChannel Overheads

We now investigate the overheads incurred by NetChannel in the
process of enabling new operating points.

Overheads of emulating the Linux network stack. To better
understand the overheads that NetChannel introduces, we emulate
a single packet processing pipeline of today’s Linux stack using
NetChannel. To this end, we use a single application thread, and
a single channel thread, while placing everything on the same
core. For a fair comparison, Linux uses a single application thread,
and we enable aRFS for both systems to ensure that the Rx packet
processing is also run on the same core. In Figure 7(a), we observe
that NetChannel shows a minimal ~ 7% reduction in throughput-
per-core (the server-side core is the bottleneck for both systems).

Overheads of scaling data copy processing. In order to under-
stand the overheads of scaling data copy processing, we compare
NetChannel and Linux using scenarios where they are both able to
saturate the 100Gbps link, and compare the total CPU utilization.
For NetChannel, we use 2 data copy threads and 1 channel thread
running on separate cores (similar to Figure 6(a)). For Linux, we
run 3 long-lived TCP connections over 3 cores to fully saturate
the 100Gbps link (this is the minimum number needed to saturate
100Gbps). We find that NetChannel incurs a minimal 12% reduction
in throughput-per-core as shown in Figure 7(b). The main reason
for this is because the application buffers are not warm in the L1
cache of the cores where the data copy worker threads run, leading
to higher L1 cache misses during data copy.

Overheads of scaling network layer processing. To understand
overheads incurred by NetChannel while scaling network layer
processing, we measure the throughput-per-core from Figure 6(c),
as the number of channels increases from 1 to 4. As shown in
Figure 7(c), throughput-per-core remains the same independent
of the number of channels. Compared to Linux (default), there is a
relatively small degradation in throughput-per-core. We found that
the reason for this overhead is that NetScheduler needs to wake up
channel threads more frequently as each channel thread goes to
sleep after processing each short message (4KB). Such overheads
could be reduced if we perform batching at the NetScheduler layer.

2500 T T
Linux —p+—

@ 2000 [~NetChannel —fo—
1500
g
S 1000 g £
= e
K 500 gt — O

0

0 100 200 300 400 500
Throughput (Kops)

Figure 8: NetChannel enables Linux to achieve 2.4x higher through-
put for Redis. More discussion in §5.4.

Overheads of achieving performance isolation. Now we
consider the performance isolation scenario in Figure 6(d), where
8 T-apps and 1 L-app are running over 8 cores, to understand
the overheads of achieving performance isolation. Figure 7(d)
shows the throughput-per-core of T-apps in this experiment. We
see that NetChannel incurs only a minimal throughput-per-core
reduction (12%) in the Interference case, while achieving more
than an order-of-magnitude reduction in tail latency (Figure 6(d)).

5.4 Real-world applications with NetChannel

Redis with NetChannel. We now evaluate NetChannel with
Redis [59], a well-known in-memory key-value database. We
use the standard YCSB workload [66], with 95%/5% read/write
ratio. Each RPC request is 4KB in size. We use 8 threads on the
client side to fully utilize all cores on a single NUMA node. Since
the workload generates small-sized messages, we use the same
configuration used in Figure 6(c).

Figure 8 shows the latency-throughput curve with and without
NetChannel. We see that NetChannel enables Linux to achieve
2.4x higher throughput for Redis. This is because NetChannel
enables scaling network layer processing across cores through
multiple channels. (In this experiment, NetChannel increases the
number of channels to 4.). In terms of tail latency, NetChannel
incurs slightly higher scheduling and reordering latency as the
virtual socket of the Redis server is mapped to multiple channels.
While this latency overhead is more visible at low load, it is ~160us.

SPDK-based remote storage stack with NetChannel. There
has been significant recent work on designing remote storage
stacks in the disaggregation context [22, 28, 29, 32]. To evaluate this
scenario, we use SPDK [33], a widely-deployed userspace storage
stack. In particular, we use SPDK’s NVMe-over-TCP stack [32] that
uses the Linux TCP/IP stack by default to access a remote storage
device over the network. We use an experimental setup similar
to prior work [29] — in our two-machine testbed, the SPDK client
(we use the standard SPDK perf benchmark tool [31]) runs on one
of the machines and issues I/O requests to a remote in-memory
storage device (RAM block device) exposed by the SPDK server
running on the other machine. Both the SPDK client and server
application threads run on a single CPU core each, and use a single
TCP connection for data transfer. We use a sequential 100% read
workload with large I/Os (2MB) in order to maximize throughput.

