
Jiffy: Elastic Far-Memory
for Stateful Serverless Analytics

Anurag Khandelwal
Yale

Yupeng Tang
Yale

Rachit Agarwal
Cornell

Aditya Akella
UT Austin

Ion Stoica
UC Berkeley

Abstract
Stateful serverless analytics can be enabled using a remote
memory system for inter-task communication, and for storing
and exchanging intermediate data. However, existing systems
allocate memory resources at job granularity—jobs specify
their memory demands at the time of the submission; and, the
system allocates memory equal to the job’s demand for the
entirety of its lifetime. This leads to resource underutilization
and/or performance degradation when intermediate data sizes
vary during job execution.

This paper presents Jiffy, an elastic far-memory system for
stateful serverless analytics that meets the instantaneous mem-
ory demand of a job at seconds timescales. Jiffy efficiently
multiplexes memory capacity across concurrently running
jobs, reducing the overheads of reads and writes to slower
persistent storage, resulting in 1.6−2.5× improvements in job
execution time over production workloads. Jiffy implementa-
tion currently runs on Amazon EC2, enables a wide variety
of distributed programming models including MapReduce,
Dryad, StreamScope, and Piccolo, and natively supports a
large class of analytics applications on AWS Lambda.

CCS Concepts: • Computer systems organization → Cloud
computing.

Keywords: serverless computing, far-memory, data analytics

ACM Reference Format:
Anurag Khandelwal, Yupeng Tang, Rachit Agarwal, Aditya Akella,
and Ion Stoica. 2022. Jiffy: Elastic Far-Memory for Stateful Server-
less Analytics. In Seventeenth European Conference on Computer
Systems (EuroSys ’22), April 5–8, 2022, RENNES, France. ACM,
New York, NY, USA, 17 pages. https://doi.org/10.1145/
3492321.3527539

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-9162-7/22/04. . . $15.00
https://doi.org/10.1145/3492321.3527539

 0.01

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d

In
te

rm
e
d
ia

te
 D

a
ta

Time (mins)

Tenant#1
Tenant#2

Tenant#3
Tenant#4

(a) Intermediate data (normalized by
mean usage)

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 10 20 30 40 50 60

Peak Intermediate Data

Wasted

N
o
rm

a
liz

e
d

In
te

rm
e
d
ia

te
 D

a
ta

Time (mins)

Tenant#1
Tenant#2

Tenant#3
Tenant#4

(b) Cumulative intermediate data
(normalized by peak usage)

Fig. 1. Analysis of production workloads from Snowflake [20] for
four tenants over a 1 hour window: (a) the ratio of peak to average
storage usage for a job can vary by an order of magnitude during
its execution; and (b) provisioning for peak usage results in average
utilization < 10%. Across all tenants, the average utilization is 19%.

1 Introduction
Serverless architectures offer on-demand elasticity of com-
pute and persistent storage, while charging users for resources
consumed by their jobs at fine-grained timescales [1–3].
While originally deemed useful only for web microservices,
IoT and ETL workloads [4, 5], recent work on serverless ana-
lytics has demonstrated the benefits of serverless architectures
for resource- and cost-efficient data analytics [6–22].

The core idea in serverless analytics is to use a remote
low-latency, high-throughput shared far-memory system for:
(1) inter-task1 communication; and (2) for multi-stage jobs,
storing intermediate data beyond the lifetime of the task that
produced the data (until it is consumed by downstream tasks).
We use far-memory to refer to memory on remote servers
accessed over the network [23, 24], including disaggregated
memory [25–40]. Such far-memory systems thus allow de-
coupling storage, communication and lifetime management
of intermediate data from individual compute tasks, enabling
serverless analytics frameworks to exploit the on-demand
compute elasticity offered by serverless architectures.

Existing far-memory systems [7, 8], however, suffer from a
fundamental limitation: they allocate storage resources at the
job granularity. That is, jobs specify their memory demands
at the time of the submission; and, the system allocates and
1Existing distributed programming frameworks, while different in underlying
programming models and semantics, share a common structure (Fig. 2, Fig. 3)
— the job is split into multiple tasks, possibly organized along multiple stages
or a directed acyclic graph. Each task generates intermediate data during its
execution; upon completion, each task partitions its intermediate data and
exchanges it with tasks in the next stage.

https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1145/3492321.3527539
https://doi.org/10.1145/3492321.3527539

reserves memory resources equal to the job’s demand (po-
tentially by elastic scaling of total system capacity) for the
entirety of its lifetime [8, Fig. 1].

The problem of performance degradation and resource
underutilization for such job-level resource allocation is well-
understood [20, 41]. On the one hand, if jobs specify their
average demand, their performance degrades when instanta-
neous demand is higher than their average demand (due to
read/write requests being executed on slower secondary stor-
age, e.g., S3), as shown in Fig. 1(a). On the other hand, if jobs
specify their peak demand, the system suffers from resource
underutilization when their instantaneous demand is lower
than the peak demand, as shown in Fig. 1(b). Indeed, the prob-
lem worsens as the difference between the peak demand and
the average demand increases. Unfortunately, the target use
case of far-memory systems for serverless analytics—storage
and exchange of intermediate data—is a bad-case scenario
for the difference between peak and average demands: re-
cent deployment studies have reported that intermediate data
sizes can vary over multiple orders of magnitude during the
lifetime of the job [20]. For instance, Fig. 1 presents our
analysis of the publicly-released dataset of > 2000 tenants
from Snowflake [20]: it shows that the ratio of peak to aver-
age demands in Snowflake production workloads can vary
by two orders of magnitude over a period of minutes! As a
result, job-level memory allocation in existing systems can
lead to significant performance degradation and resource un-
derutilization — over 4.1× performance degradation and 60%
resource underutilization in our evaluation (§6).

We present Jiffy, an elastic far-memory system for state-
ful serverless analytics. Jiffy allocates memory resources at
the granularity of small fixed-size memory blocks—multiple
memory blocks store intermediate data for individual tasks
within a job. Jiffy design is motivated by virtual memory de-
sign in operating systems that also does memory allocation to
individual processes at the granularity of fixed-size memory
blocks (pages); indeed, Jiffy adapts this design to stateful
serverless analytics. Performing resource allocation at the
granularity of small memory blocks allows Jiffy to elastically
scale memory resources allocated to individual jobs without
a priori knowledge of intermediate data sizes, and to meet the
instantaneous job demands at seconds timescales. As a result,
Jiffy can efficiently multiplex the available faster memory
capacity across concurrently running jobs, thus minimizing
the overheads of reads and writes to significantly slower sec-
ondary storage (e.g., S3 or disaggregated storage [20, 42, 43]).

Enabling fine-grained resource allocation requires resolv-
ing four unique challenges introduced by serverless analytics:
• First, each serverless analytics job can be organized around

multiple stages (or a directed acyclic graph), with tens to
thousands of individual tasks in each stage [6–20]. Thus,
performing fine-grained resource allocation requires an ef-
ficient mechanism to keep an up-to-date mapping between
tasks and memory blocks allocated to individual tasks.

• Second, the number of tasks reading and writing to the
shared far-memory system can change rapidly in server-
less analytics. Thus, task-level isolation becomes critical:
arrival and departure of new tasks should not impact the
performance of existing tasks.

• Third, decoupling of serverless tasks from their interme-
diate data means that the tasks can fail independent of the
intermediate data. Thus, we need mechanisms for explicit
lifetime management of intermediate data.

• Fourth, decoupling of tasks from their intermediate data
also means that data partitioning upon elastic scaling of
memory capacity becomes challenging, especially for cer-
tain data types used in serveless analytics (e.g., key-value
stores [6–8, 11, 13, 15, 19]). Indeed, naïvely delegating
this to applications would require large network transfers
(between compute tasks and the far memory system) and
data read/write operations every time the capacity is scaled
(§3). Thus, we need new mechanisms to efficiently enable
data partitioning within the far memory system.

Jiffy resolves these challenges by integrating several mech-
anisms into an end-to-end system. First, in a sharp contrast
to classical distributed shared memory systems [44–48] and
recent in-memory stores [49–52] that use a global address
space, Jiffy exposes a hierarchical address space that cap-
tures the structure of the analytics job (e.g., directed-acyclic
graphs with individual tasks) [20, 41]. Such a hierarchical
addressing mechanism allows Jiffy to both efficiently manage
the mapping between memory blocks and tasks, and pro-
vide task-level isolation. Second, Jiffy ties the hierarchical
addresses with a lease-based mechanism for efficient lifetime
management of intermediate data. Finally, similar to func-
tion shipping, Jiffy supports partition-function shipping —
analytics jobs can offload data repartitioning upon resource
allocation/deallocation to Jiffy, that performs seamless data
repartitioning. We discuss in §3 how, for each of these tech-
niques, the aforementioned unique challenges introduced by
serverless architectures require Jiffy to make different design
decisions than original realizations of these mechanisms. Jiffy
integrates these mechanisms into an end-to-end far-memory
system for stateful serverless analytics that provides resource
elasticity at the granularity of seconds, matching the compute
elasticity timescales of serverless architectures.

We have realized an end-to-end implementation of Jiffy,
now open-sourced at https://github.com/resource-
disaggregation/jiffy. Jiffy’s data plane enables compute
tasks to read/write intermediate data to their blocks via an
intuitive, programmable, API (§4.1). We demonstrate the ex-
pressiveness of Jiffy’s API by realizing serverless incarnations
of several powerful distributed programming frameworks atop
Jiffy (§5): MapReduce [53], Dryad [54], StreamScope [55]
and Piccolo [56]. We compare Jiffy against five state-of-the-
art far-memory systems over a variety of stateful serverless

2

https://github.com/resource-disaggregation/jiffy
https://github.com/resource-disaggregation/jiffy

workloads and cluster configurations. Our evaluation sug-
gests that, compared to state-of-the-art systems for stateful
serverless analytics [8], Jiffy’s fine-grained resource alloca-
tion achieves as much as 3× better resource utilization, and
improves application performance by a factor of 1.6 − 2.5×.

2 Motivation

The state-of-the-art system for stateful serverless analytics is
Pocket [8], a distributed low-latency, high-throughput system
for storing intermediate data. Pocket already resolves a num-
ber of interesting challenges pertinent to stateful serverless
analytics, as we describe next.

Scalable centralized management. Pocket architecture
(Fig. 2) comprises decoupled control, metadata and data
planes. While the data storage itself is distributed across mul-
tiple storage servers, the storage management functionalities
via control and metadata planes are logically centralized. This
greatly simplifies management since the controller and meta-
data servers have a global view of the entire system. Specifi-
cally, the controller allocates storage resources to analytics
jobs and decides where to place the data for different jobs
based on its global view of load across storage servers. The
metadata plane, in turn, organizes job data into buckets across
the storage allocated by the controller, and stores the mapping
from buckets to their physical locations at the data plane for
directing client requests appropriately. A single centralized
metadata server can support 90K requests per second per core
(sufficient to support thousands of serverless tasks).

