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Abstract

We develop a general game-theoretic framework for reasoning about strategic agents per-
forming possibly costly computation. In this framework, many traditional game-theoretic results
(such as the existence of a Nash equilibrium) no longer hold. Nevertheless, we can use the frame-
work to provide psychologically appealing explanations to observed behavior in well-studied
games (such as finitely repeated prisoner’s dilemma and rock-paper-scissors). Furthermore, we
provide natural conditions on games sufficient to guarantee that equilibria exist.



1 Introduction

Consider the following game. You are given a random odd n-bit number x and you are supposed to
decide whether x is prime or composite. If you guess correctly you receive $2, if you guess incorrectly
you instead have to pay a penalty of $1000. Additionally you have the choice of “playing safe”
by giving up, in which case you receive $1. In traditional game theory, computation is considered
“costless”; in other words, players are allowed to perform an unbounded amount of computation
without it affecting their utility. Traditional game theory suggests that you should compute whether
x is prime or composite and output the correct answer; this is the only Nash equilibrium of the
one-person game, no matter what n (the size of the prime) is. Although for small n this seems
reasonable, when n grows larger most people would probably decide to “play safe”—as eventually
the cost of computing the answer (e.g., by buying powerful enough computers) outweighs the
possible gain of $1.

The importance of considering such computational issues in game theory has been recognized
since at least the work of Simon [1955]. There have been a number of attempts to capture various
aspects of computation. Two major lines of research can be identified. The first line, initiated by
Neyman [1985], tries to model the fact that players can do only bounded computation, typically
by modeling players as finite automata. Neyman focused on finitely repeated prisoner’s dilemma, a
topic which has contined to attract attention. (See [Papadimitriou and Yannakakis 1994] and the
references therein for more recent work on prisoner’s dilemma played by finite automata; Megiddo
and Wigderson [1986] considered prisoner’s dilemma played by Turing machines.) In another
instance of this line of research, Dodis, Halevi, and Rabin [2000] and Urbano and Vila [2004] consider
the problem of implementing mediators when players are polynomial-time Turing machines.

(See [Papadimitriou and Yannakakis 1994] and the references therein for more recent work on
modeling players as finite automata; a more recent approach, first considered by Urbano and Villa
[2004] and formalized by Dodis, Halevi and Rabin [2000], instead models players as polynomially
bounded Turing machine.) The second line, initiated by Rubinstein [1986], tries to capture the
fact that doing costly computation affects an agent’s utility. Rubinstein assumed that players
choose a finite automaton to play the game rather than choosing a strategy directly; a player’s
utility depends both on the move made by the automaton and the complexity of the automaton
(identified with the number of states of the automaton). Intuitively, automata that use more states
are seen as representing more complicated procedures. (See [Kalai 1990] for an overview of the
work in this area in the 1980s, and [Ben-Sasson, Kalai, and Kalai 2007] for more recent work.)

Our focus is on providing a general game-theoretic framework for reasoning about agents per-
forming costly computation. As in Rubinstein’s work, we view players as choosing a machine, but
for us the machine is a Turing machine, rather than a finite automaton. We associate a complexity,
not just with a machine, but with the machine and its input. The complexity could represent the
running time of or space used by the machine on that input. The complexity can also be used to
capture the complexity of the machine itself (e.g., the number of states, as in Rubinstein’s case) or
to model the cost of searching for a new strategy to replace one that the player already has. For
example, if a mechanism designer recommends that player i use a particular strategy (machine)
M , then there is a cost for searching for a better strategy; switching to another strategy may also
entail a psychological cost. By allowing the complexity to depend on the machine and the input,
we can deal with the fact that machines run much longer on some inputs than on others. A player’s
utility depends both on the actions chosen by all the players’ machines and the complexity of these
machines.

In this setting, we can define Nash equilibrium in the obvious way. However, as we show by
a simple example (a rock-paper-scissors game where randomization is costly), a Nash equilibrium
may not always exist. Other standard results in the game theory, such as the revelation principle
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(which, roughly speaking, says that there is always an equilibrium where players truthfully report
their types, i.e., their private information [Myerson 1979; Forges 1986]) also do not hold. We view
this as a feature. We believe that taking computation into account should force us to rethink a
number of basic notions. To this end, we introduce refinements of Nash equilibrium that take into
account the computational aspects of games. Moreover, as we show here by example, despite the
fact that Nash equilibrium may not always exist, there are interesting Nash equilibria that give
insight into a number of games,

First, we show that the non-existence of Nash equilibrium is not such a significant problem.
We identify natural conditions (such as the assumption that randomizing is free) that guarantee
the existence of Nash equilibrium in computational games. Moreover, we demonstrate that our
computational framework can explain experimentally-observed phenomena, such as cooperation in
the finitely repeated prisoner’s dilemma, that are inconsistent with standard Nash equilibrium in
a psychologically appealing way. Indeed, as shown by our results, many concerns expressed by
the emerging field of behavioral economics (pioneered by Kahneman and Tversky [1981]) can be
accounted for by simple assumptions about players’ cost of computation, without resorting to ad
hoc cognitive or psychological models.

Finally, we show that our framework is normative in that it can be used to tell a mechnism
designer how to design a mechanism that takes into account agents’ computational limitations. We
illustrate this point in the context of cryptographic protocols. In a companion paper [Halpern and
Pass 2009a], we use our framework to provide a game-theoretic definition of cryptographic protocol
security.

Paper Outline The rest of this paper is organized as follows. In Sections 2 and 3 we describe
our framework. In Section 4 show how our computational framework can provide “psychologically-
appealing” explanations to observed behavior that is inconsistent with traditional solution concepts.
Section 5 contains our existence results for Nash equilibrium. In Section 6 we provide definitions and
existence results for sequential equilibria. We conclude in Section 8 with potential new directions
of research made possible by our framework.

2 A Computational Game-Theoretic Framework

2.1 Bayesian Games

We model costly computation using Bayesian machine games. To explain our approach, we first
review the standard notion of a Bayesian game. A Bayesian game is a game of incomplete in-
formation, where each player makes a single move. The “incomplete information” is captured by
assuming that nature makes an initial move, and chooses for each player i a type in some set Ti.
Player i’s type can be viewed as describing i’s private information. For ease of exposition, we as-
sume in this paper that the set N of players is always [m] = {1, . . . ,m}, for some m. If N = [m], the
set T = T1× . . .×Tm is the type space. As is standard, we assume that there is a commonly-known
probability distribution Pr on the type space T . Each player i must choose an action from a space
Ai of actions. Let A = A1× . . .×An be the set of action profiles. A Bayesian game is characterized
by the tuple ([m], T, A,Pr, ~u), where [m] is the set of players, T is the type space, A is the set of
joint actions, and ~u is the utility function, where ui(~t,~a) is player i’s utility (or payoff) if the type
profile is ~t and action profile ~a is played.

In general, a player’s choice of action will depend on his type. A strategy for player i is a function
from Ti to ∆(Ai) (where, as usual, we denote by ∆(X) the set of distributions on the set X). If σ is a
strategy for player i, t ∈ Ti and a ∈ Ai, then σ(t)(a) denotes the probability of action a according to
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the distribution on acts induced by σ(t). Given a joint strategy ~σ, we can take u~σi to be the random
variable on the type space T defined by taking u~σi (~t) =

∑
~a∈A(σ1(t1)(a1)×. . .×σm(tm)(am))ui(~t,~a).

Player i’s expected utility if ~σ is played, denoted Ui(~σ), is then just EPr[u~σi ] =
∑
~t∈T Pr(~t)u~σi (~t).

2.2 Bayesian Machine Games

In a Bayesian game, it is implicitly assumed that computing a strategy—that is, computing what
move to make given a type—is free. We want to take the cost of computation into account here.
To this end, we consider what we call Bayesian machine games, where we replace strategies by
machines. For definiteness, we take the machines to be Turing machines, although the exact
choice of computing formalism is not significant for our purposes. Given a type, a strategy in a
Bayesian game returns a distribution over actions. Similarly, given as input a type, the machine
returns a distribution over actions. Just as we talk about the expected utility of a strategy profile in
a Bayesian game, we can talk about the expected utility of a machine profile in a Bayesian machine
game. However, we can no longer compute the expected utility by just taking the expectation over
the action profiles that result from playing the game. A player’s utility depends not only on the
type profile and action profile played by the machine, but also on the “complexity” of the machine
given an input. The complexity of a machine can represent, for example, the running time or
space usage of the machine on that input, the size of the program description, or some combination
of these factors. For simplicity, we describe the complexity by a single number, although, since a
number of factors may be relevant, it may be more appropriate to represent it by a tuple of numbers
in some cases. (We can, of course, always encode the tuple as a single number, but in that case,
“higher” complexity is not necessarily worse.) Note that when determining player i’s utility, we
consider the complexity of all machines in the profile, not just that of i’s machine. For example, i
might be happy as long as his machine takes fewer steps than j’s.

We assume that nature has a type in {0, 1}∗. While there is no need to include a type for
nature in standard Bayesian games (we can effectively incorporate nature’s type into the type of
the players), once we take computation into account, we obtain a more expressive class of games
by allowing nature to have a type (since the complexity of computing the utility may depend on
nature’s type). We assume that machines take as input strings of 0s and 1s and output strings
of 0s and 1s. Thus, we assume that both types and actions can be represented as elements of
{0, 1}∗. We allow machines to randomize, so given a type as input, we actually get a distribution
over strings. To capture this, we assume that the input to a machine is not only a type, but also
a string chosen with uniform probability from {0, 1}∞ (which we can view as the outcome of an
infinite sequence of coin tosses). The machine’s output is then a deterministic function of its type
and the infinite random string. We use the convention that the output of a machine that does not
terminate is a fixed special symbol ω. We define a view to be a pair (t, r) of two bitstrings; we think
of t as that part of the type that is read, and r is the string of random bits used. (Our definition
is slightly different from the traditional way of defining a view, in that we include only the parts of
the type and the random sequence actually read. If computation is not taken into account, there
is no loss in generality in including the full type and the full random sequence, and this is what
has traditionally been done in the literature. However, when computation is costly, this might no
longer be the case.) We denote by t; r a string in {0, 1}∗; {0, 1}∗ representing the view. (Note that
here and elsewhere, we use “;” as a special symbol that acts as a separator between strings in
{0, 1}∗.) If v = (t; r) and r is a finite string, we take M(v) to be the output of M given input type
t and random string r · 0∞.

We use a complexity function C : M × {0, 1}∗; {0, 1}∗ ∪ {0, 1}∞ → IN , where M denotes the
set of Turing machines to describe the complexity of a machine given a view. If t ∈ {0, 1}∗ and
r ∈ {0, 1}∞, we identify C (M, t; r) with C (M, t; r′), where r′ is the finite prefix of r actually used
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by M when running on input t with random string r.
For now, we assume that machines run in isolation, so the output and complexity of a machine

does not depend on the machine profile. We remove this restriction in the next section, where
we allow machines to communicate with mediators (and thus, implicitly, with each other via the
mediator).

Definition 2.1 (Bayesian machine game) A Bayesian machine game G is described by a tuple
([m],M, T,Pr, C1, . . . ,Cm, u1, . . . , um), where
• [m] = {1, . . . ,m} is the set of players;
• M is the set of possible machines;
• T ⊆ ({0, 1}∗)m+1 is the set of type profiles, where the (m+ 1)st element in the profile corre-

sponds to nature’s type;
• Pr is a distribution on T ;
• Ci is a complexity function;
• ui : T ×({0, 1}∗)m×INm → IR is player i’s utility function. Intuitively, ui(~t,~a,~c) is the utility

of player i if ~t is the type profile, ~a is the action profile (where we identify i’s action with
Mi’s output), and ~c is the profile of machine complexities.

