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Abstract

We put forward a zero-knowledge based definition of privacy. Our notion is strictly stronger
than the notion of differential privacy and is particularly attractive when modeling privacy in
social networks. We furthermore demonstrate that it can be meaningfully achieved for tasks such
as computing averages, fractions, histograms, and a variety of graph parameters and properties,
such as average degree and distance to connectivity. Our results are obtained by establishing
a connection between zero-knowledge privacy and sample complexity, and by leveraging recent
sublinear time algorithms.

1 Introduction

Data privacy is a fundamental problem in today’s information age. Enormous amounts of data are
collected by government agencies, search engines, social networking systems, hospitals, financial
institutions, and other organizations, and are stored in databases. There are huge social benefits
in analyzing this data; however, it is important that sensitive information about individuals who
have contributed to the data is not leaked to users analyzing the data. Thus, one of the main goals
is to release statistical information about the population who have contributed to the data without
breaching their individual privacy.

Many privacy definitions and schemes have been proposed in the past (see [CKLMO09]| and
[FWCY10] for surveys). However, many of them have been shown to be insufficient by describing
realistic attacks on such schemes (e.g., see [Kif09]). The notion of differential privacy [DMNS06,
Dwo06], however, has remained strong and resilient to these attacks. Differential privacy requires
that when one person’s data is added or removed from the database, the output of the database
access mechanism changes very little so that the output before and after the change are “e-close”
(where a specific notion of closeness of distributions is used). This notion has quickly become the
standard notion of privacy, and mechanisms for releasing a variety of functions (including histogram
queries, principal component analysis, learning, and many more (see [Dwo09] for a recent survey))
have been developed.

As we shall argue, however, although differential privacy provides a strong privacy guarantee,
there are realistic social network settings where these guarantees might not be strong enough.

*A preliminary version of this paper appeared in the Eighth Theory of Cryptography Conference (TCC 2011) (see
[GLP11)).



Roughly speaking, differential privacy says that whether you’re in the database or not is incon-
sequential for your privacy (i.e., the output of the database mechanism is essentially the same).
But this doesn’t mean your privacy is protected; the information provided by your friends might
already breach your privacy.

Alternatively, differential privacy can be rephrased as requiring that an adversary does not
learn much more about an individual from the mechanism than what she could learn from knowing
everyone else in the database (see the appendix of [DMNS06] for a formalization of this statement).
Such a privacy guarantee is not sufficiently strong in the setting of social networks where an
individual’s friends are strongly correlated with the individual; in essence, “If I know your friends,
I know you.” (Indeed, a recent study [JMO09] indicates that an individual’s sexual orientation can
be accurately predicted just by looking at the person’s Facebook friends.) We now give a concrete
example to illustrate how a differentially private mechanism can violate the privacy of individuals
in a social network setting.

Example (Democrats vs. Republicans). Consider a social network of n people that are grouped
into cliques of size 200. In each clique, either at least 80% of the people are Democrats, or at least
80% are Republicans. However, assume that the number of Democrats overall is roughly the same
as the number of Republicans. Now, consider a mechanism that computes the proportion (in [0, 1])
of Democrats in each clique and adds just enough Laplacian noise to satisfy e-differential privacy
for a small €, say € = 0.1. For example, to achieve e-differential privacy, it suffices to add Lap(ﬁ)
noise! to each clique independently, since if a single person changes his or her political preference,
the proportion for the person’s clique changes by 2—(1)0 (see Proposition 1 in [DMNS06]).

Since the mechanism satisfies e-differential privacy for a small €, one may think that it is safe
to release such information without violating the privacy of any particular person. That is, the
released data should not allow us to guess correctly with probability significantly greater than %
whether a particular person is a Democrat or a Republican. However, this is not the case. With
e = 0.1, Lap(zoloe) is a small amount of noise, so with high probability, the data released will tell
us the main political preference for any particular clique. An adversary that knows which clique a
person is in will be able to correctly guess the political preference of that person with probability

close to 80%.

For a more detailed explanation and analysis of the above example, see Appendix A.

Remark. In the above example, we assume that the graph structure of the social network is known
and that the adversary can identify which clique an individual is in. Such information is commonly
available: Graph structures of (anonymized) social networks are often released; these may include a
predefined or natural clustering of the people (nodes) into cliques. Furthermore, an adversary may
often also figure out the identity of various nodes in the graph (e.g., see [BDK07, HMJ"08]); in
fact, by participating in the social network before the anonymized graph is published, an adversary
can even target specific individuals of his or her choice (see [BDKO07]).

Differential privacy says that the output of the mechanism does not depend much on any
particular individual’s data in the database. Thus, in the above example, a person has little reason
not to truthfully report his political preference. However, this does not necessarily imply that the
mechanism does not violate the person’s privacy. In situations where a social network provides
auxiliary information about an individual, that person’s privacy can be violated even if he decides
to not have his information included.
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It is already known that differential privacy may not provide a strong enough privacy guarantee
when an adversary has specific auxiliary information about an individual. For example, it was
pointed out in [Dwo06] that if an adversary knows the auxiliary information “person A is two inches
shorter than the average American woman”, and if a differentially private mechanism accurately
releases the average height of American women, then the adversary learns person A’s height (which
is assumed to be sensitive information in this example). In this example, the adversary has very
specific auxiliary information about an individual that is usually hard to obtain. However, in the
Democrats vs. Republicans example, the auxiliary information (the graph and clique structure)
about individuals is more general and more easily accessible. Since social network settings contain
large amounts of auxiliary information and correlation between individuals, differential privacy is
usually not strong enough in such settings.

One may argue that there are versions of differential privacy that protect the privacy of groups
of individuals, and that the mechanism in the Democrats vs. Republicans example does not satisfy
these stronger definitions of privacy. While this is true, the main point here is that differential
privacy will not protect the privacy of an individual, even though the definition is designed for
individual privacy. Furthermore, even if we had used a differentially private mechanism that ensures
privacy for groups of size 200 (i.e., the size of each clique), it might still be possible to deduce
information about an individual by looking at the friends of the friends of the individual; this
includes a significantly larger number of individuals.?

1.1 Towards a Zero-Knowledge Definition of Privacy

In 1977, Dalenius [Dal77] stated a privacy goal for statistical databases: anything about an indi-
vidual that can be learned from the database can also be learned without access to the database.
This would be a very desirable notion of privacy. Unfortunately, Dwork and Naor [Dwo06, DNOS]
demonstrated a general impossibility result showing that a formalization of Dalenius’s goal along
the lines of semantic security for cryptosystems cannot be achieved, assuming that the database
gives any non-trivial utility.

Our aim is to provide a privacy definition along the lines of Dalenius, and more precisely, relying
on the notion of zero-knowledge from cryptography. In this context, the traditional notion of zero-
knowledge says that an adversary gains essentially “zero additional knowledge” by accessing the
mechanism. More precisely, whatever an adversary can compute by accessing the mechanism can
essentially also be computed without accessing the mechanism. A mechanism satisfying this prop-
erty would be private but utterly useless, since the mechanism provides essentially no information.
The whole point of releasing data is to provide utility; thus, this extreme notion of zero-knowledge,
which we now call “complete zero-knowledge”, is not very applicable in this setting.

Intuitively, we want the mechanism to not release any additional information beyond some
“aggregate information” that is considered acceptable to release. To capture this requirement, we
use the notion of a “simulator” from zero-knowledge, and we require that a simulator with the
acceptable aggregate information can essentially compute whatever an adversary can compute by
accessing the mechanism. Our zero-knowledge privacy definition is thus stated relative to some
class of algorithms providing acceptable aggregate information.

1.1.1 Aggregate Information

The question is how to define appropriate classes of aggregate information. We focus on the
case where the aggregate information is any information that can be obtained from k& random

2The number of “friends of friends” is usually larger than the square of the number of friends (see [New03]).



samples/rows (each of which corresponds to one individual’s data) of the database, where the data
of the person the adversary wants to attack has been concealed. The value of k£ can be carefully
chosen so that the aggregate information obtained does not allow one to infer (much) information
about the concealed data. The simulator is given this aggregate information and has to compute
what the adversary essentially computes, even though the adversary has access to the mechanism.
This ensures that the mechanism does not release any additional information beyond this “k random
sample” aggregate information given to the simulator.

Differential privacy can be described using our zero-knowledge privacy definition by considering
simulators that are given aggregate information consisting of the data of all but one individual in
the database; this is the same as aggregate information consisting of “k random samples” with
k = n, where n is the number of rows in the database (recall that the data of the individual the
adversary wants to attack is concealed), which we formally prove later. For k less than n, such
as k = y/n, we obtain notions of privacy that are stronger than differential privacy. For example,
we later show that the mechanism in the Democrats vs. Republicans example does not satisfy our
zero-knowledge privacy definition when k& = o(n) and n is sufficiently large.

We may also consider more general models of aggregate information that are specific to graphs
representing social networks; in this context we focus on random samples with some exploration of
the neighborhood of each sample.

1.2 Our Results

We consider two different settings for releasing information. In the first setting, we consider sta-
tistical (row) databases in a setting where an adversary might have auxiliary information, such
as from a social network, and we focus on releasing traditional statistics (e.g., averages, fractions,
histograms, etc.) from a database. As explained earlier, differential privacy may not be strong
enough in such a setting, so we use our zero-knowledge privacy definition instead. In the second
setting, we consider graphs with personal data that represent social networks, and we focus on
releasing information directly related to a social network, such as properties of the graph structure.

Setting #1. Computing functions on databases with zero-knowledge privacy: In this
setting, we focus on computing functions mapping databases to R”. We give a characterization of
the functions that can be released with zero-knowledge privacy in terms of their sample complex-
ity—i.e., how accurate the function can be approximated using random samples from the input
database. More precisely, functions with low sample complexity can be computed accurately by
a zero-knowledge private mechanism, and vice versa. (It is already known that functions with
low sample complexity can be computed with differential privacy (see [DMNSO06]), but here we
show that the stronger notion of zero-knowledge privacy can be achieved.) In this result, the zero-
knowledge private mechanism we construct simply adds Laplacian noise appropriately calibrated
to the sample complexity of the function.

Many common queries on statistical databases have low sample complexity, including averages,
fraction queries, counting queries, and coarse histogram queries. (In general, it would seem that any
“meaningful” query function for statistical databases should have relatively low sample complexity
if we think of the rows of the database as random samples from some large underlying population.)
We also show that for functions with low sample complexity, we can use differentially private
mechanisms to construct zero-knowledge private mechanisms. Using this result, we construct zero-
knowledge private mechanisms for such functions while providing decent utility guarantees. All of
these results can be found in Section 3.



We also consider mechanisms that answer a class of queries simultaneously, and we generalize
the notion of sample complexity to classes of query functions. By showing that a class of fraction
queries with low VC dimension has low sample complexity, we are able to use existing differentially
private mechanisms for classes of fraction queries to construct zero-knowledge private mechanisms,
resulting in improved accuracy for fraction queries. These results can be found in Section 4.

Setting #2. Releasing graph structure information with zero-knowledge privacy: In
this setting, we consider a graph representing a social network, and we focus on privately releasing
information about the structure of the graph. We use our zero-knowledge privacy definition, since
the released information can be combined with auxiliary information such as an adversary’s knowl-
edge and/or previously released data (e.g., graph structure information) to breach the privacy of
individuals.

The connection between sample complexity and zero-knowledge privacy highlights an interest-
ing connection between sublinear time algorithms and privacy. As it turns out, many of the recently
developed sublinear algorithms on graphs proceed by picking random samples (vertices) and per-
forming some local exploration; we are able to leverage these algorithms to privately release graph
structure information, such as average degree and distance to properties such as connectivity and
cycle-freeness. We discuss these results in Section 5.

2 Zero-Knowledge Privacy

2.1 Definitions

Let D be the collection of all databases whose rows are elements (e.g., tuples) from some data
universe X. For convenience, we will assume that X contains an element L, which can be used to
conceal the true value of a row. Given a database D, let |D| denote the number of rows in D. For
any integer n, let [n] denote the set {1,...,n}. For any database D € D, any integer i € [|D|], and
any element v € X, let (D_;,v) denote the database D with row i replaced by the element v.

In this paper, mechanisms, adversaries, and simulators are simply randomized algorithms that
play certain roles in our definitions. Let San be a mechanism that operates on databases in D.
For any database D € D, any adversary A, and any z € {0,1}*, let Out4(A(z) <> San(D)) denote
the random variable representing the output of A on input z after interacting with the mechanism
San operating on the database D. Note that San can be interactive or non-interactive. If San is
non-interactive, then San(D) sends information (e.g., a sanitized database) to A and then halts
immediately; the adversary A then tries to breach the privacy of some individual in the database
D.

