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Abstract
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1 Introduction

Commitment schemes are one of the most fundamental cryptographic building blocks. Often de-
scribed as the “digital” analogue of sealed envelopes, commitment schemes enable a sender to
commit itself to a value while keeping it secret from the receiver. This property is called hid-
ing. Furthermore, the commitment is binding, and thus in a later stage when the commitment is
opened, it is guaranteed that the “opening” can yield only a single value determined in the com-
mitting stage. Their applications range from coin flipping [Blu83] to the secure computation of
any efficiently computable function [GMW91, GMW87]. In light of their importance, commitment
schemes have received a considerable amount of attention. This has resulted in a fairly comprehen-
sive understanding of the hardness assumptions under which they can be realized; in particular, by
the results of Naor [Nao91] and H̊astad et al [HILL99], the existence of one-way functions implies
the existence of two-round commitments.

For many applications, however, the most basic security guarantees of commitments are not
sufficient. For instance, the basic definition of commitments does not rule out an attack where
an adversary, upon seeing a commitment to a specific value v, is able to commit to a related
value (say, v − 1), even though it does not know the actual value of v. This kind of attack
might have devastating consequences if the underlying application relies on the independence of
committed values (e.g., consider a case in which the commitment scheme is used for securely
implementing a contract bidding mechanism). Indeed, for the general task of secure multi-party
computation [GMW87], such independence is cruicial. The state of affairs is even worsened by
the fact that many of the known commitment schemes are actually susceptible to this kind of
attack. In order to address the above concerns, Dolev, Dwork and Naor (DDN) introduced the
concept of non-malleable commitments [DDN00]. Loosely speaking, a commitment scheme is said
to be non-malleable if it is infeasible for an adversary to “maul” a commitment to a value v into a
commitment to a related value ṽ.

More precisely, we consider a man-in-the-middle (MIM) attacker that participates in two con-
current execution of a commitment scheme 〈C,R〉; in the “left” execution it interacts with an honest
committer (running C); in the “right” execution it interacts with an honest receiver (running R).
Additionally, we assume that the players have n-bit identities (where n is polynomially related to
the security parameter), and that the commitment protocol depends only on the identity of the
committer; we sometimes refer to this as the identity of the interaction. Intuitively, 〈C,R〉 being
non-malleable means that if the identity of the right interaction is different than the identity of
the left interaction (i.e., A does not use the same identity as the left committer), the value A
commits to on the right does not depend on the value it receives a commitment to on the left; this
is formalized by requiring that for any two values v1, v2, the values A commits to after receiving
left commitments to v1 or v2 are indistinguishable.

The first non-malleable commitment protocol was constructed by Dolev, Dwork and Naor [DDN00]
in 1991. The security of their protocol relies on the minimal assumption of one-way functions and
requires Ω(log n) rounds of interaction, where n ∈ N is the length of party identities. Non-malleable
commitments have since been extensively studied in the literature; the main question has been to
determine the number of communication rounds needed for non-malleable commitments. Let us
briefly survey some of this literature.

1.1 The State of the Art of Non-malleable Commitments

As mentioned, the original work by DDN assumes only one-way functions, and considers the “plain”
model of execution; that is, there is no trusted infrastructure. DiCrenenzo, Ishai and Ostrovsky
[CKOS01] and follow-up works in e.g., [CKOS01, CIO01, CF01, FF09, DG03] showed how to
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improve the round-complexity of the DDN construction when assuming the existence of some
trusted infrastructure (e.g. a common random string); in such models non-interactive (i.e., single
message) non-malleable commitments based on only one-way function are known [DG03]. The first
improvement to the round-complexity of the DDN construction without any trusted infrastructure
came more than a decade later. Following the ground-breaking work by Barak on non-black-box
simulation [Bar01], in 2002, Barak [Bar02] presented a constant-round protocol for non-malleable
commitments; the security of this protocol however relies on the existence of trapdoor permutations
and hash functions that are collision-resistant against circuits of sub-exponential size. A few years
later, Pass and Rosen [PR05b] (relying on a technique from [Pas04]), showed that collision resistant
hash functions secure against polynomially-sized circuits are sufficient to obtain a constant-round
protocol. Next, Pandey, Pass and Vaikuntanathan [PPV08] provided a construction of a non-
interactive non-malleable commitment based on a new hardness assumption with a strong non-
malleability flavour; in contrast to the earlier constant-round constructions, their protocol has a
black-box proof of security.

Last year, the authors showed a O(1)log∗ n-round protocol that is based on the existence of
one-way functions and uses a black-box proof of security [LP09]. Subsequent work by Pass and
Wee [PW10] obtained a constant-round protocol based on sub-exponetially hard one-way functions
(again using a black-box proof of security). Finally, a very recent work by Wee [Wee10] improved
the round-complexity of the [LP09] protocol to O(log∗ n)-rounds, based on one-way functions.

So, summarizing the state of the art, we have:

• Based on the minimal assumption of (polynomially-hard) one-way functions, the best proto-
cols require O(log∗)-rounds and have black-box proofs of security.

• Constant-round protocols are known based on either collision-resistant hash functions (and
using a non-black-box proofs of security), or subexponetially hard one-way functions (using
a black-box proof of security).

1.2 Settling the Round-complexity of Non-Malleable Commitments

In this work, we settle the round-complexity of non-malleable commitments: we present a constant-
round protocol in the “plain” model that is based on the assumption of (polynomially-hard) one-way
functions, and has a black-box proof of security. Since the existence of commitment schemes already
implies the existence of one-way functions (cl. [IL89]), we have:

Theorem 1. Assume the existence of a commitment scheme. Then, there exists a constant-round
non-malleable commitment scheme with a black-box proof of security.

Concurrent Non-malleability: As mentioned, the original notion of non-malleability considers
an MIM attacker participating in a single execution on the left and a single execution on the right.
Already the original DDN paper suggested that a stronger notion of non-malleability—concurrent
non-malleability—where the MIM may participate in an unbounded number of executions on both
the left and the right, is desirable. Pass and Rosen [PR05a] provided the first construction of a
concurrently non-malleable commitment scheme; their scheme only has a constant number of rounds
but relies on the existence of claw-free permutations (and non-black-box techniques). Subsequently,
Lin, Pass and Venkitasubramaniam [LPV08] provided an O(n)-round construction based on one-
way functions. Finally, the protocol in [LP09] and its variants [PW10, Wee10] yield a O(log∗)-round
concurrent non-malleable protocol based on one-way functions, or a constant-round concurrent non-
malleable protocol based on subexponential one-way functions. As we show, our protocol is also
concurrently non-malleable.
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Robust Non-malleability: In [LP09], we introduced the notion of robust non-malleable commit-
ments. Roughly speaking, whereas non-malleability considers a scenario where a MIM participates
in the same commitment protocol on the left and the right, r-robustness considers a notion of
non-malleability for commitments where the MIM attacker participates in an arbitrary r-round
protocol on the left, and the commitment protocol on the right. Robustness is useful when using
non-malleable commitments as subprotocols within larger protocols. As we show, for any constant
r, our protocol can be made r-robust while still remaining constant-round.

Thus summarizing the above discussion, we have:

Theorem 2. Assume the existence of a commitment scheme. Then, for any constant r, there exists
a constant-round commitment scheme that is r-robust concurrently non-malleable with a black-box
proof of security.

1.3 Applications to Secure Computation

As mentioned, “independence” of inputs is crucial for secure multi-party computation protocols.
Indeed, there has been a tight interplay between work on the round-complexity of multi-party
computation (MPC) and work on non-malleable commitments.

Goldreich, Micali and Wigderson’s [GMW87] original work on secure multi-party computation
showed a Ω(m)-round multi-party computation protocol based on the existence of enhanced trap-
door permutations (TDPs), where m is the number of players in the execution; implicit in their work
is a O(n)-round non-malleable commitment for the special case of so-called “synchronizing” ad-
versaries that have identities of length log n. Subsequent works improved the round-complexity by
making stronger assumptions. Katz, Ostrovsky, and Smith [KOS03], following the work by Chor
and Rabin [CR87], obtained a O(logm)-round MPC protocol assuming TDPs and dense-crypto
systems by relying on the non-malleable commitments from [DDN00]. By additionally assuming
the existence of hash-function collision-resistant against circuits of sub-exponential size (and non-
black-box techniques), they also obtained a O(1)-round MPC protocol by instead relying on the
non-malleable commitment from [Bar02]. More recently, Pass [Pas04], showed the existence of a
O(1)-rounds MPC protocol assuming only TDPs and (standard) collision resistant hash functions
(but still using non-black box techniques); this technique in turned was used in the non-malleable
commitment of [PR05a].

The implicit connection between the round-complexity of non-malleable commitments and se-
cure multi-party was formalized by Lin, Pass and Venkitasubramaniam in [LPV09]: they show that
the existence of k-round 4-robust non-malleable commitments and the existence of TDPs implies
the existence of O(k)-round secure multi-party computation. All the more recent constructions of
non-malleable commitments [LP09, PW10, Wee10] are robust, and as a consequence, the state of
the art of secure multi-party computation was the same as for non-malleable commitments.

Combining the result of [LPV09] with Theorem 2, we get that secure multi-party computations
can be performed in a constant number of round based on only TDPs.

Theorem 3. Assume the existence of enhanced trapdoor permutations. Then there exists a constant-
round protocol for secure multi-party computation.

1.4 Applications to Non-malleable ZK

Non-malleable zero-knowledge [DDN00] consider the execution of zero-knowledge protocols in the
presence of a MIM attacker. Roughly speaking, a zero-knowledge protocol is non-malleable if the
MIM attacker can only provide convincing right-interaction proofs of statements that it could have
proved without participating in the left interaction. The recent result of [LPTV10] shows that the
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existence of k-round 4-robust non-malleable commitments implies the existence of O(k)-round non-
malleable zero-knowledge arguments for NP. By combining their results with Theorem 2 we directly
have that the existence of one-way functions implies the existence a constant-round zero-knowledge
argument for NP.

Theorem 4. Assume the existence of one-way functions. Then there exists a constant-round non-
malleable zero-knowledge argument for NP with a black-box proof of security.