Multi-tiered data storage. Pocket data plane simply stores
the job data in a bucket across multiple storage servers and
serves them via a key-value API (i.e., get(), put()). Once
a job obtains the physical resource locations from the meta-
data server, it can read and write data directly from the stor-
age servers. Pocket supports multi-tiered storage: jobs can
store data across DRAM, Flash or HDD tiers at the data
plane, based on their performance and/or cost constraints. In
our work, we focus on DRAM as the storage medium for
ephemeral data to realize a far-memory system; as such, we
subsequently refer to storage servers as ‘memory’ servers.

Adding/removing memory servers. If the aggregate de-
mand of jobs storing data on Pocket grows so much that the
system memory capacity is insufficient to serve all of them,
then Pocket can scale up the memory capacity by adding more
memory servers at the data plane. Similarly, the controller can
also scale down the capacity if it falls below a low threshold.

Analytics execution with Pocket. We now describe how a
serverless analytics job interacts with Pocket using Fig. 2.
When the job first starts, it registers itself with the control
plane (1○), either specifying the amount of memory resources
it expects to use, or providing hints that Pocket can use to
estimate it. The controller uses this information to allocate

𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆 𝜆

Job#1 Job#2 Job#3

Controller: Job-level resource
allocation & scaling

Metadata server(s)
Request routing

Storage
Server

Storage
Server

Storage
Server

Storage
Server

Storage
Server

1○ Register job 3○ Deregister job

2○ Allocate

resources

put()

a○

b○

Fig. 2. Pocket Architecture. Steps 1○- 3○ show how jobs are regis-
tered, resources are allocated and jobs are deregistered, while a○, b○
show how operations are routed from serverless compute tasks to
servers in the data plane via metadata servers (Fig. adapted from [8]).

resources for the job, and informs the metadata plane regard-
ing the resource placement at the data plane (2○). When the
job’s serverless compute tasks first attempt to read or write
intermediate data on the job’s allocated memory, it contacts
the metadata service to get the IP addresses for the mem-
ory servers with its allocated resources (a○). The serverless
tasks can subsequently access data directly from the memory
servers (b○). Once the job is finished, it deregisters itself at
the control plane to release its resources (3○).

For the remainder of the paper, we do not focus on the issues
that Pocket has already addressed—Jiffy uses the same cen-
tralized management mechanism, can add or remove memory
servers when all the capacity is utilized and uses the same an-
alytics execution pipeline as Pocket. Instead, we focus on the
specific problems arising out of Pocket’s resource allocation
mechanisms, which we describe next.

2.1 Limitations of Pocket Resource Allocation

The core challenge in Pocket’s resource allocation is that it
allocates memory at the granularity of jobs. Upon submission,
the job specifies its memory demands; and, Pocket allocates
and reserves memory resources equal to the job’s demand for
the entirety of its lifetime (see Fig. 1 in [8]), only releasing
them when the job explicitly deregisters.

Such job-level resource allocation is problematic due to
two reasons. First, accurately predicting intermediate data
sizes is hard for many analytics jobs. Analysis of production
workloads [20] have shown that intermediate data sizes have
little or no correlation with the amount of persistent data
read or the expected execution query time. Indeed, a job’s
intermediate data size depends on its execution plan, which,
in turn, can be adapted dynamically by a query planner [41].

Second, even if one could accurately predict the interme-
diate data sizes, Pocket’s resource allocation mechanism re-
quires jobs to specify their demands at the time of the sub-
mission (note that hints in Pocket are only used for sharing
resources across jobs, not for dynamically changing the mem-
ory capacity allocated to individual jobs). This leads to the
standard tradeoff between performance degradation and re-
source underutilization: if jobs specify their average demand,
their performance degrades when instantaneous demand is

3

T1

T2

T3

T4

T5

T6

T7

T8

T9

Pe
rs

is
te

nt
St

or
ag

e
(e

.g
.,

S3
)

Pe
rs

is
te

nt
St

or
ag

e
(e

.g
.,

S3
)

Task Intermediate Data Exchange

Fig. 3. Execution DAG example for a typical analytics job. Inter-
mediate data exchange across tasks occurs via Jiffy.
higher than their average (due to read/write requests being
executed on slower secondary storage) and if jobs specify
their peak demand, the system suffers from resource under-
utilization when their instantaneous demand is lower than
the peak. Since intermediate data sizes naturally increase and
decrease over time (as tasks in different stages are executed),
Pocket’s job-level resource allocation will result in either per-
formance degradation or resource underutilization. While we
have already seen this for the Snowflake workload in Fig. 1(b),
similar observations have been made in prior studies for other
workloads [7, 57] as well, e.g., the intermediate data size
across various stages in a typical TPC-DS query [58] ranges
from 0.8MB to 66GB, a difference of 5 orders of magnitude!

3 Jiffy Design
Jiffy enables fine-grained sharing of far-memory capacity
across concurrently running serverless analytics jobs for stor-
ing intermediate data. Inspired by virtual memory, Jiffy par-
titions the memory capacity into fixed-sized blocks (akin to
virtual memory pages), and performs memory allocations at
the granularity of these blocks. This allows Jiffy to achieve
two desirable properties. First, multiplexing the available ca-
pacity at block granularity allows Jiffy to match instantaneous
job demands at seconds timescales. Second, Jiffy does not
require jobs to know (even an estimate of) intermediate data
sizes a priori; as tasks write/delete data, Jiffy dynamically
allocates/deallocates resources at block granularity.

Remark. Multiplexing available memory capacity is different
from scaling the capacity of the memory pool. Prior systems,
including Pocket, focus on the latter: since resource allocation
is done at job granularity, as jobs arrive or finish, these sys-
tems add and remove the memory servers to elastically scale
the system capacity. However, existing capacity may be un-
derutilized since a job may not be using memory allocated to
it. Jiffy focuses on the former: efficiently sharing the capacity
available at any given time across concurrently running jobs.
When the memory capacity utilization is high (i.e., many jobs
are actually using the capacity), Jiffy can add memory servers
to scale up the capacity similar to Pocket. Interestingly, by
efficiently multiplexing the available capacity across concur-
rently running jobs, Jiffy also reduces the frequency at which
memory servers need to be added/removed from the pool.

As discussed in §1, enabling fine-grained resource alloca-
tion requires resolving four unique challenges introduced by

T1 T2 T3 T4

T5 T6

T7

T8 T9

B3_1 B3_2

B5_1
B6_1

B6_2

B7_1
Task-level
Isolation

Fig. 4. Hierarchical addressing for the job in Fig. 3. Jiffy provides
task-level resource isolation for far-memory under each task address-
prefix (§3.1). Note that block addresses are only assigned to address-
prefixes with currently allocated blocks; for tasks T1, T2 and T4,
blocks are not stored in Jiffy, but read from persistent storage.

serverless analytics. In this section, we describe how Jiffy
employs hierarchical addressing (§3.1), data lifetime manage-
ment (§3.2) and flexible data repartitioning (§3.3) to resolve
these challenges. To assist our discussion, we will use the
example in Fig. 3, which shows the execution plan for a rep-
resentative analytics job. The plan is organized as a directed
acyclic graph (DAG) where nodes correspond to computation
tasks (implemented as serverless functions2), while edges
denote intermediate data exchange between them via Jiffy.

3.1 Hierarchical Addressing

Analytics job are usually organized around multiple stages
or a directed acyclic graph. In serverless analytics, where
compute elasticity is a first-class primitive, each job may
execute tens to thousands of individual tasks [6–20]. Thus,
performing fine-grained resource allocation requires an ef-
ficient mechanism to keep an up-to-date mapping between
tasks and memory blocks allocated to individual tasks. More-
over, the number of tasks reading and writing to the shared
memory can change rapidly. Under such high concurrency
and churn, it becomes important to provide isolation at the
granularity of individual tasks: arrival and departure of a task
should not affect the resources allocated to other tasks, even
from the same job (since it can degrade the overall job per-
formance). In this subsection, we describe Jiffy’s hierarchical
addressing — a simple, effective, mechanism that enables
Jiffy to maintain a mapping between individual tasks and
memory blocks allocated to these tasks, as well as provide
isolation at individual task granularity.

Motivated by the Internet hierarchical IP addressing mech-
anism that captures network structure, Jiffy employs a hierar-
chical addressing mechanism that captures execution struc-
ture in analytics jobs. Specifically, Jiffy organizes intermedi-
ate data for analytics jobs within a “virtual” address hierarchy
to capture the dependencies between intermediate data for
different tasks. We provide an example below, but concep-
tually, internal nodes in the hierarchy correspond to tasks in
the DAG, while leaf nodes correspond to Jiffy blocks storing

2Functions refer to a basic computation unit in serverless architectures, e.g.,
Amazon Lambdas [1], Google Functions [3], Azure Functions [2], etc.

4

intermediate data generated by the tasks. Blocks form the
final layer of the hierarchy: block addresses are defined by the
path used to reach it in the hierarchy. The immediate address
prefix of a block, therefore, identifies the task that generated it.
Finally, the edges between internal nodes capture the depen-
dencies between the intermediate data generated by them. To
construct the address hierarchy, Jiffy uses the execution plan
for a job (e.g., using AWS Step Function and Azure Durable
Function, or via explicit workflow specification from the job).
Otherwise, Jiffy initializes the hierarchy to a single node, and
deduces the rest on-the-fly based on the intermediate data
dependencies between the job’s tasks (during registration of
individual tasks using Jiffy API §4.1), albeit by using more
computation at the control plane; this allows Jiffy to support
dynamic query plans, where the DAG is not known a priori.

Example. Fig. 4 shows the address hierarchy for the job from
Fig. 3. The internal nodes T1-T9 correspond to tasks in the
DAG, while leaf nodes B3_1, B3_2, etc., correspond to the
data blocks allocated to them by Jiffy for storing their in-
termediate data. Edges (T1, T5) and (T2, T5) in the address
hierarchy indicate that the intermediate data in T5 depends on
the intermediate data from both T1 and T2. The complete ad-
dress of block B6_2 under T6 would be T4.T6.B6_2, while
the address-prefix T4.T6 identifies all blocks allocated to
T6. Note that a block can have multiple addresses, e.g., block
B7_1 can be addressed using T4.T6.T7.B7_1, T3.T7.B7_1,
T2.T5.T7.B7_1 and T1.T5.T7.B7_1. This is similar to in-
ode hierarchy in POSIX filesystems — just as an inode may
be linked by many directories, and thus may have many path-
names, a block may have many addresses.

Organizing intermediate data across an address hierarchy
allows Jiffy to manage resource allocations for an address-
prefix independent of other prefixes. Specifically, if the mem-
ory in a specific address-prefix spills over to persistent storage,
it does not affect the performance of other address-prefixes.
Moreover, Jiffy ensures that once a block is allocated to an
address-prefix, it will not be reclaimed until the application
either explicitly reclaims it, or stops renewing leases for it
(§3.2), affording isolation at address-prefix granularity. Since
address-prefixes correspond to tasks in Jiffy address hierarchy,
this enables task-level isolation regardless of task concurrency
and churn. This is similar to virtual memory, where each pro-
cess is is assigned its own virtual address space that enables
isolation at process granularity; Jiffy does this at individual
task granularity using hierarchical addressing that captures
the execution structure of the job.

