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Abstract. We present new distance oracles for computing distances of stretch
less than 2 on general weighted undirected graphs. For the realistic case of
sparse graphs and for any integer k, the new oracles return paths of stretch
1+1/k and exhibit a smooth three-way tradeoff of S× T 1/k = O(n2) between
space S, stretch and query time T . This significantly improves the state-of-
the-art for each point in the space-stretch-time tradeoff space, and matches the
known space-time curve for stretch 2 and larger. We also present new oracles
for stretch 1 + 1/(k + 0.5). A particularly interesting case is of stretch 5/3,
where improving the query time of our oracles from T to T 1−ϵ for any ϵ > 0
would lead to the first purely o(mn)-time combinatorial algorithm for Boolean
Matrix Multiplication, a longstanding open problem.

1 Introduction

A distance oracle is a compact representation of all-pair shortest path matrix of
a graph. A stretch-c oracle for a weighted undirected graph G = (V, E) returns,
for any pair of vertices s, t ∈ V at distance d(s, t), a distance estimate δ(s, t) that
satisfies d(s, t) ≤ δ(s, t) ≤ c · d(s, t). Let n = |V | and m = |E|. For general graphs,
Thorup and Zwick [31] showed a fundamental space-stretch tradeoff — for any
integer k ≥ 2, they designed an oracle of size O(kn1+1/k) that returned distances of
stretch (2k− 1) in O(k) time; the construction time of their oracle was !O(kmn1/k),
in expectation. The Thorup-Zwick (TZ) oracle was a significant improvement over
previous constructions that had much higher stretch and/or query time [8,15,21].

Improvements in Construction and Query Time. Much of the early research fol-
lowing the TZ result focused on improving the construction time. Roditty, Thorup
and Zwick [27] derandomized the TZ construction. Baswana and Sen [11] im-
proved the construction time to O(n2) for unweighted graphs. Their result was ex-
tended to weighted graphs by Baswana and Kavitha [10]. Finally, Wulff-Nilsen [33]
achieved subquadratic construction time for weighted graphs with m = o(n2) edges.

The query time of the TZ oracle is not constant for super-constant stretch. Wulff-
Nilsen [32] reduced the query time of the TZ oracle to O(log k) using a new query
algorithm that incorporates binary search within the TZ oracle. Mendel and Naor
[22] reduced the query time to O(1) at the expense of increasing the stretch to O(k)
and the construction time to !O(n2+1/k). Interestingly, Chechik [13] showed that it
is possible to reduce the query time of TZ oracle to an absolute constant, without
increasing the stretch or space of the original TZ construction.
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Improvements in Space-Stretch Tradeoff. Thorup and Zwick showed that, assum-
ing a girth conjecture of Erdős, any oracle that returns distances of stretch less than
(2k+ 1) must have size Ω(n1+1/k). However, the hard instances used to prove this
lower bound are extremely dense graphs; for instance, their construction uses a
graph with m = Ω(n2) edges to prove the space lower bound for stretch less than
3. For graphs with m= o(n2) edges, it may in fact be possible to get a better space-
stretch tradeoff — their result merely implies a trivial space lower bound of Ω(m),
that is, compression is impossible.

However, improving the space-stretch tradeoff turned out to be a much harder
problem. Until 2010, a better tradeoff was known only for special graph classes such
as planar graphs [20, 30], bounded-genus and minor-free graphs [19], power-law
graphs [14] and random graphs [17]. Pǎtraşcu and Roditty [23] achieved the first
breakthrough, constructing a stretch-2 constant-time oracle of size !O(n4/3m1/3).
Their result was generalized for larger stretch values by Abraham and Gavoille [1]
and by Pǎtraşcu, Roditty and Thorup [24]. The original construction of Pǎtraşcu and
Roditty was rather complex; simpler construction and analysis are now known [3].