Let agg be any class of randomized algorithms that provide aggregate information to simulators,
as described in Section 1.1.1. We refer to agg as a model of aggregate information.

Definition 1. We say that San is e-zero-knowledge private with respect to agg if there exists
a T € agg such that for every adversary A, there exists a simulator S such that for every database
D e X", every z € {0,1}*, every integer i € [n], and every W C {0, 1}*, the following hold:

o PrlOuts(A(z) <» San(D)) € W] <e°-Pr[S(z,T(D_;, L),i,n) € W]
o Pr[S(z,T(D_;, 1),i,n) € W] < e Pr[Outa(A(z) +» San(D)) € W]

The probabilities are over the random coins of San and A, and T and S, respectively.



Intuitively, the above definition says that whatever an adversary can compute by accessing the
mechanism can essentially also be computed without accessing the mechanism but with certain
aggregate information (specified by agg). The adversary in the latter scenario is represented by
the simulator S. The definition requires that the adversary’s output distribution is close to that
of the simulator. This ensures that the mechanism essentially does not release any additional
information beyond what is allowed by agg. When the algorithm T provides aggregate information
to the simulator S, the data of individual i is concealed so that the aggregate information does not
depend directly on individual i’s data. However, in the setting of social networks, the aggregate
information may still depend on people’s data that are correlated with individual ¢ in reality, such
as the data of individual ¢’s friends. Thus, the role played by agg is very important in the context
of social networks.

To measure the closeness of the adversary’s output and the simulator’s output, we use the same
closeness measure as in differential privacy (as opposed to, say, statistical difference) for the same
reasons. As explained in [DMNS06], consider a mechanism that outputs the contents of a randomly
chosen row. Suppose agg is defined so that it includes the algorithm that simply outputs its input
(D_;, L) to the simulator (which is the case of differential privacy; see Section 1.1.1 and 2.2). Then,
a simulator can also choose a random row and then simulate the adversary with the chosen row
sent to the simulated adversary. The real adversary’s output will be very close to the simulator’s
output in statistical difference (1/n to be precise); however, it is clear that the mechanism always
leaks private information about some individual.

Remark. Our e-zero-knowledge privacy definition can be easily extended to (e, §)-zero-knowledge
privacy, where we also allow an additive error of § on the RHS of the inequalities. We can further
extend our definition to (¢, €, d)-zero-knowledge privacy to protect the privacy of any group of ¢
individuals simultaneously. To obtain this more general definition, we would change “i € [n]” to
“I C [n] with 1 < |I| < ¢, and “S(z, (D_;, L),i,n)" to “S(z,(D_z,L),I,n)", where (D_7, L)
denotes the database D with the rows at positions I replaced by L. We use this more general
definition when we consider group privacy.

Remark. In our zero-knowledge privacy definition, we consider computationally unbounded sim-
ulators. We can also consider PPT simulators by requiring that the mechanism San and the
adversary A are PPT algorithms, and agg is a class of PPT algorithms. All of these algorithms
would be PPT in n, the size of the database. With minor modifications, the results of this paper
would still hold in this case.

The choice of agg determines the type and amount of aggregate information given to the sim-
ulator, and should be decided based on the context in which the zero-knowledge privacy definition
is used. The aggregate information should not depend much on data that is highly correlated with
the data of a single person, since such aggregate information may be used to breach the privacy
of that person. For example, in the context of social networks, such aggregate information should
not depend much on any person and the people closely connected to that person, such as his or
her friends. By choosing agg carefully, we ensure that the mechanism essentially does not release
any additional information beyond what is considered acceptable. We first consider the model of
aggregate information where T' in the definition of zero-knowledge privacy chooses k(n) random
samples. Let k& : N — N be any function.

e RS(k(-)) = k(-) random samples: the class of algorithms 7" such that on input a database
D € X" T chooses k(n) random samples (rows) from D uniformly without replacement, and
then performs any computation on these samples without reading any of the other rows of D.



Note that with such samples, 7' can emulate choosing k(n) random samples with replacement,
or a combination of without replacement and with replacement.

k(n) should be carefully chosen so that the aggregate information obtained does not allow one
to infer (much) information about the concealed data. For k(n) = 0, the simulator is given no
aggregate information at all, which is the case of complete zero-knowledge. For k(n) = n, the
simulator is given all the rows of the original database except for the target individual ¢, which
is the case of differential privacy (as we prove later). For k(n) strictly in between 0 and n, we
obtain notions of privacy that are stronger than differential privacy. For example, one can consider
k(n) = o(n), such as k(n) = /n.

In the setting of a social network, k(n) can be chosen so that when k(n) random samples
are chosen from (D_;, 1), with very high probability, for (almost) all individuals j, very few of
the k(n) chosen samples will be in individual j’s local neighborhood in the social network graph.
This way, the aggregate information released by the mechanism depends very little on data that
is highly correlated with the data of a single individual. The choice of k(n) would depend on
various properties of the graph structure, such as clustering coefficient, edge density, and degree
distribution. The choice of k(n) would also depend on the amount of correlation between the data
of adjacent or close vertices (individuals) in the graph, and the type of information released by the
mechanism. In this model of aggregate information, vertices (individuals) in the graph with more
adjacent vertices (e.g., representing friends) may have less privacy than those with fewer adjacent
vertices. However, this is often the case in social networks, where having more links/connections
to other people may result in less privacy.

One can also consider other models of aggregate information, such as the class of algorithms T’
such that on input a database D € X", T reads each row with at most a certain probability, say
@. This class of algorithms, which we call “k(-) adaptive samples” and denote by AS(k(-)), is
more general and contains RS(k(-)). However, there are some “bad” mechanisms that are zero-
knowledge private with respect to AS(k(:)) but intuitively violate the privacy of individuals. We
now give an example of such a mechanism.

Example. Recall the Democrats vs. Republicans example in the introduction. Now, consider a
new mechanism that chooses a clique uniformly at random, computes the proportion of Democrats
in the chosen clique, adds Lap(QOIOE) noise to the computed proportion, and then outputs the
clique number/identifier and the noisy proportion. For the same reasons as in the Democrats
vs. Republicans example, this mechanism clearly violates the privacy of the individuals in the
chosen clique. However, this mechanism is still e-zero-knowledge private with respect to AS(k(-))
as long as k(n) isn’t too small.

Intuitively, a simulator with 7" € AS(k(-)) providing aggregate information can simulate the
mechanism by doing the same thing the mechanism does, since the mechanism reads each row
with probability % (each clique is chosen with probability 2—20, since there are 555 cliques). This
200 ~ K(n)
n n

works as long as , since T' is only allowed to read each row with probability at most

@. We assume that 1" can easily determine which rows belong to a particular clique; for example,

the rows of the database can be ordered so that individuals belonging to the same clique appear
consecutively in the database, or the nodes in the published social network graph can have distinct
labels in {1,...,n}, and the political preference for node i is stored in row i of the database.

In Section 5, we consider other models of aggregate information that take more into considera-
tion the graph structure of a social network. Note that zero-knowledge privacy does not necessarily
guarantee that the privacy of every individual is completely protected. Zero-knowledge privacy is



defined with respect to a model of aggregate information, and such aggregate information may still
leak some sensitive information about an individual in certain scenarios.

Composition: Just as for differentially private mechanisms, mechanisms that are e-zero-knowledge
private with respect to RS(k(+)) also compose nicely.

Proposition 2. Suppose Sany is €1-zero-knowledge private with respect to RS(ki(:)) and Sans
is eg-zero-knowledge private with respect to RS(ka(-)). Then, the mechanism San obtained by
(sequentially) composing Sany with Sang is (e1+€2)-zero-knowledge private with respect to RS((k1+

ka2)(-))-

Proof. Let k(n) = ki(n) + ka(n), and let 71 € RS(ki(-)) and T € RS(ka(-)) be the aggregate
information algorithms guaranteed by the zero-knowledge privacy of San; and Sang, respectively.
Let T be an algorithm in RS(k(-)) that, on input a database D € X", chooses ki(n) random
samples as in 77, chooses k2(n) random samples as in Ty, runs 77 and T5 on D separately using the
chosen samples, and then outputs (71 (D), T2(D)). Let A be any adversary. It is easy to decompose
A into two adversaries A; and Ay, where A; is the part of A that interacts with San;. The output
of A; contains information describing the state (including the work tape) of A after finishing its
interaction with Sani. Ag expects its input z to be the output of A; so that it can start interacting
with Sany with the same information A would have at this point of the interaction. Let S; be the
(guaranteed) simulator for San; and A;.

Let S be a simulator that, on input (2, 7(D_;, L),i,n) = (2, (T1(D—;, L), Ta(D_;, 1)), i,n), first
runs the simulator Sy on input (z, T (D—;, 1),4,n) to get 2’ := S1(z, T1(D—;, 1),4,n), and then runs
the simulator Sy on input (2/,72(D—_;, L),i,n). Let D € X", z € {0,1}*, i € [n], and W C {0, 1}*.
Let Y = Supp(Si(z, T1(D—;, L),i,n)). We note that Y = Supp(Outa, (Ai(z) <» Sani(D))). Now,
observe that

‘ln (Pr[OutA(A(z) < San(D)) € W])‘
Pr[S(z,T(D_;, 1),i,n) € W]
I (Zz'eY PrlOuta,(A2(2") <+ Sang(D)) € W] Pr[Out 4, (A1(2) <> Sany(D)) = z/]>‘
Y ovey Pr[Sa(2/, Ta(D—;, 1),i,n) € W] Pr[S1(2,T1(D—, L),i,n) = 2]

IN

< €1+ e€o.

O]

Group Privacy: A nice feature of differential privacy is that e-differential privacy implies (c, ce)-
differential privacy for groups of size ¢ (see [Dwo06] and the appendix in [DMNS06]). We have a
similar group privacy guarantee for e-zero-knowledge privacy.

Proposition 3. Suppose San is e-zero-knowledge private with respect to agg. Then, for every
¢ > 1, San is also (¢, (2¢ — 1)e)-zero-knowledge private with respect to agg.

Proof. Let T be the algorithm in agg guaranteed by the e-zero-knowledge privacy of San. Let ¢ > 1.
Consider any adversary A, and let S be the simulator for A and San. Let D € X", z € {0, 1}*,
I Cn]with1 <|I| <c¢,and W C {0,1}*. Let i be any integer in I. Then, by the e-zero-knowledge
privacy of San, we have

|ln ( Pr[S(z, T(D_t, 1),i,n) € W] ) l <e (1)

=3

Pr[OUtA(A(Z) <~ San(D,(I\{i}), _L)) S W]



We later show that e-zero-knowledge privacy implies 2e-differential privacy (Proposition 7), so San
is 2e-differentially private and thus (¢ — 1,2(c — 1)e)-differentially private. As a result, we have

Pr[Outa(A(z) <> San(D_\(4y) 1) ew)
( Pr[Outa(A(2) < San(D)) € W] ) < 2e—1e 2)
Combining (1) and (2) from above, we get
Pr[S(z, T(D_5,1),i,n) € W]
‘m (Pr[OutA(A(z) & San(D)) € W]) < (2¢=De.
0

It can be easily shown that (e, 0)-differential privacy implies (0, e€—1+4)-differential privacy (see
[DKM™06] or Section 2.2 for the definition of (e, §)-differential privacy), which implies (¢, 0, c(e€ —
1 + §))-differential privacy for groups of size ¢. We have a similar group privacy guarantee for
(€, 0)-zero-knowledge privacy.

Proposition 4. Suppose San is (¢, §)-zero-knowledge private with respect to agg. Then, for every

c¢>1, San is also (¢,0,(2c — 1)(e€ — 1 + 0))-zero-knowledge private with respect to agg.

Proof. Let T be the algorithm in agg guaranteed by the (e, §)-zero-knowledge privacy of San. Let
¢ > 1. Consider any adversary A, and let S be the simulator for A and San. Then, for every
database D € X", z € {0,1}*, ¢ € [n], and W C {0, 1}*, we have
Pr[Outo(A(z) <> San(D)) € W] < e®-Pr[S(z,T(D—;, L),i,n) € W] +6
<Pr[S(z,T(D_;, L),i,n) € W]+ (e — 1)+, and

Pr[S(z,T(D_;, L),i,n) € W] < e€°-Pr[Outa(A(z) <> San(D)) € W] +§
<Pr[Outa(A(z) <> San(D)) € W]+ (e — 1) + 6, so

| PrOut4(A(z) <> San(D)) € W| —Pr[S(z,T(D—;, L),i,n) € W]| < e —1+4.
Let D € X", z € {0,1}*, I C [n] with 1 < |I| < ¢, and W C {0,1}*. Let ¢ be any integer in I.
Then, we have
| Pr[S(z, T(D-1, L),i,n) € W] — Pr[Out 4(A(2) > San(D_(p\giy), L)) € W]| < e —1+4. (1)
Also, for every pair of databases D', D" € X™ differing in one row, say row j, we have
| Pr[Out 4(A(z) <+ San(D')) € W] — Pr[Out4(A(z) <+ San(D")) € W]
< |Pr[Outa(A(z) +» San(D")) € W] — Pr[S(z,T(D_;, 1),j,n) € W]|
+ | Pr[S(z,T(D-j,L),j,n) € W] — Pr[Outs(A(z) <> San(D")) € W]|
< 2(ef —=1+49).