We can now define the expected utility of a machine profile. Given a Bayesian machine game
G = ([m],M,Pr, T, ~C , ~u) and ~M ∈Mm, define the random variable uG,

~M
i on T × ({0, 1}∞)m (i.e.,

the space of type profiles and sequences of random strings) by taking

uG,
~M

i (~t, ~r) = ui(~t,M1(t1; r1), . . . ,Mm(tm; rm),C1(M1, t1; r1), . . . ,Cm(Mm, tm)).

Note that there are two sources of uncertainty in computing the expected utility: the type t and
realization of the random coin tosses of the players, which is an element of ({0, 1}∞)k. Let PrkU
denote the uniform distribution on ({0, 1}∞)k. Given an arbitrary distribution PrX on a space X,
we write Pr+kX to denote the distribution PrX ×PrkU on X × ({0, 1}∞)k. If k is clear from context
or not relevant, we often omit it, writing PrU and Pr+X . Thus, given the probability Pr on T , the

expected utility of player i in game G if ~M is used is the expectation of the random variable uG,
~M

i

with respect to the distribution Pr+ (technically, Pr+m): UGi ( ~M) = EPr+ [uG,
~M

i ]. Note that this
notion of utility allows an agent to prefer a machine that runs faster to one that runs slower, even if
they give the same output, or to prefer a machine that has faster running time to one that gives a
better output. Because we allow the utility to depend on the whole profile of complexities, we can
capture a situation where i can be “happy” as long as his machine runs faster than j’s machine.
Of course, an important special case is where i’s utility depends only on his own complexity. All
of our results continue to hold if we make this restriction.

2.3 Nash Equilibrium in Machine Games

Given the definition of utility above, we can now define (ε-) Nash equilibrium in the standard way.

Definition 2.2 (Nash equilibrium in machine games) Given a Bayesian machine game G =
([m],M, T,Pr, ~C , ~u), a machine profile ~M ∈ Mm, and ε ≥ 0, Mi is an ε-best response to ~M−i if,
for every M ′i ∈M,

UGi [(Mi, ~M−i)] ≥ UGi [(M ′i , ~M−i)]− ε.

(As usual, ~M−i denotes the tuple consisting of all machines in ~M other than Mi.) ~M is an ε-Nash
equilibrium of G if, for all players i, Mi is an ε-best response to ~M−i. A Nash equilibrium is a
0-Nash equilibrium.
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There is an important conceptual point that must be stressed with regard to this definition.
Because we are implicitly assuming, as is standard in the game theory literature, that the game
is common knowledge, we are assume that the agents understand the costs associated with each
Turing machine. That is, they do not have to do any “exploration” to compute the costs. In
addition, we do not charge the players for computing which machine is the best one to use in
a given setting; we assume that this too is known. This model is appropriate in settings where
the players have enough experience to understand the behavior of all the machines on all relevant
inputs, either through experimentation or theoretical analysis. We can easily extend the model
to incorporate uncertainty, by allowing the complexity function to depend on the state (type) of
nature as well as the machine and the input. For example, if we take complexity to be a function of
running time, a machine M has a true running time for a given input, but a player may be uncertain
as to what it is. We can model this uncertainty by allowing the complexity function to depend on
the state of nature. To simplify the exposition, we do not have the complexity function depend on
the state of nature in this paper; we do so in [Halpern and Pass 2010], where the uncertainy plays
a more central role. However, we remark that it is straightforward to extend all the results in this
paper to the setting where there is uncertainty about the complexity and the “quality” of a TM.

One immediate advantage of taking computation into account is that we can formalize the intu-
ition that ε-Nash equilibria are reasonable, because players will not bother changing strategies for a
gain of ε. Intuitively, the complexity function can “charge” ε for switching strategies. Specifically,
an ε-Nash equilibrium ~M can be converted to a Nash equilibrium by modifying player i’s complex-
ity function to incorporate the overhead of switching from Mi to some other strategy, and having
player i’s utility function decrease by ε′ > ε if the switching cost is nonzero; we omit the formal
details here. Thus, the framework lets us incorporate explicitly the reasons that players might be
willing to play an ε-Nash equilibrium. This justification of ε-Nash equilibrium seems particularly
appealing when designing mechanisms (e.g., cryptographic protocols) where the equilibrium strat-
egy is made “freely” available to the players (e.g., it is accessible on a web-page), but any other
strategy requires some implementation cost.

Although the notion of Nash equilibrium in Bayesian machine games is defined in the same
way as Nash equilibrium in standard Bayesian games, the introduction of complexity leads to
some significant differences in their properties. We highlight a few of them here. First, note
that our definition of a Nash equilibrium considers behavioral strategies, which in particular might
be randomized. It is somewhat more common in the game-theory literature to consider mixed
strategies, which are probability distributions over deterministic strategies. As long as agents have
perfect recall, mixed strategies and behavioral strategies are essentially equivalent [Kuhn 1953].
However, in our setting, since we might want to charge for the randomness used in a computation,
such an equivalence does not necessarily hold.

Mixed strategies are needed to show that Nash equilibrium always exists in standard Bayesian
games. As the following example shows, since we can charge for randomization, a Nash equilibrium
may not exist in a Bayesian machine game, even in games where the type space and the output
space are finite.

Example 2.3 (Rock-paper-scissors) Consider the 2-player Bayesian game of roshambo (rock-
paper-scissors). Here the type space has size 1 (the players have no private information). We model
playing rock, paper, and scissors as playing 0, 1, and 2, respectively. The payoff to player 1 of the
outcome (i, j) is 1 if i = j ⊕ 1 (where ⊕ denotes addition mod 3), −1 if j = i ⊕ 1, and 0 if i = j.
Player 2’s playoffs are the negative of those of player 1; the game is a zero-sum game. As is well
known, the unique Nash equilibrium of this game has the players randomizing uniformly between
0, 1, and 2.
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Now consider a machine game version of roshambo. Suppose that we take the complexity of a
deterministic strategy to be 1, and the complexity of strategy that uses randomization to be 2, and
take player i’s utility to be his payoff in the underlying Bayesian game minus the complexity of his
strategy. Intuitively, programs involving randomization are more complicated than those that do
not randomize. With this utility function, it is easy to see that there is no Nash equilibrium. For
suppose that (M1,M2) is an equilibrium. If M1 uses randomization, then 1 can do better by playing
the deterministic strategy j ⊕ 1, where j is the action that gets the highest probability according
to M2 (or is the deterministic choice of player 2 if M2 does not use randomization). Similarly, M2

cannot use randomization. But it is well known (and easy to check) that there is no equilibrium
for roshambo with deterministic strategies. (Of course, there is nothing special about the costs
of 1 and 2 for deterministic vs. randomized strategies. This argument works as long as all three
deterministic strategies have the same cost, and it is less than that of a randomized strategy.)

The non-existence of Nash euqilibrium does not depend on charging directly for randomization;
it suffices that it be difficult to compute the best randomized response. Now consider the variant
where we do not charge for the first, say, 10,000 steps of computation, and after that there is a
positive cost of computation. It is not hard to show that, in finite time, using coin tossing with
equal likelihood of heads and tails, we cannot exactly compute a uniform distribution over the
three choices, although we can approximate it closely.1 (For example, if we toss a coin twice,
playing rock if we get heads twice, paper with heads and tails, and scissors with tails and heads,
and try again with two tails, we do get a uniform distribution, conditional on terminatation.
Since there is always a deterministic best reply that can be computed quickly (“play rock”, “play
scissors”, or “play paper”), from this observation it easily follows, as above, that there is no Nash
equilibrium in this game either. As a corollary, it follows that that there are computational games
without a Nash equilibrium where all constant-time strategies are taken to be free. It is well known
that people have difficulty simulating randomization; we can think of the cost for randomizing as
capturing this difficulty. Interestingly, there are roshambo tournaments (indeed, even a Rock Paper
Scissors World Championship), and books written on roshambo strategies [Walker and Walker
2004]. Championship players are clearly not randomizing uniformly (they could not hope to get
a higher payoff than an opponent by randomizing). Our framework provides a psychologically
plausible account of this lack of randomization.

The key point here is that, in standard Bayesian games, to guarantee equilibrium requires using
randomization. Here, we allow randomization, but we charge for it. This charge may prevent there
from being an equilibrium.

Example 2.3 shows that sometimes there is no Nash equilibrium. It is also trivial to show that
given any standard Bayesian game G (without computational costs) and a computable strategy
profile ~σ in G (where ~σ is computable if, for each player i and type t of player i, there exists a
Turing machine M that outputs a with probability σi(t)(a)), we can choose computational costs
and modify the utility function in G in such a way as to make ~σ an equilibrium of the modified
game: we simply make the cost to player i of implementing a strategy other than σi sufficiently
high.

One might be tempted to conclude from these examples that Bayesian machine games are
uninteresting. They are not useful prescriptively, since they do not always provide a prescription as
to the right thing to do. Nor are they useful descriptively, since we can always “explain” the use of
a particular strategy in our framework as the result of a high cost of switching to another strategy.
With regard to the first point, as shown by our definition of security, our framework can provide

1Consider a probabilistic Turing machine M with running time bounded by T that outputs either 0, 1, or 2. Since
M ’s running time is bounded by T , M can use at most T of its random bits. If M outputs 0 for m of the 2T strings
of length T , then its probability of outputting 0 is m/2T , and cannot be 1/3.
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useful prescriptive insights by making minimal assumptions regarding the form of the complexity
function. Moreover, although there may not always be a Nash equilibrium, it is easy to see that there
is always an ε-Nash equilibrium for some ε; this ε-Nash can give useful guidance into how the game
should be played. For example, in the second variant of the roshambo example above, we can get an
ε-equilibrium for a small ε by attempting to simulate the uniform distribution by tossing the coin
10,000 times, and then just playing rock if 10,000 tails are tossed. Whether it is worth continuing
the simulation after 10,000 tails depends on the cost of the additional computation. Finally, as
we show below, there are natural classes of games where a Nash equilibrium is guaranteed to exist
(see Section 5). With regard to the second point, we would argue that, in fact, it is the case that
people continue to play certain strategies that they know are not optimal because of the overhead
of switching to a different strategy; that is, our model captures a real-world phenomenon.

Another property of (standard) Bayesian games that does not hold for Bayesian machine games
is the following. Given a Nash equilibrium ~σ in a Bayesian game, not only is σi a best response to
~σ−i, but it continues to be a best response conditional on i’s type. That is, if Pr is the probability
distribution on types, and Pr(ti) > 0, then Ui(σi, ~σ−i | ti) ≥ Ui(σ′i, ~σ−i | ti) for all strategies σ′i
for player i, where Ui(σi, ~σ−i | ti) is the expected utility of ~σ conditional on player i having type
i. Intuitively, if player i could do better than playing σi if his type were ti by playing σ′i, then σi
would not be a best response to ~σ−i; we could just modify σi to agree with σ′i when i’s type is ti to
get a strategy that does better against ~σ−i than σi. This is no longer true with Bayesian machine
games, as the following simple example shows.