We outline two important design issues. First, Jiffy’s fine-
grained resource allocation should be decoupled from the
policies required to enforce desired system behavior. For in-
stance, algorithms to achieve fairness in resource allocation
across various jobs or tenants can be easily integrated on top
of Jiffy allocation mechanism. This is orthogonal to Jiffy’s
goals of enabling fine-grained sharing (where the overall

T1 T2 T3 T4

T5 T6

T7

T8 T9

B3_1 B3_2

B5_1
B6_1

B6_2

B7_1

Requested
lease renewal
Automatic
lease renewal

Fig. 5. Lease Renewal via Address Hierarchy. Hierarchical ad-
dressing simplifies lease renewal in Jiffy (§3.2), since lease renewal
for an address-prefix automatically implies renewals for all parent
and descendent address-prefixes in the hierarchy.

goal is high resource utilization). Second, address translation
— the mapping from virtual addresses to physical memory
blocks — is performed similar to Pocket [8] at the centralized
metadata server. Thus, unlike hardware address translation
that imposes a limit on the size (depth and breadth) of the
execution DAG, Jiffy can easily perform addressing for arbi-
trary DAGs. Jiffy’s hierarchical addressing and fine-grained
resource allocation does introduce additional complexity at
the controller; we evaluate the scalability of our controller
implementation in the evaluation section and demonstrate
that Jiffy can still scale to ∼45K requests per second per core,
which is large enough for most realistic deployments.

Block sizing. Similar to page-size in traditional virtual mem-
ory, block-size in Jiffy exposes well-known tradeoffs between
the amount of metadata that needs to be stored at the control
plane, and memory utilization. In particular, larger block-sizes
reduce the amount of per-block metadata at the control plane,
at the cost of potentially reduced memory utilization from
data fragmentation within blocks, and vice versa. We note
that Jiffy does not suffer the traditional overheads of higher
I/O with larger blocks, since it supports fine-grained access
within blocks via its data structure interface (§4.1). Moreover,
Jiffy also controls under-utilization within a block via data
repartitioning, as described in §3.3. While the system block
size can be configured during initialization in Jiffy (§6.6), it
employs a block size that is typically used for files in analytics
frameworks (e.g., 128MB in HDFS [59]) for compatibility.

Isolation granularity. Since the nodes in the address hierar-
chy correspond to tasks, Jiffy provides task-level isolation. It
is, however, possible to provide finer or coarser-grained isola-
tion by simply adding another layer to the hierarchy (e.g., for
isolation at the granularity of tables in data lakes) or removing
a layer from the hierarchy (e.g., for stage-level isolation in
MapReduce frameworks). We chose task-level isolation as
our default since most analytics frameworks stand to benefit
from task-level isolation, but do not require finer-grained iso-
lation. Individual applications can, however, chose to create
custom hierarchies using Jiffy API, as we outline in §4.1.

5

3.2 Data Lifetime Management

Existing far-memory systems for serverless analytics that per-
form job-level resource allocation, also manage data lifetimes
at job granularity — reclaiming storage when the job explic-
itly deregisters. A unique feature of serverless analytics is
that a task’s intermediate data is decoupled from its execution:
while its execution occurs at the serverless compute platform,
the data generated and consumed by it would reside at the
far-memory system. This also results in the decoupling of
their fault domains: with standard mechanisms (e.g., refer-
ence counting approaches [60–62]), when the task fails, its
corresponding intermediate data becomes dangling state at the
far-memory system. To avoid the resulting inefficiency, we
need additional mechanisms to efficiently perform task-level
data lifetime management.

Jiffy achieves this by integrating well-known lease man-
agement mechanisms [63–65] with hierarchical addressing to
enable lifetime management of intermediate data. In particu-
lar, Jiffy associates each address-prefix in a job’s hierarchical
addressing with a lease, and only keeps its data in memory as
long as its lease is renewed. Consequently, a job periodically
renews leases for the address-prefixes of tasks that are cur-
rently running. Jiffy tracks the time a lease was last renewed
for each node in the address hierarchy, and updates it for the
relevant nodes when a new renewal request for a particular
address-prefix is received. Finally, on lease expiry for a par-
ticular address-prefix, Jiffy reclaims all memory allocated to
it after flushing the data to persistent storage. This ensures
that even if a lease expires due to network delays between the
task and Jiffy, the data is not lost.

The new aspect of lease management in Jiffy is that it ex-
ploits the DAG-based hierarchical addressing to determine
dependencies between leases. On receiving a lease renewal
request from a task that is currently running, Jiffy renews
leases not only for its address-prefix, but also for the prefixes
of tasks that they depend on (i.e., parent nodes in the hierar-
chy), and for all the prefixes of tasks that depend on it (i.e., all
descendant nodes in the hierarchy). This significantly reduces
the number of lease renewal messages that a job has to send.
More over, this also ensures that while a task is running, not
only is its own intermediate data kept in memory, but also the
data for all the tasks that it depends on, and all the tasks that
depend on it. In particular, if a task fails but its dependent
task is still alive and renewing leases, then Jiffy will still keep
the data corresponding to the failed task in memory so that
the dependent task can continue operating on it.

Jiffy’s leasing mechanism finds a favorable tradeoff be-
tween age-based eviction (e.g., in caching approaches, where
jobs have no control on data lifetime) and explicit acquisition
and release (where jobs have full control, but job failures
could lead to orphaned state). Jiffy’s mechanism not only pro-
vides jobs control over the lifetime of their memory resources
(via explicit leases), but also ties the fate of the allocated

resources to the job — if a lease is not renewed (e.g., due to
job or task failure, or if resources are no longer needed), Jiffy
reassigns resources to other jobs or tasks on lease expiry.

Example. In Fig. 3, task T7 periodically renews leases for
the prefix T4.T6.T73 during its execution — Jiffy keeps the
intermediate data for the blocks under it in memory as long
as the job renews leases for it. Moreover, a lease renewal for
task T7’s prefix also renews leases for its parent tasks prefixes
(i.e., for T3, T5, T6) and for its descendent task prefixes (i.e.,
for T8, T9), as shown in Fig. 5. Thus, renewing T7’s lease
ensures that T7 can still use the intermediate data generated
by its parent tasks; moreover, if any of T7’s downstream tasks
are active, their intermediate data is automatically kept in
memory as well. Note that leases for tasks T1, T2 and T4 are
not automatically renewed, since they are no longer active
and T7 does not require the data generated by them.

Lease duration. Lease duration in Jiffy exposes a tradeoff
between control plane bandwidth and system utilization over
time. Specifically, longer lease durations reduce the network
traffic to the control plane since jobs renew their leases at
coarser granularities, but reduce system utilization since Jiffy
does not reclaim (potentially unused) resources from jobs
until their leases expire. We evaluate Jiffy’s sensitivity to
lease durations in §6.6.

3.3 Flexible Data Repartitioning

Decoupling compute tasks from their intermediate data in
serverless analytics makes it challenging to efficiently achieve
memory elasticity at fine granularities. Specifically, as mem-
ory is allocated/deallocated to a task, the intermediate data
needs to be repartitioned across the remaining memory blocks.
However, the decoupling of compute tasks from their interme-
diate data and the large number of concurrent tasks makes it
impractical to offload this repartitioning to the application. For
instance, many existing serverless analytics approaches [7, 8]
employ key-value stores to store intermediate data. In such
a setting, if the compute task were to repartition the inter-
mediate data on memory scaling, it would have to first read
the key-value pairs from the store over the network, compute
the data partitions across the new memory allocation, and
write back the data to the store. This would incur significant
network latency and bandwidth overheads for the task.

As we discuss in §5, Jiffy already implements standard
data structures used in data analytics frameworks — e.g.,
files [10, 16–18, 20], to key-value pairs [6–8, 11, 13, 15, 19]
to queues [9, 12]. Analytics jobs using these data structures
can offload repartitioning of intermediate data upon resource
allocation/deallocation to Jiffy. Each block allocated to a Jiffy
data structure tracks the fraction of the block memory capac-
ity that is currently being used to store data. Whenever the
usage grows above a high threshold, Jiffy, in turn, allocates a
3Note that since task T7 has four different address-prefixes, the job can renew
leases for its data using any of them.

6

Table 1. Jiffy User-facing API. See §4.1 for details.

API Description

connect(jiffyAddress) Connect to Jiffy.

A
dd

re
ss

H
ie

ra
rc

hy

createAddrPrefix(addr, parent, optionalArgs)

createHierarchy(dag, optionalArgs)

flushAddrPrefix(addr, externalPath)

loadAddrPrefix(addr, externalPath)

Create address-prefix addr with given parent address-prefix and
optionalArgs (e.g., initial capacity), or, create address hierarchy
from execution plan provided as a DAG dag.
Flush/load data in address-prefix to external persistent store.

leaseDuration = getLeaseDuration(addr)

renewLease(addr)

Get the lease duration associated with address-prefix addr.
Send lease renewal request for address-prefix addr.

D
at

a
St

ru
ct

ur
e

ds = initDataStructure(addr, type)
Initialize data structure of given type in address-prefix addr and
get handle ds that encapsulates physical locations of allocated blocks.

Data structure-specific interface implemented using block API (Fig. 6). See Table 2 in §5 for examples.

listener = ds.subscribe(op)

notif = listener.get(timeout)

Subscribe to notifications for operations of type op on ds.
Get latest notification; waits timeout seconds for response.

new block to the corresponding address-prefix4. Subsequently,
the overloaded block triggers data structure-specific reparti-
tioning to move part of its data to the new block. Similarly,
when the block usage drops below a low threshold, Jiffy iden-
tifies another block in the address-prefix with low-usage with
which the block can merge its data. The block then conducts
the required repartitioning, after which Jiffy deallocates it.
Note that by having the target block conduct the repartition-
ing instead of the compute task, Jiffy avoids the network and
computational overheads for task itself. Finally, we note that
data repartitioning occurs asynchronously in Jiffy: data ac-
cess operations across data structure blocks can proceed even
while repartitioning is in progress. This allows Jiffy to ensure
application performance is minimally impacted due to data
repartitioning (§6.3).

Data structures included in Jiffy already allow us to
implement serverless incarnations of several powerful dis-
tributed programming frameworks on top of Jiffy: MapRe-
duce [53, 67], Dryad [54], StreamScope [55] and Piccolo [56].
We note that data structures used in analytics frameworks —
files, queues, key-value stores — require very simple repar-
titioning mechanisms (unlike data structures like B-trees or
other ordered trees that are not used in data analytics frame-
works). As such, serverless applications employing these pro-
gramming models can run on Jiffy and leverage its flexible
data repartitioning without any modification.