Now, we note that the database (D_(I\{i}), 1) differs from the database D in at most ¢ — 1 rows.

—

By considering a sequence of at most ¢ databases where the first database is (D_(p g;}), L), the last
database is D, and adjacent databases differ in only one row (and thus are “2(e€ — 1 4 §)-close” to
one another), we have

| Pr[Out 4(A(z) <> San(D_(p iy, 1)) € W] — Pr[Out 4(A(z) <> San(D)) € W]
< 2(e—1)(ef — 1+ 9). (2)
Combining (1) and (2) from above yields the result. O



For agg = RS(k(-)), we also have the following group privacy guarantee for (e, §)-zero-knowledge
privacy.

Proposition 5. Suppose San is (e,0)-zero-knowledge private with respect to RS(k(-)). Then, for
k(n)

every ¢ > 1, San is also (c,€,0 + e(c — 1)==)-zero-knowledge private with respect to RS(k(-)).

Intuitively, for k(n) sufficiently smaller than n, (e, d)-zero-knowledge privacy with respect to
RS(k(+)) actually implies some notion of group privacy, since the algorithm 7' (in the privacy
definition) chooses each row with probability k(n)/n. Thus, T chooses any row of a fixed group of
¢ rows with probability at most ck(n)/n. If this probability is very small, then the output of 7" and
thus the simulator S does not depend much on any group of ¢ rows.

Proof. Fix ¢ > 1. Since San is (e, d)-zero-knowledge private with respect to RS(k(-)), there exists
a T € RS(k(-)) such that for every adversary A, there exists a simulator S such that for every
De X" ze€{0,1}*, i € [n], and W C {0,1}*, we have

Pr[Outa(A(z) <» San(D)) € W] < e Pr[S(z,T(D_;, 1),i,n) € W]+ and

Pr[S(z,T(D—;, L),i,n) € W] < e Pr[Out4(A(z) +> San(D)) € W] + 4.

Let A be any adversary, and let S be the simulator guaranteed by the zero-knowledge privacy of
San. Let S’ be a simulator that, on input (z,T(D_j, I), I,n), outputs S(z,T(D_y, I), i,m), where
i is the smallest integer in I. Let D € X", z € {0,1}*, I C [n] with 1 < |I| < ¢, and W C {0,1}*.
Let ¢ be the smallest integer in I.

Let E be the event that T reads a row at any of the positions specified by I\ {i} (the input of
T is inferred from context). We note that conditioned on E, T(D_;, L) and T(D_, L) have the
same distribution. Since T' € RS(k(-)) and |I \ {i}| < c¢—1, we have Pr[E] < (¢ —1) - @ when T
is run on any database D’ € X™. Now, observe that

Pr[Out4(A(z) +» San(D)) € W]
< e -Pr[S(z,T(D_i, L),i,n) € W]+

= e (Pr[S(2,T(D-;, 1),i,n) € W | E] - Pr[E] + Pr[S(2,T(D—;, L),i,n) € W | E] - Pr[E]) +
- (Pr[S" (2, T(D_1,1),1,n) € W | E] - Pr[E] + Pr[E]) + &

IN
mm

IN
mm

. (Pr[S’(z,T(D_I,I),I,n) eWl+(c—1)- k?:)) +6

- k
= e Pr[S (2, T(D_r,1),I,n) € W] +e(c—1)- kn) + 0.
n
We also have

Pr[S' (2, T(D_;, L), 1,n) € W]
Pr[S' (2, T(D_;1,L),I,n) € W | E] - Pr[E] + Pr[S' (2, T(D_;, L), 1,n) € W | E] - Pr[E]

< Pr[S(z,T(D_;, 1),i,n) € W | E] - Pr[E] + Pr[E]
k(n)

IN

Pr[S(z,T(D—i, L),i,n) € W]+ (¢ —1) -

e - PrOuta(A(z) <» San(D)) e W]+ 0+ e (c—1) - k(nn)

IN
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2.2 Differential Privacy vs. Zero-Knowledge Privacy

In this section, we compare differential privacy to our zero-knowledge privacy definition. We first
state the definition of differential privacy in a form similar to our zero-knowledge privacy definition
in order to more easily compare the two. For any pair of databases D, D’ € X", let H(D, D)
denote the number of rows in which D and D’ differ, comparing row-wise.

Definition 6. We say that San is e-differentially private if for every adversary A, every z €
{0,1}*, every pair of databases D, D’ € X" with H(D,D’) <1, and every W C {0,1}*, we have

Pr[Out(A(z) +» San(D)) € W] < e - Pr[Outa(A(z) <> San(D")) € W],

where the probabilities are over the random coins of San and A. For (c, ¢)-differential privacy
(for groups of size ¢), the “H(D, D) < 17 is changed to “H(D,D’") < ¢”. For (e, ¢)-differential
privacy, we allow an additive error of § on the RHS of the inequality in the definition.

Proposition 7. Suppose San is e-zero-knowledge private with respect to any class agg. Then, San
18 2e-differentially private.

Proof. Let A be any adversary, let z € {0,1}*, let D', D" € X" with H(D',D") < 1, and let
W C {0,1}*. Since H(D',D") < 1, there exists an integer ¢ € [n| such that D’ ; = D” . Since San
is e-zero-knowledge private with respect to agg, there exists a T' € agg and a simulator .S such that
for every database D € X", we have

(et Diarewt )| <

Now, observe that

'111 <Pr[OutA(A(z) & San(D')) € W) ) ’

Pr[Out o(A(z) <> San(D")) € W]
N Pr[Out4(A(2) < San(D")) € W] Pr[S(z,T(D";,1),i,n) € W]
. '1 < PrS(z, T(DL,, 1), inm) € W] )’ ‘1 <Pr[OutA(A(z) & San(D")) W])’

IN
™

r[S(z, T(D",, 1),i,n) € W]
| (Pr[OutA(A( ) < San(D")) € W]) ‘ s 2

O

Proposition 8. Suppose San is e-differentially private. Then, San is e-zero-knowledge private
with respect to RS(n).

Proof. Let T be an algorithm in RS(n) that, on input a database D’ € X™, chooses n “random”
samples from D’ without replacement (i.e., chooses all the rows of the database), and then out-
puts the whole database D’. Let A be any adversary. Let S be the simulator that, on input
(z,(D—,L),i,n), simulates the interaction between A(z) and San(D_;, L), and outputs what-
ever A outputs in the simulated interaction. Thus, we have S(z,T(D_;, L),i,n) = Outa(A(z) <
San(D_;, L)). Let D € X", z € {0,1}*, @ € [n], and W C {0,1}*. Since San is e-differentially
private and H (D, (D_;, 1)) <1, we have

i (seto D 21| = [ (oA 2 Sn(p oy )| <<

O
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Remark. If we consider PPT simulators in the definition of zero-knowledge privacy instead of
computationally unbounded simulators, then we require San in Proposition 8 to be PPT as well.

Combining Propositions 7 and 8, we see that our zero-knowledge privacy definition includes
differential privacy as a special case (up to a factor of 2 for €).

2.3 Revisiting the Democrats vs. Republicans Example

Recall the Democrats vs. Republicans example in the introduction. The mechanism in the example
is e-differentially private for some small €, even though the privacy of individuals is clearly violated.
However, the mechanism is not zero-knowledge private in general. Suppose that the people’s
political preferences are stored in a database D € X".

Proposition 9. Fiz ¢ > 0, ¢ > 1, and any function k(-) such that k(n) = o(n). Let San be a
mechanism that on input D € X" computes the proportion of Democrats in each clique and adds
Lap(555.) noise to each proportion independently. Then, San is (c, €)-differentially private, but
for every constant € > 0 and every sufficiently large n, San is not € -zero-knowledge private with
respect to RS(k(-)).

Intuitively, San is not €’-zero-knowledge private with respect to RS(k(-)) because for sufficiently
large n, an adversary having only k(n) = o(n) random samples would not have any samples in many
of the cliques, so the adversary would know nothing about many of the cliques. Therefore, the
adversary does gain knowledge by accessing the mechanism, which gives some information about
every clique since the amount of noise added to each clique is constant.

Proof. We note that when a single person changes his or her political preference, the vector of
proportions of Democrats changes by ﬁ in Ly distance. Thus, by Proposition 1 in [DMNS06],
San is (e/c)-differentially private, which implies that San is (¢, €)-differential private (see [Dwo06]
and the appendix in [DMNS06]), as required.

Let € > 0. Let A be the adversary that simply outputs whatever the mechanism releases. To
obtain a contradiction, suppose there exists a T' € RS(k(-)) and a simulator S for A satisfying the
required condition in the definition of €-zero-knowledge privacy. Recall that there are 200 people
in each clique. Let A = 55, let K > 600€’\ be a constant such that 200 divides K, and let n > K
such that 200 divides n. Let W = (R<()%/200 5 R7/200-K/200 anq let » € {0,1}*. Then, for every
D € X, we have

'1 <Pr[0utA(A(z) + San(D)) € W]>
Pr[S(z,T(D_-1,1),1,n) € W]
Without loss of generality, suppose that the rows of a database in X™ are ordered so that the
first 200 rows correspond to 200 people in the same clique, and the next 200 rows correspond to 200
people in the same clique, and so on. Let D; be the database (0,...,0) of size n, and let Dy be the
database (1%,0,...,0) of size n, where 1% = (1,...,1) is of size K. Let X1,... ; X200 ~ Lap(\)
(independently), and let X = (Xi,..., X;,/200). Now, observe the following:

n <Pr[0utA(A(z) < San(Dy)) € W]> :1 Pr[(07/29) + X € W]
Pr[Out o(A(z) +» San(D3)) € W] Pr[(15K/200 0,...,0) + X € W]

1 ( Hjli/lzoo Pr[X; € R<] ) , ( (1)K /200 ) | ( (1)K/200 )

= HE/200 =M TK200 0 ) | k7200

T3 Pr(X; € (—o0, -1]] 1537 Fa(-1) T2 (dem1)
K K 600€' X

=In(e200x) = 200 > 500 X > 3¢, (1)

12



where F)\(z) = %em/ A is the cumulative distribution function of Lap(\) for z < 0. Let Ej denote
the event that T' does not read any of the first K rows of its input (the input of T is inferred from
context). Now, observe that

) € W}) I ( Pr[S(z, T((D1)-1,1),1,n) € W] >
Pr[S(z, T((D1)-1,L1),1,n) € W] Pr[Out o(A(z) «» San(D3)) € W]

¢4 <Pr[S(z,T((D1)_1,J_), 1,n) € W | Eg])Pr[Ex] + Pr[S(2,T((D1)_1, L),1,n) € W | Eg] Pr[EK]>
Pr[Out s (A(z) <» San(D3)) € W]

4 <Pr[S(z,T((D2)1,J_), 1,n) € W | FEk] - Pr[Ek] Pr[Ek] >

- Pr[Out o(A(2) +» San(D3)) € W] Pr[Out o(A(2) +> San(D3)) € W]

¢4 ( Pr[S(z,T((D3)-1,1),1,n) € W] Pr[Fk| )

- Pr[Outs(A(z) <> San(D3)) € W] = Pr[Outs(A(z) <> San(D3)) € W]

Since T' € RS(k(-)) and k(n) = o(n), we have the numerator Pr[Ex] — 0 as n — co. However, the
denominator Pr[Outs(A(z) <> San(D3)) € W] = (%)K/Qooe_K/(QOO/\) (partly computed earlier) is

Pr[S(2,T((D2)-1,1),1,n)EW]
Pr[Out 4 (A(z)+>San(D2))eW]

a constant. Since In is continuous and € [e=¢, ] for all n, we have that

for sufficiently large n,

' ( Pr[S(z, T((D2)-1,L1),1,n) € W] Pr[Ek] >
Pr[Outs(A(z) <> San(D2)) € W] = Pr[Outas(A(z) < San(Dg)) e W]
, Pr[S(z,T((D2)-1,1),1,n) € W] € 5¢/
Se+l (Pr[OutA(A(z)2<—>15an(D2)) c W]> t3 S drdag < o

Thus, for sufficiently large n, we have In ( gi{gg;igﬁgg:ggggg;g;g%) < 56 , which contradicts (1)

above. O

Remark. In the Democrats vs. Republicans example, even if San adds Lap(%) noise to achieve
(200, €)-differential privacy so that the privacy of each clique (and thus each person) is protected,
the mechanism would still fail to be €-zero-knowledge private with respect to RS(k(:)) for any
constant ¢ > 0 when n is sufficiently large (see Proposition 9). Thus, zero-knowledge privacy with
respect to RS(k(-)) with k(n) = o(n) seems to provide an unnecessarily strong privacy guarantee
in this particular example. However, this is mainly because the clique size is fixed and known to
be 200, and we have assumed that the only correlation between people’s political preferences that
exists is within a clique. In a more realistic social network, there would be cliques of various sizes,
and the correlation between people’s data would be more complicated. For example, an adversary
knowing your friends’ friends may still be able to infer a lot of information about you.