Lower Bounds. Sommer et al. [28] proved in the cell-probe model that the size
of stretch-s time-t distance oracles is lower bounded by n1+Ω(1/st). That is, for
graphs with m = !O(n) edges, computing distances of constant stretch in con-
stant time requires super-linear space. Conditioned on hardness of set intersec-
tion, Pǎtraşcu and Roditty [23] strengthened their result by proving an Ω(n2)
space lower bound for constant-time stretch-less-than-2 oracles. Pǎtraşcu, Roditty
and Thorup [24] proved, among other results, a conditional space lower bound of
Ω(m5/3) for constant-time stretch-2 oracles. Due to several upper bounds match-
ing these lower bounds [23, 24], these results are believed to provide a complete
understanding of the space-stretch tradeoff for constant-time oracles.

Distance Oracles with Super-Constant Query Time. The problem of improving
the space-stretch tradeoff of the TZ oracle is wide open if one allows super-constant
query time. No non-trivial lower bounds are known for this regime and it is possible
that there exist constant-stretch oracles of size !O(m) with polylog(n) query time!

Agarwal, Godfrey and Har-Peled [5, 6] constructed oracles with super-constant
query time for stretch 2 and larger. Their stretch-2 and stretch-3 oracles achieve
a space-time tradeoff of S × T = O(n2) and S × T 2 = O(n2), respectively, for
sparse graphs. For instance, stretch-2 and stretch-3 distances can be computed us-
ing !O(n3/2) and !O(n) space, respectively, if one allows O(

'
n) query time. Even on

graphs with millions of nodes and edges, a query time of O(
'

n) time can be en-
gineered to return results in less than a millisecond [2], an extremely acceptable
latency for most real-world applications [2,5,18,26].

Porat and Roditty [25] showed existence of o(n2)-size stretch-less-than-2 oracles
for unweighted graphs given super-constant query time. Agarwal and Godfrey [4]
explored a general space-stretch-time tradeoff for oracles with stretch less than 2 —
their oracle is for general weighted graphs and significantly reduces both the space
and query time of the Porat-Roditty oracle for any fixed stretch. For space, stretch,
query time and construction time bounds for these oracles, see Table 1.
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Table 1. Summary of results and comparison with oracles in [25] and in [4]

Stretch Space Query time Construction time Remarks Ref.

1+ 1
k
!O
" nm

m1/(4k+2)

#
O
" m

m1/(4k+2)

#
!O(mn) 1≤ α ≤ n [25]

!O(m+ n2/α) O((αµ)2k−1) !O(mn/α) 1≤ α ≤ n [4]

!O(m+ n2/α) O((αµ)k) !O(mn/α) 1≤ α ≤ n §3

1+ 1
k+0.5
!O(m+ n2/α) O((αµ)2k) !O(mn/α) 1≤ α ≤ n [4]

!O(m+ n2/α) O(α(αµ)k) !O(mn/α) 1≤ α ≤ n §4

1+ 2
3
!O(m+ n2/α) O((αµ)2) !O(mn/α) 1≤ α ≤ (n2/m)1/3 [4]

!O(m+ n2/α) O(αµ) !O(mn/α) 1≤ α ≤ (n2/m)1/3 §5

1.1 Our Contributions

This paper makes two contributions. Our first contribution is a new space-stretch-
time tradeoff for distance oracles for stretch less than 2:

Theorem 1. Let G be a non-negatively weighted undirected graph with n vertices, m
edges and average degree µ = 2m/n. Then, for any fixed 1 ≤ α ≤ n and for any
integer k ≥ 1, there exist distance oracles of size !O(m+ n2/α) that return distances
of stretch (1+ 1

k
) in O((αµ)k) time and of stretch (1+ 1

k+0.5
) in O(α(αµ)k) time. For

1 ≤ α ≤ n2/3m−1/3, there also exist oracles of size !O(m+ n2/α) that return distances
of stretch 5/3 in O(αµ) time. All these oracles can be constructed in time !O(mn/α).

The first oracle of Theorem 1, for sparse graphs, achieves a space-stretch-time
tradeoff of S × T 1/k = O(n2) for stretch (1+ 1/k). For any fixed space and stretch,
the oracle reduces the query time in [4] from T 2k−1 to T k (or alternatively, reduces
space for any fixed stretch and query time). Interestingly, the space-stretch-time
tradeoff achieved by this oracle matches the known space-time tradeoff space for
stretch 2 and larger. For instance, setting k = 1, we get S × T = O(n2) for stretch 2
and setting 1/k = 2, we get S × T 2 = O(n2) for stretch 3, precisely as in [5].