Example 2.4 (Primality guessing) Suppose that the probability on the type space assigns uni-
form probability to all 2100 odd numbers between 2100 and 2101 (represented as bit strings of length
100). Suppose that a player i wants to compute if its input (i.e., its type) is prime. Specifically, i
gets a utility of 2 minus the costs of its running time (explained below) if t is prime and it outputs
1 or if t is composite and it outputs 0; on the other hand, if it outputs either 0 or 1 and gets the
wrong answer, then it gets a utility of −1000. But i also has the option of “playing safe”; if i
outputs 2, then i gets a utility of 1 no matter what the input is. The running-time cost is taken to
be 0 if i’s machine takes less than 2 units of time and otherwise is −2. We assume that outputting
a constant function takes 1 unit of time. Note that although testing for primality is in polynomial
time, it will take more than 2 units of time on all inputs that have positive probability. Since i’s
utility is independent of what other players do, i’s best response is to always output 2. However, if
t is actually a prime, i’s best response conditional on t is to output 1; similarly, if t is not a prime,
i’s best response conditional on t is to output 0. The key point is that the machine that outputs i’s
best response conditional on a type does not do any computation; it just outputs the appropriate
value.

Note that here we are strongly using the assumption that i understands the utility of outputting
0 or 1 conditional on type t. This amounts to saying that if he is playing the game conditional
on t, then he has enough experience with the game to know whether t is prime. If we wanted to
capture a more general setting where the player did not understand the game, even after learning
t, then we could do this by considering two types (states) of nature, s0 and s1, where, intuitively,
t is composite if the state (nature’s type) is s0 and prime if it is s1. Of course, t is either prime or
it is not. We can avoid this problem by simply having the utility of outputting 1 in s0 or 0 in s1
being −2 (because, intuitively, in state s0, t is composite and in s1 it is prime) and the utility of
outputting 0 in s0 or 1 in s1 being 2. The relative probability of s0 and s1 would reflect the player
i’s prior probability that t is prime.

In this case, there was no uncertainty about the complexity; there was simply uncertainty about
whether the type satisfied a certain property. As we have seen, we can already model the latter
type of uncertainty in our framework. To model uncertainty about complexity, we simply allow the
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complexity function to depend on nature’s type, as well as the machine and the input. We leave
the straightforward details to the reader.

A common criticism (see e.g., [Aumann 1985]) of Nash equilibria that use randomized strategies
is that such equilibria cannot be strict (i.e., it cannot be the case that each player’s equilibrium
strategy gives a strictly better payoff than any other strategy, given the other players’ strategies).
This follows since any pure strategy in the support of the randomized strategy must give the same
payoff as the randomized strategy. As the example below shows, this is no longer the case when
considering games with computational costs.

Example 2.5 (Strict Nash equilibrium) Consider the same game as in Example 2.4, except
that all machines with running time less than or equal to T have a cost of 0, and machines that
take time greater than T have a cost of −2. It might very well be the case that, for some values of T ,
there might be a probabilistic primality testing algorithms that runs in time T and determines with
high probability determine whether a given input x is prime or composite, whereas all deterministic
algorithms take too much time. (Indeed, although deterministic polynomial-time algorithms for
primality testing are known [Agrawal, Keyal, and Saxena 2004], in practice, randomized algorithms
are used because they run significantly faster.)

3 Machine Games with Mediators and Extensive-form Games

Up to now we have assumed that the only input a machine receives is the initial type. This is
appropriate in a normal-form game, but does not allow us to consider game where players can
communicate with each other and (possibly) with a trusted mediator. We now extend Bayesian
machine games to allow for communication. For ease of exposition, we assume that all communi-
cation passes between the players and a trusted mediator. Communication between the players is
modeled by having a trusted mediator who passes along messages received from the players. Thus,
we think of the players as having reliable communication channels to and from a mediator; no other
communication channels are assumed to exist.

The formal definition of a Bayesian machine game with a mediator is similar in spirit to that of
a Bayesian machine game, but now we assume that the machines are interactive Turing machines,
that can also send and receive messages. We omit the formal definition of an interactive Turing
machine (see, for example, [Goldreich 2001]); roughly speaking, the machines use a special tape
where the message to be sent is placed and another tape where a message to be received is written.
The mediator is modeled by an interactive Turing machine that we denote F .

A Bayesian machine game with a mediator (or a mediated Bayesian machine game) is thus
a pair (G,F), where G = ([m],M,Pr,C1, . . . ,Cn, u1, . . . , un) is a Bayesian machine game (except
that M here denotes a set of interactive machines) and F is an interactive Turing machine.

Like machines in Bayesian machine games, interactive machines in a game with a mediator take
as argument a view and produce an outcome. Since what an interactive machine does can depend
on the history of messages sent by the mediator, the message history (or, more precisely, that part
of the message history actually read by the machine) is also part of the view. Thus, we now define
a view to be a string t;h; r in {0, 1}∗; {0, 1}∗; {0, 1}∗, where, as before, t is that part of the type
actually read and r is a finite bitstring representing the string of random bits actually used, and
h is a finite sequence of messages received and read. Again, if v = t;h; r, we take M(v) to be the
output of M given the view.

We assume that the system proceeds in synchronous stages; a message sent by one machine to
another in stage k is received by the start of stage k+1. More formally, following [Abraham, Dolev,
Gonen, and Halpern 2006], we assume that a stage consists of three phases. In the first phase of

8



a stage, each player i sends a message to the mediator, or, more precisely, player i’s machine
Mi computes a message to send to the mediator; machine Mi can also send an empty message,
denoted λ. In the second phase, the mediator receives the message and mediator’s machine sends
each player i a message in response (again, the mediator can send an empty message). In the third
phase, each player i performs an action other than that of sending a message (again, it may do
nothing). The messages sent and the actions taken can depend on the machine’s message history
(as well as its initial type).

We can now define the expected utility of a profile of interactive machines in a Bayesian machine
game with a mediator. The definition is similar in spirit to the definition in Bayesian machine games,
except that we must take into account the dependence of a player’s actions on the message sent
by the mediator. Let viewi( ~M,F ,~t, ~r) denote the string (ti;hi; ri) where hi denotes the messages
received by player i if the machine profile is ~M , the mediator uses machine F , the type profile is
~t, and ~r is the profile of random strings used by the players and the mediator. Given a mediated
Bayesian machine game G′ = (G,F), we can define the random variable uG

′, ~M
i (~t, ~r) as before,

except that now ~r must include a random string for the mediator, and to compute the outcome
and the complexity function, Mj gets as an argument viewj( ~M,F ,~t, ~r), since this is the view that

machine Mj gets in this setting. Finally, we define UG
′

i ( ~M) = EPr+ [uG
′, ~M

i ] as before, except that
now Pr+ is a distribution on T × ({0, 1}∞)n+1 rather than T × ({0, 1}∞)n, since we must include
a random string for the mediator as well as the players’ machines.

We can define Nash equilibrium as in Bayesian machine games; we leave the details to the
reader.

As the following example shows, the revelation principle no longer holds once we take compu-
tation into account.

Example 3.1 (Failure of revelation principle) The revelation principle is one of the funda-
mental principles in traditional implementation theory. A specific instance of it [Myerson 1979;
Forges 1986] stipulates that for every Nash equilibrium in a mediated games (G,F), there exists a
different mediator F ′ such that it is a Nash equilibrium for the players to truthfully report their
type to the mediator and then perform the action suggested by the mediator. As we demonstrate,
this principle no longer holds when we take computation into account (a similar point is made by
Conitzer and Sandholm [2004], although they do not use our formal model). The intuition is simple:
truthfully reporting your type will not be an equilibrium if it is too “expensive” to send the whole
type to the mediator. For a naive counter example, consider a game where a player get utility 1
whenever its complexity is 0 (i.e., the player uses the strategy ⊥) and positive utility otherwise.
Clearly, in this game it can never be an equilibrium to truthfully report your type to any media-
tor. This example is degenerate as the players actually never use the mediator. In the following
example, we consider a game with a Nash equilibrium where the players use the mediator.

Consider a 2-player game where each player’s type is an n-bit number. The type space consists
of all pairs of n-bit numbers that either are the same, or that differ in all but at most k places,
where k � n. The player receive a utility of 1 if they can guess correctly whether their types are
the same or not, while having communicated less than k + 2 bits; otherwise it receives a utility
of 0. Consider a mediator that upon receiving k + 1 bits from the players answers back to both
players whether the bits received are identical or not. With such a mediator it is an equilibrium
for the players to provide the first k+ 1 bits of their input and then output whatever the mediator
tells them. However, providing the full type is always too expensive (and can thus never be a Nash
equilibrium), no matter what mediator the players have access to.

Repeated games and, more generally, arbitrary extensive-form games (i.e., games defined by
game trees) can be viewed as special cases of games with mediators, except that now we allow the
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utility to depend on the messages sent to the mediator (since we view these as encoding the actions
taken in the game). In more detail, we capture an extensive-form machine game G′ = (G,N ) by
simply mediator N ; we allow the mediator to be a function of the type of nature, and the utility
functions to take into account the messages sent by the players to the mediator (i.e., talk is not
necessarily “cheap”), and also the random coins used by the mediator. In other words, we assume,
without loss of generality, that all communication and signals sent to a player are sent through the
mediator, and that all actions taken by a player are sent as messages to the mediator. Thus, the
utility of player i, ui(~t, h,~c), is now a function of the type profile ~t, the view h of nature (i.e., all
the messages received, and random coins tossed, by the mediator), and the complexity profile ~c.
We leave the details of the formal definition to the to the reader.

4 Computational Explanations for Observed Behavior

In this section we show several examples where our framework can be used to give simple (and,
arguably, natural) explanations to experimentally observed behavior in classical games where tra-
ditional game-theoretic solution concepts fail. For instance, we show that in a variant of finitely
repeated prisonner’s dilemma (FRPD) where players are charged for the use of memory, the strategy
tit for tat—which does exceedingly well in experiments [Axelrod 1984]—is also a Nash equilibrium,
whereas it is dominated by defecting in the classical sense. (Intuitively, this follows from the facts
that (1) any profitable deviation from tit for tat requires the use of memory, and (2) if future util-
ity is discounted, then for sufficiently long games, the potential gain of deviating becomes smaller
than the cost of memory.) Similarly, the imperfect randomization obesrved in real-life events where
randomization helps (e.g., penalty shots in soccer or serving in tennis) can be explained by con-
sidering computational costs; as long as a sequence appears random relative to the computation
that an opponent is willing to put in to make predictions about the sequence, that is good enough.
Interestingly, the same explanation applies to the computational theory of pseudorandomness. A
sequence is pseudorandom if it passes all polynomial-time tests for randomness. There is no need
to use a sequence that is more random than a pseudorandom sequence when playing against an op-
ponent for whom super-polynomial computation is too expensive. In a companion paper [Halpern
and Pass 2010], where we apply our framework to decision theory, we show how other well-known
“anomalous” behaviors, such as the status quo bias [Samuelson and Zeckhauser 1998] and the first-
impressions-matter bias [Rabin 1998] can be explained by viewing computation as a costly resource.
Many of these behaviors have been given various cognitive explanations (e.g., using models of the
brain [Mullainathan 2002] or using psychology [Rabin 1998]). Some of these explanations can be
viewed as being based in part on considerations of computational cost. As shown by our results,
we do not need to resort to complicated assumptions about the brain, or psychology, in order to
provide such explanations: extremely simple (and plausible) assumptions about the cost of com-
putation suffice to explain, at least at a qualitative level, the observered behavior. (See [Halpern
and Pass 2010] and Example 4.3 for further discussion of these points.)