Figure 9 shows the total throughput that SPDK achieves with
and without NetChannel. With NetChannel, we use a single

100 §
A =
8 N
‘: 60 s R
5
o
% 40 | RRRErrrA NN e NN NN G -
3 \

E 20 |- \\ N\ o]
0
Without | 2 3
Netchannel

Data Copy Threads

Figure 9: NetChannel enables Linux to achieve 2.06x higher through-
put for SPDK. More discussion in §5.4.

200 :
\z Linux (Default) &3
2 160 N\ Linux (Netchannel) <1 -
@ N\
T 120 \
3
s N
%n 80 \::\
[NN
<
= 40 N\ E—
W N
0

Total Throughput Throughput-per-core

Figure 10: NetChannel enables Linux to saturate 200Gbps link band-
width using a single socket. More discussion in §5.5.

channel and vary the number of data copy threads. Even with
a single data copy thread, using NetChannel already leads to a
1.19% increase in SPDK throughput as network layer processing is
offloaded onto a separate core. Increasing the number of data copy
threads leads to significant improvements in throughput as data
copy is parallelized across multiple cores. With 3 data copy threads,
NetChannel enables SPDK to achieve 2.06x higher throughput
and saturate the 100Gbps link with a single TCP connection.
Relative to the Figure 6(a) experiment, SPDK requires one extra
data copy thread to saturate the link bandwidth. This is due to the
SPDK client using larger buffers and additional application-level
delays for processing responses before data copy. Both of these
factors contribute to higher L3 cache miss rate as analyzed in prior
work [11], and hence result in reduced data copy efficiency.

5.5 NetChannel with Terabit Ethernet

We now demonstrate that NetChannel scales to link speeds beyond
100Gbps, i.e., Terabit Ethernet [4]. For this we use a different testbed
which has two servers directly connected by a 200Gbps link. Each
server has 2 NUMA nodes (Intel Xeon Gold 6354 3.0GHz CPUs) and
a Mellanox ConnectX-6 NIC. Each NUMA-node has 18 cores and
39MB of L3 cache. We re-ran the Figure 6(a) experiment of a single
T-app with a single socket on this new setup. As shown in Figure 10,
NetChannel enables Linux to saturate the 200Gbps link bandwidth
using a single application thread. To do so, it uses 2 channels
and 3 data copy threads. Unlike in the previous setup (Figure 6(a)),
a single channel is no longer sufficient to saturate the link, as a
single core is not able to perform all of the network layer processing
at the required rate. We find that the throughput-per-core achieved
by Linux both without and with NetChannel (Figure 10) increases
on the new testbed (by 12% and 15% respectively) due to improved
data copy efficiency as a result of larger L3 cache size.

6 DISCUSSION

We discuss the generality of NetChannel’s architecture, placement
of its functionality, and its scheduling policies.

Can NetChannel architecture be applied to other network
stacks? In this paper, we have realized the NetChannel archi-
tecture within the Linux network stack. However, NetChannel’s
architecture and design ideas can be applied to host network
stacks in general—even those placed in userspace and/or hardware.
Microkernel-style userspace stacks [21, 51, 54] would be ideal can-
didates for implementing NetChannel’s ideas. For example, while
TAS [38] decouples the packet processing pipeline from application
cores, it can benefit from additionally disaggregating different
parts of the packet processing pipeline similar to NetChannel.
NetChannel’s ideas can also be applied to hardware network stacks.
For example, in SoC based smartNICs [48], NetChannel’s design
could enable transport-agnostic parallelization of processing across
cores, which is even more important in this context since these
devices typically contain a large number of wimpy cores [48, 62].
Further, by disaggregating the host network stack, NetChannel
could enable easier integration of partial hardware offloads that
offload different parts of the packet processing pipeline (e.g.,
I/OAT [58] for data copy, and Tonic [6] for transport layer) into
Linux or other software network stacks. We leave an exploration
of these directions to future work.