The second oracle reduces the query time from T 2k−2 in [4] to T k for any fixed
stretch and space. Note that both the first and the second construction also enable
non-trivial constructions that were not possible using the results in [4]. For instance,
the new results make it possible to compute stretch-1.5 distances using oracles of
size !O(n5/3) in sub-linear time.

The third oracle of Theorem 1 is particularly interesting. For any space S =
Ω(n5/3), this oracle reduces the query time of the stretch-5/3 oracle of [4] from
T to

'
T . In particular, this oracle achieves a space-time tradeoff of S × T = O(n2),

which is same as the stretch-2 oracle of [5]. Essentially, compared to the stretch-2
oracle of [5], this oracle reduces the stretch from 2 to 5/3 without any increase in
space or query time for the regime of S = Ω(n5/3).
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We argue that the query time of the second and the third oracles may be close to
optimal. Specifically, the problem of computing all-pair stretch-less-than-2 distances
in undirected graphs is equivalent to combinatorial1 boolean matrix multiplication
(BMM) over the (OR, AND) semiring [16]. Hence, for k = 1, if the query time of the
second oracle of Theorem 1 can be reduced to O((α2µ)1−ϵ) for any ϵ > 0, it would
be possible to multiply two boolean matrices in time !O(mn/α + n2(α2µ)1−ϵ). By
setting α= o((m/n)β) for β = ϵ

2(1−ϵ) , we get that the time would be o(mn). Hence,
improving the query time from T to T 1−ϵ for any ϵ > 0 would lead to a purely o(mn)
time combinatorial algorithm for BMM, a long standing open problem [9,12].

New Query Algorithms. In contrast to the elegant and compact data structures
used in constant-time oracles [1,23,24,31], the data structures for super-constant
time oracles [4,5] are usually relatively simpler — in addition to the graph, distance
from a few sampled vertices to each vertex in the graph is stored. The main tech-
nique used in super-constant time oracles is more sophisticated query algorithms
that allow exploring a tradeoff between space, stretch and query time (cf. [4]). Our
second contribution is, indeed, such new query algorithms.

Our query algorithms perform a bidirectional recursion to compute (not neces-
sarily shortest) distances to vertices in carefully defined neighborhoods of both the
source s and the destination t. Specifically, the algorithm explores recursively larger
neighborhoods of both s and t in each step, and computes distances from s and t to
vertices in the respective neighborhoods. The neighborhoods are defined in a man-
ner that once the recursion depth is reached, the explored neighborhoods either
intersect along the shortest path or we are able to prove a non-trivial lower bound
on the exact distance between s and t. Intuitively, these neighborhood definitions
ensure that two new “subpaths” of the shortest path between s and t are explored
in each recursive step (one closer to s and one closer to t). When neighborhoods do
not intersect, the length of the shortest of these subpaths times twice the recursion
depth is a lower bound on the exact distance between s and t. Moreover, the neigh-
borhood definitions also ensure that the neighborhoods explored in each recursive
step also contain at least one of the “landmark” vertices that store distances to each
vertex in the graph (computed and stored during graph preprocessing). The path
via the landmark vertex in the neighborhood containing the shortest of the subpaths
gives us a path with desired stretch.

Our new query algorithms are simpler, faster and compute paths of smaller
stretch than the ones in [4]. In contrast to the algorithm in [4] that explores the
neighborhood of only either the source or the destination in each recursive step, our
new definition of neighborhoods allow us to perform bidirectional recursion. This,
in turn, leads to significantly stronger lower bound on the exact distance between
the source and the destination without any asymptotic increase in the query time.

1 Although not defined precisely, we say that an algorithm is “combinatorial” in nature if it
does not use algebraic techniques of fast matrix multiplication.
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2 Preliminaries

This section sets up the notation and basic results [4, 5, 31] used throughout the
paper. We assume that the graph G = (V, E) is a weighted undirected graph with n
vertices and m edges with non-negative edge weights.