1.5 A New Technique: “Message-scheduling in the head”

The main idea underlying all non-malleable commitment schemes is to “encode” the identity of
the committer into the protocol. At the very least, this ensure that unless the attacker copies the
identity of the left committer, the attacker cannot simply forward messages between the left and
the right executions. But we also need to ensure that the attacker cannot in a clever way maul the
messages it receives on the left so they become useful on the right. For instance, in the original
DDN construction, the identity is encoded into the scheduling of messages in the protocol; on a
very high-level (and oversimplifying), the idea is to ensure that at some point in the execution, the
MIM must “speak” while only receiving “useless” messages. The problem with this approach is
that it requires a high round-complexity.

We will revisit the DDN approach. The main idea behind our scheme is to perform the message
scheduling “in the head”. A bit more precisely, our protocol follows the “simulation-soundness”
paradigm of Sahai [Sah99], first used in the context of CCA-secure encryption, and next used by
Pass and Rosen [PR05a] and Lin and Pass [LP09] in the context of non-malleable commitments;
that is, the main component of our construction is a method for enabling us to “simulate” the left
interaction, while ensure that the right interaction remains “sounds”. Towards this, we embedd a
“trapdoor” into the protocol which depends on the identity of the interaction; proving simulation-
soundness then essentially amounts to showing that there exists a way to recover the trapdoor for
the left intraction, while ensuring that the adversary does not recover the trapdoor for the right
interaction (as long as the right interaction has a different identity than the left interaction).

The idea is to have a protocol where the trapdoor can be recovered by “rewinding” some specific
messages in the protocol—called “slots”—in a specific order which depends on the identity of the
interaction. Furthemore, the protocol should have the property that if this specific rewinding order
is not the rewinding order actually used, then a trapdoor cannot be recovered. So, if we rewind the
left interaction according to the rewinding order corresponding to the identity of the left interaction,
this will still not enable the adversary to recover the trapdoor corresponding to the right interaction
(unless the identity of the right interaction is the same as the identity of the left interaction). In
our particular instantiation of this idea, the trapdoor will be a “signature-chain” (i.e., a signature
on a signature on a signature, etc.) of length n (i.e., the identity length) using different keys; the
choice of the keys in the signature chain are determined by the identity of the interaction. Next, the
protocol will have a “slot” for each of the keys where the receiver is willing to sign a single message
for the committer using the key corresponding to the slot. The key point is that the simulator is
able to rewind the slots in an appropriate order to recover a signature-chain corresponing to the
identity of the left interaction; but the rewindings will still not enable the adversary to recover a
signature-chain corresponding to any other identity.

1.6 Outline

In Section 2, we provide some preliminaries. In Section 3, we provide an overview of our protocol
construction and its security proof. In Section 4 we provide some formalizations and results abouts
“signature-chains”. Our protocol (which relies on the notion of a signature chain) is presented in
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Section 5. We provide the proof of (stand-alone) non-malleabilty in Section 6; in Section 7 and 8,
we demonstrate that our protocol is also concurrent non-malleable, and can be made r-robust for
any constant r.

2 Preliminaries

Let N denote the set of all positive integers. For any integer n ∈ N , let [n] denote the set
{1, 2, . . . , n}, We denote by {0, 1}n the set of binary strings of length n, and {0, 1, 2}n the set of
trinary strings of length n. Given a binary (or trinary) string ψ of length n, we denote by [ψ]i1
the prefix of ψ of length i. We denote by PPT probabilistic polynomial time Turing machines.
We assume familiarity with interactive Turing machines, denoted ITM, interactive protocols, and
computational indistinguishability; the formal definitions of interactive protocols and comutational
indistinguishability are provided in Appendix A. Given a pair of ITMs, A and B, we denote by
〈A(x), B(y)〉(z) the random variable representing the (local) output of B, on common input z and
private input y, when interacting with A with private input x, when the random tape of each
machine is uniformly and independently chosen.

2.1 Signature Schemes

We focus on fixed-length signature schemes Π = (Gen, Sign, V er), that is, the signing algorithm
Sign on input 1n, a public key pk and a message m ∈ {0, 1}∗, always outputs a signature of length
n. We refer the reader to [Gol04] for a formal definition. Such signature schemes can be constructed
relying on universal one-way hash functions [NY89], which in turn can be based on any one-way
function [Rom90]. Below, a signature scheme always refers to a fixed-length signature scheme.

2.2 Commitment Schemes

Commitment schemes are used to enable a party, known as the sender, to commit itself to a value
while keeping it secret from the receiver (this property is called hiding). Furthermore, the commit-
ment is binding, and thus in a later stage when the commitment is opened, it is guaranteed that
the “opening” can yield only a single value determined in the committing phase. In this work, we
consider commitment schemes that are statistically-binding, namely while the hiding property only
holds against computationally bounded (non-uniform) adversaries, the binding property is required
to hold against unbounded adversaries. We refer the reader to [Gol01] for a formal definition.

Two-round (i.e., a single message from the receiver followed by a single message from the
committer) commitment schemes are known to exist based on the minimal assumption of one-way
functions [Nao91, HILL99]. In the sequel of the paper, a commitment scheme always refers to a
statistically-binding commitment.

Tag-based Commitment Scheme. Following [PR05a, DDN00], we consider tag-based commit-
ment schemes where, in addition to the security parameter, the committer and the receiver also
receive a “tag”—a.k.a. the identity—id as common input.

2.3 Concurrent Non-Malleable Commitments

We recall the definition of concurrent non-malleability from [LPV08]. For convenience, we use a
slightly different presentation (based on indistinguishability rather than simulation); equivalence
follows using a standard argument (c.f. [GM84, PR05a]). Let 〈C,R〉 be a tag-based commitment
scheme, and let n ∈ N be a security parameter. Consider a man-in-the-middle adversary A (as
shown in figure 1) that, on inputs n and z (where z is received as an auxiliary input), participates
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Figure 1: A concurrent man-in-the-middle adversary.
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(i) one-one (ii) one-many (iii) many-one

Figure 2: Restricted man-in-the-middle adversaries.

in m left and right interactions simultaneously. In the left interactions the man-in-the-middle
adversary A interacts with C, receiving commitments to values v1, . . . , vm, using identities of length
n, id1, . . . , idm ∈ {0, 1}n, of its choice. In the right interactions A interacts with R attempting to
commit to a sequence of related values ṽ1, . . . , ṽm, again using identities of length n ĩd1, . . . , ĩdm of
its choice. If any of the right commitments are invalid, or undefined, its value is set to ⊥. For any i
such that ĩdi = idj for some j, set ṽi = ⊥—i.e., any commitment where the adversary uses the same
identity as one of the left interactions is considered invalid. Let mimA

〈C,R〉(v1, . . . , vm, z) denote a
random variable that describes the values ṽ1, . . . , ṽm and the view of A, in the above experiment.

Definition 1. A commitment scheme 〈C,R〉 is said to be concurrent non-malleable (with respect
to itself) if for every polynomial p(·), and every PPT man-in-the-middle adversary A that par-
ticipates in at most m = p(n) concurrent executions, the following ensembles are computationally
indistinguishable.{

mimA
〈C,R〉(v1, . . . , vm, z)

}
n∈N,v1,...,vm∈{0,1}n,v′1,...,v′m∈{0,1}n,z∈{0,1}∗{

mimA
〈C,R〉(v

′
1, . . . , v

′
m, z)

}
n∈N,v1,...,vm∈{0,1}n,v′1,...,v′m∈{0,1}n,z∈{0,1}∗

We also consider relaxed notions of concurrent non-malleability: one-one, one-many, and many-
one secure non-malleable commitments (See Figure 2 below.) In a one-one (a.k.a., a stand-alone
secure) non-malleable commitment, we consider only adversaries A that participate in one left and
one right interaction; in one-many, A participates in one left and many right, and in many-one, A
participates in many left and one right.

As shown in [LPV08], any protocol that is one-many non-malleable is also concurrent non-
malleable.

Proposition 1 ([LPV08]). Let 〈C,R〉 be a one-many concurrent non-malleable commitment. Then,
〈C,R〉 is also a concurrent non-malleable commitment.
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AB(y)

Com(ṽm)
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Com(ṽ1)

·· · ·· ·

·· ·

Figure 3: A concurrent man-in-the-middle adversary with respect to protocol B on input y.

2.4 Robustness: Non-Malleability w.r.t. k-round Protocols

The concept of non-malleability is traditionally only considered in a setting where a man-in-the
middle adversary is participating in two (or more) executions of the same protocol. We here
consider a notion of non-malleability with respect to arbitrary k-round protocols. Below, we recall
the definition of k-robustness from [LP09].

Consider a one-many man-in-the-middle adversary A (as shown in figure 3) that participates in
one left interaction—communicating with a machine B—and many right interactions—acting as a
committer using the commitment scheme 〈C,R〉. As in the standard definition of non-malleability,

A can adaptively choose the identities in the right interactions. We denote by mimB,A
〈C,R〉(y, z) the

random variable consisting of the view of A(z) in a man-in-the-middle execution when communicat-
ing with B(y) on the left and honest receivers on the right, combined with the values A(z) commits

to on the right. Intuitively, we say that 〈C,R〉 is one-many non-malleable w.r.t B if mimB,A
〈C,R〉(y1, z)

and mimB,A
〈C,R〉(y2, z) are indistinguishable, whenever interactions with B(y1) and B(y2) cannot be

distinguished.

Definition 2. Let 〈C,R〉 be a commitment scheme, and B a PPT ITM. We say the commitment
scheme 〈C,R〉 is one-many non-malleable w.r.t. B, if for every two sequences {y1

n}n∈N and {y2
n}n∈N ,

y1
n, y

2
n ∈ {0, 1}n, such that, for all PPT ITM Ã, it holds that{

〈B(y1
n), Ã(z)〉(1n)

}
n∈N,z∈{0,1}∗

≈
{
〈B(y2

n), Ã(z)〉(1n)
}
n∈N,z∈{0,1}∗

then it also holds that, for every PPT one-many man-in-the-middle adversary A,{
mimB,A

〈C,R〉(y
1
n, z)

}
n∈N,z∈{0,1}∗

≈
{
mimB,A

〈C,R〉(y
2
n, z)

}
n∈N,z∈{0,1}∗

We say that 〈C,R〉 is one-many k-robust if 〈C,R〉 is one-many non-malleable w.r.t. any machine
B that interacts with the man-in-the-middle adversary in k rounds.