3 Characterizing Zero-Knowledge Privacy

In this section, we focus on constructing zero-knowledge private mechanisms that compute a func-
tion mapping databases in X™ to R™, and we characterize the set of functions that can be computed
with zero-knowledge privacy. These are precisely the functions with low sample complexity, i.e., can
be approximated (accurately) using only limited information from the database, such as k random
samples.

13



We quantify the error in approximating a function g : X™ — R™ using L; distance. Let the
Lq-sensitivity of g be defined by A(g) = max{||g(D")—g(D")||1 : D', D" € X" s.t. H(D',D") < 1}.
Let C be any class of randomized algorithms.

Definition 10. A function g : X™ — R™ is said to have (4, 3)-sample complexity with respect
to C if there exists an algorithm 7" € C such that for every database D € X", we have T'(D) € R™
and

Pr{|[T(D) — g(D)[ly < 8] > 1— 6.
T is said to be a (0, )-sampler for g with respect to C.

Remark. If we consider PPT simulators in the definition of zero-knowledge privacy instead of
computationally unbounded simulators, then we would require here that C is a class of PPT algo-
rithms (PPT in n, the size of the database). Thus, in the definition of (4, §)-sample complexity, we
would consider a family of functions (one for each value of n) that can be computed in PPT, and
the sampler T" would be PPT in n.

It was shown in [DMNSO06] that functions with low sample complexity with respect to RS(k(-))
have low sensitivity as well.

Lemma 11 ([DMNS06]). Suppose g : X™ — R™ has (4, 5)-sample complexity with respect to
RS(k(-)) for some B < % Then, A(g) < 24.

As mentioned in [DMNSO06], the converse of the above lemma is not true, i.e., not all functions
with low sensitivity have low sample complexity (see [DMNS06] for an example). This should be
no surprise, since functions with low sensitivity have accurate differentially private mechanisms,
while functions with low sample complexity have accurate zero-knowledge private mechanisms. We
already know that zero-knowledge privacy is stronger than differential privacy, as illustrated by the
Democrats vs. Republicans example.

We now state how the sample complexity of a function is related to the amount of noise a
mechanism needs to add to the function value in order to achieve a certain level of zero-knowledge
privacy.

Proposition 12. Suppose g : X" — [a,b]™ has (0, )-sample complexity with respect to some
C. Then, the mechanism San(D) = g(D) + (X1,...,Xm), where X; ~ Lap(X\) for j =1,...,m

A(g)+d (b—a)m . .
A 4 pe x )-zero-knowledge private with respect to C.

independently, is In((1 — f)e

Intuitively, San should be zero-knowledge private because a simulator can simulate San by
first approximating ¢g(D) by running a sampler T' € C for g, and then adding the same amount of
noise as San; the error in approximating g(D) is blurred by the added noise so that the simulator’s
output distribution is close to San’s output distribution.

Proof. Let T be a (d, 3)-sampler for g with respect to C. Let A be any adversary. Let S be a
simulator that, on input (z,7'(D_;, L),i,n), first checks whether T'(D_;, L) is in [a,b]™; if not,
S projects T'(D_;, L) onto the set [a,b]™ (with respect to L; distance) so that the accuracy of
T(D_;, 1) is improved and ||g(D) — T(D_;, L)||1 < (b — a)m always holds, which we use later.
From here on, T'(D_;, 1) is treated as a random variable that reflects the possible modification
S may perform. The simulator S computes T(D_;, L) + (X1,...,X,,), which we will denote
using the random variable S’(z,T(D_;, L),4,n). S then simulates the computation of A(z) with
S'(z,T(D—;, 1),i,n) sent to A as a message, and outputs whatever A outputs.

14



Let D € X", z€{0,1}*, i € [n]. Fix x € T(D_;, L) and s € R™. Then, we have

s =gD) fals—=z) | _ (L-(ls=zlh—lls—g(D)l1) o (E-(ls—g(D)ll1—ls—zI1))
““X{ fﬂs—w)’fﬂs—guﬁ)}_nmx{e T e )

< eGillaD=all) < (E-(llg(D)=g(D—i )l HIgD—i:)=zll1)) < (k-(Alg)+Ig(D—i,)=all1)). (1)

Since ||g(D) — z||1 < (b — a)m always holds, we also have

his=gD)) fals—z) (Llg(D)—all1) < L=
P R gty e < )
Since T is a (d, 8)-sampler for g, we have Pr[||g(D_;, L) — T(D_;, L)||1 <] > 1 — . Thus, using
(1) and (2) above, we have
In erT(D,i,L) (s —x) - Pr[T(D—, L) = 7]
fa(s —g(D))

Ag)+6 (b—a)m
A

+Be x ).

)smm—me

Now, using (1) and (2) again, we also have

- fals — (D))
> zer(p_i, 1) Ials =) - Pr[T(D—;, L) = 7]
— erT(D,i,J_) fals =) - Pr[T(D—, L) = ]
a (s —g(D))
)

S B ln((l B ﬂ)eiA(gA)+6 I Bef (bfs)m _ ln(((l _ 5)67 A(g)\)+6 i Bei (b*f)m )71)
A(g)+6 (b—a)m
<In((1-Be > +Be x ),

1

where the last inequality follows from the fact that the function f(x) = z~" is convex for x > 0.

Then, for every s € R", we have

‘m < Pr[San(D) = s] ) ’ . fr(s —g(D))
Pr[S"(z,T(D—;, L),i,n) = 5] > zer(n_y, 1) IA(s =) - Pr[T(D_;, L) = 7]
< In((1-B)e” 3 + e ),
Thus, for every W C {0, 1}*, we have ’1n (P}Lﬂ;t(’;‘%%)jf_‘;ré%)e)gvﬁvg ’ < 1n((1—6)eA(gA)+5 + e (bif)m).
O

Corollary 13. Suppose g : X™ — [a,b]™ has (8, 5)-sample complezity with respect to RS(k(-)) for
some B < % Then, the mechanism San(D) = g(D) + (X1,...,X), where X; ~ Lap(\)

(b—a)m

for j =1,...,m independently, is In((1 — ﬁ)e% + Be x )-zero-knowledge private with respect to
RS(k(")).

Proof. This follows from combining Proposition 12 and Lemma 11. O

Using Proposition 12, we can recover the basic mechanism in [DMNSO06] that is e-differentially
private.

Corollary 14. Let g : X™ — [a,b]™ and € > 0. A mechanism San for g that adds Lap(Agg)) notse
to g(D) is e-zero-knowledge private with respect to RS(n).
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Proof. We note that every function g : X™ — R™ has (0,0)-sample complexity with respect to
RS(n). The corollary follows by applying Proposition 12. O

We now show how the zero-knowledge privacy and utility properties of a mechanism computing
a function is related to the sample complexity of the function. A class of algorithms agg is said to
be closed under postprocessing if for any T' € agg and any algorithm M, the composition of M and
T (i.e., the algorithm that first runs 7" on the input and then runs M on the output of T') is also
in agg. We note that RS(k(-)) is closed under postprocessing.

Proposition 15. Let agg be any class of algorithms that is closed under postprocessing, and suppose
a function g : X™ — R™ has a mechanism San such that the following hold:

o Utility: Pr[||San(D) —g(D)||1 <] >1—p8  for every D € X"

e Privacy: San is e-zero-knowledge private with respect to agg.

Then, g has (9, w)—sample complexity with respect to agg.

e

The intuition is that the zero-knowledge privacy of San guarantees that San can be simulated
by a simulator S that is given aggregate information provided by some algorithm 7" € agg. Thus,
an algorithm that runs 7" and then .S will be able to approximate g with accuracy similar to that
of San.

Proof. Let A be an adversary that simply outputs whatever San releases. Since San is e-zero-
knowledge private with respect to agg, there exists a B € agg and a simulator S such that for every
De X" ze€{0,1}* and t € {0,1}*, we have

Pr[Out4(A(z) <> San(D)) =]
‘ln < Pr[S(z,B(D-1,1),1,n) =t] )‘ <e (1)

Fix z € {0,1}*. Let T be an algorithm that, on input D € X", first runs B on (D_1, L), then
runs S on (z,B(D-1,1),1,n), and then outputs S(z, B(D—-1,L1),1,n). Since B € agg, S is an
algorithm, and agg is closed under postprocessing, we have that T is in agg. Let D € X™. We have

Pr{[|T(D) = g(D)|lh < 6] = Pr(||S(z, B(D-1, 1),1,n) = g(D)[[x < 9]

= Z Pr(||t — g(D)||1 < 9] - Pr[S(z, B(D-1,1),1,n) =t
teSupp(S(z,B(D—-1,1),1,n))
1
> Z Pr(||t — g(D)||1 < 9] - p Pr[Out4(A(z) > San(D)) =]
teSupp(Out 4 (A(z)<+San(D)))
1 1
= < PrlllOuta(A(z) ¢ San(D)) — g(D)ll < 9] = — Prl[|San(D) - g(D)[|1 < 4]
> l(l_ﬁ) - 1_w,
e€ e€
where the first inequality is due to (1). Thus, T is a (J, W)—sampler for g with respect to
agg. O

16



3.1 Simple Examples of Zero-Knowledge Private Mechanisms

In this section, we show how to construct some simple examples of zero-knowledge private mecha-
nisms with respect to RS(k(-)).

Example (Averages). Let n > 1, k = k(n). Let avg : [0,1]" — [0,1] be defined by avg(D) =
#, and let San(D) = avg(D) + Lap(\), where A > 0. Let T" be an algorithm that, on input a
database D € [0, 1]", chooses k random samples from D uniformly, and then outputs the average of
the k random samples. By Hoeffding’s inequality, we have Pr[|T(D) — avg(D)| < 6] > 1 — 2e~ 2k,
Thus, avg has (0, 26*2k52)—sample complexity with respect to RS(k(:)). By Proposition 12, San is
ln(e%(%ﬂs) + 26%_2k62)—zero—knowledge private with respect to RS(k(-)).

Let € € (0,1]. We choose § = = and A = 1(146) = %(%—Fkﬂ%) so that ln(e%(%”)—i—%%ﬂkﬁ)

k1
1/3

e _9Rl/
= In(e€ + 2e1/n+k=1/3 ) < In(e + 2e_k1/3) < e+ 2K

. Thus, we have the following result:

e By adding Lap((: + kl%)) = Lap(O(Ek%/g)) noise to avg(D), San is (e + Qe*kl/B)—zero—

knowledge private with respect to RS(k(-)).

Our example mechanism for computing averages comes from the general connection between
sample complexity and zero-knowledge privacy (Proposition 12), which holds for any model agg of
aggregate information. For computing averages, we can actually construct a mechanism with better
utility by choosing k(n) random samples without replacement from the input database D € X"
and then running a differentially private mechanism on the chosen samples. We will show that
such a mechanism is zero-knowledge private with respect to RS(k(-)) and has even better privacy
parameters than the differentially private mechanism, due to the initial sampling step.

In general, this “Sample and DP-Sanitize” method works for query functions that can be ap-
proximated using random samples (e.g., averages, fractions, and histograms), and allows us to
convert differentially private mechanisms to zero-knowledge private mechanisms with respect to
RS(k(-)). We now show what privacy guarantees are obtained by the Sample and DP-Sanitize
method.

Proposition 16 (Sample and DP-Sanitize). Let Sanpp be any (e, d)-differentially private mech-
anism. Let San be any mechanism that, on input D € X", chooses k = k(n) random samples
without replacement, runs Sanpp on the chosen samples, and then performs any computation on
the output of Sanpp without reading the input database D again. Then, the following hold:

o San is (e,0)-zero-knowledge private with respect to RS(k(-)).

o San is (2In(1+E(ef 1)), (2+ E(e€ — 1)) £§)-zero-knowledge private with respect to RS(k(-)).

o [fe <1, then San is (%e, %6)—zer0—kn0wledge private with respect to RS(k(-)).