2.1 Reducing the Problem to Degree-Bounded Graphs

The following lemma shows that the problem of designing oracles and algorithms
for computing low stretch distances on weighted graphs with n vertices and m edges
is no harder than designing oracles for O(m/n)-degree bounded graphs.

Claim 1 ( [4–6]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges with non-negative edge weights, and average degree µ = 2m/n. Then, it is
possible to construct an equivalent graph with maximum degree ∆ = ⌈µ+ 2⌉, such
that the new graph has 2n vertices, m+ n edges, and has the same distances between
any pair of vertices as the distance in the original graph between the corresponding
vertices. The new graph can be computed in O(n+m) time.

2.2 Balls and Vicinities, Shortest Distances and Candidate Distances

Let d(s, t) denote the exact distance between any vertex pair s, t ∈ V . For any
V ′ ⊂ V , we denote by N(V ′) the set of neighbors of vertices in V ′. Given G, a vertex
v and a subset of vertices L ⊂ V , we use the following definitions:

– Nearest vertex in set L — ℓ(v): the vertex a ∈ L that minimizes d(v, a), ties
broken arbitrarily.

– Ball radius rv: the distance from v to its nearest neighbor in L, that is, d(v,ℓ(v)).
– Ball of a vertex B(v): the set of vertices w ∈ V for which d(v, w)< d(v,ℓ(v)).
– Vicinity of a vertex B⋆(v): the set of vertices in B(v)∪ N(B(v)).
– Candidate distance from v to w — d ′v(w): cost of the least-cost path from v to

w such that all intermediate vertices on this path are contained in B(v); that is:

d ′v(w) = min
x∈N (w)∩B(v)

{d(v, x) +weight of edge(x , w)}

If N(w)∩ B(v) = ., we let d ′v(w) =∞.

The following lemma gives an efficient way of sampling vertices for set L such that
the ball of each vertex is of bounded size (for degree-bounded graphs, we also get
a bound on the size of the vicinity of each vertex):

Lemma 1 ( [7, 31]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges with non-negative weights and maximum degree µ = O(m/n). For any fixed
1 ≤ α ≤ n, there exists a subset of vertices L of size !O(n/α) such that for each vertex
v ∈ V , we have that |B(v)| = O(α) and |B⋆(v)| = O(αµ) with high probability.
Moreover, such a set L can be computed in time !O(m).
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For a µ = O(m/n)-degree bounded graph, it is not very hard to construct a set L
in time !O(mα) that deterministically guarantees the above bound. The following
claim, which settles a sufficient condition for the candidate distance to be equal to
the exact shortest distance, will play a crucial role in our proofs:

Claim 2. Let s, t be a vertex pair such that t /∈ B(s). Let P = (s, x1, x2, . . . , t) be a
shortest path between s and t. Let xi0 be the first vertex from s along P that does not
lie in B(s); that is, let i0 =max{i : x j ∈ B(s)∩ P,∀ j < i}. Then, d ′s(xi0) = d(s, xi0).

3 Stretch
!

1+ 1

k

"
Oracle

In this section, we prove the first part of Theorem 1: for a weighted undirected
graph with n vertices, m edges with non-negative weights, and for any 1 ≤ α ≤ n,
there exists an oracle of size !O(m+ n2/α) that returns distances of stretch 1+ 1/k
in time O((αµ)k). We need some notation to succinctly describe the construction.

3.1 i-Balls and i-Vicinities

We will generalize the idea of balls and vicinities from §2.2. In particular, we define
the i-vicinity of a vertex v ∈ V , denoted as Γ⋆i (v) as follows:

Γ⋆0 (v) = {v}; and Γ⋆i (v) =
⋃

w∈Γ ⋆i−1(v)

B⋆(w) (1)

For instance, the 1-vicinity of any vertex includes all the vertices in its vicinity and
the 2-vicinity of any vertex v is the union of all the vicinities of vertices in B⋆(v).
Given the definition of i-vicinities, we can now define the i-ball of a vertex v:

Γ0(v) = .; and Γi(v) =
⋃

w∈Γ ⋆i−1(v)

B(w) (2)

Note that Γi(v) ⊆ Γ⋆i (v) for any vertex v. We will also need a generalization for the
definition of the candidate distance. Given a vertex v and a vertex w in the i-vicinity
of v, the candidate distance from v to w is given by the cost of the least-cost path
from v to w such that all intermediate vertices are contained in the i-ball of v. We
will slightly abuse the notation and use d ′v(w) to denote this candidate distance.