3 Proof Overview

To explain the main ideas behind our construction, we here focus on outlining the construction
of a constant-round non-malleable commitment scheme that is secure for synchronizing and non-
aborting adversaries; we next comment on how to deal with general adversaries. An adversary is
said to be synchronizing if it “aligns” the left and the right executions; that is, whenever it receives
message i on the left, it directly sends message i on the right, and vice versa. An adversary is said
to be non-aborting if it never sends any invalid messages in the left interaction (where it is acting
as a receiver); it might still send invalid messages on the right.

As mentioned in the introduction, the idea is to have a protocol with an “identity-based trap-
door” embedded into it. The trapdoor will be a “signature-chain” using a sequence of keys that
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are determined by the identity of the protocol. More precisely, we say that (σ0, σ1, . . . , σn) is a
plain signature chain1 with respect to the signature scheme Π, the verification keys vk0, vk1 and
the pattern ψ ∈ {0, 1}n if σ0 = 0 and for all 0 ≤ i < n, σi+1 is a signature on the message (i, σi)
with respect to the key vkψi+1

. For convenience of notation, for the remainder of this section we
fix a particular signature scheme Π; all signatures we use are with respect to this this particular
scheme.

The following simple claim regarding signature chains will be useful. Consider a “signature
game” where an adversary A gets access to two randomly chosen verification keys vk0, vk1 and
additionally has access to signature oracles with respect to vk0 and vk1; let ϕ denote the “access
pattern” of the adversary to the signature oracle (that is, if the i’th oracle call is to the signature
oracle w.r.t. vkb, then ϕi = b). The claim now is that, with overwhelming probability, if in the
signature game, A manages to output a plain signature chain with respect to vk0, vk1 and pattern
ψ, then ψ is a substring of ϕ.

The protocol for committing to a string v with identity id proceeds as follows:

• Slot 1: The receiver R generates a key-pair (sk0, vk0) for the signature scheme Π, and sends
vk0 to the committer C. C next send a random message r0 to R who signs r0 and then
returns the signature to C.

• Slot 2: R generates another key-pair (sk1, vk1) and sends vk0 to the committer C. As in
Slot 1, C next send a random message r1 to R who signs r1 and then returns the signature
to C.

• Commit phase: C commits to v using a standard statistically binding commitment.

• Proof phase: C gives R a “special-purpose”2 witness indistinguishable argument of knowl-
edge of the fact that it either knows the value committed to in the commit phase, or that it
knows a plain signature chain with respect to vk0, vk1 and id.

We now turn to argue that this protocol is non malleable with respect to non-aborting and
synchronizing adversaries. For simplicity, we here focus only on one-one (i.e., stand-alone) non-
malleability (but the same proof actually also works for concurrent non-malleability). Consider a
man-in-the-middle adversary A that uses identity id on the left and identity ĩd 6= id on the right,
and receives a commitment to the value v on the left. We will argue that no matter what the value
of v is, the value it commits to on the right will be indistinguishable. Towards this goal, consider a
hybrid experiment where the left interaction is simulated by acting honestly in Slot 1 and 2, next
committing to 0, and finally using a “fake-witness”—namely a signature chain—in the proof phase;
the simulator obtains this fake witness by simply rewinding Slot 1 and 2 (that is, to rewinding slot
b, we restore the state of A after vkb has been sent, and send a new message to be signed) in the
appropriate order to obtain a signature chain with respect to id (note that since A is non-aborting,
each time the simulator asks it to sign a message, it does). To show the above claim, we now argue
that no matter what the value of v is, the value A commits to on the right in the real execution
(when receiving a commitment to v), is indistinguishable from the value it commits to on the right
when the left interaction instead is simulated.

The key-point of the proof is the claim that even in the simulation, A cannot use a fake-witness
in the right interaction. This follows from the fact that since A is synchronizing, when we rewind
Slot 1 and 2 on the left, the same slots are rewound on the right in exactly the same order. Thus, by

1We use the name “plain signature chain” (instead of just “signature chain”), since the actual signature chains
we will use in the final construction will be a bit more complicated.

2We will shortly explain what makes this proof special.
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the signature-game claim, if A manages to get a signature chain it must be a subset of the pattern
01id (the reason we need to append 01 is that A gets two signatures in the honest emulation of
Slot 1 and 2, already before we start the rewindings). So, if we appropriately restrict the identity
set (for instance, by requiring that all identities start with 10) then the only valid identity that is
a substring of 01id is id, and thus ĩd = id, which is a contradiction.

To argue that the value committed to on the right does not change when we move from the real
interaction to the simulation, consider an intermediary hybrid where we only change the witness
used in the proof phase (but keep the value committed to in the commit phase to v). Note that
since the adversary is synchronizing, the proof phase of the left interaction appears completely after
the commitment (in Stage 2) in the right interaction. Therefore, the right value does not change
at all when switching the the witness used in the proof phase on the left.

Finally, we simply have to argue that the value on the right does not change once we change the
value committed to in the commit phase on the left. By the hiding property of the left commitment,
the view of the adversary does not change when the left committed value switches. But since the
value committed to on the right cannot be efficiently recovered, this does not directly imply that
the committed value also is indistinguishable. To resolve this problem, we rely on the argument
of knowledge property of the proof phase: A witness on the right can be extracted efficiently from
the proof phase. Since the witness used in the right interaction cannot be a fake witness (by the
key-claim above), it must be the value committed to in the commit phase, so indistinguishability
of the committed value follows from the hiding property of the the left commitment.

Dealing with aborting adversaries: When considering aborting adversaries, we run into two
obstacles:

• The adversary might notice that the simulator is feeding it signature chains to sign (instead of
random messages) and thus decide to abort the left execution. We handle this by adapting the
definition of a signature chain: instead of requiring the chain to be “a signature on a signature
on a signature... etc”, we require a signature-chain to be a signature on “a commitment of
a signature on a commitment of a signature... etc”. And next, in the protocol, we let C
send commitments to 0 instead of random strings. To be able to establish an analog of the
above signature-game claim, we additionally require C to give a zero-knowledge argument of
knowledge of the value it committed to before R agrees to sign it.

• Another problem is that A might abort the left execution with some probability p. This means
that we might have to rewind the left execution many times (roughly 1/p times) before getting
the signature we are looking for. As a consequence, the ”access pattern” on the right will be
a substring of 01id∗1id

∗
2 . . . id

∗
n. To get around this problem, we add an additional slot (and a

corresponding signature key). Next, we require that the signature-chain corresponding to the
identity id to be with respect to the pattern 2id12id22id3 . . . 2idn.

Dealing with non-synchronizing adversaries: As is usually the case, synchronizing adversaries
are the “hardest” to deal with. To prove security against non-synchronizing adversaries, we follow
basically the same argument: First, if A is not synchronizing there exists some slot that is never
rewound and so if the identity of the right interaction contains at least two 0’s and two 1’s, we
can still establish the above key-claim. Next, to argue that the committed value on the right does
not change, we consider again the intermediary hybrid above. However, when the adverary is not
synchronizing, it may choose to interleave messages in the proof phase of the left interaction and
the commitment of the right interaction, and thus the right committed value may change when
the witness on the left changes. To overcome this problem, we again rely on the argument of
knowledge property of the proof phase to extract a witness from the right intearction. Since the
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witness cannot be a signature-chain (by the key-claim), it must be the committed value; then the
indistinguishablity of the committed vallue follows from the witness-indistinguishability of the left
proof phase. However, one problem is that extraction on the right may rewind the left proof phase
and thus break the witness indistinguishability property. One way of resolving this problem would
be to (in analogy with [PR05a]) have the proof phase be statistically witness indistinguishable; but
this requires additional assumptions (to keep it constant-round). Instead, we here rely on an idea
from [LP09]: we let the proof phase consist of multiple sequentially ordered witness indistinguishable
special-sound proofs. This allows us to change the witness in each of the proofs, one by one, while
ensuring that the witness on the right can be extracted from some other proof, without rewinding
the left proof where the witness currently is being changed.

4 Signature Chains and Games

Let Π = (Gen, Sign, V er) be a fixed-length signature scheme, and com a statistically-binding
commitment scheme. For simplicity of notation, we keep these schemes fixed, and provide our
definitions and protocols with respect to those particular schemes. Furthermore, for simplicity of
exposition, we assume that com that is non-interactive; however, all of our definitions and protocols
can be easily modified to work with any two-round statistically-binding commitment schemes; see
Remark 1 for further details.

We now turn to formally defining the notion of a signature-chain and then proceed to defining
signature-games.

Definition 3 (Signature-Chain). Let ` ∈ N , ψ ∈ {0, 1, 2}` and vk0, vk1, vk2 ∈ {0, 1}∗ be three
verification keys for the signature scheme Π. We say that a triplet δ = (σ̄, c̄, r̄) is a signature-chain
w.r.t. keys vk0, vk1, vk2 and pattern ψ, if σ̄, c̄, and r̄ are vectors of length ` satisfying the following
properties.

• For all i ∈ [`], σ̄i is valid signature of the message c̄i under key vkψi, i.e., V er(vkψi , σ̄i, c̄i) = 1.

• For all 1 < i ≤ `, c̄i is a commitment to the tuple (i− 1, σ̄i−1) using com and randomness r̄i;
and c̄1 is a commitment to 0m using com and randomness r̄1, where m = log `+ n.

We say that a signature-chain δ = (σ̄, c̄, r̄) has length ` if |σ̄| = l.
We proceed to define a signature-game SGA,`(n, z), where A on input 1n, z interacts with a

Challenger in the following three stages:

Stage 1: the Challenger samples three pairs of signing and verification keys at random, (skb, vkb)←
Gen(1n), where b ∈ {0, 1, 2}, and sends A the verification keys, vk0, vk1, and vk2.