Example 4.1 (Finitely repeated prisoner’s dilemma) Recall that in the prisoner’s dilemma,
there are two prisoners, who can choose to either cooperate or defect. As described in the table
below, if they both cooperate, they both get 3; if they both defect, then both get -3; if one
defects and the other cooperates, the defector gets 5 and the cooperator gets −5. (Intuitively, the
cooperator stays silent, while the defector “rats out” his partner. If they both rat each other out,
they both go to jail.)

It is easy to see that defecting dominates cooperating: no matter what the other player does,
a player is better off defecting than cooperating. Thus, “rational” players should defect. And,
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C D

C (3, 3) (−5, 5)
D (5,−5) (−3,−3)

indeed, (D,D) is the only Nash equilibrium of this game. Although (C,C) gives both players a
better payoff than (D,D), this is not an equilibrium.

Now consider finitely repeated prisoner’s dilemma (FRPD), where prisoner’s dilemma is played
for some fixed number N of rounds. The only Nash equilibrium is to always defect; this can be seen
by a backwards induction argument. (The last round is like the one-shot game, so both players
should defect; given that they are both defecting at the last round, they should both defect at the
second-last round; and so on.) This seems quite unreasonable. And, indeed, in experiments, people
do not always defect [Axelrod 1984]. In fact, quite often they cooperate throughout the game. Are
they irrational? It is hard to call this irrational behavior, given that the “irrational” players do
much better than supposedly rational players who always defect.

There have been many attempts to explain cooperation in FRPD in the literature; see, for ex-
ample, [Kreps, Milgrom, Roberts, and Wilson 1982; Neyman 1985; Papadimitriou and Yannakakis
1994]. In particular, [Neyman 1985; Papadimitriou and Yannakakis 1994] demonstrate that if play-
ers are restricted to using a finite automaton with bounded complexity, then there exist equilibria
that allow for cooperation. However, the strategies used in those equilibria are quite complex, and
require the use of large automata;2 as a consequence this approach does not seem to provide a
satisfactory explanation as to why people choose to cooperate.

By using our framework, we can provide a straightforward explanation. Consider the tit for tat
strategy, which proceeds as follows: a player cooperates at the first round, and then at round m+1,
does whatever his opponent did at round m. Thus, if the opponent cooperated at the previous
round, then you reward him by continuing to cooperate; if he defected at the previous round, you
punish him by defecting. If both players play tit for tat, then they cooperate throughout the game.
Interestingly, tit for tat does exceedingly well in FRPD tournaments, where computer programs
play each other [Axelrod 1984].

Now consider a machine-game version of FRPD, where at each round the player receive as
signal the move of the opponent in the previous rounds before they choose their action. In such
a game, tit for tat is a simple program, which needs no memory (i.e., the machine is stateless).
Suppose that we charge even a modest amount α for memory usage (i.e., stateful machines get a
penalty of at least α, whereas stateless machines get no penalty), that there is a discount factor δ,
with 0.5 < δ < 1, so that if the player gets a reward of rm in round m, his total reward over the
whole N -round game (excluding the complexity penalty) is taken to be

∑N
m=1 δ

mrm, that α ≥ 2δN ,
and that N > 2. In this case, it will be a Nash equilibrium for both players to play tit for tat.
Intuitively, no matter what the cost of memory is (as long as it is positive), for a sufficiently long
game, tit for tat is a Nash equilibrium.

To see this, note that the best response to tit for tat is to play tit for tat up to but not including
the last round, and then to defect. But following this strategy requires the player to keep track
of the round number, which requires the use of extra memory. The extra gain of 2 achieved by
defecting at the last round will not be worth the cost of keeping track of the round number as long
as α ≥ 2δN ; thus no stateful strategy can do better. It remains to argue that no stateless strategy
(even a randomized stateless strategy) can do better against tit for tat. Note that any strategy

2The idea behind these equilibria is to force players to remember a short history of the game, during which players
perform random actions; this requires the use of many states.
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that defects for the first time at round k < N does at least 6δk+1 − 2δk worse than tit for tat. It
gains 2 at round k (for a discounted utility of 2δk), but loses at least 6 relative to tit for tat in
the next round, for a discounted utility of 6δk+1. From that point on the best response is to either
continue defecting (which at each round leads to a loss of 6), or cooperating until the last round
and then defecting (which leads to an additional loss of 2 in round k + 1, but a gain of 2 in round
N). Thus, any strategy that defects at round k < N does at least 6δk+1 − 2δk worse than tit for
tat.

A strategy that defects at the last round gains 2δN relative to tit for tat. Since N > 2, the
probability that a stateless strategy defects at round N − 1 or earlier is at least as high as the
probability that it defects for the first time at round N . (We require that N > 2 to make sure that
there exist some round k < N where the strategy is run on input C.) It follows that any stateless
strategy that defects for the first time in the last round with probability p in expectation gains
at most p(2δN − (6δN − 2δN−1)) = pδN−1(2 − 4δ), which is negative when δ > 0.5. Thus, when
α ≥ 2δN , N > 2, and δ > 0.5, tit for tat is a Nash equilibrium in FRPD. (However, also note that
depending on the cost of memory, tit for tat may not be a Nash equilibrium for sufficiently short
games.)

The argument above can be extended to show that tit for tat is a Nash equilibrium even if
there is also a charge for randomness or computation, as long as there is no computational charge
for machines as “simple” as tit for tat; this follows since adding such extra charges can only make
things worse for strategies other than tit for tat. Also note that even if only one player is charged
for memory, and memory is free for the other player, then there is a Nash equilibrium where the
bounded player plays tit for tat, while the other player plays the best response of cooperating up
to but not including the last round of the game, and then defecting in the last round. (A similar
argument works without assuming a discount factor (or, equivalently, taking δ = 1) if we assume
that the cost of memory increases unboundedly with N .)

Note that the assumption of a cost for remembering the round number can be tested by running
experiments with a variant of the FRPD where players have access to a counter showing how many
rounds remain in the game. If players’ behavior changes in the presence of such as counter, this
could be interpreted as suggesting a cognitive cost for remembering the round number. In fact,
competitive swimmers have, and make use of, counters telling them how many laps remain in the
race.3

Example 4.2 (Biases in randomization) An interesting study by Walker and Wooders [2001]
shows that even in professional sports competition (when large sums of money are at play), players
randomize badly. For instance, in tennis serving, we can view the server as choosing between
two actions: serving left or serving right, while the receiver attempts to predict the action of the
server. However, as observed by Walker and Wooders [2001], while players do indeed randomize,
their choices are not made independently at each step. In particular, they tend to switch from one
action to another too often.

These observations can again be explained by assuming a cost for computation. Suppose that
the server could actually randomize well if he wanted to, but that there is some (possibly small)
cost for doing this. For instance, the server may make use of features of nature to generate its
randomness, but this might entail a loss in concentration. Similarly, if the server indeed uses a
weak method of randomization, the receiver can try to “break” it, but this again requires some
computational effort (and again a loss of concentration). So, under reasonable assumptions, there
is an equilibrium where the server uses only weak randomization, while the receiver uses only a
computationally-weak predictor (which can be fooled by the randomization used by the server).

3We thank Rachel Kranton for this observation.
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Indeed, the usage of such methods is prevalent in the computer science literature: the definition
of pseudo-randomness [Blum and Micali 1984; Yao 1982] recognizes that a sequence of numbers
needs to be only “random-looking” with respect to a particular class of computationally resource-
bounded observers. It is also well-known that computationally-weak classes of observers can be
easily fooled. For instance, by Hastad’s [1989] switching lemma, it follows that a polynomial-size
constant-depth circuit cannot distinguish a random sequence of bits whose parity is 1 from a random
sequence with parity 0.

Example 4.3 (Biases in decision theory) There are several examples of single-agent decision
theory problem where experimentally observed behavoir does not correspond to what is predicted
by standard models. For instance, psychologists have observed systematic biases in the way that
individuals update their beliefs as new information is received (see [Rabin 1998] for a survey). In
particular, a first-impressions-matter bias has been observed: individuals put too much weight
on initial signals and less weight on later signals. As they become more convinced that their
beliefs are correct, many individuals even seem to simply ignore all information once they reach a
confidence threshold. Other examples of such phenomena are belief polarization [Lord, Ross, and
Lepper 1979]—that two people, hearing the same information (but with possibly different prior
beliefs) can end up with diametrically opposed conclusions, and the status quo bias [Samuelson
and Zeckhauser 1998]—people are much more likely to stick with what they already have. In a
companion paper [Halpern and Pass 2010], where we apply our framework to decision theory, we
show how these biases can be explained by considering computation as a costly resource.

We here briefly show how the first-impressions-matter bias can be explained by considering
a small cost for “absorbing” new information. Consider the following simple game (which is very
similar to one studied in [Mullainathan 2002; Wilson 2002]). The state of nature is a bit b which is 1
with probability 1/2. An agent receives as his type a sequence of independent samples s1, s2, . . . , sn
where si = b with probability ρ > 1/2. The samples corresponds to signals the agents receive about
b. An agent is supposed to output a guess b′ for the bit b. If the guess is correct, he receives 1−mc
as utility, and −mc otherwise, where m is the number of bits of the type he read, and c is the
cost of reading a single bit (c should be thought of the cost of absorbing/interpreting information).
It seems reasonable to assume that c > 0; signals usually require some effort to decode (such as
reading a newspaper article, or attentively watching a movie). If c > 0, it easily follows by the
Chernoff bound that after reading a certain (fixed) number of signals s1, . . . , si, the agents will have
a sufficiently good estimate of ρ that the marginal cost of reading one extra signal si+1 is higher
than the expected gain of finding out the value of si+1. That is, after processing a certain number
of signals, agents will eventually disregard all future signals and base their output guess only on
the initial sequence.

5 Sufficient Conditions for the Existence of Nash Equilibrium

As Example 2.3 shows, Nash equilibrium does not always exist in machine games. The complexity
function in this example charged for randomization. Our goal in this section is to show that this
is essentially the reason that Nash equilibrium did not exist; if randomization were free (as it is,
for example, in the model of [Ben-Sasson, Kalai, and Kalai 2007]), then Nash equilibrium would
always exist.

This result turns out to be surprisingly subtle. To prove it, we first consider machine games
where all computation is free, that is, the utility of a player depends only on the type and action
profiles (and not the complexity profiles). For ease of notation, we here restrict attention to
Bayesian machine games, but it can be easily seen that our results apply also to extensive-form
machine games. Formally, a machine game G = ([m],M,Pr, T, ~C , ~u) is computationally cheap if ~u
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depends only on the type and action profiles, i.e., if there exists ~u′ such that ~u(~t,~a,~c) = ~u′(~t,~a) for
all ~t,~a,~c.

We would like to show that every computationally cheap Bayesian machine game has a Nash
equilibrium. But this is too much to hope for. The first problem is that the game may have infinitely
many possible actions, and may not be compact in any reasonable topology. This problem is easily
solved; we will simply require that the type space and the set of possible actions be finite. Given a
bounding function B : N→ N, a B-bounded Turing machine M is one such that for each x ∈ {0, 1}n,
the output of M(x) has length at most B(n). If we restrict our attention to games with a finite
type space where only B-bounded machines can be used for some bounding function B, then we
are guaranteed to have only finitely many types and actions.

With this restriction, since we do not charge for computation in a computationally cheap game,
it may seem that this result should follow trivially from the fact that every finite game has a Nash
equilibrium. But this is false. The problem is that the game itself might involve non-computable
features, so we cannot hope that that a Turing machine will be able to play a Nash equilibrium,
even if it exists.