3.2 Oracle and Query Algorithm

Our oracle is similar to the one used in [4]. Fix some 1 ≤ α ≤ n. The preprocess-
ing algorithm first replaces the original graph with a degree-bounded graph using
Claim 1. The algorithm then samples a set L of vertices of size !O(n/α) using the
result of Lemma 1. The oracle stores, for each v ∈ V : (1) a hash table storing the
shortest distance to each vertex in L; and (2) the nearest neighbor ℓ(v) and the ball
radius rv . In addition, the oracle also stores the degree-bounded graph computed
in the first step of the preprocessing algorithm.
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We now describe our query algorithm (see Algorithm 1). In the first two steps, the
query algorithm computes candidate distance from s and from t to each vertex in
their respective k-vicinities; these distances are temporarily stored in a hash table.
Then, the algorithm computes three sets of paths between s and t. The first set of
paths are of the form s ! w ! t via vertices w in Γ⋆k (s) ∩ Γ⋆k (t). The second set
of paths are of the form s ! w ! ℓ(w) ! t via vertices w ∈ Γ⋆k (s). The third set
of paths are of the form t ! w ! ℓ(w) ! s via vertices w ∈ Γ⋆k (t). Finally, the
least-cost path among all the above three sets of paths is returned.

Algorithm 1. Query algorithm for the stretch-(1+ 1/k) oracle

1: Compute candidate distance from s to each vertex in Γ ⋆k (s)
2: Compute candidate distance from t to each vertex in Γ ⋆k (t)
3: γ1 ←∞, γ2 ←∞, γ3 ←∞
4: γ1 ←minw∈Γ⋆k (s)∩Γ

⋆
k (t)

%
d ′s(w)+ d ′t(w)
&

5: γ2 ←minw∈Γ⋆k (s)
%

d ′s(w)+ d(w,ℓ(w))+ d(ℓ(w), t)
&

6: γ3 ←minw∈Γ⋆k (t)
%

d ′t(w)+ d(w,ℓ(w))+ d(ℓ(w), s)
&

7: return min{γ1,γ2,γ3}

3.3 Analysis

For any pair of vertices s, t ∈ V , let P(s, t) = (s, x1, x2, . . . , t) denote the shortest
path between s and t. Let

ws
i (t) = xi0 , where i0 =max{i : x j ∈ B(ws

i−1(t))∩ P(s, t),∀ j < i}; ws
0(t) = t

Intuitively, ws
i (t) is the first vertex from ws

i−1(t) along P(s, t) that is not contained
in the ball of ws

i−1(t). Let

rs
i (t) =min

j≤i
{d(ws

j(t),ℓ(w
s
j(t)))}

that is, rs
i (t) is the smallest ball radius among all vertices ws

j(t) for j ≤ i. When the
context is clear, we will denote ws

i (t) and rs
i (t) simply as ws

i and rs
i . We will need

the following claims to prove our main result:

Claim 3. Let P(s, t) = (s, x1, x2, . . . , t) be the shortest path between a pair of vertices
s and t. Let i0 and j0 be such that ws

k = xi0 and wt
k = x j0 . Then, for all i ≤ i0,

d ′s(xi) = d(s, xi) and for all j ≥ j0, d ′t(x j) = d(t, x j).

Claim 4. For any vertex pair s, t, we have that d(s, ws
i ) ≥ i·rs

i−1 and d(t, wt
i )≥ i·r t

i−1.

Claim 5. For any pair of vertices s, t ∈ V , if ws
k /∈ Γ⋆k (t), then we have that d(s, t) ≥

2k min{rs
k−1, r t

k−1}.