CanNetChannel benefits be achieved with modifications out-
side the network stack? While it may be possible to achieve some
of NetChannel’s benefits using libraries and/or schedulers outside
the network stack (e.g., gRPC can multiplex RPCs across different
underlying connections), there are two limitations of such an ap-
proach. First, decoupling and independently scaling different parts
of the packet processing pipeline (e.g., data copy and network layer
processing) requires support from the network stack, thus necessi-
tating modifications similar to NetChannel. Second, in multi-tenant
deployments, these libraries do not have global visibility of all appli-
cations, system-level metrics like CPU utilization, and in particular,
network-layer metrics like congestion information to effectively
make multiplexing decisions. Thus, the network stack is the right
place to realize the NetChannel architecture and its benefits.

NetScheduler Policies. The NetScheduler layer in NetChannel’s
architecture provides the mechanisms to implement different
scheduling and placement policies. We have demonstrated in §5
that even with simple policies, NetChannel can achieve significant
benefits. Similar to storage stacks where schedulers have evolved
over years [1-3, 26], we expect new NetScheduler policies will be
developed over time to match application requirements.

7 RELATED WORK

We discuss work that is most closely related to NetChannel’s goals.

Linux network stack improvements. Linux now has support
for TCP zero copy send [15] and receive [16]. However, as discussed
in prior work [11], these mechanisms are far from offering a
silver bullet. Zero-copy receive (which bears similarities to the
older zero-copy mechanisms in Solaris [13]) in particular requires
special hardware support (header-data split) in the NIC [16],

and has several other limitations [20], which limits widespread
adoption. Nevertheless, even the small subset of applications which
use these zero-copy mechanisms can still benefit from network
layer processing scalability, performance isolation, and other
benefits enabled by NetChannel. Our work is complementary
to many existing Linux kernel optimization efforts especially
for small messages, through new interfaces [25, 67], system call
optimizations [63, 65], and optimized socket implementations [42].

Recent work [11] has reported an in-depth analysis of overheads
in the Linux network stack. NetChannel’s design is motivated by ob-
servations and insights from this work. i10 [28] and blk-switch [29]
are recent enhancements to the Linux storage stack. They make use
of the unmodified Linux network stack for remote storage access,
and could reap the benefits of NetChannel if run on top of it.

Userspace network stacks. There has been a significant amount
of recent work on designing userspace network stacks [7, 21, 34, 36—
38,49-51, 54, 56, 57, 68], many of which are built on top of low-level
frameworks such as DPDK and netmap [60]. As discussed in §6,
NetChannel’s architecture has the potential to provide benefits
to userspace network stacks as well.

Hardware network stacks. There has also been a lot of recent
work on both partially and fully offloading host network stacks
to hardware [6, 9, 58, 62]. At a conceptual level, FlexTOE [62] is
the closest to our work. Similar to NetChannel, it enables paral-
lelization of the packet processing pipeline. However, it focuses
on parallelizing a specific transport protocol implementation
(TCP), unlike NetChannel which considers the end-to-end packet
processing pipeline from the application to the NIC, and enables
parallelization in a transport-agnostic manner. In general, as
discussed in §6, we believe that NetChannel’s architectural ideas
can be applied to hardware-offloaded network stacks as well.

8 CONCLUSION

We have demonstrated that today’s host network stacks are unable
to fully exploit the capabilities of modern hardware due to their dedi-
cated, tightly integrated, and static packet processing pipelines. Our
core contribution is NetChannel, a new disaggregated host network
stack architecture that rearchitects the stack into three loosely-
coupled layers. We have implemented NetChannel in the Linux
kernel, and evaluated it to demonstrate that it enables new operat-
ing points that were previously unachievable, including saturation
of a Terabit ethernet link with a single application core, indepen-
dent scaling of network layer processing, and performance isolation
between latency-sensitive and throughput-bound applications.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Jon Crowcroft, and the anony-
mous SIGCOMM reviewers for their insightful feedback. We would
also like to thank Saksham Agarwal and Abhishek Vijay for many
helpful discussions. This work was supported in part by NSF grants
CNS-2047283 and CNS-1704742, a Google faculty research award,
and a Sloan fellowship. This work was also supported in part by
the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (NRF-2022R1A2C1011090). Chris-
tos Kozyrakis was supported by the Stanford Platform Lab and its
affiliate members. This work does not raise any ethical issues.

REFERENCES

[1] 2017. CFQ (Complete Fairness Queueing). https://www.kernel.org/doc/

[36] Anuj Kalia, Michael Kaminsky, and David Andersen. 2019. Datacenter RPCs can
be general and fast. In USENIX NSDIL

[37] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker, and Amin

Documentation/block/cfq-iosched.txt.