Recall that a real number r is computable [Turing 1937] if there exists a Turing machine that
on input n outputs a number r′ such that |r − r′| < 2−n. A game G = ([m],M,Pr, T, ~C , ~u)
is computable if (1) for every ~t ∈ T , Pr[~t] is computable, and (2) for every ~t,~a,~c, u(~t,~a,~c) is
computable. As we now show, every computationally cheap computable Bayesian machine game
has a Nash equilibrium. Even this result is not immediate. Although the game itself is computable,
a priori, there may not be a computable Nash equilibrium. Moreover, even if there is, a Turing
machine may not be able to simulate it. Our proof deals with both of these problems.

To deal with the first problem, we follow lines similar to those of Lipton and Markakis [2004],
who used the Tarski-Seidenberg transfer principle [Tarski 1951] to prove the existence of algebraic
Nash equilibria in finite normal norm games with integer valued utilities. (Similar techniques were
also used by Papadimitriou and Roughgarden [2005].) We briefly review the relevant details here.

Definition 5.1 An ordered field R is a real closed field if every positive element x is a square
(i.e., there exists a y ∈ R such that y2 = x), and every univariate polynomial of odd degree with
coefficients in R has a root in R

Of course, the real numbers are a real closed field. It is not hard to check that the computable
numbers are a real closed field as well.

Theorem 5.2 (Tarski-Seidenberg [Tarski 1951]) Let R and R′ be real closed fields such that
R ⊆ R′, and let P̄ be a finite set of (multivariate) polynomial inequalities with coefficients in R.
Then P̄ has a solution in R if and only if it has a solution in R′.

With this background, we can state and prove the theorem.

Theorem 5.3 If T is a finite type space, B is a bounding function, M is a set of B-bounded
machines, then G = ([m],M,Pr, ~C , ~u) is a computable, computationally cheap Bayesian machine
game, then there exists a Nash equilibrium in G.

Proof: Note that since in G, (1) the type set is finite, (2) the machine set contains only machines
with bounded output length, and thus the action set A is finite, and (3) computation is free, there
exists a finite (standard) Bayesian game G′ with the same type space, action space, and utility
functions as G. Thus, G′ has a Nash equilibrium.

Although G′ has a Nash equilibrium, some equilibria of G′ might not be implementable by a
randomized Turing machine; indeed, Nash [1951] showed that even if all utilities are rational, there
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exist normal-form games where all Nash equilibria involve mixtures over actions with irrational
probabilities. To deal with this problem we use the transfer principle.

Let R′ be the real numbers and R be the computable numbers. Clearly R ⊂ R′. We use the
approach of Lipton and Markakis to show that a Nash equilibrium in G′ must be the solution to a
set of polynomial inequalities with coefficients in R (i.e., with computable coefficients). Then, by
combining the Tarski-Seidenberg transfer principle with the fact that G′ has a Nash equilibrium,
it follows that there is a computable Nash equilibrium.

The polynomial equations characterizing the Nash equilibria of G′ are easy to characterize. By
definition, ~σ is a Nash equilibrium of G′ if and only if (1) for each player i, each type ti ∈ Ti, and
ai ∈ Ai, σ(ti, ai) ≥ 0, (2) for each player i and ti,

∑
ai∈Ai

σ(ti, ai) = 1, and (3) for each player i
ti ∈ T , and action a′i ∈ A,∑

~t−i∈T−i

∑
~a∈A

Pr(~t)u′i(~t,~a)
∏
j∈[m]

σj(tj , aj) ≥
∑

~t−i∈T−i

∑
~a−i∈A−i

Pr(~t)u′i(~t, (a
′
i,~a−i))

∏
j∈[m]\i

σj(tj , aj).

Here we are using the fact that a Nash equilibrium must continue to be a Nash equilibrium condi-
tional on each type.

Let P be the set of polynomial equations that result by replacing σj(tj , aj) by the variable
xj,tj ,aj . Since both the type set and action set is finite, and since both the type distribution and
utilities are computable, this is a finite set of polynomial inequalities with computable coefficients,
whose solutions are the Nash equilibria of G′. It now follows from the transfer theorem that G′ has
a Nash equilibrium where all the probabilities σi(ti, ai) are computable.

It remains only to show that this equilibrium can be implemented by a randomized Turing
machine. We show that, for each player i, and each type ti, there exists a randomized machine
that samples according to the distribution σi(ti); since the type set is finite, this implies that there
exists a machine that implements the strategy σi.

Let a1, . . . , aN denote the actions for player i, and let 0 = s0 ≤ s1 ≤ . . . ≤ sN = 1 be a
sequence of numbers such that σi(ti, aj) = sj−sj−1. Note that since σ is computable, each number
sj is computable too. That means that there exists a machine that, on input n, computes an
approximation s̃nj to sj , such that s̃nj − 2−n ≤ sj ≤ s̃nj + 2−n. Consider now the machine M ti

i

that proceeds as follows. The machine constructs a binary decimal .r1r2r3 . . . bit by bit. After
the nth step of the construction, the machine checks if the decimal constructed thus far (.r1 . . . rn)
is guaranteed to be a unique interval (sk, sk+1]. (Since s0, . . . , sN are computable, it can do this
by approximating each one to within 2−n.) With probability 1, after a finite number of steps, the
decimal expansion will be known to lie in a unique interval (sk, sk+1]. When this happens, action
ak is performed. �

We now want to prove that a Nash equilibrium is guaranteed to exist provided that randomiza-
tion is free. Thus, we assume that we start with a finite set M0 of deterministic Turing machines
and a finite set T of types. M is the computable convex closure ofM0 ifM consists of machines M
that, on input (t, r), first perform some computation that depends only on the random string r and
not on the type t, that with probability 1, after some finite time and after reading a finite prefix r1
of r, choose a machine M ′ ∈ M0, then run M ′ on input (t, r2), where r2 is the remaining part of
the random tape r. Intuitively, M is randomizing over the machines in M0. Since machines in M
are deterministic, it is easy to see that there must be some B such that all the machines in M are
B-bounded. Randomization is free in a machine game G = ([m],M,Pr, T, ~C , ~u) where M is the
computable convex closure of M0 if Ci(M, t, r) is Ci(M ′, t, r2) (using the notation from above).

Theorem 5.4 IfM is the computable convex closure of some finite setM0 of deterministic Turing
machines, T is a finite type space, and G = ([m],M, T, Pr, ~C , ~u) is a game where randomization
is free, then there exists a Nash equilibrium in G.
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Proof Sketch: First consider the normal-form game where the agents choose a machine inM0, and
the payoff of player i if ~M is chosen is the expected payoff in G (where the expectation is taken with
respect to the probability Pr on T ). By Nash’s theorem, it follows that there exists a mixed strategy
Nash equilibrium in this game. Using the same argument as in the proof of Theorem 5.3, it follows
that there exists a machine in M that samples according to the mixed distribution over machines,
as long as the game is computable (i.e., the type distribution and utilities are computable) and the
type and action spaces finite. (The fact that the action space is finite again follows from the fact
that type space and M0 are finite and that all machines in M0 are deterministic.) The desired
result follows.

We remark that if we take Aumann’s [1987] view of a mixed-strategy equilibrium as representing
an equilibrium in players’ beliefs—that is, each player is actually using a deterministic strategy in
M0, and the probability that player i plays a strategy M ′ ∈ M0 in equilibrium represents all the
other players’ beliefs about the probability that M ′ will be played—then we can justify random-
ization being free, since players are not actually randomizing. The fact that the randomization is
computable here amounts to the assumption that players’ beliefs are computable (a requirement
advocated by Megiddo [1989]) and that the population players are chosen from can be sampled by a
Turing machine. More generally, there may be settings where randomization devices are essentially
freely available (although, even then, it may not be so easy to create an arbitrary computable
distribution).

Theorem 5.4 shows that if randomization is free, a Nash equilibrium in machine games is guar-
anteed to exist. We can generalize this argument to show that, to guarantee the existence of ε-Nash
equilibrium (for arbitrarily small ε) it is enough to assume that “polynomial-time” randomization
is free. Lipton, Markakis and Mehta [2003] show that every finite game with action space A has an
ε-Nash equilibrium with support on only poly(log |A|+ 1/ε) actions; furthermore the probability of
each action is a rational number of length poly(log |A|+ 1/ε). In our setting, it follows that there
exists an ε-Nash equilibrium where the randomization can be computed by a Turing machine with
size and running-time bounded by size O(log |M′|+ 1/ε). We omit the details here.

6 Sequential Equilibrium

Sequential equilibrium [Kreps and Wilson 1982] is perhaps the most common solution concept used
in extensive-form games. It is trying to capture the intuition that agents play optimally, not just
on the equilibrium path, but also off the equilibrium path; that is, even if an information set off
the equilibrium path is reached (which a priori is an event of probability 0) a player is making an
optimal move conditional on having reached that information set. Once we add computation to the
picture, sequential equilibrium is also of interest in normal-form games, since we can ask if an agent
wants to switch to a different TM during the computation of the TM that he has chosen. Defining
sequential equilibrium turns out to be subtle. For one thing, we have to define the analogue of
an information set. We would argue that, unlike standard game theory, the information is not
given exogenously (as part of the description of the game tree), but rather is determined by the
choice of TM. Once we have defined the information set, as we shall see, computational games are
intrinsically games of imperfect recall. It is well known that there are subtleties defining sequential
equilibrium in the presence of imperfect recall (see, for example, [Piccione and Rubinstein 1997]).
To deal with the issues that arise, we use the definition of sequential equilibrium in games of
imperfect recall that we give an a companion paper [Halpern and Pass 2009b], extended to take
computation into account.
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6.1 Computation as an Extensive-form Game

Recall that a deterministic Turing machine M = (τ,Q, q0,H) consists of a read-only input tape, a
write-only output tape, a read-write work tape, 3 machine heads (one reading each tape), a set Q
of machine states, a transition function τ : Q × {0, 1, b}2 → Q × {0, 1, b}2 × {L,R, S}3, an initial
state q0 ∈ Q, and a set H ⊆ Q of “halt” states. We assume that all the tapes are infinite and only
0s, 1s and blanks (denoted b) are written on the tapes. We think of the input to a machine as a
string in {0, 1}∗ followed by blanks. Intuitively, the transition function says what the TM will do
if it is in a state s and reads i on the input tape and j on the work tape. Specifically, τ describes
what the new state is, what symbol is written on the work tape and the output, and which way
each of the heads moves (L for one step left, R for one step right, or S for staying in the same
place). The machine starts in state q0, with the machine heads pointing to some canonical positions
on the tapes, and then continues computing according to τ . The computation ends if and when
the machine reaches a halt state q ∈ H. To simplify the presentation of our results, we restrict
attention to Turing machines that include only states q ∈ Q that can be reached from q0 on some
input. We also consider randomized Turing machines, which are identical to deterministic TMs
except that the transition function τ now maps Q × {0, 1, b}2 to a probability distribution over
Q× {0, 1, b}2 × {L,R, S}3. As is standard in the computer science literature, we restrict attention
to probability distributions that can be generated by tossing a fair coin; that is, the probability of
all outcomes has the form c/2k for c, k ∈ IN .