Claim 6. For any pair of vertices s, t ∈ V , the query algorithm returns a distance
estimate of at most d(s, t) + 2min{rs

k−1, r t
k−1}.
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Proof of First Oracle of Theorem 1. The oracle stores the input graph and the dis-
tance from each vertex in the graph to each vertex in a set L of size !O(n/α); hence,
the size of the oracle is !O(m+ n2/α). Constructing the oracle requires computing a
shortest path tree from each vertex in set L, and hence, requires time !O(mn/α).

Next, we bound the query time of the query algorithm. We first claim that the
size of the k-vicinity of each vertex is bounded by O((αµ)k). This follows from the
definition of the i-vicinity and from the fact that the size of the vicinity of each
vertex is bounded by O(αµ). Furthermore, the candidate distance from any vertex
v to vertices in B⋆(v) can be computed in O(αµ) time. Hence, by definition of i-
vicinity, it takes time O((αµ)k) to compute the candidate distance from s to vertices
in Γ⋆k (s). Finally, lines (4), (5) and (6) of Algorithm 1 take time linear in the size of
the i-vicinities of s and t, leading to the desired bound of O((αµ)k) on query time.

Finally, we prove a bound on stretch. If ws
k ∈ Γ⋆k (t), then γ1 ≤ d ′s(w

s
k)+ d ′t(w

s
k) =

d(s, ws
k)+d(t, ws

k) = d(s, t); hence, the exact distance is returned. Consider the case
when ws

k /∈ Γ⋆k (t). Then, by Claim 5, we have that the distance between s and t is
lower bounded by d(s, t) ≥ 2k min{rs

k−1, r t
k−1}. On the other hand, from Claim 6,

the distance returned by the query algorithm is at most d(s, t)+2min{rs
k−1, r t

k−1}≤
d(s, t) + 2d(s, t)/(2k), leading to the desired bound on stretch. "

4 Stretch
!

1+ 1

k+0.5

"
Oracle

We now prove the second part of Theorem 1: for a weighted undirected graph with
n vertices, m edges with non-negative weights, and for any 1 ≤ α ≤ n, there exists
an oracle of size !O(m+ n2/α) that returns distances of stretch 1+ 1/(k + 0.5) in
time O(α(αµ)k). See notation in §2.2 and §3.1.

4.1 Oracle and Query Algorithm

We will use the oracle of §3.2 with the addition that the exact distance from each
vertex v to each vertex in B(v) will be stored within the oracle. The query algorithm
for this oracle (see Algorithm 2) is similar to that of Algorithm 1 with the only
difference that the k-vicinities Γ⋆k (s) and Γ⋆k (t) are now replaced by (k + 1)-balls
Γk+1(s) and Γk+1(t), respectively (and γ1, γ2 and γ3 modified accordingly).

4.2 Analysis

The proof is facilitated by the following two claims that are used to bound the
stretch of the oracle:

Claim 7. For any vertex pair s, t, if ws
k /∈ Γk+1(t) then d(s, t)≥ (2k+1)min{rs

k−1, r t
k}.

Claim 8. For any pair of vertices s, t, the query algorithm returns a distance estimate
of at most d(s, t) + 2min{rs

k−1, r t
k}.

The above two claims directly lead to the stretch bound claimed in Theorem 1.
The proof on the size, construction time, and query time follow using straightfor-
ward changes in the proof for the first oracle.
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Algorithm 2. The query algorithm for stretch-(1+ 1/(k+ 0.5)) oracle

1: Compute candidate distance from s to each vertex in Γk+1(s)
2: Compute candidate distance from t to each vertex in Γk+1(t)
3: γ1 ←∞, γ2 ←∞, γ3 ←∞
4: γ1 ←minw∈Γk+1 (s)∩Γk+1 (t)

%
d ′s(w)+ d ′t(w)
&

5: γ2 ←minw∈Γk+1 (s)

%
d ′s(w)+ d(w,ℓ(w))+ d(ℓ(w), t)

&

6: γ3 ←minw∈Γk+1 (t)

%
d ′t(w)+ d(w,ℓ(w))+ d(ℓ(w), s)

&

7: return min{γ1,γ2,γ3}

5 Stretch
!

1+ 2

3

"
Oracle

Finally, we prove the third part of Theorem 1: for a weighted undirected graph with
n vertices, m edges with non-negative weights and for any 1 ≤ α ≤ n, an oracle of
size !O(m+ n2/α) that returns distances of stretch 5/3 in time O(αµ).