Stage 2: A interacts with the Challenger in a sequence of iterations for as long as it wishes.
Iteration i proceeds as follows:

• A sends the Challenger a tuple (ϕi, c), where ϕi ∈ {0, 1, 2}, followed by a 5-round
ZKAOK proof of the statement that c is a valid commitment of com.

• if the proof is convncing, the Challenger signs the commitment c using the signing key
sϕi and returns the signature to A; otherwise, it aborts the iteration (without giving
back a signature).

Stage 3: Finally, A outputs the tuple (δ, ψ).
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We call the sequence ϕ = ϕ1, ϕ2, . . . of signing request, the “access pattern” of A. We say that the
output of A is well-formed if δ is a length l(n) signature-chain with respect to vk0, vk1, vk2 and ψ.
Finally, we say that A wins if its output is well-formed at ψ is not a substring of its access pattern
ϕ (and looses otherwise).

Lemma 1. For every PPT adversary A and every polynomial `, there exists a negligible function
µ, such that for every n ∈ N, z ∈ {0, 1}∗, the probability that A wins in SGA,`(n, z) is at most µ(n).

Proof. Consider any adversary A, polynomial `, n ∈ N , and z ∈ {0, 1}∗. Without loss of generality,
we can assume that A always outputs tuples (δ = (σ̄, c̄, r̄), ψ) such that |σ̄| = |c̄| = |r̄| = ψ| = l(n)
(since whenever it doesn’t it loses). For each i ∈ [l(n)], define the random variable Ii to be the
index of the first iteration (in Stage 2 of the game SGA,`(n, z)) in which A queries the Challenger
for a signature of the commitment c̄i under key vψi ; if A never queries the Challenger for a signature
of c̄i, Ii is set to ⊥.

Note that if the output of A is well-formed, it contains a signature-chain δ = (σ̄, c̄, r̄) w.r.t.
pattern ψ, such that for every i, σ̄i is a valid signature of c̄i under key vψi . It thus follows from the
unforgibility of the signature scheme that, except with negligible probability, for each i, A must
have queried c̄i for a signature of vψi in some iteration. We thus have the following claim.

Claim 1. For every PPT adversary A and polynomial `, there exists a negligible function µ1,
such that for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of A in SGA,`(n, z) is of A is
well-formed and there exists an i ∈ [`(n)] such that Ii = ⊥, is smaller than µ1(n).

We also have the following claim.

Claim 2. For every PPT adversary A and polynomial `, there exists a negligible function µ2, such
that, for all n ∈ N, z ∈ {0, 1}∗, the probability that the output of A in SGA,`(n, z) is well-formed
and there exists an i ∈ [`(n)−1] such that , Ii 6= ⊥, Ii+1 6= ⊥ and Ii ≥ Ii+1, is smaller than µ2(n).

Before proceeding to the proof of Claim 2, we let us first prove Lemma 1 using Claim 1 and 2.
It follows from the two claims that, except with negligible probability, either the output of A is
not well-formed, or the output is well-formed and for all i, Ii 6= ⊥ and Ii < Ii+1. In the former
case, the adversary loses the game. In the latter case, as Ii 6= ⊥ for all i, A must have asked for
a signature using key vψi in the Iith iteration, which means ϕIi = ψi. Furthermore, as Ii < Ii+1

for all i, it follows that ψ is a substring of ϕ. Therefore, A loses in this case as well. Thus, except
with negligible probability, A looses.

Proof of Claim 2. First notice that it follows from the (statistical) binding property of com, that
except with negligible probability3, if the output (δ = (σ̄, c̄, r̄), ψ) of A is well-formed, then for all
i, c̄i 6= c̄i+1, since c̄i, c̄i+1 are respectively commitments to tuples of the form (i, ·) and (i + 1, ·).
It follows that, except with negligible probability, if the output of A is well-formed, there doesn’t
exists some i such that Ii, Ii+1 6= ⊥ but Ii = Ii+1. Thus, it suffices to bound the probability that
the output of A is well formed and there exists some i such that Ii, Ii+1 6= ⊥ and Ii > Ii+1.

Towards this, assume for contradiction that there exists an adversary A and a polynomial `,
such that there exists a function i : N → N and a polynomial p, such that for infinitely many
n ∈ N, z ∈ {0, 1}∗, the probability that the output of A in the game SGA,`(n, z) is well-formed,
Ii, Ii+1 6= ⊥, and Ii > Ii+1 for i = i(n), is at least 1/p(n). We can construct a machine B that
violate the unforgibility of the signature scheme Π.

3Since we assume that com is non-interactive, we actually have perfect binding, but given that we want an analysis
that works also for two-round commitments, we here directly consider the more general case of statistical binding.

11



B, on input 1n, z and a randomly generated verification key vk, has access to the signing oracle
corresponding to vk, and tries to forge a signature (of vk) as follows: it internally emulates an
execution of the signature game SGA,`(n, z) with A honestly, with the following exceptions:

• In Stage 1, it picks an index t ∈ {0, 1, 2} at random and forwards the verification key vk to
the adversary as the tth verification key.

• In Stage 2, whenever A requests a signature of a message m under key vk, it obtains such a
signature from the signing oracle and forwards it to A.

Furthermore, it guesses that Ii = u and Ii+1 = k, for random u > k. Then, in the kth

iteration (in Stage 2 of SGA,`(n, z)), after receiving a request from A to sign the commitment
c, it extracts out the value (j, σ∗) committed to in c from the ZKAOK that A provides
following the signing request. Later, in the uth iteration, when A submits a query c∗ to the
Challenger, it checks whether σ∗ is a valid signature of c∗ under key vk. If so, it halts and
outputs the message-signature pair (c∗, σ∗); otherwise, it halts and outputs fail.

By construction, B emulates the view of A in the signature game SGA,`(n, z) perfectly before it
halts. Therefore, by our hypothesis, with probability at least 1/p(n), in emulation by B, A would
query for the first time the commitments c̄i and c̄i+1 in iterations Ii and Ii+1 respectively, such
that Ii+1 < Ii and c̄i+1 is a commitment to a tuple (i + 1, σ̄i+1), where σ̄i+1 is a signature of c̄i
under the verification key vψi . Let M(n) be the maximum number of iterations in the game; M is
polynomially bounded since the running-time of A is. With probability at least 1

q(n) = 1
3M(n)2p(n)

,

it holds that (1) the above event occurs in the emulation by B and (2) B correctly guesses the
values of Ii, Ii+1 and vψi . In this case, except with negligible probability, the committed value σ∗

that B extracts out from the ZKAOK following c = c̄i+1 contains a valid signature of c̄i, which is
queried for the first time in the uth iteration for a signature using key vk. Hence B will output a
valid message-signature pair (c̄i, σ

∗) for vk, without querying the signing oracle c̄i (since once the
query c̄i is submitted for the first time in iteration u, B halts immediately and outputs the pair);
this violates the unforgibility of the signature scheme Π.

5 The Protocol

Let Π = (Gen, Sign, V er) be the fixed-length signature scheme, and com the non-interactive
statistically-binding commitment scheme considered in the last section. To simplify the presen-
tation of the proof, we assume that both Π and com can be “broken”—i.e., signatures can be
generated for any message, and the value committed to can be recovered for any commitment—in
time 2n/2 where n is the security parameter; this is without loss of generality since we can always
appropriately “scale-down” the security parameter in Π and com (and make sure that com com-
mits to values “bit-by-bit”). To further simplify the presentation, we provide the construction of
a non-malleable commitment 〈C,R〉 that works assuming player identities are `-bit binary strings
that contains at least two 0-bits and two 1-bits; any such scheme can trivially be turned into one
that works for arbitrary identities (by simply appending two 0’s and two 1’s to the identity).

To commit to a value v, the Committer and the Receiver of 〈C,R〉, on common input a security
parameter 1n (in unary) and an identity id ∈ D`, proceed in the following three stages:

Stage 1: The receiver interacts with the Committer in three iterations, where iteration i ∈ {0, 1, 2}
proceeds in the following steps:
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1. The Receiver generates a pair of signing and verification keys, (si, vi)← Gen(1n), of the
signature scheme Π, and sends the verification key vi.

2. The Committer commits to 0m, where m = log `+ n, using com. Let ci be the commit-
ment sent to the Receiver.

3. The Committer proves that ci is a valid com commitment using a 5-round ZKAOK
protocol.

4. The Receiver signs the commitment ci using the signing key si, and sends the generated
signature θi to the Committer.

Stage 2: The Committer commits to the value v using com. Let c′ be the commitment generated.

Stage 3: The Committer proves that

• either c′ is a valid com commitment,

• or there exists a signature-chain δ w.r.t. v0, v1, v2 and pattern pattern(id), where the
function pattern : {0, 1}∗ → {0, 1, 2}∗ maps a (binary) identity id of length ` to a trinary
string of length 2` as follows:

pattern(id) = 2, id1, 2, . . . , idi, 2, . . . , id`

This statement is proved using k + 5 sequential invocations of a 4-round WI special sound
proof system, where k is the number of messages in Stage 1 of the protocol; we additionally
require that the length of the “challenge” in each special-sound proof is n.

We refer to the last three steps of an iteration in Stage 1 as a slot, which opens when the Com-
mitter send the com commitment to 0m, and closes when the Receiver returns a signature to the
commitment. We call the slot in iteration i, the i’th slot.

It is easy to see that the protocol 〈C,R〉 consists of a constant number of messages. Furthermore,
it follows using standard techniques that 〈C,R〉 is a valid commitment scheme.

Proposition 2. 〈C,R〉 is a commitment scheme.

Proof. We show that the 〈C,R〉 scheme satisfies the binding and hiding properties.

Binding: The binding property follows directly from the statistically binding property of com used
in Stage 2.