Vahdat. 2012. Chronos: Predictable Low Latency for Data Center Applications.

[2] 2017. Kyber multiqueue I/O scheduler. https://lwn.net/Articles/720071/.

[3] 2019. BFQ (Budget Fair Queueing). https://www.kernel.org/doc/Documentation/ In ACM SoCC.) . .
block/bfq-iosched.txt. Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind

[4] 2022. Terabit Ethernet. https://en.wikipedia.org/wiki/Terabit_Ethernet. Krls}.mamurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS

[5] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Service. In ACM Eurosys. .

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data] Kernel. 2001. httpsf/ /man7.org/ llnu)g/ man-pages/mans/ tc‘?‘htm}'
center TCP (DCTCP). In ACM SIGCOMM.] Kernel. 2019. Efficient IO with io_uring. https://kernel.dk/io_uring.pdf.

[6] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford, Collin Pee and Yilong Li 2021. Homa DFDK Implementation.
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport ht‘tp s:// glthl'xb.com/ PlatformLab/ Homz'l. B i X
Protocols in High-Speed NICs. In USENIX NSDL Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and

[7] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, Yuanchpn Shi. 20161 Scalable Kernel TCP Design and Implementation for
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for Short—leed Conn_ectlon& In ACM ASP. LO_S‘ . .
High Throughput and Low Latency. In USENIX OSDI. Linux. 2002. Qdisc: Pfifo Fast Scheduling Policy. https://man7.org/linux/

[8] MatiasBjerling, Jens Axboe, David Nellans, and Philippe Bonnet. 2013. Linux Block man-p: ages/man8/tc-p ﬁfoffaSt'&html‘ . . i
10: Introducing Multi-Queue SSD Access on Multi-Core Systems. In ACM SYSTOR. Linux. 2021. epoll: /O event notification facilit. https://man7.org/linux/

[9] Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salvatore Pontarelli, man—pages/ man7/epoll.7 html. .

Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cammarano, Alessandro Lmux‘ 2021. So_cket. https://man7.org/linux/man-pages/man2/socket.2.html.
Palumbo, Luca Petrucci, and Roberto Bifulco. 2020. hXDP: Efficient Software Linux. 2022. Linux Kernell CFS Scheduler. https://www.kernel.org/doc/html/
Packet Processing on FPGA NICs. In USENIX OSDL. latest/scheduler/sched-design-CFS html. , ,
[10] Qizhe Cai, Mina Tahmasbi Arashloo, and Rachit Agarwal. 2022. dcPIM: Lmu?(. 2022. MPTCP Upstrea'm‘ Implementation. https://github. com/
Near-Optimal Proactive Datacenter Transport. In ACM SIGCOMM. mgltlp %th- tép/mptcprEt- next/wiki. . i X
[11] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jachyun Hwang, and Rachit Ming Liu, Tianyi Cui, Henrl Y Sch'uh,' Arvind Kr 1'shn'amurthy, Simon Peter, a.nd
Agarwal. 2021. Understanding Host Network Stack Overheads.In ACM SIGCOMM. Kéran Gupta. 2019. Offloading Distributed Applications onto SmartNICs using
[12] Qizhe Cai, Midhul Vuppalapati, Jachyun Hwang, Christos Kozyrakis, and Rachit 1?11:)64 In ACM SIGCOMM.
Agarwal. 2022. Towards ps Tail Latency and Terabit Ethernet: Disaggregating] Llias Marinos, Robert N.M. Watson, and Mark Handley. 2014. Network Stack
the Host Network Stack. https://github.com/Terabit-Ethernet/NetChannel. SP ec1ahzgt10n for Performance. In ACM SIGCOMM.
[13] H.K.Jerry Chu. 1996. Zero-Copy TCP in Solaris. In USENIX ATC. Ilias Marinos, Robert N.M. Watson, Mark Handley, and Randall R. Stewart. 2017.
[14] Jonathan Corbet. 2012. TCP small queues. https://lwn.net/Articles/507065/. Disk|Crypt|Net: Rethinking the Stack for High-Performance Video Streaming.
[15] Jonathan Corbet. 2017. Zero-copy networking. https://lwn.net/Articles/726917/. In}ACM SIGCOMM. B . .
[16] Jonathan Corbet. 2018. Zero-copy TCP receive. https://lwn.net/Articles/752188/.] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,

[17]

Jonathan Corbet. 2021. Zero-copy network transmission with io_uring.
https://lwn.net/Articles/879724/.

Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C. Evans, Steve
Gribble, Nicholas Kidd, Roman Kokonov, Gautam Kumar, Carl Mauer, Emily
Musick, Lena Olson, Erik Rubow, Michael Ryan, Kevin Springborn, Paul Turner,

[18] Gregory Detal and Sebastien Barre. 2022. MultiPath TCP - Linux Kernel 5) : -
implementation. https://multipath-tcp.org/. Valas Valancius, Xi Wang, and Amin Vahdat. 2019. Snap: a Microkernel Approach
[19] Jon Dugan, John Estabrook, Jim Ferbuson, Andrew Gallatin, Mark Gates, Kevin to Host Networking. In ACM SOSP.

Gibbs, Stephen Hemminger, Nathan Jones, Gerrit Renker Feng Qin, Ajay Tirumala,
and Alex Warshavsky. 2021. iPerf - The ultimate speed test tool for TCP, UDP
and SCTP. https://iperf.fr/.

Mellanox. 2019. Mellanox Technologies: Dynamically-Tuned Inter-
rupt Moderation (DIM). https : / / support . mellanox . com / s / article /
dynamically-tuned-interrupt-moderation--dim-x.

Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.

[20] Eric Dumazet. 2012. The Path To TCP 4K MTU and RX ZeroCopy. https: . N .
//legacy.netdevconf.info/0x14/pub/slides/62/ImplementingTCPRXzerocopy.pdf. H(A)m.‘a:‘ A Receiver-Driven Low-Latency Transport Protocol Using Network
[21] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020. Caladan: Priorities. In ACM SIGCOMM.

Mitigating Interference at Microsecond Timescales. In USENIX OSDL

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-

[22] Peter Gao, Akshay Narayan, Sagar Karandikar, Jodo Carreira, Sangjin Han, Rachit ishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-sensitive
Agarwal, Sylvia Ratnasamy, and Scott Shenker. 2016. Network Requirements Datacenter Worldoads. In USENLX NSDL .
for Resource Disaggregation. In USENIX OSDI.] John Ousterhout. 2021. A Linux Kernel Implementation of the Homa Transport
[23] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy, P'rotocoL In USEN{X ATC‘ .
and Scott Shenker. 2015. pHost: Distributed near-optimal datacenter transport Slrpon Peter, Jialin Li, Irene Zhang, Dag R. K. Ports, Doug Woos, Arv1nd
over commodity network fabric. In ACM CoNEXT. Krishnamurthy, Thomas Anderson, and Timothy Roscoe. 2014. Arrakis: The
[24] Google. 2022. gRPC: A high performance, open source universal RPC framework. Operating System is the Control Plane. In USENLX OSDL .
https:/grpc.io. George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
[25] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012. Low Tail L'atency for Microsecond-scale Networked Tasks. In ACM SOSP. .
MegaPipe: A New Programming Interface for Scalable Network I/O. In USENIX Quoc-Thai V Le, Jonathan Stern, and Stephen M Brenner. 2017. Fast memcpy with
OSDL SPDK and Intel I/OAT DMA Engine. https://software.intel.com/content/www/
[26] Mohammad Hedayati, Kai Shen, Michael L. Scott, and Mike Marty. 2019. us/en/develop/articles/fast-memcpy-using- spdk-and-ioat-dma-engine.html.
Multi-Queue Fair Queuing. In USENIX ATC. Redis. 2022. Redis: an in-memory data structure store. https://redis.io.
[27] Alex Hultman. 2020. io_uring is slower than epoll. https://github.com/axboe/ LuigiRizzo. 2012. netma'p: ANovel Framework for Fast Packet1/O. In USENIX ATC.
liburing/issues/189. Stephen M Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosenblum, and
[28] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP ~ RDMA: John K Ousterhout. 2011. It’s Time for Low Latency. In USENILX HotOS.

[29]

CPU-efficient Remote Storage Access with i10. In USENIX NSDL

Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal. 2021.
Rearchitecting Linux Storage Stack for ps Latency and High Throughput. In
USENIX OSDL

Rajath Shashidhara, Tim Stamler, Antoine Kaufmann, and Simon Peter. 2022.
FlexTOE: Flexible TCP Offload with Fine-Grained Parallelism. In USENIX NSDL
Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In USENIX OSDL

u/TOp_H4t. 2021. https://tinyurl.com/iouring-reddit.