Thresholds for elastic scaling. The high and low thresholds
for elastic scaling in Jiffy expose a tradeoff between the data
plane network bandwidth and task performance on one hand,
and system utilization on the other. Specifically, if the high
and low thresholds are set high and low enough, respectively,
then elastic scaling is triggered rarely, reducing the amount
of network traffic due to data repartitioning. At the same

4Similar to existing systems [8, 50, 52, 66], Jiffy can trivially scale its cluster
capacity: if the number of free blocks available increase/decrease beyond
a certain threshold, Jiffy adds/removes servers to adjust physical memory
resources. Here, we focus only on fine-grained elasticity.

time, extreme threshold values also negatively affect system
utilization within the blocks, e.g., lower low-thresholds result
in larger number of nearly empty blocks. We evaluate Jiffy’s
sensitivity to the choice of thresholds in §6.6.

4 Jiffy Implementation
Jiffy inherits Pocket’s scalable and fault-tolerant metadata
plane, system-wide capacity scaling, analytics execution
model, etc. However, Jiffy implements hierarchical address-
ing, lease management and efficient data repartitioning (§3)
to resolve unique challenges introduced by serverless envi-
ronments. We now describe Jiffy interface (§4.1) and imple-
mentation (§4.2.1) focusing on these new features.

4.1 Jiffy Interface

We describe Jiffy interface in terms of its user-facing API
(Table 1) and internal API (Fig. 6).

User-facing API. Jiffy’s user-facing interface (Table 1) is di-
vided along its two core abstractions: hierarchical addresses
and data structures. Jobs add a new address-prefix to their
address hierarchy using createAddrPrefix, specifying the
parent address-prefix, along with optional arguments such
as initial capacity. Jiffy also provides a createHierarchy
interface to directly generate the complete address hierar-
chy from the application’s execution plan (i.e., DAG), and
flush/load interfaces to persist/load address-prefix data
from external storage (e.g., S3). Jiffy provides three built-in
data structures that can be associated with an address-prefix
(via initDataStructure), and a way to define new data
structures using its internal API.

Similar to existing systems [52, 68], data structures also
expose a notification interface, so that tasks that consume
intermediate data can be notified on data availability. For
instance, a task can subscribe to write operations on its par-
ent task’s data structure, and obtain a listener handle. Jiffy
asynchronously notifies the listener upon a write to the
data structure, which the task can get via listener.get().

7

block = ds.getBlock(op, args) // Get block

block.writeOp(args) // Perform write

data = block.readOp(args) // Perform read

block.deleteOp(args) // Perform delete

Fig. 6. Jiffy Internal API. The block interface is used internally in
Jiffy to implement the data structure APIs (§5).

Internal API. The data layout within blocks in Jiffy is unique
to the data structure that owns it. As such, Jiffy blocks ex-
pose a set of data structure operators (Fig. 6) which uniquely
defines how data structure requests are routed across their
blocks, and how data is accessed or modified. These operators
are used internally within Jiffy for its built-in data structures
(§5) and not exposed to jobs directly.

The getBlock operator determines which block an oper-
ation request is routed to based on the operation type and
operation-specific arguments (e.g., based on key hashes for a
KV-store), and returns a handle to the corresponding block.
Each Jiffy block exposes writeOp, readOp and deleteOp
operators to facilitate data structure-specific access logic (e.g.,
get, put and delete for KV-store). Jiffy executes individual
operators atomically using sequence numbers, but does not
support atomic transactions that span multiple operators.

Job to address
prefix mapping

Q1

T1

T3 ...

T2

...

Q2

...

children,
permissions,
timestamp,
blocks, ...

Free List

Metadata Manager

Lease Manager

Renewal Service

Expiry Worker

Block Allocator

Client

Data
Plane

Fig. 7. Jiffy controller. See §4.2.1 for details.

4.2 System Implementation

Jiffy’s high-level design components similar to Pocket’s, ex-
cept for one difference: Jiffy combines the control and meta-
data planes into a unified control plane. We found this design
choice allowed us to significantly simplify interactions be-
tween the control and metadata components, without affecting
their performance. While this does couple their fault-domains,
standard fault-tolerance mechanisms are still applicable to the
unified control plane.

4.2.1 Control plane

The Jiffy controller (Fig. 7) maintains two pieces of system-
wide state. First, it stores a free block list, which lists the set
of blocks that have not been allocated to any job yet, along
with their corresponding physical server addresses. Second,
it stores an address hierarchy per-job, where each node in the
hierarchy stores a variety of metadata for its address-prefix,
including access permissions (for enforcing access control),
timestamps (for lease renewal), a block-map (to locate the
blocks associated with the address-prefix in the data plane),

Server#1

Blocks

High threshold
Server#2

Control Plane1○ Overload
signal

2○ Allocate
newBlock

3○ newBlock address

4○ Repartition data to newBlock

Fig. 8. Data repartitioning on scaling up capacity. Scaling down
capacity employs a similar approach (§4.2.2).

along with metadata to identify the data structure associated
with the address-prefix and how data is partitioned across
its blocks. The mapping between jobIDs (which uniquely
identify jobs) and their address hierarchies is stored in a hash-
table at the controller.

Block allocator. When a job creates an address-prefix in Jiffy,
the block allocator at the control plane assigns it the num-
ber of blocks corresponding to the requested initial capacity
from its pool of free blocks. While assigning the blocks, the
controller updates its state: the free block list, access permis-
sions and block-map for that address-prefix. Assignment of
blocks across address-prefixes is akin to virtual memory in
traditional operating systems: Jiffy multiplexes its physical
memory pools at the data plane across different prefixes at
block-granularity, while individual tasks operate under the
illusion that their prefixes have infinite memory resources.

Metadata manager. The metadata manager tracks the parti-
tioning information specific to different data structures (§5)
and assists clients in maintaining a consistent view of how
the data is organized across the blocks allocated to each data
structure. We defer the discussion of data structure-specific
metadata stored at the control plane to §5, but note that this
metadata is updated whenever blocks allocated to an address-
prefix is scaled. A client detects that a scaling has occurred
when it queries the data plane, and updates its view of the
partitioning metadata by querying the control plane.

Lease manager. The lease manager implements lifetime man-
agement in Jiffy. It comprises a lease renewal service that
listens for renewal requests from jobs and updates the lease
renewal timestamp of relevant nodes in its address hierarchy,
and a lease expiry worker that periodically traverses all ad-
dress hierarchies, marking nodes with timestamps older than
the associated lease period as expired.

Controller scaling and fault tolerance. In order to scale the
control plane, Jiffy can employ multiple controller servers,
each managing control operations for a non-overlapping sub-
set of address hierarchies (across jobs) and blocks (across
memory servers at the data plane). Jiffy employs hash-
partitioning to distribute both address-prefixes and memory
blocks (via their blockIDs) across controller servers. More-
over, Jiffy employs the same approach to scale its control
plane to multiple cores on a multi-core server. Jiffy adopts

8

Table 2. Jiffy Data Structure Implementations. See §5 for details.

Data Structure Operators
writeOp readOp deleteOp getBlock repartition

B
ui

lt-
in File (§5.1) write read - Route to block based on file offsets. Not required

FIFO Queue (§5.2) enqueue dequeue enqueue to tail, dequeue to head block. Not required
KV-Store (§5.3) put get delete Route to block based on key hash. Hash-based repartitioning

Custom data structures.

primary-backup based mechanisms from prior work [8, 69]
at each controller server for fault-tolerance.

4.2.2 Data plane

Jiffy data plane is responsible for two main tasks: provid-
ing jobs with efficient, data-structure specific atomic access
to data, and repartitioning data across blocks allocated by
the control plane during resource scaling. It partitions the
resources in a pool of memory servers across fixed sized
blocks. Each memory server maintains, for the blocks man-
aged by it, a mapping from unique blockIDs to pointers to raw
memory allocated to the blocks, along with two additional
metadata: data structure-specific operator implementations
as described in §4.1, and a subscription map that maps data
structure operations to client handles that have subscribed to
receive notifications for that operation.

We implement a high-performance RPC layer at the data
plane using Apache Thrift [70] for interactions between
clients and memory servers. While Thrift already provides
low-overhead serialization/deserialization protocols, we add
two key optimizations at the RPC layer. First, our server-
side implementation employs asynchronous framed IO to
multiplex multiple client sessions, permitting requests across
different sessions to be processed in a non-blocking manner
for lower latency and higher throughput. Second, while our
client-side library is implemented in Python for compatibility
with AWS lambda, it employs thin Python wrappers around
Thrift’s C-libraries to minimize performance overheads.

Data repartitioning for a Jiffy data structure is implemented
as follows: when a block’s usage grows above the high thresh-
old, the block sends a signal to the control plane, which, in
turn, allocates a new block to the address-prefix and responds
to the overloaded block with its location. The overloaded
block then repartitions and moves part of its data to the new
block (see Fig. 8); a similar mechanism is used when the
block’s usage falls below the low threshold.

For applications that require fault tolerance and persis-
tence for their intermediate data, Jiffy supports chain replica-
tion [71] at block granularity, and synchronously persisting
data to external stores (e.g., S3) at address-prefix granularity.

5 Programming Models on Jiffy

We now describe how Jiffy’s built-in data structures (Ta-
ble 2) enable many distributed programming frameworks
atop serverless platforms (§5.1-§5.3).

5.1 Map-Reduce Model
A Map-Reduce (MR) program [53] comprises map functions
that process a series of input key-value (KV) pairs to gener-
ate intermediate KV pairs, and reduce functions that merge
all intermediate values for the same intermediate key. MR
frameworks [53, 67, 72] parallelize map and reduce functions
across multiple workers. Data exchange between map and
reduce workers occurs via a shuffle phase, where interme-
diate KV pairs are distributed in a way that ensures values
belonging to the same key are routed to the same worker.

MR on Jiffy executes map/reduce tasks as serverless tasks.
A master process launches, tracks progress of, and handles
failures for tasks across MR jobs. Jiffy stores intermediate KV
pairs across multiple shuffle files, where shuffle files contain
a partitioned subset of KV pairs collected from all map tasks.
Since multiple map tasks can write to the same shuffle file,
Jiffy’s strong consistency semantics ensures correctness. The
master process handles explicit lease renewals.

Jiffy Files. A Jiffy file is a collection of blocks, each storing
a fixed-sized chunk of the file. The controller stores the map-
ping between blocks and file offset ranges managed by them
at the metadata manager; this mapping is cached at clients ac-
cessing the file, and updated whenever the number of blocks
allocated to the file is scaled in Jiffy. The getBlock oper-
ator forwards requests to different file blocks based on the
offset-range for the request. Files support sequential reads,
and writes via append-only semantics. For random access,
files support seek with arbitrary offsets. Jiffy uses the pro-
vided offset to identify the corresponding block, and forwards
subsequent read requests to it. Finally, since files are append-
only, blocks can only be added to it (not removed), and do
not require repartitioning when new blocks are added.