Intuitively, San is zero-knowledge private with respect to RS(k(-)) because Sanpp is differen-
tially private and is only run on k random samples; also, San has better privacy parameters than
those of Sanpp because of the extra noise added from choosing only k& random samples.

Proof. We observe that the mechanism San itself is in RS(k(-)). Thus, let T = San. Let n > 1,
D e X™, and i € [n].

We first show that San is (e, d)-zero-knowledge private with respect to RS(k(-)). Consider
San(D) and T(D_;, L) = San(D—_;, L). We note that San(D) and San(D_;, L) have the same
output distribution when both San’s choose the same k random samples and the samples do not
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contain row 7. When both San’s choose the same k£ random samples and the samples do contain
row i, the two databases formed by the chosen samples of the two San’s (respectively) will differ in
exactly one row. Since both San’s run an (e, d)-differentially private mechanism, namely Sanpp,
on the chosen samples, and since San does not use the original input database in its computation
afterwards, it is easy to see that the output distribution of the two San’s satisfy the closeness
condition in the (e, d)-zero-knowledge privacy definition. Since the simulator S in the privacy
definition gets T(D_;, L) = San(D_;, L) as one of its inputs, it is easy to show that San is (e, 0)-
zero-knowledge private with respect to RS(k(-)).

We now show that San is (2In(1 + £(e€ — 1)), (2 + £(e€ — 1)) £6)-zero-knowledge private with
respect to RS(k(-)). If & = n, then this follows from the fact that San is (e, §)-zero-knowledge
private with respect to RS(k(-)). Thus, we now assume that & < n — 1. We will show that San(D)
and T(D_;, L) = San(D_;, L) are “(2In(1+ £ (e —1)), (24 £ (e — 1)) £6)"-close. Abusing notation,
let San(D_;) denote the output of San on input D_; but San chooses k = k(n) random samples
(without replacement) instead of k(|D_;|) = k(n — 1) random samples. Our strategy is to show
that San(D) is close to San(D—_;) and San(D_;) is close to San(D—;, L). Let W C {0,1}*, and
let E¥ be the event that row ¢ is chosen when San chooses k random samples. Observe that

Pr[San(D) € W] = Pr[San(D) € W | E| Pr[E] + Pr[San(D) € W | E] Pr[E]
< (e Pr[San(D_;) € W]+ §) Pr[E] + Pr[San(D_;) € W|(1 — Pr[E])
= (14 Pr[E](e° — 1)) Pr[San(D_;) € W] + Pr[E]é.

We also have

Pr[San(D) € W] = Pr[San(D) € W | E| Pr[E] + Pr[San(D) € W | E] Pr[E]
e “(Pr[San(D_;) € W] — 9) Pr[E] + Pr[San(D_;) € W](1 — Pr[E])
= Pr[San(D_;) € W](Pr[Ele”“ + (1 — Pr[E])) — e “Pr[E]d

1 1
PriEle—+ (1= prE] D) €Wl o B e
(Pr[Ele® + (1 — Pr[E])) Pr[San(D) € W] + Pr[E]o
(1+ Pr[E](e — 1)) Pr[San(D) € W] + Pr[E]J,

v

= Pr[San(D_;) € W] < Pr[E]é

<
<
where the second last inequality follows from the fact that the function f(z) = % is convex for
2 > 0. Thus, we have the following:
e Pr[San(D) € W] < (1 + Pr[E](ef — 1)) Pr[San(D_;) € W]+ Pr[E]d
e Pr[San(D_;) € W] < (1 + Pr[E](e® — 1)) Pr[San(D) € W] + Pr[E]é
Using the same argument as above but with (D_;, 1) in place of D, we get the following:
e Pr[San(D_;, L) € W] < (14 Pr[E](ef — 1)) Pr[San(D_;) € W]+ Pr[E]6
e Pr[San(D_;) € W] < (1 + Pr[E](e€ — 1)) Pr[San(D_;, L) € W]+ Pr[E]d

Combining the results above and noting that Pr[E] = £, we have the following:
o Pr[San(D) € W] < (1 + E(e€ — 1))2Pr[San(D_;, L) € W]+ (2 + (e — 1)) £5

o Pr[San(D_;, L) € W] < (1 + E(ef — 1))2Pr[San(D) € W]+ (2 + E(ec — 1)) £5
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It easily follows that San is (2In(1 + £(e — 1)), (2 + £(e¢ — 1)) £6)-zero-knowledge private with
respect to RS(k(-)). Now, suppose that e < 1. Then, one can easily verify that e — 1 < 2¢, so
1+ %(eE -1 < e and 2 + %(eE — 1) < 4. Thus, San is (%e 5)—zero—kn0wledge private with
respect to RS(k(+)). O

We now use the Sample and DP-Sanitize method (Proposition 16) to construct some zero-
knowledge private mechanisms.

In the examples below, let n > 1, k = k(n), and ¢,8 € (0,1]. If D € X" is a database, let
D be a random variable representing a database formed by choosing k random samples from D
uniformly without replacement.

D]
Example (Improved Accuracy for Averages). Let X = [0, 1], and let avg(D) = 2‘7'D Let

San(D) = avg(D) + Lap(Z) for D € X™. Then, by Proposition 16, San is 4k6 zero-knowledge
private with respect to RS(k(+)).

Also, by Hoeffding’s inequality (which still holds when the sampling is done without replacement
as opposed to with replacement (e.g., see [Hoe63])), we have Pr[|avg(D) —avg(D)| > a] < 2e—2ka®

and the RHS is < g if o > ﬁ,/%ln(%); thus, we have Pr[lavg(D) — avg(D)| > ﬁ, /%ln(g)] < g

One can also easily verify that for Y ~ Lap(%), we have Pr[|Y| > o] = e~***, and the RHS is
< g if 0 > 2 ln(%); thus, we have Pr[|Y| > L ln(%)] < g Thus, by the union bound, we have the
following result:

e For D € X", San(D) = avg(D) + Lap(Z) approximates avg(D) to within an additive error
of ﬁ1 /%ln(%) + i ln(%) with probability at least 1 — 3, and is e zero-knowledge private
with respect to RS(k(+)).

This mechanism is usually more accurate than the mechanism in the earlier example for averages
which adds at least Lap(ek%w) noise and thus is accurate to within an additive error of kl =173 ln( )
with probability at most 1 — .

Example (Fraction Queries: Fraction of rows satisfying some property P). Let P: X —

2} P(D)
IDI
the fraction of rows satisfying property P. Since fracp(D) can be viewed as the average of the

numbers {P(D;)}" ;, we can get the same result as in the example for averages:

{0, 1} be the predicate representing some property of a row. Let fracp(D) = , which is

e For D € X" Scm( ) = fmc(lA?) + Lap(2-) approximates frac(D) to within an additive error
of L 1/ ! ln 1 ln ) with probability at least 1 — 3, and is e zero-knowledge private
Wlth respect to RS(k( ))

Example (Counting Queries: Number of rows satisfying some property P). Let P: X —
{0,1} be the predicate representing some property of a row. Let count(D) = > | P(D;), which
is the number of rows satisfying property P. Since g(D) is simply a fraction query but scaled by a
factor of n, we can get the same result as in the example for fraction queries except that the error
is scaled by a factor of n:

e For D € X", San(D) = n - (frac(D) + Lap(Z%)) approximates count(D) = n - fracp(D)

to within an additive error of %\ / % ln(%) + 2 In(5) with probability at least 1 — 3, and is

4k

2
B
Sre-zero-knowledge private with respect to RS (k(+))-
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Example (Histograms). Let By,..., By, be any partition of X with m blocks. We refer to each
B; as a bin. Let hist(D) = (b1,...,bn), where b; = |{j € [n] : D; € B;}| is the number of rows of
D that belong to bin B;. Given a database D, let 51, cees D, be independent random variables
representing databases formed by choosing % random samples from the database D uniformly
without replacement.

We can construct a zero-knowledge private mechanism (with respect to RS(k(-))) that computes
the histogram with respect to the bins By, ..., By, by composing San; for : = 1,...,m, where San;
is any zero-knowledge private mechanism (with respect to RS(2k(-))) for estimating the number of
rows in the i*" bin, and then applying our composition result (Propsition 2). Using our mechanism
for counting queries, we can define San; so that it approximates the number of rows in the i** bin

to within an additive error of ”\%}T %ln(%”) + ln(z%) with probability at least 1 — %, and is
4k

—-e-zero-knowledge private with respect to RS (%kz()) Then, applying the union bound and our
composition result (Propsition 2), we get the following result:

e For D € X", San(D) = (Sany (D), ..., Sanm(Dy,)) approximates hist(D) to within an error
(with respect to Ly distance) of nm®/2 : ln(%n) + 272 1 (2 with probability at least 1— 3,

N ek B8
and is 4 e-zero-knowledge private with respect to RS(k(-)).

4 Answering a Class of Queries Simultaneously

In this section, we consider mechanisms that answer a class of query functions simultaneously. We
generalize the notion of sample complexity (with respect to RS(k(+))) to classes of query functions
and show a connection between differential privacy and zero-knowledge privacy for any class of
query functions with low sample complexity. In particular, we show that for any class Q of query
functions that can be approximated simultaneously using random samples, any differentially private
mechanism that is “useful” for Q can be converted to a zero-knowledge private mechanism that is
useful for Q, similar to the Sample and DP-Sanitize method. We also show that any class of fraction
queries with low VC dimension can be approximated simultaneously using random samples, so we
can use existing differentially private mechanisms (e.g., the ones in [BLRO8] and [DRV10]) to obtain
zero-knowledge private mechanisms for any class of fraction queries with low VC dimension.

Let X™* denote the set of all databases whose rows are elements from the data universe X. In
this section, a query is a function from X* to R™ for some m.

In this section, we consider mechanisms that answer a class @ of queries simulataneously by
outputting a “synopsis” (e.g., a synthetic database) that allows us to answer all the queries in Q.
A synopsis is a pair (D, R), where D is any data structure (containing data), and R is a description
of any deterministic “query-answering” algorithm that, on input a data structure D and a query
q: X* — R™ answers the query by reading D and outputting some vector in R".

Let Rpp be the usual query-answering algorithm for databases that, on input a database
D € X* and a query ¢ : X* — R™, answers with ¢(D). If D is a database, then (D, Rpp) is
an example of a synopsis. If D is a database obtained by choosing k£ random samples from D,
then another example of a synopsis is (E,RB), where Ry is a query-answering algorithm that

approximates a given counting query ¢ on the larger database D by computing q(lA)) and then
scaling the answer by % (to compensate for the fact that D contained only k£ random samples
from D).

Let O be any class of queries that map databases in X™* to vectors in R" for some m. We now

define what it means for two synopses to be close to one another with respect to O.
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Definition 17. Two synopses (D, R) and (D', R') are said to be a-close with respect to Q if
sup||R(D,q) — R'(D',q)||1 < .
qeQ

Intuitively, two synopses are a-close to one another with respect to Q if they are “a-indistinguishable”
by Q, i.e., no query in Q can be used to distinguish the two synopses by more than a. Thus, if two
synopses are close to one another with respect to Q, then we can use one synopsis to approximate
the other synopsis’s answers to queries in Q. We want to construct mechanisms that, on input
a database D, outputs a synopsis that is close to the synopsis (D, Rpp), so that we can use the
synopsis to accurately answer queries in Q on the database D. We define the usefulness/utility of
a mechanism from this perspective of closeness of synopses.

Definition 18. A mechanism San is (a, §)-useful with respect to Q for databases of size
n if for every input database D € X™, with probability at least 1 — 3 (over the random coins of
San), San(D) outputs a synopsis (D, R) that is a-close to (D, Rpp) with respect to Q.

We now generalize the notion of sample complexity with respect to RS(k(-)) to classes of
query functions. Intuitively, a class Q of queries has low sample complexity if the queries can be
approximated simultaneously using k random samples from the input database.

Definition 19. A class Q of queries is said to have (k, «, §)-sample complexity for databases
of size n with converter f: Q x R™ — R™ if for every database D € X", if we choose k random
samples from the database D without replacement and form a database D consisting of the chosen
samples, then with probability at least 1 — 3, we have sup ||¢(D) — f(q, ¢(D))||1 < .

qeQ

The converter f in the above definition is used to convert the answer to a query g on the
database D to an answer to the same query ¢ on the original database D. When Q is a class of
queries computing averages or the fraction of rows satisfying some predicate, f would normally be
the function f(q,Z) = #. When Q is a class of queries computing sums, f would normally be the
function f(q,¥) = 77, since the database D consists of only k£ random samples from the original
database D, which has n rows.