Hiding: The hiding property essentially follows from the hiding property of com and the fact
that Stage 3 of the protocol is WI (since WI proofs are closed under concurrent composi-
tion [FS90]). For completeness, we provide the proof. We show that any adversary R∗ that
violates the hiding property of 〈C,R〉 can be used to violate the hiding property of com. More
precisely, given any adversary R∗, such that, for infinitely many n ∈ N , and v1, v2 ∈ {0, 1}n,
R∗ distinguishes commitments to v1 and v2 made using 〈C,R〉, we construct a machine R′

that distinguishes commitments to v1 and v2 made using com. Note that the execution of a
commitment of 〈C,R〉 to v1 proceeds identically as that of a commitment to v2 before the
Stage 2 commitment of com is sent. Then by our hypothesis, there must exist a partial joint
view ρ of the committer and R∗ that determines the execution of the commitment before
Stage 2, such that, conditioned on ρ occurring, R∗ distinguishes commitments to v1 and v2.
Let δ be a valid signature-chain corresponding to the transcript of Stage 1 in ρ. R′ on aux-
iliary input ρ and δ proceeds as follows: it internally incorporates R∗, and feed R∗ its part
of view in ρ; it then forwards the external commitment made using com to R∗ in Stage 2;
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in Stage 3, it gives WI proofs using δ as a “fake witness”. Finally, it outputs whatever R∗

outputs. From the WI property of Stage 3, it follows that R′ distinguishes the commitment
made using com, if R∗ distinguishes the commitment made using 〈C,R〉 conditioned on ρ
occurring.

Remark 1. Both the definition of of signature-games and our non-malleable commitment protocols
makes use of a non-interactive statistically-binding commitment scheme com. Both can be easily
modified to work also with any two-round statistically binding commitment schemes com. In both
cases, we the first message r of a commitment of com is sent at the beginning of the execution, and
then the rest of the execution proceeds just as if com had been non-interactive. (Additionally, in
the last stage of the protocol 〈C,R〉, the sender proves that either the Stage 2 message is the second
message of a valid com commitment with first message r, or it knows a signature-chain δ = (σ̄, c̄, r̄),
such that, δ is well-formed, except that, for all i, c̄i is the second message of a com commitment to
σ̄i−1, generated in responding to the first message r using randomness r̄i). Exactly the same proof
as in Section 4 and Section 6 still go through using these modified construction, since commitments
of com are hiding, no matter what the first message is, and even if the first message is reused.

6 Proof of Non-malleability

In this section, we show that 〈C,R〉 is stand-alone non-malleable. In Sections 8 and 7, we extend
the proof to show that 〈C,R〉 is also robust and concurrent non-malleable.

Theorem 5. 〈C,R〉 is (one-one) non-malleable.

Proof. The goal is to show that for every one-one man-in-the-middle adversary A that participates
in one left and one right execution, the following ensembles are indistinguishable:{

mimA
〈C,R〉(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗{

mimA
〈C,R〉(v2, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

Towards this, we define a series of hybrid experiments H0, . . . ,Hk+6. In each of these experiments,
we show that the view of A, combined with the value that A commits to on the right, are indistin-
guishable. Let hybi(v, z) denote the random variable describing the view of A(z), combined with
the value it commits to in the right interaction in hybrid Hi (as usual, the committed value is
replaced with ⊥ if the right interaction fails or if A has copied the identity of the left interaction).

Hybrid H0: In H0 we first perfectly emulate a real execution of mimA
〈C,R〉(v, z)—we call this the

Main Execution—and next, if A successfully completed Stage 1 in the Main Execution, we
try extract a “fake-witnesses” (i.e., a signature-chain) for the left interaction. More precisely,
let idl, v0, v1, v2, respectively be the identity and the verification keys of the left interaction
in the Main Execution, and let ψ = pattern(idl); the Extraction Procedure now proceeds in
|ψ| = 2` iterations described below.

Iteration 1: If A successfully completes Stage 1 of the left interaction in the Main Execution,
it must have provided three valid signatures θ0, θ1, θ2 of commitments to 0m, where
m = log `+ n, under keys v0, v1, v2 respectively. Since a signature-chain with pattern ψ
starts off with a signature σ̄1 of a commitment to 0m under key vψ1 = v2, the procedure
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simply sets σ̄1 = θ2, c̄1 to be the transcript of the commitment to 0m generated in
iteration 2 (in Stage 1) of the left interaction, and r̄1 to be the randomness used in the
commitment.

Iteration i+ 1: Assume that at the end of the ith iteration, for i ∈ [2` − 1], the procedure
has obtained a signature-chain δi of length i w.r.t. (keys v0, v1, v2 and) pattern [ψ]i1,
containing signatures σ̄1, . . . , σ̄i. Then, in iteration i + 1, we obtain a signature-chain
δi+1 of length i + 1, w.r.t. pattern [ψ]i+1

1 by rewinding the appropriate slot in Stage 1
of the left interaction. More precisely, the procedure repeatedly rewinds A from where
the slot ψi+1 opens on the left in the Main Execution, and commits to the tuple (i, σ̄i)
(instead of 0m) in the rewindings, until this left-slot closes successfully (i.e., A returns
a valid signature on the commitment under key vψi+1

). In each of these rewindings, the
right executions are emulated using fresh randomness; in particular, this means that
whenever a rewinding goes beyond the point when a verification key is sent in the right
interaction, in each such rewinding a fresh verification key is picked. Then the extraction
procedure simply sets σ̄i+1 to be this signature, and again sets c̄i+1 and r̄i+1 to be the
commitment and randomness used.

If the extraction procedure takes more than 2n/2 steps, it is “cut-off”; in this case, a signature
chain can be recovered in time poly(2n/2) by our assumption on the signature scheme Π. The
extraction procedure thus always terminates and always recovers a valid signature chain for
the left interaction.

Since the view of A in the Main Execution in H0 is perfectly emulated as in mimA
〈C,R〉(v, z),

we trivially have that the view and value A commits to in H0 is identically distributed to
that in the real execution.

Claim 3. For every PPT adversary A, it holds that:{
mimA

〈C,R〉(v, z)
}
n∈N,v∈{0,1}n,z∈{0,1}∗

=
{
hyb0(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Hybrid H1 to Hk+5: In hybrids H1 to Hk+5, we change the witness used in the k + 5 WISSP
proofs in Stage 3 of the left interaction. More specifically, experiment Hi proceeds identically
to Hi−1, except that in the first i proofs in Stage 3 of the left interaction, we prove that
there exists a signature-chain w.r.t. v0, v1, v2 and pattern pattern(idl), by using the extracted
signature-chain δ as a “fake-witness”. We show that the view and value committed to on the
right interaction in Hi−1 and Hi are indistinguishable.

Proposition 3. For every PPT adversary A, and every function i : N → N , it holds that:{
hybi(n)−1(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

≈
{
hybi(n)(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Towards this, we reduce the indistinguishability of {hybi(n)−1(v, z)} and {hybi(n)(v, z)} to the
witness indistinguishabilty of the Stage 3. More specifically, consider some adversary A, a
function i, and a polynomial p, such that (for infinitely many n ∈ N , inputs v ∈ {0, 1}n and
z ∈ {0, 1}∗,) hybi(n)−1(v, z) and hybi(n)(v, z) are distinguishable with probability 1/p(n). We
show that there exists a PPT machine B that can violate the WI property of the WISSP
protocol 〈P, V 〉 used in Stage 3 of the protocol.

On a high-level, the machine B, on common input 1n and auxiliary input v, z, externally
interacts with an honest prover P and receives a left-interaction Stage 3 proof, generated
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Description of B
Input: B receives a security parameter 1n and v and z as auxiliary input.
Procedure: B externally interacts with a prover P of the WISSP protocol 〈P, V 〉, receiving a
proof of a statment x using witness w0 or w1, where x, w0 and w1 are chosen by B. Internally, it
proceeds in the following three phases:

Simulation Phase: B internally emulates an execution of the experiment hybi(v, z) with A,
with the exception that messages in the ith left-proof of the Main Execution are forwarded
externally to P . More precisely, at the beginning of the ith left-proof, B sends the external
prover P the statement x of the ith proof, together with the “real witness” w0 = (v, r) (the
decommitment of the Stage 2 commitment of the left interaction) and the “fake witness”
w1 = δ (the signature-chain of the left interaction extracted from A); B next forwards the
proof of x generated by P (using either w0 or w1) to A as the ith left-proof. Let ∆ be the
simulated view of A in the Main Execution.

Rewinding Phase: If the right interaction is successful and has a different identity from the left
interaction in ∆, B extracts the value committed to in this interaction as follow:

• Find the first WISSP proof (α1, α2, β, γ) in ∆, such that, during its the execution,
no messages belonging to Stage 1 or the ith proof of the left interaction are exchanged.
(Such a WISSP proof must exist since there are k + 5 WISSP proofs, whereas only
k + 4 messages in Stage 1 and the ith proof of the left interaction.)

• Rewinds the proof by sending new random challenges β′ until a second transcript
(α1, α2, β

′, γ′) is obtained.

In the rewindings, emulate the left and right interaction for A in identically the same
way as in the Main Execution, except that, whenever A expects a new message in Stage
1 or the ith proof of the left interaction, cancel the execution and start a new rewinding
again.

• If βρ 6= β′ρ, extract witness w from (α1, α2, β, γ) and (α1, α2, β
′, γ′). Otherwise halt and

output fail1.

• If w = (v, r) is valid decommitment for the right interaction, then set v̂ = v. Otherwise
halt and output fail2.

Output Phase: If the right interaction that is not convincing or the identity of the right inter-
action is the same as the left interaction, set v̂ =⊥. Output v̂ and ∆.

Figure 4: The construction of B
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using either the real witness w0—the decommitment of the Stage 2 commiment in the left
interaction—or the fake witness w1—a signature chain for the left intearction. Internally,
B emulates an execution of either hybi−1 or hybi with A (depending on the witness used in
the external proof), except that, messages in the ith proof in Stage 3 of the left interactions
are fowarded externally. Furthermore, if the right interaction is successful and has a different
identity from the left, B attempts to extract the value committed to on the right by repeatedly
rewinding the WISSP proofs in Stage 3 of the right inteaction by sending new challenge
messages in this proof. Since the ith left-proof is forwarded externally, the rewinding has
to be done in a manner that does not “affect” the ith left-proof. Roughly speaking, this is
possible since there are more WISSP proofs in Stage 3 of the right interaction, than the
number of messages in the ith left-proof. Therefore, in the right interaction, there exist some
WISSP proofs that does not interleave with any messages in the ith left-proof, and B can
use rewindings to extract a witness without rewinding the left-proof. Our actual rewinding
strategy also avoids rewinding Stage 1 of the left interaction, so that the fake-witness δ of
the left interaction remains a valid signature chain also in the rewindings, and thus can be
reused to simulate the left interaction also in the rewindings. This is again possible since
there are more right-proofs than the number of messages in Stage 1 and the ith proof in the
left interaction. To slightly simplify the analysis, we additionally “cut-off” the rewindings if
B takes more than 2n/2 steps and simply recover the value committed to in time poly(2n/2);
recall that this is possible due to our assumption on com.