5.2 Dataflow and Streaming Dataflow Models
In the dataflow programming model, programmers provide
DAGs to describe an application’s communication patterns.
DAG vertices correspond to computations, while data chan-
nels form directed edges between them. We use Dryad [54]
as a reference dataflow execution engine, where channels can
be files, shared memory FIFO queues, etc. Dryad runtime
schedules DAG vertices across multiple workers based on
their dataflow dependencies. A vertex is scheduled when all
its input channels are ready: a file channel is ready if all its
data items have been written, while a queue is ready if it has
any data item. Streaming dataflow [55] employs a similar
approach, except channels are continuous event streams.

9

Dataflow on Jiffy maps each DAG vertex to a server-
less task, while a master process handles scheduling, fault-
tolerance and lease renewals for Jiffy. We use Jiffy FIFO
queues and files as data channels. Since queue-based chan-
nels are considered ready as long as some vertex is writing to
it, Jiffy allows downstream tasks to efficiently detect if items
produced by upstream tasks are available via notifications.

Jiffy Queues. A FIFO queue in Jiffy is a continuously grow-
ing linked-list of blocks, where each block stores multiple
data items, and a pointer to the next block in the list. The
queue size can be upper-bounded (in number of items) by
specifying a maxQueueLength. The controller only stores
the head and the tail blocks in the queue’s linked list, which
the client caches and updates whenever blocks are added/re-
moved. The queue supports enqueue/dequeue to add/re-
move items. The getBlock operator routes enqueue and
dequeue operations to the current tail and head blocks in the
link-list, respectively. While, blocks can be both added and
removed from a queue, queues do not need subsequent data
repartitioning. Finally, the queue leverages Jiffy notifications
to asynchronously detect when the there is data in the queue
to consume, or space in the queue to add more items, via
subscriptions to enqueue and dequeue, respectively.

5.3 Piccolo

Piccolo [56] is a data-centric programming model that allows
distributed compute machines to share distributed, mutable
state. Piccolo kernel functions specify sequential application
logic and share state with concurrent kernel functions via
a KV interface, while centralized control functions create
and coordinate both shared KV stores and kernel function
instances. Concurrent updates to the same key in the KV store
are resolved using user-defined accumulators.

Piccolo on Jiffy runs kernel functions across serverless
tasks, while control tasks run on a centralized master. The
shared state is stored across Jiffy’s KV-store data structures
(described below). KV-stores may be created per kernel func-
tion, or shared across multiple functions, depending on the
application needs. The master periodically renews leases for
Jiffy KV-stores. Like Piccolo, Jiffy checkpoints KV-stores by
flushing them to an external store.

Jiffy KV-store. The Jiffy KV-store hashes each key to one
of 𝐻 hash-slots in the range [0, 𝐻 -1] (𝐻=1024 by default).
The KV-store shards KV pairs across multiple Jiffy blocks,
such that each block owns one or more hash-slots in this
range. Note that a hash-slot is completely contained in a
single block. The controller stores the mapping between the
blocks and the hash slots managed by them; this metadata
is, again, cached at the client and updated during resource
scaling. Each block stores KV pairs that hash to its slots as a
hash-table — Jiffy employs cuckoo hashing [73] for highly
concurrent KV operations. The KV-store supports typical get,
put, and delete operations as implementations of readOp,

 1

 10

 100

 0 20 40 60 80 100

A
v
g
.
J
o
b
 S

lo
w

d
o
w

n

Memory Capacity (% of Peak)

Elasticache
Pocket

Jiffy

(a) Job performance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 20 40 60 80 100

A
v
g
.
R

e
s
o
u
rc

e
 U

ti
l.
 (

%
)

Memory Capacity (% of Peak)

Elasticache
Pocket

Jiffy

(b) Resource utilization

Fig. 9. Fine-grained task-level elasticity in Jiffy enables (a) bet-
ter job performance, and (b) higher resource utilization under con-
strained capacity. In (a), the slowdown is computed relative to the job
completion time with 100% capacity (for this data point, Elasticache
performance was 30% worse than Pocket, and Pocket performance
was 5% worse than Jiffy). See §6.1 for details.

writeOp and deleteOp operators. The getBlock operator
routes requests to KV-store blocks based on key-hashes.

Unlike files and queues, data needs to repartitioned for
the KV-store when a block is added or removed. When a
block is close-to-full, Jiffy reassigns half of its hash-slots to
a new block, moves the corresponding key-value pairs to it,
and updates the block-to-hash-slot mapping at the controller.
Similarly, when a block is nearly empty, its hash-slots are
merged with another block.

6 Evaluation
Jiffy is implemented in 25K lines of C++, with client libraries
in C++, Python and Java (∼1K LOC each). In this section, we
evaluate Jiffy to demonstrate its benefits (§6.1, §6.2) and to
understand the contribution of individual Jiffy mechanisms
to its overall performance (§6.3). We evaluate Jiffy controller
overheads in §6.4, additional serverless workloads in §6.5,
and Jiffy’s sensitivity to various system parameters in §6.6.

Experimental setup. Unless otherwise specified, each eval-
uated system is deployed across 10 m4.16xlarge EC2 [74]
instances, while serverless applications are deployed across
AWS Lambda [74] instances. Since Jiffy leverages Pocket’s
design, it supports addition of new instances to increase the
system capacity. However, our experiments do not evaluate
overheads for doing so, since, it is orthogonal to Jiffy’s goals;
we specifically focus on multiplexing available capacity for
higher utilization and to reduce the need for adding more
capacity. Jiffy employs 128MB blocks, 1s lease duration and
5% (low) and 95% (high) as thresholds for data repartitioning.

6.1 Benefits of Jiffy

Jiffy enables fine-grained resource allocation for serverless
analytics. We demonstrate the benefits of this approach to
job performance and resource utilization for roughly 50,000
jobs across 100 randomly chosen tenants over a randomly
selected 5 hour window in the Snowflake workload5 [20]. We
compare Jiffy (with the MR programming model, §5) against
5We were unable to evaluate the entire 14 day window with > 2000 tenants
due to intractable cost overheads.

10

Elasticache [66] and Pocket [8]. Elasticache represents sys-
tems that provision resources for all jobs. Since Elasticache
does not support multiple storage tiers, if available capacity is
insufficient, jobs must write their data to external stores like
S3 [75]. Pocket, on the other hand, reserves and reclaims re-
sources at job granularity; if available capacity is insufficient,
Pocket allocates resources on secondary storage (SSD). Note
that Pocket’s utilization can sometimes be lower than Elasti-
cache, since it provisions for the peak of each job separately,
sacrificing utilization for job-level isolation. Finally, we place
Pocket’s control and metadata services on the same server to
ensure a fair comparison with Jiffy’s unified control plane.

Impact of fine-grained elasticity on job performance. We
demonstrate this impact by constraining the amount of avail-
able capacity at the intermediate store for the Snowflake work-
load. Fig. 9(a) shows the average job slowdown as the capacity
is reduced to a certain percentage of the peak usage for the
workload within the evaluated time window (i.e., across all
jobs). Note that the peak usage can be several orders of mag-
nitude larger that the average requirements for each tenant, so
provisioning for the peak would be quite wasteful; ideally, we
want the provisioned capacity to be as small as possible with-
out much degradation in performance. Unfortunately, with
Elasticache, job performance suffers significantly as the inter-
mediate data grows larger than capacity (4.7× slowdown at
60% of peak and 34× slowdown at 20%), since the data must
now be accessed from S3. With Pocket, the data spills to SSD
when the allocated capacity at the DRAM-tier (during job
registration) is insufficient. While the slowdown is less severe
due to its efficient tiered-storage, jobs still experience a 3.2×
slowdown at 60% of peak and > 4.1× slowdown at 20% of
peak. Finally, Jiffy observes much lower job performance
degradation with constrained capacity (1.3× at 60% of peak
and < 2.5× at 20% of peak). In particular, Jiffy improves job
execution time by 1.6 − 2.5× compared to Pocket at differ-
ent memory capacities. This is because task-level elasticity
and lease based reclamation of memory allows Jiffy to effi-
ciently multiplex capacity across multiple jobs at a much finer
granularity than Pocket. This, in turn, significantly reduces
data spilling over to a slower storage tier in Jiffy compared
to Pocket. We confirm this intuition further by studying the
impact of fine-grained elasticity on resource utilization next.

Impact of fine-grained elasticity on resource utilization.
Fig. 9(b) shows the resource utilization across the compared
systems under constrained capacity. While the resource uti-
lization for Elasticache and Pocket either decreases or re-
mains the same as the system capacity is reduced, resource
utilization improves for Jiffy. This is because Pocket and Elas-
ticache provision capacity (at job or coarser granularity), and
the unused capacity is wasted, regardless of the total system
capacity. In contrast, Jiffy is able to better multiplex the avail-
able capacity across various jobs owing to its fine-grained
elasticity and lease-based reclamation of unused capacity. By

1ms

10ms

0.1s

1s

R
e
a
d
 L

a
te

n
c
y

S3
DynamoDB

Apache Crail
ElastiCache

Pocket
Jiffy

1ms

10ms

0.1s

1s

8B
128B

2KB
32KB

512KB
8MB

128MB

W
ri
te

 L
a
te

n
c
y

Object Size

(a) Latency

20

40

60

80

R
e
a
d
 M

B
P

S

S3
DynamoDB

Apache Crail
ElastiCache

Pocket
Jiffy

20

40

60

80

8B
128B

2KB
32KB

512KB
8MB

128MB

W
ri
te

 M
B

P
S

Object Size

(b) MBPS

Fig. 10. Jiffy performance comparison with existing systems
(§6.2). Despite providing the additional benefits demonstrated in
§6.1, Jiffy performs as well as state-of-the-art systems commonly
used for intermediate data storage in serverless analytics.

making better use of available capacity, Jiffy ensures that a
much smaller fraction of data spills over to SSD, resulting in
better performance in Fig. 9(a).

6.2 Performance Benchmarks for Six Systems

We now compare Jiffy performance (using its KV-Store data
structure) against five state-of-the-art systems commonly used
for intermediate data storage in serverless analytics: S3, Dy-
namoDB, Elasticache, Apache Crail and Pocket. Since only a
subset of the compared systems support request pipelining,
we disable pipelining for all of them.

To measure latency and throughput for the above sys-
tems, we profiled synchronous operations issued from an
AWS Lambda instance using a single-threaded client. Fig. 10
shows that in-memory data stores like Elasticache, Pocket
and Apache Crail achieve low-latency (sub-millisecond) and
high-throughput. In contrast, persistent data stores like S3 and
DynamoDB observe significantly higher latencies and lower
throughput; note that DynamoDB only supports objects up to
128KB. Jiffy matches the performance achieved by state-of-
the-art in-memory data stores, while additionally providing
the benefits outlined in §6.1. Note that Jiffy’s performance
gains over Pocket and Elasticache are due to (a) its optimized
RPC layer (§4.2.2), and, (b) its use of cuckoo hashing in the
KV-Store data structure (§5.3).