In a standard extensive-form game, a strategy is a function from information sets to actions.
Intuitively, in a state s in an information set I for player i, the states in I are the ones that i
considers possible, given his information at s; moreover, at all the states in I, i has the same
information. In the “runs-and-systems” framework of Fagin et al. [1995], each agent is in some
local state at each point in time. A protocol for agent i is a function from i’s local states to actions.
We can associate with a local state ` for agent i all the histories of computation that end in the
local state; this can be thought of as the information set associated with `. With this identification,
a protocol can also be viewed as a function from information sets to actions, just like a strategy.

In our setting, the closest analogue to a local state in the runs-and-systems framework is the
state of the TM. Intuitively, the TM’s state describes what the TM knows.4 The transition function
τ of the TM determines a protocol, that is, a function from the TM’s state to a “generalized action”,
consisting of reading the symbols on its read and work tapes, then moving to a new state and writing
some symbols on the write and work tapes (perhaps depending on what was read). We can again
associate with a local state q for player i the information set Iq consisting of all histories h where
player i’s local state at the end of the history is q. (Here, a history is just a sequence of tuples
of extended states, where the tuple consists of an extended state for each player, and an extended
state for player i consists of i’s local state, the content and head position of each of i’s tapes, and
the TM i is using.) Thus, player i implicitly chooses his information sets (by choosing the TM),
rather than the information set being given exogenously.

6.2 Beliefs

The next step in defining sequential equilibrium is to define player i’s beliefs at an information set.
But now we have to take into account that the information set is determined by the TM chosen.
In the spirit of Kreps and Wilson [1982], define a belief system µ for a game G to be a function
that associates with each player i, TM Mi for player i, and local state q for Mi a probability on

4We could also take a local state to be the TM’s state and the content of the tapes at the position of the heads.
However, taking the local state to be just the TM’s state seems conceptually simpler. Moreover, if we want the TM
to know the contents of the tapes at the position of the head, it could keep track of this in the state.
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the histories in the information set Iq. Following [Halpern and Pass 2009b], where we considered
sequential equilibrium in games of imperfect recall, we interpret µq,Mi(x) as the probability of being
in global state x conditional on being in the local state q.

We do not expect
∑

x∈Iq µq,Mi(x) = 1; in general, it will be more than 1. This point is
perhaps best explained in the context of games of imperfect recall. Define the upper frontier
of an information set X in a game of imperfect recall, denoted X̂, to consist of all those histories
h ∈ X such that there is no history h′ ∈ X that is a prefix of h. In [Halpern and Pass 2009b],
we consider belief functions that associate with each information set X a probability µX on the
histories in X. Again, we do not require

∑
h∈X µX(h) = 1. For example, if all the histories in X

are prefixes of same complete history h∗, then we might have µX(h) = 1 for all histories h ∈ X.
However, what is required is that µh∈X̂µX(h) = 1. We make the analogous requirement here, and
write Îq to denote the upper frontier of Iq. The following lemma, essentially already proved in
[Halpern and Pass 2009b], justifies the requirement.

Lemma 6.1 If q is a local state for player i that is reached by ~M with positive probability, and
µ′q(h) is the probability of reaching history h when running ~M conditional on reaching q, then∑

h∈Îq µ
′
q(h) = 1.

Given a belief system µ and a machine profile ~M , define a probability distribution µ
~M
q over

terminal global histories in the obvious way: for each terminal history z, let hz be the history in
Îq generated by ~M that is a prefix of z if there is one (there is clearly at most one), and define
µ
~M
q (z) as the product of µq,Mi(hz) and the probability that ~M leads to the terminal history z when

started in hz; if there is no prefix of z in Iq, then µ ~M
q (z) = 0. Following Kreps and Wilson [1982], let

Ui( ~M | q, µ) denote the expected utility for player i, where the expectation is taken with respect to
µ
~M
q . Note that utility is well-defined, since a terminal global history determines both the input and

the random-coin flips of each player’s machine and thus determines both its output and complexity.

6.3 Defining Sequential Equilibrium

We want to capture the intuition that a machine Mi for player i is a best response to a machine
profile ~M−i for the remaining players at a local state q (given beliefs µ). Roughly speaking, we
capture this by requiring that the expected utility of using another machine M ′i starting from q is no
greater than that of using Mi. We would like “using a machine M ′i starting from q” to mean “using
machine (Mi, q,M

′
i)”, where, roughly speaking, (Mi, q,M

′
i) is the TM that runs like Mi up to q,

and then runs like M ′i . There are some subtleties in making this precise. In the standard setting,
all the subtleties of sequential equilibrium involve dealing with what happens at information sets
that are reached with probability 0. When we consider machine games, as we shall see, under some
reasonable assumptions, all states q are reached with positive probability in equilibrium, so dealing
with probability 0 is not a major concern (and, in any case, the same techniques that are used in
the standard setting can be applied). But there are several issues that must be addressed.

For one thing, we are now, in general, dealing with games of imperfect recall. A TM’s state
certainly does not necessarily keep track of the history of the game. Indeed, a player may deliber-
ately choose a TM that does not keep track of all the history, since this is computationally cheaper.
As we already mentioned, there are well-known subtleties in dealing with sequential equilibrium in
games of imperfect recall. We deal with these in [Halpern and Pass 2009b] and, as we have already
seen when defining belief functions, we apply essentially the same ideas here. Assume, for now,
that M ′i has the same state space as Mi. As in [Halpern and Pass 2009b], we then require that
(Mi, q,M

′
i) has the same transition function as Mi on all states q′ that can be reached before q;
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otherwise (Mi, q,M
′
i) would not be a valid strategy (since its operations at q′ depends on whether

or q has been). More precisely, given a TM Mi = (τ,Q, q0,H), let Qq,Mi consist of all states q′ ∈ Q
such that for all views v, if the computation of ~M on input the view v reaches q′, then it reaches
q before it reaches q′. We can think of Qq,Mi as consisting of the states q′ that are “necessarily”
below q, given that the strategy Mi is used. By convention, q ∈ Qq,Mi . We now define (Mi, q,M

′
i)

to be the TM (Q, [τ, q, τ ′], q0), where [τ, q, τ ′] is the transition function that agrees with τ on states
in Q−Qq,Mi , and agrees with τ ′ on remaining states. Note that in our definition of Qq,Mi (which
defines what “necessarily” below q means) we consider all possible computation paths, and in par-
ticular also paths that are not reached in equilibrium. An alternative definition would consider only
paths of Mi that are reached in equilibrium. We make the former choice since it is more consistent
with the traditional presentation of sequential equilibrium (where histories off the eqilibrium path
play an important role).

We now consider the general case when M ′i might not have the same state space as Mi. Among
other things, this allows the agent to change its information sets. Again, to ensure that (Mi, q,M

′
i)

is a well-defined strategy, we assume that its state space includes all the states that can be reached
before q. More precisely, define M ′i = (τ ′, Q′, q′,H′) to be compatible with (Mi, q) if q′ = q (and
thus q ∈ Q′), Q − Qq,Mi ⊆ Q′, and H ∩ (Q − Qq,Mi) = H′ ∩ (Q − Qq,Mi) (i.e., the same states
in Q − Qq,Mi are in H and H′). If M ′i is compatible with (Mi, q), define (Mi, q,M

′
i) ~M to be the

TM (Q′, [τ, q, τ ′], q0,H′), where [τ, q, τ ′] is the transition function that agrees with τ on states of
Q−Qq,Mi , and agrees with τ ′ on on the remaining states. Note that although states Q−Q′ have
been removed, the transition function for states of Q−Qq,Mi is well-defined, since by the definition
of Qq,Mi , there are no transitions from states of Q−Qq,Mi to any state in Qq,Mi other than q, and
q is in Q′ by definition.

But there are further issues involved in dealing with computation. In the standard setting (even
with imperfect recall, as in [Halpern and Pass 2009b]) making changes below an information set
X has no effect on histories that do not go through X. However, once we add complexity, things
change. The complexity of the TM (Mi, q,M

′
i) may be different from that of Mi even on histories

that do not go through q. For example, consider a one-person decision problem where the agent
has an input (i.e., type) of either 0 or 1. There may be a simple heuristic embodied by a TM M
that works well on both inputs, TMs M0 and M1 that give better results than M if the inputs
are 0 and 1, respectively, and a TM M∗ that acts like M0 if the input is 0 and like M1 if the
input is 1. Clearly, if we do not take computational costs into account, M∗ is a better choice than
M ; however, suppose that with computational costs considered, M is better than M0, M1, and
M∗. Specifically, suppose that M0, M1, and M∗ all use more states than M , and the complexity
function charges for the number of states used. Now suppose that the agent moves to state q if he
gets an input of 0. In state q, using M0 is better than continuing with M : the extra charge for
complexity is outweighed by the improvement in performance. Should we say that using M is then
not a sequential equilibrium? The TM (M, q,M0) is essentially just M0. From the ex ante point of
view, M is a better choice than M0. However, ex post, having reached q, the agent arguably does
not care about the complexity of M0 on input 1. Our definition of sequential equilibrium restricts
the agent to making changes that leave unchanged the complexity of paths that do not go through
q (and thus would not allow a change to M0 at q). This makes more strategies sequential equilibria
(since fewer deviations are considered).

We proceed as follows. (Mi, q,M
′
i) is a local variant of Mi if, for every view v such that the

computation of Mi(v) does not reach q, C (Mi, v) = C ((Mi, q,M
′
i), v). That is, the complexity of

Mi and (Mi, q,M
′
i) are the same on views that do not reach q. Clearly (Mi, q,M

′
i) is a local variant

of Mi for every choice of M ′i if the complexity function considers only running time, space used,
and the transitions undertaken on a path. If C also takes the number of states into account, then
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(Mi, q,M
′
i) is a local variant of Mi as long as Mi and M ′i have the same number of states (or if

q is the initial state of Mi, in which case locality trivially holds). Indeed, if we think of the state
space as “hardware” and the transition function as the “software” of a machine, then restricting to
changes M ′i that have the same state space as Mi seems reasonable: when the agent contemplates
making a change at a non-initial state, he cannot acquire new hardware, so he must just work with
his current hardware.

A machine Mi = (τ,Q, q0,H) for player i is completely mixed if, for all states q ∈ Q − H,
q′ ∈ Q, and bits k, k′ ∈ {0, 1}, τ(q, k, k′) assigns positive probability to making a transition to q′.
A machine profile ~M is completely mixed if for each player i, Mi is completely mixed. Following
Kreps and Wilson [1982], we would like to say that a belief system µ is compatible with a machine
profile ~M if there exists a sequence of completely mixed machine profiles ~M1, ~M1, . . . converging
to ~M such that if q is a local state for player i that is reached with positive probability by ~M (that
is, there is a type profile ~t that has positive probability according to the type distribution in G and
a profile ~r of random strings such that ~M(~t, ~r) reaches q), then µq,Mi(h) is just the probability of
~M reaching h conditional on ~M reaching q (denoted π ~M (h | q)); and if q is a local state set that is

reached with probability 0 by ~M , then µq,Mi(h) is limn→∞ π ~Mn(h | q).
To make this precise, we have to define convergence. We say that ~M1, ~M1, . . . converges to ~M if,

for each player i, all the machines M1
i ,M

2
i , . . . ,Mi have the same space, and the transition function

of each machine in the sequence to converge to that of Mi. Note that we place no requirement on
the complexity functions. We could require the complexity function of Mk

i to converge to that of Mi

in some reasonable sense. However, it seems to us unreasonable. If we assume that randomization
is free (in the sense discussed just before Theorem 5.4), then the convergence of the complexity
functions follows from the convergence of the transition functions. However, if we have a complexity
function that charges for randomization, as in Example 2.3, then the complexity functions of Mn

i

may not converge to the complexity function of Mi. Thus, if we require the complexity functions
to converge, there will not be a sequence of completely mixed strategy profiles converging to a
deterministic strategy profile ~M . If we think of the sequences of TMs as arising from “trembles”
in the operation of the machines (e.g., due to machine failure), then requiring that the complexity
functions converge seems unreasonble.