We now show that for any class Q of queries with low sample complexity, we can convert any
useful differentially private mechanism to a useful zero-knowledge private mechanism (with respect

to RS(k("))).

Proposition 20. Let n > 1, k = k(n). Suppose a class Q of queries has (k,a1, 51)-sample
complexity for databases of size n with a converter f : Qx X™ — X™ such that || f(q,z)—f(q,y)|]1 <
Lljz — y||1 for every z,y € R™, q € Q, where L is a non-negative real constant. Let € € (0,1], and
let Sanpp be any (e, 9)-differentially private mechanism that is (c, B2)-useful with respect to Q for
databases of size k.

Then, using Sanpp, we can construct a mechanism Sanzy that is (%ke, %5)—ze7’o—knowledge
private with respect to RS(k(+)) and is (a1 + Lag, B1 + B2)-useful with respect to Q for databases
of size n.

Proof. Let Sanzgk be the mechanism that, on input a database D € X", first chooses k random
samples without replacement from D, and then forms the database D using the samples. Then,
Sanz i runs the mechanism Sanpp on D to get a synopsis (D, R) that is a-close to (13, Rpp) with
respect to Q. Then, Sanyzx outputs the synopsis (D, R'), where R’ is the algorithm that, on input
the data structure D and a query g, first runs R on (D, q), then converts the answer R(D, g) to an
answer on the original database D by computing f(q, R(D,q)), and then outputs f(q, R(D,q)).
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By Proposition 16, Sanzx is (4k %5)—zero—knowledge private with respect to RS(k(-)).

We now show that Sanzk is (a1 + Lag, 51 + f2)-useful with respect to Q for databases of size n.
Let D € X™. Since Q has (k, a1, f1)-sample complexity for databases of size n with the converter
[, we have that with probability at least 1 — 3, Sanzk (D) forms a database D € X* such that

sup,eo |1¢(D)—f(q,q(D))|l1 < 1. Since Sanpp is (awg, B2)-useful with respect to Q for databases of

size k, we also have that for every database De Xx* , with probability at least 1 — B2, the mechanism
Sanpp(D) run by Sanzi (D) outputs a synopsis (D R) such that sup,cg ||q(D D)—R(D,q)||l1 < as.

Thus, with probability at least 1—(31+02), the synopsis (D7 R') that Sanz (D) outputs satisfies
supgeg |lg(D) = R'(D,g)ll1 = supgeq lla(D) = fla, R(D, 9))lh_< supgeollle(D) — f(a,a(D))Ih +
1f(q,4(D)) = fla, R(D,q))l[1) < o1 + supgeo(Lll¢(D) — R(D,q)[l1) < a1 + Laz. Thus, with

probability at least 1 — (81 + f2), Sanzk outputs a synopsis (D, R') that is (o1 + Lag)-close to
(D, Rpp) with respect to Q, as required. O

4.1 Sample Complexity of a Class of Fraction Queries

There already exist differentially private mechanisms for classes of fraction queries (e.g., the ones
in [BLRO8] and [DRV10]). To use these mechanisms in Proposition 20, we will show that any class
of fraction queries with low VC dimension has low sample complexity.

If the sampling in the definition of sample complexity were done with replacement as opposed
to without replacement, then we could use known learning theory results to show that any class of
fraction queries with low VC dimension has low sample complexity. However, the privacy guarantees
of the above proposition rely on the fact that the sampling is done without replacement, since the
proof uses Proposition 16, which needs this requirement. If the sampling is done with replacement,
we are unable to achieve as good privacy parameters.

Our strategy is still to use known learning theory results, but we will adapt known proofs of the
results as necessary so that we can use the results to show that any class of fraction queries with
low VC dimension has low sample complexity, where the sampling is done without replacement.

A fraction query is a query ¢ of the form ¢(D) = D : i€ f)”‘ $(Di)=1] , where D is the i*" row

of the database D, and ¢ : X — {0,1} is some predicate. Thus, a fraction query corresponds to
some predicate, and for any class Q of fraction queries, we can consider the class Q of predicates
that correspond to the fraction queries in Q.

We now review some terminology from learning theory. Let Q be any class of predicates, and
let S be any finite subset of X. The restriction of O to S, denoted Qls, is the set {¢|s : S — {0,1} |
qb € Q} i.e., the set of restrictions to S of all predicates in Q. The growth function lg:N—N of
Q is defined by ll5(m) = maxgicx |s|=m ]Q|51\. We note that II5(m) < 2™ for every m € N, since
for any finite S’ C X, there are only 2!’ functions from S’ to {0, 1}.

We say that Q shatters S if |Q!5[ = 2181 je., for every predicate ¢ : S — {0,1}, there exists
a predicate ¢/ € Q such that ¢/ |s = ¢. The Vapnik-Chervonenkis dimension (VC dimension) of
QO is the size of the largest finite set S C X shattered by @, or oo if the largest doesn’t exist.
Equivalently, the VC dimension of Q is the largest non-negative integer m such that II @(m) =2m,

or 0o Lf the largest doesn’t exist. We note that if @ E’ finite, tAhen the VC dirrAlension of @ is at most
logs |Q|, since if a finite set S C X is shattered by Q, then |Q|s| = 2!5!, so O must contain at least
2151 predicates.

For convenience, when we refer to the VC dimension of a class Q of fraction queries, we are
actually referring to the VC dimension of the class Q of predicates that corresponds to Q. We
now prove a lemma that describes how well k& random samples chosen without replacement can
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simultaneously approximate a class of fraction queries. This lemma is similar to a known result in
learning theory (e.g., see Theorem 4.3 in [AB99)]).

Lemma 21. Let Q be any class of fraction queries, and let QO be the corresponding class of predi-
cates. Then, for every database D € X™, a > 0, and k > 0, we have

Prllg(D) — ¢(D)| > o for some g € Q] < 4Tlg(2k)e ¥,

where the probability is over the choice of the database D formed by choosing k random samples
without replacement from the database D.

Proof. Fix D € X", o> 0, k > 0. Let B be the event that |¢(D) — ¢(D)| > « for some ¢ € Q,
where D is formed by choosing k random samples without replacement from the database D. Now,
consider choosing another set of k random samples without replacement from the database D, and
denote the samples by D. D is chosen independently of D so D and D may contain overlapping
samples.

Let B’ be the event that |¢(D) — ¢(D)| > £ 5 for some ¢ € Q, where D and D are chosen as
above. Our goal is to bound Pr[B], and we do so by showing Pr[B] < 2Pr[B’] and bounding Pr[B’]
instead. We first note that if £ < 2, then the RHS of the 1nequahty in the lemma is > 1, and so
the lemma holds trivially. Thus, we can assume that &k > =

We now show that Pr[B] < 2Pr[B’]. To do this, we ﬁrst show that Pr[B’ | B] > 1. Suppose
event B occurs so that |¢(D) — q(D)| > « for some fixed D and ¢ € Q. We will show that
Pr[|¢(D)—q(D)| < 2] > 1, so with probability > 3, the event B’ also occurs, since lg(D)—q(D)| < g
and |¢(D) — ¢(D)| > « imply that |¢(D) — ¢(D)| > 5. Now, by Hoeffding’s inequality, we have
Pr{|¢(D) — ( )| < 9] >1—2e72%3) and the RHS is > 1 if and only if k > 2124 which holds
since k > 5. We have shown that Pr[B’ | B] > 3. Thus, 5 [[%,]] > Pr[%rig}d Bl — py[B' | B] > 1,50
Pr[B] < 2Pr[B |

We will now bound Pr[B’]. Consider the following process. Choose D and D as before, and
then perform the following swapping process. Let Y be the set of samples of D that were chosen
to be in both D and D. Regarding D and D as sets as samples, we arbitrarily pair (using any fixed
deterministic algorithm) each sample in D\ 'Y with a sample in D \ Y so that we have a (perfect)
matching between D \'Y and D\ Y; we also pair each sample in DNY with the corresponding
(equal) sample in DNY. Then, for each matched pair z,y, we swap z and y with probability

3. Let D' and D’ denote the resulting D and D. It is easy to see that the sets D' and D’ are

identically distributed to D and D. (The main difference between this proof and classic proofs
(e.g., see [AB99]) of the corresponding learning theory result is in this swapping procedure, where
we do the swapping in a particular way to ensure that D' and D' are identically distributed to D
and D even though our sampling is done without replacement.)

Let B” be the event that |¢(D') — ¢(D')| > § for some ¢ € Q. Then Pr[B’] = Pr[B"], so it

suffices to bound Pr[B”]. We will show that Pr[B"] < 2HQ(2kz)6_% by showing that Pr[B” |
D,D| < 2H@(2k)67% for every fixed D and D that can be sampled while generating D’ and D).

To this end, fix D and D. Let t = [(Q|p,,5,)], where D" U D' is regarded as a set of elements
in X. We note that ¢t < II5(2k), since |[D’ U D'| < 2k. Since |(Q|p,5/)| = ¢, we can choose

predicates ¢1,...,¢; € O such that for any predicate ¢ € N@, there exists an i € {1,...,t} such that

Ay = Pilpups 1€ d(x) = ¢i(z) for every x € D'U D'
Let q1, ..., q: be the fraction queries in Q that correspond to the predicates ¢1, ..., ¢:. Then, for
any fraction query g € Q, there exists ani € {1,...,t} such that ¢(D’) = ¢;(D’) and ¢(D’") = ¢;(D’).
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Thus, B” occurs if and only if |g; (D) — ¢:(D’')| > § for some i € {1,...,t}. Then, by the union
bound, we have the following:

" < —a (D) > a NS
Pr[B" | D, D] < t max Pr{lg;(D') — ai(D')| = 5 | D, D]
< (UDN AT >g N ~.
< Hg(2k) g?gtPr[lqz(D) a(D)| = 5 [ D, D]

Fix an i € {1,...,t}. For convenience, we order the elements in D, D, D, and D' as Dy, .. .A,Bk,
Dy, ..., Dy, Dl,i" D;,Aand D/l,.. D;C, respectively, so that for every j € {1,...,k}, D; is
matched with Dj;, and D;. is matched with D; according to the pairing scheme descrlbed above.
Now, observe that

~ ~ ~ ~ 1 k ~ 1 k ~ o~
Prllai(D') = ai(D")| = 5 | D, D] = Pr(| " (D)) = (D))l = 5 | D, D]
=1 =1
1en - I
= Pr[[ > (&:(D)) - ¢u(D})| > 5 | D. D]
j=1
1s, o~ S
= Pr[| > (164Dy) = 6u(Dy)l - 2))| 2 5 | DD,z {11}
j=1
< 267%,

where z; <= {—1, 1} means that z; is sampled uniformly from {—1,1}, and the last inequality follows
o~ o~ a2
from Hoeffding’s inequality. Thus, Pr[B” | D, D] < 2HA(2k‘)e_kT, so Pr[B"] < 2I15(2k)e” s~
a2
Therefore, Pr[B] < 2Pr[B'] = 2Pr[B"] < 4ll5(2k)e” s, as required. O

The above lemma gives an upper bound on the probability that k& random samples (chosen
without replacement) does not simultaneously approximate a class Q of fraction queries well, and
the upper bound involves H@(2k). The following lemma gives an upper bound on II @(Qk) in terms

of the VC dimension of @

Lemma 22. Let O be any class of predicates with finite VC dimension d > 1. Then, for every
integer m > d, we have l15(m) < ().

Proof. This lemma is a well-known result in learning theory and is a corollary of “Sauer’s lemma”,

which states that for any class Q of predicates with finite VC dimension d, I1 5 a(m) < Zz o (M for
all nonnegative integers m (e.g., see [Sau72]). A proof of Sauer’s lemma, as well as this lemma, can
be found in [AB99]. O

We can now combine Lemmas 21 and 22 to get the following proposition.

Proposition 23. Let Q be any class of fraction queries with finite VC dimension d > 1. Then,
for everyn > 1, k> d/2, and g € (0,1], Q has (k,«, B)-sample complezity for databases of size n
with the converter f(q,x) = x, where a = %\/dl n(2ek) 4 ln( ).

Also, for everyn > 1 and o, f € (0,1], Q has (k, a, B)-sample complexity for databases of size n
with conwerter f(q,z) = x, where k is any non-negative integer satisfying k > 5 (2dIn(2 )—Hn( ).