6.3 Understanding Jiffy Benefits

Fig. 9 already shows how fine-grained elasticity in Jiffy al-
lows it to achieve performance and resource utilization gains
over the compared state-of-the-art systems. As noted earlier,
this fine-grained elasticity is enabled by hierarchical virtual
addressing combined with with flexible data lifetime man-
agement and data repartitioning in Jiffy. In this section, we
evaluate their impact in isolation.

Fine-grained elasticity via lifetime management. Unlike
traditional storage systems, Jiffy’s lease-based data lifetime

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 S

to
ra

g
e

Time (mins)

Allocated Memory
Intermediate Data

Queue

 0 10 20 30 40 50 60
Time (mins)

File

 0 10 20 30 40 50 60
Time (mins)

KV-store

(a) Efficient lifetime management

 0

 0.2

 0.4

 0.6

 0.8

 1

1ms 10ms 100ms 1s

C
D

F

Data Repartitioning Latency

FIFO Queue
File

KV-Store

 0

 20

 40

 60

 80

 100

 0.2 0.4 0.6 0.8 1

C
D

F

Operation Latency (ms)

Before repartitioning
During repartitioning

(b) Efficient data repartitioning

Fig. 11. Jiffy data lifetime-management and data repartitioning. (a) Jiffy enables fine-grained elasticity via lease-based lifetime manage-
ment for its built-in data structures, FIFO Queue (left), File (center) and KV-store (right), reclaiming resources from tasks as soon as their
leases expire. (b) Jiffy facilitates efficient data repartitioning for its data structures when their allocation is scaled up, with repartitioning for a
single block completing in 2-500ms (left). Moreover, Jiffy latency for 100KB gets is minimally impacted during KV-store repartitioning. Note:
plots in (a), (b) share a common y-axis; x-axis for (c, left) is in log-scale.

management allows it to reclaim unused resources from jobs,
and potentially assign them to other jobs that might need them.
Coupled with fine-grained resource allocations and efficient
data repartitioning, this enables fine-grained elasticity for
serverless jobs running on Jiffy. To understand how, we eval-
uate memory allocation across different Jiffy data structures
(Fig. 11(a)) when subjected to the Snowflake workload.

FIFO queue and file observe seamless elasticity in allocated
resources as intermediate data is written to them since they
do not require repartitioning. The allocated capacity exceeds
the intermediate data size for the data structures by only a
small amount; this accounts for the additional metadata stored
at each of the blocks (e.g., object metadata for the items
enqueued in the FIFO queue, etc.), along with unused space
within the head/tail blocks. For the KV-store, the inserted keys
were sampled from a Zipf distribution over the keyspace since
the Snowflake dataset does not provide access patterns. Due
to the skew, a few Jiffy blocks receive most of the key-value
pairs, and repeatedly split across newly allocated blocks when
their used capacity grows too high. The allocated capacity is
therefore higher than the dataset size, since the used capacity
is low for most blocks owing to the Zipf key sampling; this
corresponds to the worst-case for the KV-Store. However,
Jiffy’s lease mechanism reclaims resources allocated to the
data structures soon after their utility is over, ensuring that
the overheads are short-lived.

Efficient elastic scaling via flexible data repartitioning.
A key contributor for the fine-grained resource elasticity
achieved by Jiffy is its flexible but efficient data repartitioning
approach. Fig. 11(b) shows the CDF of data repartitioning
latency per block across the three data structures, when sub-
jected to the Snowflake workload from above. The data repar-
titioning latency shown here corresponds to the total time
taken from the detection of an overloaded/underloaded block
to the end of data repartitioning. The memory server takes
∼1-1.5ms to connect to the controller, and two round-trips
(100-200𝜇s in EC2) to trigger allocation/reclamation of data
blocks and update for partitioning metadata at the controller.
Unlike FIFO Queue and File, KV-Store also requires repar-
titioning data across blocks. However, since repartitioning a

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0 5 10 15 20 25 30 35 40 45

L
a
te

n
c
y
 (

m
ic

ro
s
e
c
o
n
d
s
)

Throughput (KOps)

(a) Controller throughput vs. latency
on a single CPU core.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 20 30 40 50 60 70

T
h
ro

u
g
h
p
u
t
(M

O
p
s
)

Cores

(b) Controller throughput scaling
with multiple cores.

Fig. 12. Jiffy controller performance. Details in §6.4.

single block only requires moving only half the block capacity
(∼64MB), Jiffy is able to repartition the data in a few hundred
milliseconds over 10Gbps links. As such, Jiffy repartitions
data within a block for its built-in data structures with very
low latency (2-500ms).

Finally, we also note that Jiffy does not block data structure
operations during data repartitioning. In fact, these operations
are minimally impacted during this period: Fig. 11(b) shows
that the CDF for 100KB get operations on the KV-Store prior
to and during scaling are almost identical.

6.4 Controller Overheads
Jiffy adds several components at the controller compared to
Pocket, including all of metadata management, lease man-
agement and handling requests for data repartitioning. As
such, we expect its performance to be lower than Pocket’s
metadata server. We deem this to be acceptable as long as it
can still handle control plane request rates typically seen for
real world workload, e.g., a peak of a few hundred requests
per second, including lease renewal requests, for all of our
evaluated workloads and those evaluated in [8].

Fig. 12(a) shows the throughput-vs-latency curve for Jiffy
controller operations on a single CPU core of an m4.16xlarge
EC2 instance. The controller throughput saturates at roughly
42 KOps, with a latency of 370us, which is more than suffi-
cient to handle control plane load for real-world workloads.
In addition, the throughput scales almost linearly with the
number of cores, since each core can handle requests inde-
pendent of other cores for a distinct subset of virtual address
hierarchies (Fig. 12(b)); in particular, with 64 cores, Jiffy can
handle ∼ 2.7 million concurrently running tasks — far more

12

0.2

0.4

0.6

0.8

1.0

10ms 100ms 1s 10s 100s

C
D

F

End-to-end latency per batch

EC
Jiffy

(a) Streaming word-count

20

40

60

Ta
sk

L
at

en
cy

(s
)

14121086420
TaskID

ExCamera ExCamera+Jiffy

(b) Encoding videos on ExCamera

Fig. 13. For streaming word-count and ExCamera applica-
tions, Jiffy performance is comparable to systems with over-
provisioned capacity. Details in §6.5.

than the total number of tasks in the entire Snowflake work-
load. Finally, the controller readily scales to multiple servers
by partitioning the set of address hierarchies across them (§4).

Storage overheads. The task-level metadata storage in Jiffy
has an overhead of only 64 bytes of fixed metadata per task
and 8 bytes per block. For the default 128MB blocks used in
Jiffy, the metadata storage overhead is a tiny fraction of the
total storage (< 0.00005 − 0.0001%).

6.5 Additional Applications on Jiffy
The Snowflake workload evaluated in §6 shows Jiffy per-
formance a SQL application (MapReduce model, §5.1). We
now evaluate Jiffy for two additional serverless applications,
which make use of other models.

Streaming word-count. This workload comprises 50 parti-
tion tasks that split input sentences randomly sampled from
the Wikipedia dataset [76] into words and partition them
based on their string hashes, and 50 count tasks that collect
words within a partition and compute their counts. The job
employs queues as data channels (Dataflow model) and stores
word counts in a KV-store (Piccolo model). We compare Jiffy
performance with Elasticache (both hosted on 5 m4.16xlarge
EC2 instances), since both support queue and KV-store mod-
els. Fig. 13(a) shows the CDF of end-to-end latency for 64-
sentence batches. Despite its benefits (§6.3), Jiffy can match
the performance of an over-provisioned Elasticache cluster.

Video encoding. ExCamera [12] is a video processing frame-
work that facilitates fine-grained parallelism for video encod-
ing on AWS Lambda. It performs encoding using serverless
tasks that exchanged state via a dedicated rendezvous server
that forwards messages between them. We compare the ren-
dezvous server approach with state exchange via Jiffy queues
in ExCamera, both being hosted on a single m4.16xlarge in-
stance. Fig. 13(b) shows ExCamera task latencies for uncom-
pressed 4k raw frames from [77]. Compared to ExCamera,
Jiffy reduces task wait times (lighter shade) by 10-20% via
queue notifications.

6.6 Sensitivity Analysis
We now analyze Jiffy’s sensitivity to various system param-
eters, including block size (§3.1), lease duration (§3.2) and
thresholds for data repartitioning (§3.3). We use files as our

underlying data structure, and use the Snowflake workload
from Fig. 1. These results can be contrasted directly with
Fig. 11(a) (center), which corresponds to our default system
parameters (128MB blocks, 1s lease duration and 95% block
usage as repartition threshold). For each parameter that we
vary, the others remain fixed at their default values.

Block size. The block size in Jiffy exposes a tradeoff between
the amount of metadata that needs to be stored at the con-
trol plane and resource utilization (§3.1). We confirm this in
Fig. 14(a), where increasing the block size from 32MB to
512MB increases the disparity between allocated and used
capacity, and therefore decreases the resource utilization. The
default block size in Jiffy is set to 128MB since: (1) it achieves
high utilization with low metadata overhead (a few megabytes
for terabytes of application data), and (2) it is the default block
size in most analytics platforms.

Lease duration. As shown in Fig. 14(b), lease duration in
Jiffy affects resource utilization over time. As we increase
lease durations from 0.25 seconds to 64 seconds, resource
utilization decreases since Jiffy does not reclaim (potentially
unused) resource resources from jobs until their leases ex-
pire. At the same time, if we keep lease duration too low,
applications would renew leases too often, resulting in higher
traffic to the controller. We find a lease duration of 1s to be a
sweet spot, ensuring high resource utilization, while ensuring
the traffic to the controller for even thousands of concurrent
applications is only a few thousand requests per second —
well within Jiffy controller’s limits on a single CPU core.

Repartition threshold. Finally, Fig. 14(c) shows the impact
of (high) repartition threshold on resource utilization. As ex-
pected, lower repartition threshold leads to lower utilization,
since it triggers premature allocation of new blocks to most
files in the workload. Note that since the size of the block
(128MB) is much smaller than the amount of data written
to each file in the workload (often several gigabytes), this
overhead is relatively small when compared to effect of other
parameters. Since a large value of high repartitioning thresh-
old results in more frequent block allocation requests to the
controller, our default value of 95% provides a sweet spot be-
tween resource utilization and number of allocation requests.

7 Related Work

We discussed intermediate storage systems for serverless ana-
lytics in §1 and §6.2; we now discuss other related systems.