Definition 6.2 A pair ( ~M, µ) consisting of a machine profile ~M and a belief system µ is called a
belief assessment. A belief assessment ( ~M, µ) is a sequential equilibrium in an (extensive-form)
machine game (that is, we both consider Bayesian machine games, and extensive-form machine
games) G if µ is compatible with ~M and for all players i, all states q for Mi, all TMs M ′i compatible
with (Mi, q) such that (Mi, q,M

′
i) ∈M and (Mi, q,M

′
i) is a local variant of Mi, we have

Ui( ~M | q, µ) ≥ Ui(((Mi, q,M
′
i), ~M−i) | q, µ)).

Note that in Definition 6.2 we only considers switches (Mi, q,M
′
i) that result in a TM that is in the

set M of possible TMs in the game. An alternative would be to consider only switches where Mi

and M ′i are in M (but not necessarily (Mi, q,M
′
i)). We have chosen the former alternative as we

believe it better captures the intuition behind the tradtional definition of sequential equilibrium:
if a switch at q for player i results in a machine that is not part of the original set of possible
machines, player i cannot feel regret for not having originally chosen this machine.

As the discussion above emphasizes, a host of new issues arise when defining sequential equilib-
rium in the context of machine games. While we believe we have made reasonable choices, variants
of our definitions are also worth considering.

Whereas the traditional definition of sequential equilibrium requires that players do not want
to change strategies at any information set in the game, sequential equilibrium in machine games
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requires that the players do not want to change machines at any of their local states. As a player
may choose not to read parts of his input, the local state of a player may be different from the
information set of a player, even in games where computation is free. The following example
illustrates this difference.

Example 6.3 Consider the (well-known) extensive-form game in Figure 1. If we do not take

s s

ss sc c

d d

A B

(1, 1) (0, 0)

(3, 3)

Figure 1: A well-known extensive-form game.

computation into account, (d, d) is a Nash equilibrium, but it is not a sequential equilibrium: if
Alice plays c, then Bob prefers switching to c. The only sequential equilibrium is (c, c), (together
with the obvious belief assessment, that assigns probability 1 to (c, c)).

To model the game in Figure 1 as an extensive-form machine game, we consider Alice and Bob
communicating with a mediator N . Alice sends its move to N ; if the move is c, N sends the bit 1
to Bob; otherwise N sends 0 to Bob. Finally, Bob sends its move to N . As the action space in a
machine game always is {0, 1}∗, we need to map bitstrings onto the actions c and d. For instance,
we let the string c be interpreted as the action c; all other bitstrings (including the empty string)
are interpreted as d. Suppose that all TMs have complexity 0 on all inputs (i.e., computation
is free), and that utilities are defined as in Figure 1. Let D be a 2-state machine that simply
outputs c; formally, D = (τ, {q0, H}, q0, {H}), where τ is such that in q0, the machine outputs d
and transitions to H. Let C be the analogous 2-state machine that outputs c. As usual, ((C,C), µ)
is a sequential equilibrium, where µ is the belief assessment where Bob assigns probablity 1 to
receiving 1 from N (i.e., Alice playing c). But now ((D,D), µ′) is also a sequential equilibrium,
where µ′ is the belief assessment where Bob assigns probablity 1 to receiving 0 from N (i.e., Alice
playing d). Since the machine D never reads the input from N , this belief is never contradicted.
We do not have to consider what his beliefs would be if Alice had played c, because he will not
be in a local state where he discovers this. (C,C) remains a sequential equilibrium even if we
charge (moderately) for the number of states. (D,D), on the other hand, is no longer a sequential
equilibrium, or even a Nash equilibrium: both players prefer to use the single-state machine ⊥
that simply halts (recall that outputting the empty string is interpreted as choosing the action d).
However, (⊥,⊥) is a sequential equilibrium.

6.4 Relating Nash Equilibrium and Sequential Equilibrium

A strategy profile ~M in an (extensive-form) machine game G is lean if, for all players i and local
states q of Mi, q is reached with positive probability when playing ~M . The following lemma is the
analogue of the well-known result that, with the traditional definition of sequential equilibrium,
every completely mixed Nash equilibrium is also a sequential equilibrium.
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Lemma 6.4 If ~M is a lean Nash equilibrium for an (extensive-form) machine game G and µ is a
belief function compatible with ~M , then ( ~M, µ) is a sequential equilibrium.

Proof: We need to show only that for each player i and local state q of Mi, there does not
exist a TM M ′i compatible with (Mi, q) such that Ui( ~M | q, µ) < Ui(((Mi, q,M

′
i), ~M−i) | q, µ).

Suppose by way of contradiction that there exist such a machine M ′i and local state q. Since µ
is compatible with ~M , it follows that Ui( ~M | q) < Ui(((Mi, q,M

′
i), ~M−i) | q). Since (Mi, q,M

′
i)

is local variant of Mi, Ui( ~M | not reaching q) = Ui(((Mi, q,M
′
i), ~M−i) | not reaching q)). By the

definition of (Mi, q,M
′
i), the probability that Mi and (Mi, q,M

′
i) reach q is identical; it follows that

Ui( ~M) < Ui((Mi, q,M
′
i), ~M−i), which contradicts the assumption that ~M is a Nash equilibrium.

The restriction to local variants of Mi is critical here. Suppose, for example, that if i is willing
to put in more computation at q, then he gets a better result. Looked at from the beginning of
the game, it is not worth putting in the extra computation, since it involves using extra states,
and this charge is global (that is, it affects the complexity of histories that do not reach q). But
once q is reached, it is certainly worth putting in the extra computation. Note that if we assume
locality, then the extra computational effort at q does not affect the costs for histories that do not
go through q. Thus, if it is worth putting in the effort, it will be judged worthwhile ex ante. The
following example illustrates the role of locality.

Example 6.5 Let x be an n-bit string whose Kolmogorov complexity is n (i.e., x is incompressible—
there is no shorter description of x). Consider a single-agent game where where they type is a string
of length log n, chosen uniformly at random, and the utility function is defined as follows, for an
agent with type t:

• The agents “wins” if it outputs (1, y), where y = xt (i.e., it manages to guess the tth bit of
x, where t is its type). In this case, it receives a utility of 10, as long as its complexity is at
most 2.

• The agent can also “give up”: if it outputs t0 (i.e., the first bit of its type) and its complexity
is 1, then its receives a utility of 0.

• Otherwise, its utility is −∞.5

The complexity function is defined as follows. Consider the 4-state TM M that just “gives up”.
Formally, M = (τ, {q0, b0, b1, H}, q0, {H}), where τ is such that, in q0, M reads the first bit t0 of
the type, and transitions to bi if it is i; and in state bi, it outputs i and transitions to H, the halt
state. Now define the complexity function as follows.

• the complexity of M is 1 (on all inputs).

• the complexity of any machine M ′ 6= M that has at most 0.9n machines states is 2;

• all other machines have complexity 3.

First note that M is the unique Nash equilibrium in this game. Since x is incompressible, no
machine M∗ with fewer than 0.9n states can correctly guess xt for all t (for otherwise M∗ would
provide a description of x shorter than |x|). It follows that no machine with complexity greater than
1 does better than M . Thus, M is the unique Nash equilibrium. It is also a lean Nash equilibrium,
and thus, by Lemma 6.4, a sequential equilibrium. However, there exists a non-local variant of M

5We can replace −∞ here by a sufficiently small integer; −20 log n will do.
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at b0 that gives a better utility than M . Notice that if the first bit is 0 (i.e., if the machine is in
state b0), then xt is one of the first n/2 bits of x. Thus, at b0, we can switch to the machine M ′

that reads the whole type t and the first n/2 bits of x, outputs (1, xt). It is easy to see that M ′

can be constructed using 0.5n+O(1) states. But (M, b0,M
′) is not a local variant of M since M ′

has higher complexity than M at q0.

We now show that for a natural class of games, every Nash equilibrium is lean, and thus also
a sequential equilibrium. Intuitively, we consider games where there is a strictly positive cost for
having more machine states. Our argument is similar in spirit to that of Rubinstein [1986], who
showed that in his games with automata, there is always a Nash equilibrium with no “wasted”
states; all states are reached in eqilibrium.

Definition 6.6 A machine game G = ([m],M,Pr, ~C , ~u) has positive state cost if the following
two conditions hold:

• For all players i, TMs Mi = (τ,Q, q0,H), views v for player i, and local states q 6= q0 in
Q such that q is not reached in view v when running Mi (note that because the view gives
the complete history of messages received and read, we can compute the sequence of states
that player i goes through when using Mi if his view is v), Ci(M−q, v) < Ci(M,v), where
M−q = (Q − {q}, τ q, q0), and τ q is identical to τ except that all transition to q are replaced
by transitions to q0.

• Utilities are monotonic in complexity; that is, for all players i, type profiles ~t, action profiles
~a, and complexity profiles (ci,~c−i), (c′i,~c−i), if c′i > ci, then ui(~t,~a, (c′i,~c−i)) < ui(~t,~a, (ci,~ci)).

We can define positive state cost for extensive-form machine games in an an analogous way (re-
placing the action profile ~a by nature’s view).

Lemma 6.7 Every Nash equilibrium ~M for an (extensive-form) machine game G with positive
state cost is lean.

Proof: Suppose, by way of contradiction, that there exists a Nash equilibrium ~M for a game G
with positive state cost, a player i, and a local state q of Mi that is reached with probability 0.
First, note that q cannot be the initial state of Mi, since, by definition, the initial state of every
machine is reached with probability 1. (Note that this is also true for extensive-form games.) Since
g has positive state cost, for every view v that is assigned positive probability (according to the
type distribution of G), M−qi (v) has the same output as Mi(v) and Ci(M

−q
i , v) < C (M−qi , v). Since

the utility is monotonic in complexity, it follows that Ui(M
−q
i , ~M−i) < Ui( ~M), which contradicts

the assumption that ~M is a Nash equilibrium.
Combining Lemmas 6.4 and 6.7, we immediately get the following result.

Theorem 6.8 If ~M is a Nash equilibrium for an (extensive-form) machine game G with positive
state cost, and µ is a belief function compatible with ~M , then ( ~M, µ) is a sequential equilibrium.

One might be tempted to conclude from Theorem 6.8 that sequential equilibria are not inter-
esting, since every Nash equilibrium is a sequential equilibrium. But this really depends on the
assumption of positive state cost in a critical way, as the following simple example shows.

Example 6.9 Consider the extensive-form machine game from Example 6.3. Recall that the
complexity of every machine is 0, so the game does not have positive state cost. As in Example
6.3, let D be defined as the simple machine that outputs d. Let M be a 4-state TM for Bob that
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reads the input from N and then outputs d. Formally, M = (τ, {q0, b0, b1, H}, q0, {H}), where τ is
such that in q0, M reads the input from N and transitions to bi if the input is i; and in state bi,
it outputs d and transitions to H, the halt state. Clearly, (D,M) is a Nash equilibrium. However,
it is not a sequential equilibrium, since conditioned on reaching b1, Bob prefers outputting c and
transitioning to H.