[30] Intel. 2012. Intel® Data Direct I/O Technology. https://www.intel. . > k X
com / content / dam / www / public / us / en / documents / technology-briefs / Vijay Vasudevan, David G.‘Andersen, and Michael Kaminsky. 2011. The Case
data-direct-i-o-technology-brief pdf. for VOS: The Vector Operating System. In USENIX HotOS.
[31] Intel. 2022. https://github.com/spdk/spdk/tree/master/examples/nvme/perf. Yahoo. 2019. YCSB: Yahoo! Clqufi Serving Benchmark. https :
[32] Intel. 2022. SPDK: NVMe over Fabrics Target. https://spdk.io/doc/nvmfhtml. / glt‘hul').com/ bnanf‘ran.kcooper/ YCSB/wiki.
[33] Intel. 2022. Storage Performance Development Kit. https://spdk.io/. Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016. StackMap:
[34] EunYoung Jeong, Shinae Woo, Muhammad Asim Jamshed, Haewon Jeong Low-Latency Networking with the OS Stack and Dedicated NICs. In USENIX ATC.
Sunghwan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly] Irene Zhang, Amar?'da Rayl?uck, P vratyu§h Pgtel, Kirk Olynykr, Jacob NeISPn’
Scalable User-level TCP Stack for Multicore Systems.. In USENIX NSDL Omar S. Navarro Leija, Ashlie Martinez, Jing Liu, Anna Kornfeld Simpson, SUJHY
[35] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Jayakar, Pedro Henrique Penna, Max Demoulin, Piali Choudhury, and Anirudh

Maziéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for
psecond-scale Tail Latency. In USENIX NSDL

Badam. 2021. The Demikernel Datapath OS Architecture for Microsecond-scale
Datacenter Systems. In ACM SOSP.

https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/cfq-iosched.txt
https://lwn.net/Articles/720071/
https://www.kernel.org/doc/Documentation/block/bfq-iosched.txt
https://www.kernel.org/doc/Documentation/block/bfq-iosched.txt
https://en.wikipedia.org/wiki/Terabit_Ethernet
https://github.com/Terabit-Ethernet/NetChannel
https://lwn.net/Articles/507065/
https://lwn.net/Articles/726917/
https://lwn.net/Articles/752188/
https://lwn.net/Articles/879724/
https://multipath-tcp.org/
https://iperf.fr/
https://legacy.netdevconf.info/0x14/pub/slides/62/Implementing TCP RX zero copy.pdf
https://legacy.netdevconf.info/0x14/pub/slides/62/Implementing TCP RX zero copy.pdf
https://grpc.io/
https://github.com/axboe/liburing/issues/189
https://github.com/axboe/liburing/issues/189
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://github.com/spdk/spdk/tree/master/examples/nvme/perf
https://spdk.io/doc/nvmf.html
https://spdk.io/
https://man7.org/linux/man-pages/man8/tc.8.html
https://kernel.dk/io_uring.pdf
https://github.com/PlatformLab/Homa
https://man7.org/linux/man-pages/man8/tc-pfifo_fast.8.html
https://man7.org/linux/man-pages/man8/tc-pfifo_fast.8.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man7/epoll.7.html
https://man7.org/linux/man-pages/man2/socket.2.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://github.com/multipath-tcp/mptcp_net-next/wiki
https://github.com/multipath-tcp/mptcp_net-next/wiki
https://support.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://support.mellanox.com/s/article/dynamically-tuned-interrupt-moderation--dim-x
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://redis.io
https://tinyurl.com/iouring-reddit
https://github.com/brianfrankcooper/YCSB/wiki
https://github.com/brianfrankcooper/YCSB/wiki

	Abstract
	1 Introduction
	2 Motivation
	2.1 Measurement Setup
	2.2 Limitations of Existing Kernel Stack

	3 NetChannel Design
	3.1 Virtual Network System (VNS) Layer
	3.2 NetDriver Layer
	3.3 NetScheduler Layer

	4 NetChannel Implementation
	5 NetChannel Evaluation
	5.1 Evaluation Setup
	5.2 New operating points
	5.3 Understanding NetChannel Overheads
	5.4 Real-world applications with NetChannel
	5.5 NetChannel with Terabit Ethernet

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