= a2
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Proof. Let O be the class of predicates that corresponds to the class Q of fraction queries. Let
n>1k>d/2, >0 08¢0, 1] and D € X", By Lemma 21, we have Pr[|¢(D) — ¢(D)| >

a for some ¢ € Q] < 4Il4 (2k) Cg , Where D is a database formed by choosmg k random samples

o2
without replacement from the database D. Thus, Q has (k, o, 41l15(2k)e™ 5 )-sample complexity
for databases of size n with converter f(g,x) = x.

o2
Rearranging the inequality 4H@(2k)efkT < B, we get a > \/%(ln(HQ(Zk)) + ln(%)). We have

S _ka?
I5(2k) < (2¢8)4 by Lemma 22, so o > 2—\‘//g\/dln(%) —l—ln(%) implies that 4I15(2k)e” s~ < B.

Thus, Q has (k,/, 5)-sample complexity for databases of size n with converter f(q,x) = x, where
o = M\/all (2t —i—ln(é) as required.

Now, let a € (0,1] and k be any non-negative integer satisfying & > 1$(2dIn(%) + ln( ))-
We note that k£ > d/2 still holds. Thus, from the argument above, to show that Q has (k,« 6)
sample complexity for databases of size n with converter f(¢q,z) = =z, it suffices to show that
a > Lf\/dln(%) + ln(%) holds. Rearranging o > %\/dln(%) + ln(%), we get k > S (dIn(k)+
dIn(%) +1In(3)).

We now use the inequality Ina < ab + ln% — 1, which holds for all a,b > 0; this can be easily
shown by using the inequality 1 + x < e® (which holds for all x € R), setting = to ab — 1 and

rearranging the inequality. Applylng the inequality Ina < ab+1n 1 7 —1witha=Fkand b= g d’ we
have Ink < 2k +In(28) —1 = 2k 4 In (;ggl)

Thus, it suffices to show that k > =5 (dfédk + dln(;gg) +dIn(%) + ln(%)). Rearranging this
inequality, we get k > %(Zdln(%) + ln(B)), which holds by definition of k. O

4.2 Constructing Zero-Knowledge Private Mechanisms for a Class of Fraction
Queries

Proposition 23 gives us a bound on the sample complexity of any class Q of fraction queries in
terms of its VC dimension. Proposition 20 allows us to convert differentially private mechanism to
zero-knowledge private mechanisms for any class of queries with low sample complexity. Thus, we
now combine these two propositions with existing differentially private mechanisms for classes of
fraction queries with low VC dimension.

The following proposition is obtained by using the differentially private mechanism in [BLROS|.

Proposition 24. Let Q be any class of fraction queries with finite VC' dimension d > 1, and
suppose the data universe X is finite. Let n > 1 and e,a,f € (0,1]. Then, for every integer
k = k(n) satisfying k > O((log|X‘)dl°g(§/a)+log(1/5)), there exists a mechanism San that is (c, 3)-

are

useful with respect to Q for databases of size n, and is & = e-zero-knowledge private with respect to
RS(k(-)).
Proof. By Proposition 23, Q has (K, 5, 2) sample complexity for databases of size n with the

converter f(q,z) = x, where k¥’ is any non-negative integer satisfying k' > O%‘(len(%) + ln(%)).
We note that [f(q,x) — f(q,y)| < 1|z —y| for every z,y € R,q € Q. Let Sanpp be the e-
differentially private mechanism in [BLROS] that is (5, g )-useful with respect to Q for databases of
size k" > O((1°g|X‘LCé1€°g(1/ @) 4 logge/ A )). (This result in [BLRO8] actually assumes that X = {0,1}¢
for some d’, but as mentioned in the paper, the result can be easily extended to any finite set X.)

Let k > max{%@dln(%) —Hn(%)), O((10g|X\()XC:l))160g(1/a) + 10g(al€/5))} _ O((log\X|)d10g(§§é0<)+10g(1/3)).

Then, by Proposition 20, we can use Sanpp to construct a mechanism Sanyzg that is (%e 5)—
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zero-knowledge private with respect to RS(k(-)) and is (¢, 3)-useful with respect to Q for databases
of size n. O

We now use the differentially private mechanism in [DRV10] to obtain the following proposition.

Proposition 25. Let Q be any finite class of fraction queries with finite VC dimension d > 1, and
suppose the data universe X is finite. Let n > 1, € € (0,1], and k > 1. Then, for every integer

-y O O, K /
k = k(n) satisfying k > 4, there exists a mechanism San that is (O( Vfl/—%”—l— V1 g|X|§/%|Q|) o ), e ")-

(the, 2ot

useful with respect to Q for databases of size n, and is -zero-knowledge private with

respect to RS(k(-)).

Proof. Let k > g. Then, by Proposition 23, Q has (k, «, %e*”)—sample complexity for databases of

size n with the converter f(q,z) = x, where o = 2—\/‘/5\/d In(2) 4 In(8er) = 0(7“1\/%”) We note that

lf(g,z) — flq,y)| < 1-|z—y| for every x,y € R,q € Q. Let Sanpp be the (e, e™")-differentially

-/ 3/2
private mechanism in [DRV10] that is (O( log‘XL(i;%lQDK ), se~%)-useful with respect to Q for

databases of size k.
Then, by Proposition 20, we can use Sanpp to construct a mechanism Sanzx that is (%e, %5)—

/A 4/ 10 O, K /
zero-knowledge private with respect to RS(k(-)) and is (O( \%” + M g|X|S/%|Q|) i

with respect to O for databases of size n. O

), e~ ")-useful

In general, Propositions 23 and 20 can be used to convert useful differentially private mechanisms
to useful zero-knowledge private mechanisms for classes of fraction queries with low VC dimension.

Recall that if Q is a finite class of fraction queries, then the VC dimension of Q is at most
logy |Q|. Thus, we can replace the VC dimension d in Proposition 25 by log|Q| (we can also do
this in Proposition 24 if we assume Q is finite). However, it is possible that the VC dimension of
a class Q of fraction queries is substantially smaller than log, |Q| (e.g., see [AB99]), especially if Q
is infinite.

5 Zero-Knowledge Private Release of Graph Properties

In this section, we first generalize statistical (row) databases to graphs with personal data so that
we can model a social network and privately release information that is dependent on the graph
structure. We then discuss how to model privacy in a social network, and we construct a sample
of zero-knowledge private mechanisms that release certain information about the graph structure
of a social network.

We represent a social network using a graph whose vertices correspond to people (or other social
entities) and whose edges correspond to social links between them, and a vertex can have certain
personal data associated with it. There are various types of information about a social network one
may want to release, such as information about the people’s data, information about the structure
of the social network, and/or information that is dependent on both. In general, we want to ensure
privacy of each person’s personal data as well as the person’s links to other people (i.e., the list of
people the person is linked to via edges).

To formally model privacy in social networks, let G,, be a class of graphs on n vertices where
each vertex includes personal data. (When we refer to a graph G € G,,, the graph always includes
the personal data of each vertex.) The graph structure is represented by an adjacency matrix, and
each vertex’s personal data is represented by an element in X. For the privacy of individuals, we
use our zero-knowledge privacy definition with some minor modifications:
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e c-zero-knowledge privacy is defined as before except we change “database D € X"” to “graph
D € G,”, and we define (D_;, L) to be the graph D except the personal data of vertex i is
replaced by L and all the edges incident to vertex ¢ are removed (by setting the corresponding
entries in the adjacency matrix to 0); thus (D_;, L) is essentially D with person i’s personal
data and links removed.

We now consider functions g : G, — R™, and we redefine the Li-sensitivity of g to be A(g) =
max{||g(D") — g(D")||s : D', D" € G, s.t. (D_;, 1) = (D”,, L) for some i € [n]}. We also redefine
RS(k(+)) so that the algorithms in RS(k(-)) are given a graph D € G,, and are allowed to choose
k(n) random vertices without replacement and read their personal data; however, the algorithms
are not allowed to read the structure of the graph, i.e., the adjacency matrix. It is easy to verify
that all our previous results still hold when we consider functions g : G,, — R™ on graphs and use
the new definition of A(g) and RS(k(-)).

Since a social network has more structure than a statistical database containing a list of val-
ues, we now consider more general models of aggregate information that allow us to release more
information about social networks:

o RSE(k(-),s) = k(-) random samples with exploration of s vertices: the class of algorithms
T such that on input a graph D € G,, T chooses k(n) random vertices uniformly with or
without replacement (or a combination of both). For each sampled vertex v, T is allowed
to explore the graph locally at v until s vertices (including the sampled vertex) have been
visited. The data of any visited vertex can be read. (RSE stands for “random samples with
exploration”.)

e RSN(k(-),d) = k(-) random samples with neighborhood of radius d: same as RSE(k(-),s)
except that while exploring locally, instead of exploring until s vertices have been visited, T’
is allowed to explore up to a distance of d from the sampled vertex. (RSN stands for “random
samples with neighborhood”.)

Note that these models of aggregate information include RS(k(-)) as a special case. We can
also consider variants of these models where instead of allowing the data of any visited vertex to be
read, only the data of the k(n) randomly chosen vertices can be read. (The data of the “explored”
vertices cannot be read.)

Remark. In the above models, vertices (people) in the graph with high degree may be visited
with higher probability than those with low degree. Thus, the privacy of these people may be less
protected. However, this is often the case in social networks, where people with very many friends
will naturally have less privacy than those with few friends.

We now show how to combine Proposition 12 (the connection between sample complexity and
zero-knowledge privacy) with recent sublinear time algorithms to privately release information
about the graph structure of a social network. For simplicity, we assume that the degree of every
vertex is bounded by some constant dpax (which is often the case in a social network anyway).3

Let G,, be the set of all graphs on n vertices where every vertex has degree at most dyax. We
assume that dy.x is publicly known. Let M = d“‘%” be an upper bound on the number of edges
of a graph in G,. For any graph G € G, the (relative) distance from G to the some property II,
denoted dist(G,1I), is the least number of edges that need to be modified (added/removed) in G
in order to make it satisfy property II, divided by M.

Theorem 26. Let Conn, Eul, and CycF be the property of being connected, Eulerian®, and cycle-

3Weaker results can still be established without this assumption.
4A graph G is Eulerian if there exists a path in G that traverses every edge of G exactly once.
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free, respectively. Let d(G) denote the average degree of a vertex in G. Lete,§ > 0, and let K € Z+.
Then, for the class of graphs G,, we have the following results:

1. The mechanism San(G) = dist(G, Conn)-l—Lap(M) is e+e~E=¢/9) _zero-knowledge private
with respect to RSE(k(-),s), where k(n) = O((éd )2) and s = O(ﬁ).

2. The mechanism San(G) = dist(G, Eul) + Lap(w) is €+ e~ (K=¢/%) _zero-knowledge private
with respect to RSE(k(-),s), where k(n) = O((éd )2) and s = O(ﬁ).

3. The mechanism San(G) = dist(G, C’ycF)—l—Lap( /n+6) is e+e~(K=¢/% _zero-knowledge private
with respect to RSE(k(-),s), where k(n) = 0(52) and s = O(m).

4. The mechanism San(G) = d(G) + Lap(w) is € + ef(K*E/‘;) zero—knowledge private

with respect to RSN (k(-),2), where k(n) = O(Ky/nlog*n - 59/2 log(%)). Here, we further
assume that § € (0 ,%) and every graph in G has no isolated vertices and the average degree

of a vertex is bounded by L.

The results of the above theorem are obtained by combining Proposition 12 (the connection be-
tween sample complexity and zero-knowledge privacy) with sublinear time algorithms from [MR09]
(for results 1, 2, and 3) and [GRO8] (for result 4). Intuitively, the sublinear algorithms give bounds
on the sample complexity of the functions (dist(G, Conn), etc.) with respect to RSE(k(-),s) or
RSN (k(-),d).

Proof.

2/n+6
PR

Distance approximation to connectivity: Let San(G) = dist(G, Conn) + Lap(\), where A =
In [MRO09], Marko and Ron have given an algorithm that approximates the distance to connectivity
to within an additive error § with probability at least % The algorithm does this by randomly
choosing O( m) vertices, and for each chosen vertex, exploring the graph locally from the ver-

tex until at most O(m) vertices have been reached. Here is the algorithm from [MR09] (modified
slightly to fit this context):

1. Uniformly and independently sample ¢t = ﬁ vertices from G. Let S be the multiset of
the sampled vertices.

2. For every v € S, perform a BFS starting from v until 5~— d vertices have been reached or
v’s connected component has been found. Let 72, be the number of vertices in v’s connected
component in case it was found. Otherwise n, = co.