Pocket [8] has shown how existing designs for in-memory
key-value stores [49–52, 78–82], distributed [83–86] and dis-
aggregated memory systems [31, 32, 87, 88], and storage
systems with flexible interfaces [89–96] can be extended to
facilitate three key goals for intermediate data storage in
serverless analytics: low-latency/high-throughput, storage re-
source sharing and resource elasticity. Jiffy strives for comple-
mentary goals of resolving specific challenges arising from

13

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 S

to
ra

g
e

Time (s)

Block Size=32MB

 0 10 20 30 40 50 60
Time (s)

Block Size=64MB

 0 10 20 30 40 50 60
Time (s)

Block Size=128MB

 0 10 20 30 40 50 60
Time (s)

Block Size=256MB

 0 10 20 30 40 50 60
Time (s)

Block Size=512MB

(a) Sensitivity analysis for block size

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 S

to
ra

g
e

Time (s)

Lease Duration=0.25s

 0 10 20 30 40 50 60
Time (s)

Lease Duration=1s

 0 10 20 30 40 50 60
Time (s)

Lease Duration=4s

 0 10 20 30 40 50 60
Time (s)

Lease Duration=16s

 0 10 20 30 40 50 60
Time (s)

Lease Duration=64s

(b) Sensitivity analysis for lease duration

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

N
o
rm

a
liz

e
d
 S

to
ra

g
e

Time (s)

Threshold=99%

 0 10 20 30 40 50 60
Time (s)

Threshold=95%

 0 10 20 30 40 50 60
Time (s)

Threshold=90%

 0 10 20 30 40 50 60
Time (s)

Threshold=80%

 0 10 20 30 40 50 60
Time (s)

Threshold=60%

(c) Sensitivity analysis for (high) repartition threshold

Fig. 14. Jiffy sensitivity analysis for (a) block size (b) lease duration and (c) repartition threshold for the file data structure. Green area
corresponds to used capacity, while red area corresponds to allocated capacity under Jiffy. See §6.6 for details.

adapting virtual memory-based allocation to serverless envi-
ronments (§3) to achieve task-level elasticity, isolation and
lifetime management. However, Jiffy is flexible enough to be
implemented atop most such systems to achieve these goals.

Our evaluation employs publicly released datasets from
Snowflake’s production clusters [20]. Snowflake itself neither
performs task-level resource allocation, nor does it provide
isolation across tasks. In fact, Snowflake’s ephemeral storage
is not shared across tenants, or even tasks running on separate
compute nodes. Due to the above reasons, Snowflake does not
need to perform data lifetime management either. In contrast,
Jiffy is designed for multi-tenant environments, and provides
lifetime management for serverless analytics.

Other recent storage systems have also explored fine-
grained resource sharing. Pisces [97] provides per-tenant
performance isolation in a multi-tenant cloud storage sys-
tem, but does not share storage capacity across tenants.
Memshare [98] facilitates memory sharing across multiple
tenants, but operates under a KV cache setting, i.e., under
high contention, it evicts KV pairs that contribute less to over-
all system hit-rate. In contrast, Jiffy focuses on more general
data models that support fine-grained memory elasticity via
efficient data repartitioning, and allows applications control
over the data that resides in memory via leasing.

8 Conclusion
We have presented Jiffy, a far-memory system for storing
ephemeral state that matches the instantaneous capacity de-
mands for stateful serverless analytics jobs. Jiffy resolves
unique challenges introduced by serverless environments us-
ing a combination of hierarchical addressing, efficient data
lifetime management via leasing, and flexible data reparti-
tioning. Jiffy supports rich data models that enable several
powerful distributed programming frameworks on serverless
platforms. Our evaluation shows that Jiffy improves job exe-
cution time by 1.6 − 2.5× for production workloads.

Acknowledgements
We would like to thank our shepherd Flavio Junqueira and
anonymous EuroSys reviewers for their valuable comments
and insightful feedback. We are also grateful to Midhul Vup-
palapati for helping us parse and analyze the Snowflake traces.
This work is supported in part by NSF Awards 2047220,
1704742, 1730628, 1763810, 1838733 and their REU sup-
plements, as well as a Sloan Fellowship, a NetApp Faculty
Fellowship and gifts from Amazon Web Services, Ant Group,
Ericsson, Futurewei, Google, Intel, Meta, Microsoft, Scotia-
bank, and VMware.

14

References
[1] AWS Lamda. https://aws.amazon.com/lambda/.
[2] Azure Functions. https://azure.microsoft.com/en-us/
services/functions.

[3] Google Cloud Functions. https://cloud.google.com/
functions.

[4] State of the Serverless Community Survey Results. https:
/ / serverless . com / blog / state - of - serverless -
community.

[5] 2018 Serverless Community Survey: huge growth in serverless usage.
https://bit.ly/2Mu5TCR.

[6] Matthew Perron, Raul Castro Fernandez, David DeWitt, and Samuel
Madden. Starling: A scalable query engine on cloud function services.
In SIGMOD, 2020.

[7] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. Shuffling, fast and
slow: scalable analytics on serverless infrastructure. In NSDI, 2019.

[8] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. Pocket: Elastic ephemeral storage
for serverless analytics. In OSDI, 2018.

[9] Youngbin Kim and Jimmy Lin. Serverless data analytics with Flint. In
CLOUD, 2018.

[10] Qubole Announces Apache Spark on AWS Lambda. https://www.
qubole.com/blog/spark-on-aws-lambda.

[11] Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy Katz. Cirrus: A serverless framework for end-to-end ml work-
flows. In SoCC, 2019.

[12] Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman,
George Porter, and Keith Winstein. Encoding, Fast and Slow: Low-
Latency Video Processing Using Thousands of Tiny Threads. In NSDI,
2017.

[13] Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. Occupy the cloud: distributed computing for the 99%. In
SoCC, 2017.

[14] Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram
Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-
Kelley. numpywren: serverless linear algebra. arXiv preprint
arXiv:1810.09679, 2018.

[15] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. From laptop to
lambda: Outsourcing everyday jobs to thousands of transient functional
containers. In ATC, 2019.

[16] Amazon. Amazon Athena. https://aws.amazon.com/
athena.

[17] Amazon. Amazon Aurora Serverless. https://aws.amazon.
com/rds/aurora/serverless.

[18] Azure. Azure SQL Data Warehouse. https://azure.
microsoft . com / en - us / services / sql - data -
warehouse.

[19] Vikram Sreekanti, Chenggang Wu Xiayue Charles Lin, Jose M Faleiro,
Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tumanov. Cloud-
burst: Stateful functions-as-a-service. arXiv preprint arXiv:2001.04592,
2020.

[20] Midhul Vuppalapati, Justin Miron, Rachit Agarwal, Dan Truong,
Ashish Motivala, and Thierry Cruanes. Building an elastic query engine
on disaggregated storage. In NSDI, 2020.

[21] Hong Zhang, Yupeng Tang, Anurag Khandelwal, Jingrong Chen, and
Ion Stoica. Caerus: NIMBLE task scheduling for serverless analytics.
In NSDI, 2021.

[22] Zhipeng Jia and Emmett Witchel. Boki: Stateful serverless computing
with shared logs. In SOSP, 2021.

[23] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agar-
wal, Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chau-
gule, Nan Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever,

Yu Zhao, and Parthasarathy Ranganathan. Software-defined far memory
in warehouse-scale computers. In ASPLOS, 2019.

[24] Emmanuel Amaro, Christopher Branner-Augmon, Zhihong Luo, Amy
Ousterhout, Marcos K. Aguilera, Aurojit Panda, Sylvia Ratnasamy, and
Scott Shenker. Can far memory improve job throughput? In EuroSys,
2020.

[25] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Fal-
safi, and Boris Grot. Scale-out numa. In ASPLOS, 2014.

[26] Ling Liu, Wenqi Cao, Semih Sahin, Qi Zhang, Juhyun Bae, and
Yanzhao Wu. Memory disaggregation: Research problems and op-
portunities. In ICDCS, 2019.

[27] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan,
Steven K. Reinhardt, and Thomas F. Wenisch. Disaggregated memory
for expansion and sharing in blade servers. In ISCA, 2009.

[28] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch. System-level implications of disaggregated memory.
In HPCA, 2012.

[29] Ahmad Samih, Ren Wang, Christian Maciocco, Mazen Kharbutli, and
Yan Solihin. Collaborative Memories in Clusters: Opportunities and
Challenges. 2014.

[30] Krste Asanović. Firebox: A hardware building block for 2020
warehouse-scale computers. 2014.

[31] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. Legoos:
A disseminated, distributed OS for hardware resource disaggregation.
In OSDI, 2018.

[32] Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury,
and Kang G. Shin. Efficient Memory Disaggregation with Infiniswap.
In NSDI, 2017.

[33] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Network requirements for resource disaggregation. In OSDI, 2016.

[34] Amanda Carbonari and Ivan Beschasnikh. Tolerating faults in disag-
gregated datacenters. In HotNets, 2017.

[35] High Throughput Computing Data Center Architecture. http://
www.huawei.com/ilink/en/download/HW_349607.

[36] The Machine: A new kind of computer. https://www.hpl.hp.
com/research/systems-research/themachine/.

[37] Intel Rack Scale Design: Just what is it? https://www.
datacenterdynamics.com/en/opinions/intel-rack-
scale-design-just-what-is-it/.

[38] Facebook’s Disaggregated Racks Strategy Provides an Early Glimpse
into Next Gen Cloud Computing Data Center Infrastructures. https:
/ / dcig . com / 2015 / 01 / facebooks - disaggregated -
racks-strategy-provides-early-glimpse-next-gen-
cloud-computing.html.

[39] Rack-scale Computing. https://www.microsoft.com/en-
us/research/project/rack-scale-computing/.

[40] In Bid for Major Carriers and Service Providers, Dell EMC
Rack Scale Infrastructure Offers ‘Hyperscale Principles’. https:
//www.enterpriseai.news/2017/09/12/bid- major-
carriers-service-providers-dell-emc-rack-scale-
infrastructure-offers-hyperscale-principles/.

[41] Kshiteej Mahajan, Mosharaf Chowdhury, Aditya Akella, and Shuchi
Chawla. Dynamic query re-planning using QOOP. In OSDI, 2018.

[42] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal.
TCP≈RDMA: CPU-efficient remote storage access with i10. In NSDI,
2020.

[43] Jaehyun Hwang, Midhul Vuppalapati, Simon Peter, and Rachit Agarwal.
Rearchitecting linux storage stack for 𝜇s latency and high throughput.
In OSDI), 2021.

[44] Kai Li. Ivy: A shared virtual memory system for parallel computing.
ICPP, 1988.

[45] Brett Fleisch and Gerald Popek. Mirage: A coherent distributed shared
memory design. 1989.