5.1 Inverse-Ball and Inverse-Vicinities

The inverse-ball of a vertex, denoted by B̄(v), is the set of vertices w that contain
v in their ball. Similar, the inverse-vicinity of a vertex, denoted by B̄⋆(v), is the
set of vertices w for which v ∈ B⋆(w). For constructing this oracle, we will use a
different sampling technique given by the following lemma:

Lemma 2 ( [29,31]). Let G = (V, E) be a weighted undirected graph with n vertices,
m edges and maximum degree µ = 2m/n. For any fixed 1 ≤ α ≤ n, there exists a
subset of vertices L of expected size !O(n/α) such that for each vertex v ∈ V , we have
that |B(v)| = O(α), |B̄(v)|= O(α), |B⋆(v)|= O(αµ) and |B̄⋆(v)|= O(αµ). Moreover,
such a set L can be computed in expected time !O(mα).

5.2 Oracle and Query Algorithm

Fix some 1 ≤ α ≤ n. The preprocessing algorithm first replaces the original graph
with a degree-bounded graph using the result of Corollary 1. The algorithm then
samples a set L of vertices of size !O(n/α) using the result of Lemma 2. The algo-
rithm then constructs a data structure that stores, for each v ∈ V :

– a hash table storing the shortest distance to each vertex in L;
– the nearest neighbor ℓ(v) and the ball radius rv;
– a hash table storing the distance d ′s(w) =minx∈B⋆(v)∩B(w) d ′s(x)+d(x , w) to each

vertex w in the set Sv = {w : B⋆(v)∩B(w) ̸= .}, that is, to all vertices w whose
ball intersects with the vicinity of v.

The oracle also stores the degree-bounded graph computed in the first step of the
preprocessing algorithm.
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We now describe our query algorithm (see Algorithm 3). In the first and the
second step, the query algorithm computes candidate distances from s and t to
vertices in their respective vicinities; these distances are temporarily stored in a
hash table. The algorithm then computes three set of paths. The first set of paths is
of the form s! w! w′! t for some w ∈ B⋆(s) and w′ ∈ Ss∩B⋆(t). The second set
of paths are of the form s! w ! ℓ(w)! t for vertices w ∈ B⋆(s) and the final set
of paths are of the form t ! w ! ℓ(w) ! s for vertices w ∈ B⋆(t). The least-cost
path among these paths is returned by the algorithm.

Algorithm 3. The query algorithm for the third oracle of Theorem 1

1: Compute candidate distance from s to each vertex in B⋆(s)
2: Compute candidate distance from t to each vertex in B⋆(t)
3: γ1 ←∞, γ2 ←∞, γ3 ←∞
4: γ1 ←minw∈Ss∩B⋆(t)

%
d(s, w)+ d ′t(w)

&

5: γ2 ←minw∈B⋆ (s)

%
d ′s(w)+ d(w,ℓ(w))+ d(ℓ(w), t)

&

6: γ3 ←minw∈B⋆ (t)

%
d ′t(w)+ d(w,ℓ(w))+ d(ℓ(w), s)

&

7: return min{γ1,γ2,γ3}

5.3 Analysis

Claim 9. Let P = (s, x1, x2, . . . , t) be the shortest path between any pair of vertices s
and t. Let i0 =max{i|xi /∈ P∩B⋆(t)} and w = xi0+1. If w /∈ B(s), then d(s, t)≥ rs+rt .

Lemma 3. Let G = (V, E) be a weighted undirected graph with n vertices, m edges
and maximum degree µ = O(m/n). For any fixed 1≤ α ≤ n, let L be the set of vertices
sampled using the algorithm of Lemma 2. Then,

∑
v∈V |Sv |≤ O(mα2).