If during the rewindings, B sends the same challenge message twice, it aborts outputting fail1.
Additionally, if the witness extracted from the right interaction is not a valid decommitment
(it could also be a fake-witness), B aborts outputting fail2. Otherwise, B outputs the emulated
view of A, together with the value committed to in the right interaction.,

See Figure 4 for a formal description of B. Below, in Lemma 2, we show that the running-time
of machine B is “bounded”, in the sense that the probability that B runs for super-polynomial
time is negligible.

Lemma 2. There exists a polynomial function T , such that for every polynomial function
q, every b ∈ {0, 1}, every sufficiently large n ∈ N , and inputs v ∈ {0, 1}n and z ∈ {0, 1}∗,
the probability that machine B runs for more than q(n)T (n) steps in an execution of the
experiment STAb(〈P, V 〉, B, v, z) is smaller than 1/q(n).

Roughly speaking, the Lemma is proven by first bounding the running-time of a “hypothetical
procedure” which perform all the same rewindings, but otherwise acts honestly (i.e., always
commits to 0m in Stage 1, and always uses the honest witness in Stage 3); it follows using a
simple “p×1/p” argument (similar to those in [LPV08, LP09]) that the expected running-time
of this procedure is polynomial. Next we show that, with high probability, the running-time of
the actual procedure is not too far off. We note that due to reasons similar to those in [GK96]
we are not able to bound the expected running-time of B. Additionally, it seems unclear if the
methods of [GK96] could be applicable to obtains a simulation with an expected polynomial
running-time. Fortunately, in our application, since we do not actually per se care about the
running time of the simulation (but only care about breaking some specific security property,
namely witness indistinguishability) our weaker bound suffices.

A formal proof of Lemma 2 can be found in Section 6.1.

The following lemma is the core of our analysis.
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Lemma 3. The following holds.

{STA0(〈P, V 〉, B, v, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ ≈
{
hybi−1(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

{STA1(〈P, V 〉, B, v, z)}n∈N,v∈{0,1}n,z∈{0,1}∗ ≈
{
hybi(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Before proceeding to the proof of 3, let us see how Lemma 3 and 2 together violate the
WI property of the Stage 3 proofs. Recall that by our assumption, hybi(v, z) and hybi −
1(v, z) can be distinguished with probability 1/p(n); by Lemma 3, STA0(〈P, V 〉, B, v, z) and
STA0(〈P, V 〉, B, v, z) can thus be distinguished with probability at least, say, 3/4p(n). By
Lemma 2, the probability that B runs for more than, say, 4p(n)T (n) steps in either experiment
is at most 1/4p(n). Therefore, by the union bound, the outputs of B (in STA0 and STA1) are
still distinguishable with probability at least 1/4p(n), even if we cut-off the execution of B
after 4p(n)T (n) steps (and output ⊥ if B fails to complete), which is a contradiction.

Let us now turn to proving Lemma 3.

Proof. (of Lemma 3) By construction, B perfectly emulates the view of A in hybi−1(v, z) when
receiving an external proof generated using the real witness w0, and that in hybi(v, z) when
receiving a proof generated using the fake witness w1. Therefore, to show Lemma 3, it suffices
to show that B (almost) always extracts a valid decommitment for the right interaction if it
is successful and has a different identity from the left interaction (recall that by statistical
binding of 〈C,R〉, the committed value is unique with overwhelming probability). In other
words, showing Lemma 3 amounts to showing that the probability that B outputs fail1 or
fail2 is negligible.

Claim 4. There exists a negligible function µ, such that for every b ∈ {0, 1}, every sufficiently
large n ∈ N , and inputs v ∈ {0, 1}n and z ∈ {0, 1}∗, the probability that B outputs fail1 in
STAb(〈P, V 〉, B, v, z) is smaller than µ(n).

Proof. Recall that B outputs fail1 only if in some rewinding it picks the same challenge β′

as the challenge β used in the same proof in the Main Execution. Since the number of
rewindings by B is bounded by 2n/2 and the length of each challenge is n, by the union
bound, the probability that this happens is negligble.

Claim 5. There exists a negligible function µ, such that, for every b ∈ {0, 1}, every sufficiently
large n ∈ N , and inputs v ∈ {0, 1}n and z ∈ {0, 1}∗, the probability that B outputs fail2 in
STAb(〈P, V 〉, B, v, z) is smaller than µ(n).

Proof. Assume for contradiction that there exists a polynomial g(n), such that, with prob-
ability 1/g(n), B extracts an invalid decommitment from the right interaction. Towards
reaching a contradiction, we consider another machine B′, which proceeds identically to B
except that it cuts-off the execution after g(n)T (n) steps (and outputs ⊥ in this case). It
follows from Lemma 2 that the probabilty that B runs for more than g(n)T (n) steps is at
most 1/2g(n). Therefore, the probability that B′ extracts out an invalid decommitment from
the right interaction k is at least 1/2g(n). Furthermore, by the special-soundness property
of the right-proofs, if the witness is not a valid decommitment, it must be a signature-chain
δ w.r.t. the right-interaction keys v′0, v

′
1, v
′
2 and pattern pattern(idr). Consider the following

two possible adversarial schedulings w.r.t. the left and the kth right interactions in the Main
Execution:
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Scheduling 1: A “aligns” the slots in the left and right interactions one by one: a right-slot
is said to be aligned with a left-slot if (1) its corresponding verification key is sent before
the left-slot opens, and (2) its opening message (i.e., the commitment from A) is sent
after the left-slot opens; see Figure 5 (i).

Scheduling 2: A does not align the slots in the left and right interactions; see Figure 5 (ii).
This means that there exists some right-interaction slot that is not aligned with any
left-interaction slot.
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Figure 5: The two schedulings of the messages in Stage 1 of the left and right interactions.

Since Scheduling 1 and 2 are the only two possible schedulings, by our hypothesis, at least
one of the following two conditions holds.

Condition 1: The probabilty that Scheduling 1 occurs in the Main Execution and that B′

extracts an invalid decommitment from the right interaction is non-negligible.

Condition 2: The probabilty that Scheduling 2 occurs in the Main Execution and that B′

extracts an invalid decommitment from the right interaction is non-negligible.

We show that neither condition can hold.

Assume Condition 1 holds. We reach a contradiction by constructing a machine C that
externally participates in the signature game, while internally emulating an execution of
STAb(〈P, V 〉, B′, v, z) except that messages in Stage 1 of the right interaction are emulated
by fowarding the appropriate messages from the signature games to A. More precisely, C
forwards the three verification keys vk0, vk1, vk2 in the signature game to A as the verification
keys in Stage 1 of the right interaction in the Main Execution. If Schedule 1 does not occur
in the Main Execution, C simply aborts. Otherwise, whenever during some rewinding, A
requests another signature in one of the slots on the Main Execution (and thus using one
of vk0, vk1, vk2), C obtains such a signature by accessing the appropriate signature oracle in
the game and forwards it to A. Recall that whenever we rewind beyond the point where a
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verification key is sent, a new verification key is generated by B and thus B can obtain the
appropriate signatures without querying the oracle. Since the left and right slots in the Main
Execution are aligned one by one, we have that whenever the tth left-slot is rewound, the
adversary A may only request new signatures using key v′t on the right. It follows that the
“access-pattern” of the signatures requested is a substring of

ϕ = 012‖(idl)∗1, 2∗, . . . , (idl)∗i , 2∗, . . . , (idl)∗`

So, wheneverB′ extracts out a signature-chain δ w.r.t. (keys v′0, v
′
1, v
′
2 and pattern pattern(idr)),

C wins in the signature game since pattern(idr) is not a substring of ϕ (as idr 6= idl). Since
the running-time of C is polynomial this contradicts Lemma 1.

Assume Condition 2 holds. We construct a machine C ′ just as in the previous case, except
that C ′ abort whenever Schedule 2 does not happen in the Main Execution. When Scheduling
2 does occurs in the Main Execution, there exists a right-slot t that is not aligned with any
left-slots; in other words, in all the rewindings where A gets to request a new signature in
Slot t on the right, the rewinding goes beyond the point where the verification key for slot t
is sent (and so new keys gets generated in each rewinding) and thus the t’th oracle is never
used during the extraction phase. It follows that the access pattern in the signature game has
a single character t, but the signature extracted is with respect to a pattern with two of each
character. So, as in Condition 1, whenever B′ extracts out a signature-chain δ, C ′ wins in the
signature game. There is just one slight complication with the implementation of C ′: in the
rewindings, B might rewind A in the middle of one of the ZKAOK in Stage 1, and since the
ZKAOKs are not public-coin, we might not be able to emulate the continuation of the verifier
strategy for this protocol. Note, however, that Lemma 1 still holds even if consider a slight
variant of the signature game where after each ZKAOK the verifier reveals all of its random
coins; this follows since this adjusted protocol would still be an ZKAOK and Lemma 1 no
mayyer what ZKAOK we use in the signature game. C ′ can now easily be implemented as
an adversary for this modified signature game.

Hybrid Hk+6 : Hybrid Hk+6 proceeds identically to Hk+5 except that the Stage 2 commitment of
the left execution is emulated by committing to 0n. It follows using the same argument as in
hybrids Hi, for i ∈ [k+ 5], that the value committed in the right interaction can be extracted
without rewinding Stage 2 of the left interaction. It then follows from the hiding property of
the Stage 2 commitment that the combined view and values committed to by A in Hk+5 are
indistinguishable from that in Hk+6.