3. Let C = %Zves(%) and output ﬁ(é —1).

By running the above algorithm O(K) times and outputting the median value, we can increase
the success probability to 1 — e~*. Thus, dist(G, Conn) has (6,1 — e~ &) sample complexity with
respect to RSE( (+),s), where k(n) = O(m) and s = O(ﬁ). By Proposition 12, San is

ln( 2/n+5

texrT Ky zero—knowledge private with respect to RSE(k(-), s).
Now, observe that In(e e + ei_K) <In(ef + e/ Ky < et /0K = ¢ 4 e~ (K=¢/0) Thus, we
have the following result:

e The mechanism San(G) = dist(G, Conn)+Lap(2/n+5) is e+e~(K=¢/9)_gero-knowledge private
with respect to RSE(k(-),s), where k(n) = O((dd )2) and s = O(m).
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Distance approximation to being Eulerian: Let San(G) = dist(G, Eul) + Lap()), where A = ML:‘S.

n [MR09], Marko and Ron have given an algorithm that approximates the distance to being
Eulerian to within an additive error & with probability at least % The algorithm does this by
randomly choosing O(m) vertices, and for each chosen vertex, exploring the graph locally
from the vertex until at most O( ﬁ) vertices have been reached.

By a similar analysis as in the “distance approximation to connectivity” example, we get the
following result:

e The mechanism San(G) = dist(G, Eul) + Lap( 4/n 5) is € + e~ (K=¢/%)_zero-knowledge private
with respect to RSE(k(-), s), where k(n) = O((dd"a )2) and s = O(m).

Distance approximation to cycle freeness: Let San(G) = dist(G,CycF)+ Lap(\), where A = 2/2+6.
In [MR09], Marko and Ron have given an algorithm that approximates the distance to being cycle-
free to within an additive error § with probability at least % The algorithm does this by randomly
choosing O( %) vertices7 and for each chosen vertex, exploring the graph locally from the vertex
until at most O (57— d —) vertices have been reached.

By a similar analysm as in the “distance approximation to connectivity” example, we get the
following result:

e The mechanism San(G) = dist(G, CycF)+L p( 6) is e-+e~(K=¢/%)_gero-knowledge private
with respect to RSE(k(+), s), where k(n) = (52) and s = O(ﬁ).

Approximating the average degree of a graph: Let San(G) = d(G)+ Lap()\), where \ = M.
In [GRO8], Goldreich and Ron have shown that d(G) can be approximated by an algorithm (which
needs the extra assumptions stated in the above theorem) to Within a multiplicative error of (149)
with probability at least %, by randomly choosing O(y/nlog®n - 5 /2 iog( )) vertices, and for each
chosen vertex, exploring the graph locally from the vertex up to a distance of 2. By running the
approximation algorithm O(K) times and outputting the median value, we can increase the success
probability to 1 — 27K,

Such an algorithm is a (5L 1 — 2= %)-sampler for d(G) with respect to RSN (k(- ), 2), where

max/"
k(n) = O(K\/nlog*n - 59/2 log($)). By Proposition 12, San is ln(€2d L eX ~KY_zero-
knowledge private with respect to RSN (k(-), 2).
Now, observe that ln(eQdmaxA/nHL eg_K) < In(ef 4 /%K) < e + e~ (K=¢/9) Thus, we have

the following result:

e The mechanism San(G) = d(G) + Lap(iwmaxe/ ntOLy is ¢ + e~ (K=¢/9)_zero-knowledge private
with respect to RSN (k(-),2), where k(n) = O(K+/nlog®n - 59% iog(%))_

O]

There are already many (non-private) sublinear time algorithms for computing information
about graphs whose accuracy is proved formally (e.g., see [GR08, CRT05, MR09, GR97, KKR04,
GR98, PR02|) or demonstrated empirically (e.g, see [LF06, KFCT05]). We leave for future work to
investigate whether these (or other) sublinear algorithms can be used to get zero-knowledge private
mechanisms.

29



6 Acknowledgements

We thank Cynthia Dwork, Ilya Mironov, and Omer Reingold for helpful discussions, and we also
thank the anonymous reviewers of the Eighth Theory of Cryptography Conference (TCC 2011) for
their helpful comments.

This material is based upon work supported by the National Science Foundation under Grants
0627680 and 1012593, by the New York State Foundation for Science, Technology, and Innovation
under Agreement C050061, and by the iAd Project funded by the Research Council of Norway.
Any opinions, findings and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the sponsors.

References

[AB9Y]

[BDKO7]

[BLROS]

[CKLMOY]

[CRT05]

[Dal77]

[DKM*06]

[DMNS06]

[DNOS]

[DRV10]

[Dwo06]
[Dwo09]

Martin Anthony and Peter L. Bartlett, Neural network learning: Theoretical founda-
tions, Cambridge University Press, 1999.

Lars Backstrom, Cynthia Dwork, and Jon Kleinberg, Wherefore art thou r3579x?:
anonymized social networks, hidden patterns, and structural steganography, WWW ’07:
Proc. of the 16th international conference on World Wide Web, 2007, pp. 181-190.

Avrim Blum, Katrina Ligett, and Aaron Roth, A learning theory approach to non-
interactive database privacy, STOC ’08: Proc. of the 40th annual ACM symposium on
Theory of computing, 2008, pp. 609-618.

Bee-Chung Chen, Daniel Kifer, Kristen LeFevre, and Ashwin Machanavajjhala,
Privacy-preserving data publishing, Foundations and Trends in Databases 2 (2009),
no. 1-2, 1-167.

Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan, Approximating the minimum
spanning tree weight in sublinear time, STAM J. Comput. 34 (2005), no. 6, 1370-1379.

Tor Dalenius, Towards a methodology for statistical disclosure control, Statistik Tid-
skrift 15 (1977), 429-444.

Cynthia Dwork, Krishnaram Kenthapadi, Frank Mcsherry, Ilya Mironov, and Moni
Naor, Our data, ourselves: Privacy via distributed noise generation, In EUROCRYPT,
2006, pp. 486-503.

Cynthia Dwork, Frank Mcsherry, Kobbi Nissim, and Adam Smith, Calibrating noise to
sensitivity in private data analysis, Proc. of the 3rd Theory of Cryptography Confer-
ence, 2006, pp. 265—-284.

Cynthia Dwork and Moni Naor, On the difficulties of disclosure prevention in statistical
databases or the case for differential privacy, 2008.

Cynthia Dwork, Guy Rothblum, and Salil Vadhan, Boosting and differential privacy,
Proc. of the 51st Annual IEEE Symposium on Foundations of Computer Science, 2010.

Cynthia Dwork, Differential privacy, ICALP, 2006, pp. 1-12.

C. Dwork, The differential privacy frontier, Proc. of the 6th Theory of Cryptography
Conference (TCC), 2009.

30



[FWCY10] Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu, Privacy-preserving data

[GLP11]

[GRY7]

[GROS]

[GROS]

[HMJ*08]

[Hoe63]

[IM09)]

[KFC05]

[Kif09]

[KKR04]

[LFO6]

[MROY]

[New03]

[PRO2]

[Sau72]

publishing: A survey of recent developments, ACM Comput. Surv. 42 (2010), no. 4,
1-53.

Johannes Gehrke, Edward Lui, and Rafael Pass, Towards privacy for social networks: a
zero-knowledge based definition of privacy, Proceedings of the 8th conference on Theory
of cryptography, TCC’11, 2011, pp. 432-449.

Oded Goldreich and Dana Ron, Property testing in bounded degree graphs, Proc. of the
29th annual ACM symposium on Theory of computing, 1997, pp. 406—415.

Oded Goldreich and Dana Ron, A sublinear bipartiteness tester for bounded degree
graphs, Proc. of the 30th annual ACM Symposium on Theory of Computing, 1998,
pp. 289-298.

Oded Goldreich and Dana Ron, Approximating average parameters of graphs, Random
Struct. Algorithms 32 (2008), no. 4, 473-493.

Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis, Resist-
ing structural re-identification in anonymized social networks, Proc. VLDB Endow. 1
(2008), 102-114.

Wassily Hoeffding, Probability inequalities for sums of bounded random variables, Jour-
nal of the American Statistical Association 58 (1963), no. 301, 13-30.

Carter Jernigan and Behram Mistree, Gaydar, http:
//www.telegraph.co.uk/technology/facebook/6213590/
Gay-men-can-be-identified-by-their-Facebook-friends.html, 2009.

V. Krishnamurthy, M. Faloutsos, M. Chrobak, L. Lao, J-H Cui, and A. G. Percus,
Reducing large internet topologies for faster simulations, IFIP NETWORKING, 2005.

Daniel Kifer, Attacks on privacy and definetti’s theorem, SIGMOD Conference, 2009,
pp. 127-138.

Tali Kaufman, Michael Krivelevich, and Dana Ron, Tight bounds for testing bipartite-
ness in general graphs, STAM J. Comput. 33 (2004), no. 6, 1441-1483.

Jure Leskovec and Christos Faloutsos, Sampling from large graphs, KDD ’06: Proc.
of the 12th ACM SIGKDD international conference on Knowledge discovery and data
mining, 2006, pp. 631-636.

Sharon Marko and Dana Ron, Approximating the distance to properties in bounded-
degree and general sparse graphs, ACM Trans. Algorithms 5 (2009), no. 2, 1-28.

M. E. J. Newman, Fgo-centered networks and the ripple effect, Social Networks 25
(2003), no. 1, 83 — 95.

Michal Parnas and Dana Ron, Testing the diameter of graphs, Random Struct. Algo-
rithms 20 (2002), no. 2, 165-183.

N. Sauer, On the density of families of sets, Journal of Combinatorial Theory, Series A
13 (1972), no. 1, 145 — 147.

31



Appendix A

Example (A more detailed explanation and analysis of the Democrats vs. Republicans example).
Consider a a social network of n people that are grouped into cliques of size c¢. (For simplicity,
assume that ¢ divides n.) In each clique, either most people are Democrats, or most people are
Republicans. To model this situation, we first let a € [0,0.2]. For each clique, we choose a number
pin [0,a] U [l — a, 1] randomly and uniformly, and we decide that each person in the clique is a
Democrat with probability p, or a Republican with probability 1 — p. This gives us a probability
distribution over databases, each with a binary attribute X = {0,1} and n rows, where each row
states the political preference of a single person; a value of 1 represents Democrat, while a value of
0 represents Republican.

Now, let g : X" — R™¢ be the function that computes the proportion of Democrats in each
clique. Let San be the mechanism that, on input a database D € X", first computes g(D) and then
adds Lap(é) noise to each component of g(D). San then releases this vector of noisy proportions.
The Lj-sensitivity (see [DMNS06]) A(g) of the function g being computed is 1/c, since if a single
person changes his or her political preference, the value of g changes only by 1/c¢ in one of the
components (cliques). Recall from [DMNS06] that a mechanism that computes a function h(D)
and then adds Lap(%) noise to each component of h(D) is e-differentially private. Thus, San
is e-differentially private, so for small €, one may think that it is safe to release such information
without violating the privacy of any particular person. That is, the released data should not allow
us to guess correctly with probability significantly greater than 1/2 whether a particular person is
a Democrat or a Republican. However, this is not the case.

To see this, suppose we know which clique some person ¢ is in. We look at the data released
by San to obtain the noisy proportion p for the clique person i is in. If p > 0.5, we guess that
person i’s clique mostly consists of Democrats, so we guess that person i is a Democrat; otherwise,
we guess that person ¢’s clique mostly consists of Republicans, so we guess that person i is a
Republican. Since San adds Lap(é) noise to the true proportion p of person i’s clique, we have
Prp—p>Li—a]=Prp—-p>3—al=F(-(} —a) = %67(%704)66, where F(z) = 2 is the
cumulative distribution function of the Laplace distribution Lap(L) for = < 0.

We note that if p € [0,a], then p —p < % — « implies that our guess for person i’s clique is
correct, so this occurs with probability at least 1 — %e_(%_a)“. Similarly, if p € [1 — «, 1], then
p—p< % — « implies that our guess for person i’s clique is correct, so this occurs with probability
at least 1 — %67(%70‘)“. In both cases, our guess for person i’s clique is correct with probability at

%—a)ce

least 1 — %e_( Therefore, our guess for person i herself is correct with probability at least
i

(1 - LemGaeey(1 — ).

With € = 0.1, a = 0.2, and ¢ = 200, our guess for person 7 is correct with probability at least
(1—L1e" () (1 — a) ~ 0.799. This is significantly higher than 0.5 e = 0.5 - €*! & 0.553, which
one might think is supposed to be an upper bound on the probability that our guess is correct,
since San satisfies e-differential privacy with e = 0.1 (see the appendix in [DMNS06]; the 0.5 comes
from guessing randomly).

With e = 0.01, a = 0.2, and ¢ = 200, our guess for person i is correct with probability at least

1_

(1 —4e=(G=9))(1 — a) ~ 0.580. This is still a lot higher than 0.5 - e = 0.5 - €' ~ 0.505.
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