Claim 10. Let G = (V, E) be a weighted undirected graph with n vertices, m edges and
maximum degree µ = O(m/n). For any fixed 1 ≤ α ≤ n, let L be the set of vertices
sampled using Lemma 2. Then, constructing a hash table that contains, for each vertex
v ∈ V , distance to each vertex in Sv can be constructed in time O(mα2).

Proof of the Third Oracle of Theorem 1. The oracle stores, in addition to the
oracle of [4], a distance from each vertex v to vertices in set Sv . Using Lemma 3,
it follows that the size of the oracle if !O(mα2 +m+ n2/α); for 1 ≤ α ≤ n2/3m−1/3,
the size is !O(m+ n2/α) as desired. The construction of the oracle requires running
a shortest path algorithm from each vertex in L and computing distances to vertices
in set Sv for each vertex v. Using Lemma 2 and Claim 10, it follows that the oracle
can be constructed in time !O(mα2 + n2/α). Finally, to bound the query time, recall
that the size of the vicinity of each vertex is bounded by O(αµ) and a candidate
distance to each vertex in the vicinity can be computed in time O(αµ); the bound
follows.

Let P = (s, x1, x2, . . . , t) be the shortest path between s and t. Let i0 =max{i|xi /∈
P ∩ B⋆(t)} and w = xi0+1; note that xi0 /∈ B⋆(t) and hence, w ∈ B⋆(t) \ B(t). If
w ∈ Ss, we get that γ1 ≤ d(s, w) + d ′t(w) = d(s, w) + d(t, w) = d(s, t), since w
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lies along P; hence, the algorithm returns the exact distance. Consider the case
when w /∈ Ss. In this case, using Lemma 9, we get that d(s, w) ≥ 2min{rs, rw};
also d(t, w) ≥ rt . Since w lies along the shortest path between s and t, we get
that d(s, t)≥ 2min{rs, rw}+ rt ≥ 3min{rs, rw , rt}. We now give an upper bound on
the distance returned by the query algorithm. Note that s ∈ B⋆(s) and t ∈ B⋆(t);
it follows that γ2 ≤ d(s,ℓ(s)) + d(ℓ(s), t) ≤ 2d(s,ℓ(s)) + d(s, t) = 2rs + d(s, t).
Similarly, we get that γ3 ≤ 2rt + d(s, t). Finally, since w ∈ B⋆(t), we get that
γ3 ≤ d ′t(w) + d(w,ℓ(w)) + d(ℓ(w), s). Since w lies along the shortest path be-
tween s and t, we get that d ′t(w) = d(t, w); using this along with triangle in-
equality, we get that γ3 ≤ d(t, w) + 2d(w,ℓ(w)) + d(w, s) = 2rw + d(s, t). Hence,
γ3 ≤ 2min{rw , rt}+ d(s, t). Since the algorithm returns min{γ2,γ3}, the returned
distance is at most 2min{rs, rt , rw} + d(s, t). The proof follows using the upper
bound established above, which says that min{rs, rt , rw} ≤ d(s, t)/3. "

6 Open Problems
We close the discussion with some of the most interesting open problems:

– Is it possible to prove or disprove a separation between oracles with stretch-
k and stretch-less-than-k for 1 < k < 2? In particular, do stretch-4/3 oracles
require more space or time compared to stretch-3/2 oracles?

– There is an interesting problem related to improving the lower order terms in
our results. Specifically, if one can reduce the query time of our algorithm of
Theorem 1 (for k = 1, stretch-(1 + 1/(k + 0.5))) by logc(n) for some large
enough c, we would get a combinatorial algorithm for BMM that is asymptoti-
cally faster than the state-of-the-art [12]. Is it possible?

Finally, the most interesting open problem is to prove or disprove the existence of
near-linear size oracles that compute distances of O(1) stretch in polylog(n) time.

Acknowledgments. The author would like to thank Philip Brighten Godfrey and
Mikkel Thorup for many helpful discussions.
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