It follows by a hybrid argument that,{
mimA

〈C,R〉(v, z)
}
n∈N,v∈{0,1}n,z∈{0,1}∗

≈
{
hybk+6(v, z)

}
n∈N,v∈{0,1}n,z∈{0,1}∗

Since the above holds for every value v, we have{
mimA

〈C,R〉(v1, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
hybk+6(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

, and{
mimA

〈C,R〉(v2, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
hybk+6(v2, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗
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Finally, since by the definition of hybk+6, it holds that for every v1, v2 and z, hybk+6(v1, z) =
hybk+6(v2, z), we conclude that,{

mimA
〈C,R〉(v1, z)

}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

≈
{
mimA

〈C,R〉(v2, z)
}
n∈N,v1,v2∈{0,1}n,z∈{0,1}∗

6.1 Proof of Lemma 2

Proof of Lemma 2. The running-time of B consists of three parts:

Part 1—Time spent simulating the Main Execution: SinceA runs in strict polynomial time,
the time T1(n) that B spends in the Main Execution polynomially bounded.

Part 2—Time spent extracting the left “fake-witness”: We show that there exists a poly-
nomial T2(n) such that for every polynomial q2, (every b ∈ {0, 1}, every sufficiently large
n ∈ N , and inputs v ∈ {0, 1}n, z ∈ {0, 1}∗,) the probability that B spends more than
q2(n)T2(n) steps extracting the left “fake-witness” in STAb(〈P, V 〉, B, v, z) is smaller than
1/q2(n).

Part 3—Time spent extracting the committed value on the right: We show that there ex-
ists a polynomial T3(n) such that for every polynomial q3, the probability that B spends more
than q3(n)T3(n) steps extracting the right committed value in STAb(〈P, V 〉, B, v, z) is smaller
than 1/q3(n).

So given an arbitrary polynomial q, we get by the union bound that, the probability B spends more
than 2q(n)T2(n) step in part 2, or more than 2q(n)T3(n) steps in part 3, is smaller than 1/q(n).
We conclude that there exists some sufficiently big polynomial T (n) ≥ T1(n) + 2T2(n) + 2T3(n)
such that for every polynomial q, the probability that B takes more than q(n)T (n) steps is smaller
than 1/q(n).

Analysis of Part 2: Recall that in an execution of STAb(〈P, V 〉, B, v, z), the extraction of the
left “fake-witness” proceeds in 2` iterations. The running-time of the first iteration is clearly
polynomial; we proceed to analyze the time spent in the remainder of the iterations. Recall that
in an iteration i > 1, B takes the signature-chain δi−1 = ([σ̄]i−1

1 , [c̄]i−1
1 , [r̄]i−1

1 ) of length i− 1, w.r.t.
(keys v0, v1, v2 and) pattern [ψ]i−1

1 , (where ψ = pattern(idl),) obtained in the previous iteration,
and extends it to a signature-chain σ̄i of length i w.r.t. pattern [ψ]i1. This is done by repeatedly
rewinding A from the start of the left-slot ψi and committing to (i−1, σ̄i−1) in the rewindings, until
A closes this left-slot successfully. (Below we assume for simplicity that the extraction procedure
is never cut-off and may run for more than 2n/2 steps, since this only increases the running time).
Towards bounding the running-time of this extraction procedure, we first consider a hypothetical
procedure, which proceeds almost the same as the actual extraction procedure, except that in the
rewindings in iteration i > 1, instead of committing to (i−1, σ̄i−1), it commits to 0m. In other words,
the hypothetical procedure simulates the view of A in the rewindings using identically the same
distribution as in the Main Execution. We show that the expected running-time of this hypothetical
procedure is poly(n); we next bound the running-time of the actual extraction procedure.

Running-time Analysis of the Hypothetical Procedure: Let ψ = pattern(idl) be the pattern of the
“fake-witness” of the left intearction. In iteration i > 1, the hypothetical extraction procedure
repeatedly rewinds the left-slot ψi; let T i be the random variable that describes the time spent in
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rewinding the left-slot ψi in iteration i > 1. We show that E[T i] ≤ poly(n) and then by linearity
of expectation, we conclude that the expected running-time of the hypothetical procedure is

2∑̀
i=2

E[T i] ≤
2∑̀
i=2

poly(n) ≤ poly(n),

since the number of iterations is poly(n).
Let us turn to bounding E[T i]. Let Γψi denote the set of prefixes ρ—i.e., partial transcripts of

the Main Execution—from where the left-slot ψi opens. Given a prefix ρ ∈ Γψi , we introduce the
following notations:

• let Pr [ρ] denote the probability that ρ occurs as a prefix in the Main Execution;

• let pρ denote the probability that, conditioned on the prefix ρ occurring (in the Main Execu-
tion), the left-slot ψi closes successfully in the Main Execution.

Take any ρ from Γψi . We claim that conditioned on ρ occurring, the expected value of T i—denoted
E[T i|ρ]—is poly(n). This follows since, first, the hypothetical procedure starts rewinding the left-
slot ψi in iteration i only if this slot closes successfully in the Main Execution; hence, (conditioned
on ρ occurring,) the probability the left-slot ψi is rewound is at most pρ. Secondly, once it starts
rewinding the left-slot ψi, it continues until the slot closes successfully again; since the hypothetical
procedure proceeds identically in the rewindings as in the Main Execution, the probability that the
left-slot ψi closes successfully in any rewinding is also pρ, and thus, (conditioned on ρ occurring,)
the expected number of rewindings performed before this happens is 1/pρ. Therefore, the overall
expected number of rewindings from ρ is pρ × 1

pρ
= 1. As each rewinding takes at most poly(n)

steps, we conclude that E[T i|ρ] ≤ poly(n). Thus,

E[T i] =
∑
ρ∈Γψi

E[T i|ρ] Pr [ρ] ≤ poly(n)×
∑
ρ∈Γψi

Pr [ρ] ≤ poly(n)

Running-time Analysis of the Actual Extraction Procedure: Given that the expected running time
of the hypothetical procedure is bounded by a polynomial T̃ (n), it follows using the Markov in-
equality that, for every polynomial q2, (every b, every n ∈ N , and inputs v, z,) the probability that
the hypothetical procedure takes more than q2(n)T̃ (n)/2 steps is smaller than 2/q2(n). Then we
claim that the probability that actual extraction procedure takes more than q2(n)T̃ (n)/2 steps is
smaller than 1/q2(n). This follows since the only difference between the hypothetical and the ac-
tual extraction procedures is that, in the former the rewindings are simulated by committing to 0m

using com, whereas in the latter rewindings are simulated by committing to a tuple that contains a
signature. Since the ZKAOK proof following the commitment is never rewound, it follows directly
from the hiding property of com and the zero knowledge property of the ZKAOK proof that, the
probability that the actual extraction procedure runs for more than q2(n)T̃ (n)/2 steps differs from
that of the hypothetical procedure by at most a negligible amount. Thus, for sufficiently large n, we
have that the probablity B spends more than T2(n) = q2(n)T̃ (n)/2 steps is smaller than 1/q2(n).

Analysis of Part 3: We show that the time that B spends in the Rewinding Phase is bounded
by a polynomial T3(n) in expectation. It then follows by the Markov inequality that, for every
polynomial q3, the probability that B takes more than q3(n)T3(n) steps is smaller than 1/q3(n).

It follows from the same argument as in the above “running-time analysis of the hypothetical
procedure” that to bound the expected time spent extracting the right committed value (also here,
we consider the running-time without cut-offs), it suffices to bound the expected time spent in
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rewinding each right WISSP proof, since the total number of right-proofs is poly(n). Then recall
that a right-proof is rewound only if the proof completes successfully in the Main Execution, without
interleaving with any message in Stage 1 or the ith proof of the left interaction. On the other hand,
once the rewinding starts, it continues until this right-proof completes successfully again, while
cancelling every rewinding in which the proof interleaves with any message in Stage 1 or the ith

proof of the left interaction. Furthermore, as every rewinding is simulated exactly the same as in
the Main Execution, it follows using the same “p times 1/p argument” as in the analysis of part
2 that the expected number of rewindings for every right-proof is 1, and hence the expected time
spent in extracting the right committed value is bounded by a polynomial T3(n).

7 Proof of Concurrent Non-Malleability

As we show in the next section 〈C,R〉 is 4-robust; thus, we can already conclude the existence of
a constant-round concurrent non-malleable commitment, by relying on the work of [LP09], which
shows how any stand-alone non-malleable commitment that is 4-robust can be transformed into
a concurrently non-malleable (and 4-robust) scheme, while incurring only a constant (additive)
overhead in round complexity.

We here show that 〈C,R〉, in fact, directly is also concurrently non-malleable. Recall that ny
Proposition 1, to show concurrent non-malleability, it suffices to prove that 〈C,R〉 is one-many
non-malleable; that is, for every one-many man-in-the-middle adversary A, that participates in
one left and many right interactions, the view of A and the values it commits to on the right are
indistinguishable, no matter what value it is receiving a commitment to on the left. Towards this, we
consider the same hybrid experiments H0 to Hk+6 as in the proof of stand-alone non-malleability. It
follows from almost the same proof as before that the view of A and the values it commits to on the
right are indisitnguishable in sequential hybrids, except that, in hybrids H1 to Hk+6, we (or more
precisely, the simulator B) now need to extract out the values that A commits to in all the right
interactions (recall that the proof relies on the fact that the value that A commits to in the right
interaction can be extracted “efficiently”, to show the indistinguishability of hybrid Hi and Hi+1

for 1 ≤ i ≤ k + 6). This is easy to achieve, since we can simply extract the values that A commits
to in each right interaction one by one, after the Main Execution completes. More precisely, in
the Rewinding Phase, for every successful right interaction that has a different identity from the
left interaction in the Main Execution, B finds a WISSP proof in Stage 3 of this right interaction
that does not interleave with any message in Stage 1 and the ith proof (or Stage 2 for hybrid
Hk+6) of that left interaction, and repeatedly rewinds the proof until a second transcript is obtain;
it then computes a witness, if the two transcripts are different. Since there are only polynomial
number of right interactions, it follows using almost the same proof of Lemma 2 that the running
time of B is “bounded”, and further using exactly the same proof of Lemma 3 that, except with
negligible probability, the witnesses that B extracts out are indeed the values committed to in the
right interactions. Thus by the WI property of the Stage 3 proofs (or the hiding property of Stage
2 resp.), the view and the values committed to by A are indistinguishable in hybrids Hi and Hi+1

for 1 ≤ i ≤ k + 4 (or in Hk+5 and Hk+6 resp.). We thus have:

Theorem 6. 〈C,R〉 is concurrent non-malleable.