15

https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions
https://azure.microsoft.com/en-us/services/functions
https://cloud.google.com/functions
https://cloud.google.com/functions
https://serverless.com/blog/state-of-serverless-community
https://serverless.com/blog/state-of-serverless-community
https://serverless.com/blog/state-of-serverless-community
https://bit.ly/2Mu5TCR
https://www.qubole.com/blog/spark-on-aws-lambda
https://www.qubole.com/blog/spark-on-aws-lambda
https://aws.amazon.com/athena
https://aws.amazon.com/athena
https://aws.amazon.com/rds/aurora/serverless
https://aws.amazon.com/rds/aurora/serverless
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://azure.microsoft.com/en-us/services/sql-data-warehouse
https://azure.microsoft.com/en-us/services/sql-data-warehouse
http://www.huawei.com/ilink/en/download/HW_349607
http://www.huawei.com/ilink/en/download/HW_349607
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.hpl.hp.com/research/systems-research/themachine/
https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-design-just-what-is-it/
https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-design-just-what-is-it/
https://www.datacenterdynamics.com/en/opinions/intel-rack-scale-design-just-what-is-it/
https://dcig.com/2015/01/facebooks-disaggregated-racks-strategy-provides-early-glimpse-next-gen-cloud-computing.html
https://dcig.com/2015/01/facebooks-disaggregated-racks-strategy-provides-early-glimpse-next-gen-cloud-computing.html
https://dcig.com/2015/01/facebooks-disaggregated-racks-strategy-provides-early-glimpse-next-gen-cloud-computing.html
https://dcig.com/2015/01/facebooks-disaggregated-racks-strategy-provides-early-glimpse-next-gen-cloud-computing.html
https://www.microsoft.com/en-us/research/project/rack-scale-computing/
https://www.microsoft.com/en-us/research/project/rack-scale-computing/
https://www.enterpriseai.news/2017/09/12/bid-major-carriers-service-providers-dell-emc-rack-scale-infrastructure-offers-hyperscale-principles/
https://www.enterpriseai.news/2017/09/12/bid-major-carriers-service-providers-dell-emc-rack-scale-infrastructure-offers-hyperscale-principles/
https://www.enterpriseai.news/2017/09/12/bid-major-carriers-service-providers-dell-emc-rack-scale-infrastructure-offers-hyperscale-principles/
https://www.enterpriseai.news/2017/09/12/bid-major-carriers-service-providers-dell-emc-rack-scale-infrastructure-offers-hyperscale-principles/

[46] Eric Jul, Henry Levy, Norman Hutchinson, and Andrew Black. Fine-
grained mobility in the emerald system. TOCS, 1988.

[47] Partha Dasgupta, Richard J LeBlanc, Mustaque Ahamad, and Umak-
ishore Ramachandran. The clouds distributed operating system. Com-
puter, 1991.

[48] John B Carter, Dilip Khandekar, and Linus Kamb. Distributed shared
memory: Where we are and where we should be headed. In HotOS,
1995.

[49] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-memory Key-value Storage.
In NSDI, 2014.

[50] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, David Mazières, Subhasish Mitra, Aravind Narayanan,
Guru Parulkar, Mendel Rosenblum, et al. The Case for RAMClouds:
Scalable High-performance Storage Entirely in DRAM. SIGOPS OSR,
2010.

[51] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. FaRM: Fast Remote Memory. In NSDI, 2014.

[52] Redis. http://www.redis.io.
[53] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data pro-

cessing on large clusters. CACM, 2008.
[54] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis

Fetterly. Dryad: distributed data-parallel programs from sequential
building blocks. In SIGOPS OSR, 2007.

[55] Wei Lin, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou, and
Lidong Zhou. Streamscope: continuous reliable distributed processing
of big data streams. In NSDI, 2016.

[56] Russell Power and Jinyang Li. Piccolo: Building Fast, Distributed
Programs with Partitioned Tables. In OSDI, 2010.

[57] Charles Reiss, Alexey Tumanov, Gregory R. Ganger, Randy H. Katz,
and Michael A. Kozuch. Heterogeneity and dynamicity of clouds at
scale: Google trace analysis. In SoCC, 2012.

[58] TPC-DS. http://www.tpc.org/tpcds/.
[59] Hadoop Distributed File System. https://hadoop.apache.
org/docs/r1.2.1/hdfs_design.html.

[60] Paul R. Wilson. Uniprocessor garbage collection techniques. In IWMM,
1992.

[61] David I Bevan. Distributed garbage collection using reference counting.
In PARLE, 1987.

[62] K G Cassidy. Feasibility of automatic storage reclamation with concur-
rent program execution in a lisp environment. master’s thesis. 1985.

[63] Cary Gray and David Cheriton. Leases: An efficient fault-tolerant
mechanism for distributed file cache consistency. 1989.

[64] Mike Burrows. The Chubby Lock Service for Loosely-coupled Dis-
tributed Systems. In OSDI, 2006.

[65] R. Droms. RFC 2131: Dynamic Host Configuration Protocol. https:
//www.ietf.org/rfc/rfc2131.txt, 1997.

[66] Amazon ElastiCache. https : / / aws . amazon . com /
elasticache.

[67] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,
Justin Ma, Murphy McCauly, Michael J. Franklin, Scott Shenker, and
Ion Stoica. Resilient distributed datasets: A fault-tolerant abstraction
for in-memory cluster computing. In NSDI, 2012.

[68] Amazon Simple Notification Service (SNS). https://aws.
amazon.com/sns.

[69] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin
Reed. ZooKeeper: Wait-free Coordination for Internet-scale Systems.
In ATC, 2010.

[70] Apache Thrift. https://thrift.apache.org/.

[71] Robbert van Renesse and Fred B. Schneider. Chain Replication for
Supporting High Throughput and Availability. In OSDI, 2004.

[72] Apache Hadoop. https://hadoop.apache.org/.
[73] libcuckoo. https://github.com/efficient/libcuckoo.
[74] Amazon EC2. https://aws.amazon.com/ec2/.
[75] Amazon S3. https://aws.amazon.com/s3.
[76] Wikipedia Dataset. https://en.wikipedia.org/wiki/
Wikipedia:Database_download.

[77] Ton Roosendaal. Sintel. In ACM SIGGRAPH CAF, 2011.
[78] MemCached. http://www.memcached.org.
[79] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Com-

pact and Concurrent MemCache with Dumber Caching and Smarter
Hashing. In NSDI, 2013.

[80] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. Autoscal-
ing tiered cloud storage in anna. VLDB, 2019.

[81] Rachit Agarwal, Anurag Khandelwal, and Ion Stoica. Succinct: En-
abling Queries on Compressed Data. In NSDI, 2015.

[82] Anurag Khandelwal, Rachit Agarwal, and Ion Stoica. Blowfish: Dy-
namic storage-performance tradeoff in data stores. In NSDI, 2016.

[83] John B. Carter, John K. Bennett, and Willy Zwaenepoel. Implementa-
tion and performance of munin. In SOSP, 1991.

[84] Kai Li and Paul Hudak. Memory coherence in shared virtual memory
systems. ACM TOCS, 1989.

[85] Bill Nitzberg and Virginia Lo. Distributed Shared Memory: A Survey
of Issues and Algorithms. Computer, 1991.

[86] Pete Keleher, Alan L. Cox, Sandhya Dwarkadas, and Willy Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard Workstations
and Operating Systems. In WTEC, 1994.

[87] Marcos K. Aguilera, Nadav Amit, Irina Calciu, Xavier Deguillard,
Jayneel Gandhi, Stanko Novaković, Arun Ramanathan, Pratap Subrah-
manyam, Lalith Suresh, Kiran Tati, Rajesh Venkatasubramanian, and
Michael Wei. Remote regions: a simple abstraction for remote memory.
In ATC, 2018.

[88] Seung-seob Lee, Yanpeng Yu, Yupeng Tang, Anurag Khandelwal, Lin
Zhong, and Abhishek Bhattacharjee. Mind: In-network memory man-
agement for disaggregated data centers. In SOSP, 2021.

[89] Postgres: User defined Functions. https://www.postgresql.
org/docs/8.0/xfunc.html.

[90] Oracle: User defined Functions. https://docs.oracle.com/
cd/B19306_01/server.102/b14200/functions231.htm.

[91] SQL Server: User defined Functions. https : / / docs .
microsoft.com/en-us/sql/relational-databases/
user-defined-functions/user-defined-functions.

[92] Postgres: Stored Procedures. https://www.postgresql.org/
docs/11/sql-createprocedure.html.

[93] Oracle: Stored Procedures. https://docs.oracle.com/cd/
B28359_01/appdev.111/b28843/tdddg_procedures.htm.

[94] SQL Server: Stored Procedures. https://docs.microsoft.
com / en - us / sql / relational - databases / stored -
procedures/create-a-stored-procedure?view=sql-
server-2017.

[95] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A.
Thekkath, and Lidong Zhou. Boxwood: Abstractions as the foundation
for storage infrastructure. In OSDI, 2004.

[96] Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. Sinfonia: A new paradigm for building scalable
distributed systems. In SOSP, 2007.

[97] David Shue, Michael J. Freedman, and Anees Shaikh. Performance
isolation and fairness for multi-tenant cloud storage. In OSDI, 2012.

[98] Asaf Cidon, Daniel Rushton, Stephen M. Rumble, and Ryan Stutsman.
Memshare: a dynamic multi-tenant key-value cache. In ATC, 2017.

16

http://www.redis.io
http://www.tpc.org/tpcds/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://www.ietf.org/rfc/rfc2131.txt
https://www.ietf.org/rfc/rfc2131.txt
https://aws.amazon.com/elasticache
https://aws.amazon.com/elasticache
https://aws.amazon.com/sns
https://aws.amazon.com/sns
https://thrift.apache.org/
https://hadoop.apache.org/
https://github.com/efficient/libcuckoo
https://aws.amazon.com/ec2/
https://aws.amazon.com/s3
https://en.wikipedia.org/wiki/Wikipedia:Database_download
https://en.wikipedia.org/wiki/Wikipedia:Database_download
http://www.memcached.org
https://www.postgresql.org/docs/8.0/xfunc.html
https://www.postgresql.org/docs/8.0/xfunc.html
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions231.htm
https://docs.oracle.com/cd/B19306_01/server.102/b14200/functions231.htm
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions
https://docs.microsoft.com/en-us/sql/relational-databases/user-defined-functions/user-defined-functions
https://www.postgresql.org/docs/11/sql-createprocedure.html
https://www.postgresql.org/docs/11/sql-createprocedure.html
https://docs.oracle.com/cd/B28359_01/appdev.111/b28843/tdddg_procedures.htm
https://docs.oracle.com/cd/B28359_01/appdev.111/b28843/tdddg_procedures.htm
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017
https://docs.microsoft.com/en-us/sql/relational-databases/stored-procedures/create-a-stored-procedure?view=sql-server-2017

	Abstract
	1 Introduction
	2 Motivation
	2.1 Limitations of Pocket Resource Allocation

	3 Jiffy Design
	3.1 Hierarchical Addressing
	3.2 Data Lifetime Management
	3.3 Flexible Data Repartitioning

	4 Jiffy Implementation
	4.1 Jiffy Interface
	4.2 System Implementation

	5 Programming Models on Jiffy
	5.1 Map-Reduce Model
	5.2 Dataflow and Streaming Dataflow Models
	5.3 Piccolo

	6 Evaluation
	6.1 Benefits of Jiffy
	6.2 Performance Benchmarks for Six Systems
	6.3 Understanding Jiffy Benefits
	6.4 Controller Overheads
	6.5 Additional Applications on Jiffy
	6.6 Sensitivity Analysis

	7 Related Work
	8 Conclusion
	References