8 Proof of Robust Non-Malleability

In this section, we show that, for any r ∈ N , 〈C,R〉 can be easily modified into a O(r)-round
(concurrent) non-malleable commitment scheme 〈C̃, R̃〉 that is additionally one-many r-robust.
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It is shown in [LP09] that one-many r-robust commitment schemes are easy to construct: any
commitment scheme that is “extractable” and has more than r “rewinding slots” is directly one-
many non-malleable w.r.t. r-round protocols. Therefore, to make our constant-round non-malleable
commitment scheme 〈C,R〉 one-many r-robust, we simply add more WISSP proofs in Stage 3 of
the protocol. More precisely, the commitment scheme 〈Cr, Rr〉 proceeds identitcally to 〈C,R〉,
except that in Stage 3 of the protocol, the Committer C̃ needs to provide max(r + 1, l) WISSP
proofs (of the statement that either the Stage 2 message is a valid commitment or that it knows a
“trapdoor”), where l is the number of WISSP proofs in Stage 3 of the original protocol 〈C,R〉. It
follows using the same proof as in [LP09] that 〈Cr, Rr〉 is one-many r-robust. Roughly speaking,
the main idea of the proof is to reduce the one-many r-robustness to the indistinguishability of
the interaction with machine B(y1

n) or B(y2
n), by extracting the value committed to in the right

interactions from the WISSP proofs in Stage 3 of the protocol, without rewinding the left inter-
actions. This is achievable, (similar to the proof of the indistinguishability of Hybrid Hi and Hi+1

in Section 6,) as there are more WISSP proofs in Stage 3 than the nubmer of messages in the
left interaction, and one can always find a WISSP proof that does not interleave with the left
interaction and extract a witness from this proof, without rewinding the left interactions. The
witness extracted must be a valid decommitment, as otherwise, by the special-soundness of the
proof, it must be a valid signature-chain, which violates the soundness of the signature-game (since
the adversary here is never rewound and obtains only three signatures during the straight-line ex-
ecution of the right interaction). Therefore, we conclude that 〈Cr, Rr〉 is one-many r-robust. It
follows using the same proof in Section 6 that 〈Cr, Rr〉 is stand-alone non-malleable; and it further
follows using the same proof as in Section 7 that it is, in fact, also concurrent non-malleable.

Lemma 4. For every r ∈ N , the protocol 〈Cr, Rr〉 has O(r)-round, and is concurrently non-
malleable and one-many r-robust.

Theorem 2 follows directly from Lemma 4. Furthermore, for r < l, the protocol 〈Cr, Rr〉 is the
same as 〈C,R〉; thus,

Corollary 1. For any r < l, 〈C,R〉 is concurrently non-malleable and one-many r-robust.
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A General Definitions

A.1 Witness Relations

We recall the definition of a witness relation for a NP language [Gol01].

Definition 4 (Witness relation). A witness relation for a language L ∈ NP is a binary relation
RL that is polynomially bounded, polynomial time recognizable and characterizes L by L = {x :
∃y s.t. (x, y) ∈ RL}

We say that y is a witness for the membership x ∈ L if (x, y) ∈ RL. We will also let RL(x)
denote the set of witnesses for the membership x ∈ L, i.e., RL(x) = {y : (x, y) ∈ L}. In the
following, we assume a fixed witness relation RL for each language L ∈ NP.

A.2 Indistinguishability

Definition 5 (Computational Indistinguishability). Let Y be a countable set. Two ensembles
{An,y}n∈N,y∈Y and {Bn,y}n∈N,y∈Y are said to be computationally indistinguishable (denoted by {An,y}n∈N,y∈Y ≈
{Bn,y}n∈N,y∈Y ), if for every PPT “distinguishing” machine D, there exists a negligible function
ν(·) so that for every n ∈ N, y ∈ Y :

|Pr [a← An,y : D(1n, y, a) = 1]− Pr [b← Bn,y : D(1n, y, b) = 1]| < ν(n)

A.3 Interactive Proofs

We use the standard definitions of interactive proofs (and interactive Turing machines) [GMR89]
and arguments (a.k.a. computationally-sound proofs) [BCC88]. Given a pair of interactive Turing
machines, P and V , we denote by 〈P (w), V 〉(x) the random variable representing the (local) output
of V , on common input x, when interacting with machine P with private input w, when the random
input to each machine is uniformly and independently chosen.

Definition 6 (Interactive Proof System). A pair of interactive machines 〈P, V 〉 is called an inter-
active proof system for a language L if there is a negligible function ν(·) such that the following two
conditions hold :

• Completeness: For every x ∈ L, and every w ∈ RL(x), Pr [〈P (w), V 〉(x) = 1] = 1

• Soundness: For every x ∈ {0, 1}n−L, and every interactive machine B, Pr [〈B, V 〉(x) = 1] ≤
ν(n)

In case that the soundness condition is required to hold only with respect to a computationally
bounded prover, the pair 〈P, V 〉 is called an interactive argument system.
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A.4 Zero-Knowledge

We recall the standard definition of ZK proofs. Loosely speaking, an interactive proof is said to be
zero-knowledge (ZK) if a verifier V learns nothing beyond the validity of the assertion being proved,
it could not have generated on its own. As “feasible” computation in general is defined though
the notion of probabilistic polynomial-time, this notion is formalized by requiring that the output
of every (possibly malicious) verifier interacting with the honest prover P can be “simulated” by
a probabilistic expected polynomial-time machine S (a.k.a. the simulator). The idea behind this
definition is that whatever V ∗ might have learned from interacting with P , he could have learned
by himself by running the simulator S.

The notion of ZK was introduced and formalized by Goldwasser, Micali and Rackoff in [GMR89].
We present their definition below.

Definition 7 (ZK). Let L be a language in NP, RL a witness relation for L, (P, V ) an interactive
proof (argument) system for L. We say that (P, V ) is statistical/computational ZK, if for every
probabilistic polynomial-time interactive machine V there exists a probabilistic algorithm S whose
expected running-time is polynomial in the length of its first input, such that the following ensembles
are statistically close/computationally indistinguishable over L.

•
{
〈P (y), V (z)〉(x)

}
n∈N,x∈{0,1}n∩L,y∈RL(x),z∈{0,1}∗

•
{
S(x, z)

}
n∈N,x∈{0,1}n∩L,y∈RL(x),z∈{0,1}∗

where 〈P (y), V (z)〉(x) denotes the view of V in interaction with P on common input x and private
inputs y and z respectively.

A.5 Witness Indistinguishability

An interactive proof (or argument) is said to be witness indistinguishable (WI) if the verifier’s
output is “computationally independent” of the witness used by the prover for proving the state-
ment. In this context, we focus on languages L ∈ NP with a corresponding witness relation RL.
Namely, we consider interactions in which, on common input x, the prover is given a witness in
RL(x). By saying that the output is computationally independent of the witness, we mean that
for any two possible NP-witnesses that could be used by the prover to prove the statement x ∈ L,
the corresponding outputs are computationally indistinguishable.

Definition 8 (Witness-indistinguishability). Let 〈P, V 〉 be an interactive proof (or argument) sys-
tem for a language L ∈ NP. We say that 〈P, V 〉 is witness-indistinguishable for RL, if for every
probabilistic polynomial-time interactive machine V ∗ and for every two sequences {w1

n,x}n∈N,x∈L
and {w2

n,x}n∈N,x∈L, such that w1
n,x, w

2
n,x ∈ RL(x) for every x ∈ L∩{0, 1}n, the following probability

ensembles are computationally indistinguishable over n ∈ N .

• {〈P (w1
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

• {〈P (w2
n,x), V ∗(z)〉(x)}n∈N,x∈L∩{0,1}n,z∈{0,1}∗

A.6 Proofs (Arguments) of Knowledge

Loosely speaking, an interactive proof is a proof of knowledge if the prover convinces the verifier
that it possesses, or can feasibly compute, a witness for the statement proved. The notion of a
proof of knowledge is essentially formalized as follows: an interactive proof of x ∈ L is a proof of
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knowledge if there exists a probabilistic expected polynomial-time extractor machine E, such that
for any prover P , E on input the description of P and any statement x ∈ L readily outputs a valid
witness for x ∈ L if P succeeds in convincing the Verifier that x ∈ L. Formally,

Definition (Proof of knowledge [Gol01] ). Let (P, V ) be an interactive proof system for the language
L. We say that (P, V ) is a proof of knowledge for the witness relation RL for the language L it there
exists an probabilistic expected polynomial-time machine E, called the extractor, and a negligible
function ν(n) such that for every machine P ∗, every statement x ∈ {0, 1}n, every random tape
r ∈ {0, 1}∗ and every auxiliary input z ∈ {0, 1}∗,

Pr
[
〈P ′r(z), V 〉(x) = 1

]
≤ Pr[EP ′r(x,z)(x) ∈ RL(x)] + ν(n)

consider PPT provers. An interactive argument system 〈P, V 〉 is an argument of knowledge if
the above condition holds w.r.t. probabilistic polynomial-time provers.

Special-sound WI proofs A 4-round public-coin interactive proof for the language L ∈ NP with
witness relation RL is special-sound with respect to RL, if for any two transcripts (δ, α, β, γ) and
(δ′, α′, β′, γ′) such that the initial two messages, δ, δ′ and α, α′, are the same but the challenges β, β′

are different, there is a deterministic procedure to extract the witness from the two transcripts
and runs in polynomial time. Special-sound WI proofs for languages in NP can be based on
the existence of 2-round commitment schemes, which in turn can be based on one-way functions
[GMW91, FS90, HILL99, Nao91].
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