For traditional normal-form (as opposed to extensive-form) games, every Nash equilibrium is a
sequential equilibrium. As the following example show, this is not true for machine games (without
positive state cost).

Example 6.10 Consider a single-agent game where the type space is {0, 1}, and the agent gets
payoff 1 if he outputs his type, and otherwise gets 0. Suppose that all TMs have complexity 0 on all
inputs (so that the game does not have positive state cost), and that the type distribution assign
probability 1 to the type being 0. Let M be the 4-state TM that reads the input and then outputs
0. Formally, M = (τ, {q0, b0, b1, H}, q0, {H}), where τ is such that in q0, M reads the type t and
transitions to bi if the type is i; and in state bi, it outputs 0 and transitions to H, the halt state.
M is clearly a Nash equilibrium, since b = 0 with probability 1. However, M is not a sequential
equilibrium, since conditioned on reaching b1, outputting 1 and transitioning to H yields higher
utility; furthermore, note that this change is a local variant of M since all TMs have complexity 0.

In the next example, we speculate on how Theorem 6.8 can be applied to reconcile causal
determinism and free will.

Example 6.11 (Reconciling determinism and free will) Bio-enviromental determinism is the
idea that all our behavior is determined by our genetic endowment and the stimulus we receive. In
other words, our DNA can be viewed as a program (i.e., a Turing machine) which acts on the input
signals that we receive. We wish to reconcile this view with the idea that people have a feeling of
free will, and more precisely, that people have a feeling of actively making (optimal) decisions.

Assume that our DNA sequences encode a TM such that the profile of TMs is a Nash equilibrium
of a Bayesian machine game G (intuitively, the “game of life”). Furthemore, assume that the
machine states of that TM correspond to the “conscious” states of computation. That is, the states
of the TM consists only of states that intuitively correspond to conscious moments of decision; all
subconscious computational steps are bundled together into the transition function. If the game G
has positive state cost then, by Theorem 6.8, we have a sequential equilibrium, so at each “conscious
state”, an agent does not want to change its program. In other words, the agent “feels” that its
action is optimal.

An “energy argument” could justify the assumption that G has positive state cost: if two DNA
sequences encode exactly the same function, but the program describing one of the sequences has
less states than the other then, intuitively, only the DNA sequence encoding the smaller program
ought to survive evolution—the larger program requires more “energy” and is thus more costly for
the organism. In other words, states are costly in G. As a result, we have that agents act optimally
at each conscious decision point. Thus, although agents feel that they have the option of changing
their decisions at the conscious states, they choose not to.

In standard games, every sequential equilibrium is a Nash equilibrium (although the converse
may not hold); that is, sequential equilibrium is a refinement of Nash equilibrium. We now shown
that, under a minimal assumption on the complexity function, the same is true in computational
games. A complexity function C is invariant under isomorphism if, for all TMs M and M ′ that
are identical up to a renaming of the state space and every view v, C (M,v) = C (M ′, v).6

6Arguably, invariance under isomorphism is a property we should have reuqired of complexity functions all along.
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Theorem 6.12 If ( ~M, µ) is a sequential equilibrium for a machine game G whose complexity
functions are invariant under isomorphism, then ~M is a Nash equilibrium for G.

Proof: Suppose that ( ~M, µ) is a sequential equilibrium of G, but ~M is not a Nash equilibrium.
Then there exists some player i and a machine M ′i such that Ui(M ′i , ~M−i) > Ui( ~M). By invariance
under isomorphism, we can assume without loss of generality that M and M ′ have the same start
state q0. Since, by assumption, we consider only TMs where all states can be reached from the
start state, it follows that (Mi, q0,M

′
i) = M ′i , and that

Ui(((Mi, q0,M
′
i), ~M−i) | q0, µ)) > Ui( ~M | q0, µ).

(Mi, q0,M
′
i) is trivially a local variant of Mi (since there is no view v such that the computation

of Mi(v) does not reach q0). This gives us a contradiction to the assumption that ( ~M, µ) is a
sequential equilibrium.

6.5 Existence

We cannot hope to prove a general existence theorem for sequential equilibrium since not every
game has even a Nash equilibrium, and by Theorem 6.12, under minimal assumptions (which hold,
for example, in the rock-paper-scissors game of Example 2.3 that has no Nash equilibrium), every
sequential equilibrium is a Nash equilibrium.

Nonetheless, we show that for any Bayesian machine game G where the setM of possible TMs
that can be chosen is finite, if G has a Nash equilibrium, it also has a sequential equilibrium.
More precisely, we show that in every game where the set M of possible machines that can be
chosen is finite, every Nash equilibrium can be modified into a sequential equilibrium with the
same distribution over outcomes. As illustrated in Example 6.10, not every Nash equilibrium is a
sequential equilibrium (even in games with finite machine space); thus, in general, we are require
to modify the original equilibrium.

Theorem 6.13 Let G be a machine game where the set M of TMs is finite. If G has a Nash
equilibrium, it also has a sequential equilibrium with the same distribution over outcomes.

Proof: Let ~M1, ~M2, . . . be a sequence of machine profiles that converges to ~M , and let µ be the
belief induced by this sequence. That is, µ is a belief that is compatible with ~M . Let ~M be a Nash
equilibrium that is not a sequential equilibrium. There thus exists a player i and a non-empy set of
states Q, such that Mi is not a best reponse for i at any state q ∈ Q, given the belief µ. Let q ∈ Q
be a state that is not strictly preceeded by another state q∗ ∈ Q (i.e., q /∈ QMi,q∗). It follows using
the same proof as in Lemma 6.4 that q is reached with probability 0 (when the profile ~M is used).
Let (Mi, q,M

′
i) be local variant of M with the highest expected utility conditional on reaching q

and the other players using ~M−i. (SinceM, the set of TMs, is finite, such a machine exists.) Since
q is reached with probability 0, it follows that ((Mi, q,M

′
i), ~M−i) is a Nash equilibrium; futhermore

M ′i is now optimal at q, and all states that are reached with positive probability from q (when using
the profile ((Mi, q,M

′
i), ~M−i) and belief system µ).

If (M, q,M ′i) is not a sequential equilibrium, we can iterate this procedure, keeping the belief
system µ fixed. Note that in the second iteration, we can choose only a state q′ that is reached
with probability 0 also starting from q (when using the profile ((Mi, q,M

′
i), ~M−i) and beliefs µ). It

follows by a simple induction that states “made optimal” in interation i cannot become non-optimal
at later iterations. Since M is finite, suffices to iterate this proceduce a finite number of time to
eventually obtain a strategy profile ~M ′ such that ( ~M ′, µ) is a sequential equilibrium.
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We end this section by providing some existence results also for game with infinite machine
spaces. As shown in Theorem 6.8, in games with positive state cost, every Nash equilibrium is
also a sequential equilibrium. Although positive state cost is a reasonable requirement in many
settings, it is certainly a nontrivial requirement. A game G has non-negative state cost if the two
conditions in Definition 6.6 hold when replacing the strict inequalities with non-strict inequalities.
That is, rougly speaking, G has non-negative state cost if adding machine states (without changing
the functionality of the TM) can never improve the utility. Note that non-negative state cost is
a significantly weaker condition that positive state cost; it seems hard to imagine natural games
with negative state cost. In particular, a complexity function that assigns complexity 0 to all TMs
and inputs has non-negative state cost. We, furthemore, say that G is complexity local if for each
player i, i’s utility does not depend on the complexity of players −i.7 (Note, for instance, that
all single-player games are trivially complexity local.) Although non-negative state cost combined
with complexity locality is not enough to guarantee that every Nash equilibrium is a sequential
equilibrium (as illustrated by Example 6.10), it is enough to guarantee the existence of a sequential
equilibrium.

Proposition 6.14 Let G be a complexity-local machine game with non-negative state cost. If G
has a Nash equilibrium, then it also has a lean Nash equilibrium with the same distribution over
outcomes.

Proof: Suppose that ~M is a Nash equilibrium of the game G with non-negative state cost. For
each player i, let M ′i denote the machine obtained by removing all states from Mi that are never
reached in equilibrium. Since G has non-negative state cost and is complexity local, ~M ′ is also a
Nash equilibrium. Furthermore, it is lean by definition and has the same distribution over outcomes
as ~M .

Corollary 6.15 If G is a complexity-local machine game with non-negative state cost, then G has
a sequential equilibrium.

7 Applications to Cryptography

Our focus in this paper has been on game-theoretic questions. In a companion paper [Halpern
and Pass 2009a], we apply our framework to cryptography. More precisely, we show how to use it
to provide a game-theoretic definition of cryptographic protocol security. We outline this approch
below, and refer the reader to [Halpern and Pass 2009a] for further details.

It is often simpler to design and analyze mechanisms when assuming that players have access
to a trusted mediator through which they can communicate. However, such a trusted mediator
can be hard to find. A central question in cryptography is investigating under what circumstances
mediators can be replaced—or implemented—by simple “unmediated” communication between the
players.

The cryptographic notion of a secure computation [Goldreich, Micali, and Wigderson 1986]
considers two types of players: honest players and malicious players. Honest players are assumed
to faithfully execute the prescribed protocol using their intended input; malicious players, on the
other hand, are assumed to do anything in their power to undermine the security of honest players.
Roughly speaking, a protocol Π is said to securely implement the mediator F if (1) the malicious
players cannot influence the output of the communication phase any more than they could have by

7For our theorem, a weaker requirement suffices: that player j’s utility does decrease if player i’s complexity
decreases and everything else remains the same.
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communicating directly with the mediator; this is called correctness, and (2) the malicious players
cannot “learn” more than what can be efficiently computed from only the output of mediator; this
is called privacy. These properties are formalized through the zero-knowledge simulation paradigm
[Goldwasser, Micali, and Rackoff 1989]: roughly, we require that any “harm” done by an adversary
in the protocol execution could be simulated by a polynomially-bounded Turing machine, called
the simulator, that communicates only with the mediator.

There has also been work on implementation of mediators in the game-theory literature. The
traditional game-theoretic notion of implementation (see [Forges 1986; Forges 1990]) does not explic-
itly consider properties such as privacy and correctness, but instead requires that the implementa-
tion preserve a given Nash equilibrium of the mediated game. Roughly speaking, the game-theoretic
notion of implementation says that a strategy profile ~σ implements a mediator F if, as long as it
is a Nash equilibrium for the players to tell the mediator their type and output what the mediator
recommends, then ~σ is a Nash equilibrium in the “cheap talk” game (where the players just talk
to each other, rather than talking to a mediator) that has the same distribution over outputs as
when the players talk to the mediator. In other words, whenever a set of parties have incentives to
tell the mediator their inputs, they also have incentives to honestly use ~σ using the same inputs,
and get the same distribution over outputs in both cases. The key differences between the notions
are that the game-theoretic notion does not consider privacy issues or computational efficiency,
and the cryptographic notion does not consider incentives; the game-theoretic notion talks about
preserving Nash equilibria (which cannot be done in the cryptographic notion, since there are no
incentives), while the cryptographic notion talks about security against malicious adversaries.

As we show in [Halpern and Pass 2009a], the cryptographic definitions can be understood game
theoretically, provided we bring complexity into the picture. This lets us capture intuitions such
as that a player might not want to execute a protocol if doing so is too computationally expensive,
or that a player i might want to change its input if executing the protocol gives some other player
j a computational advantage in determining player i’s input.

Roughly speaking, we say that Π implements a mediator F if for all games G—including games
where computation is costly—that use F for which (the utilities in G are such that) it is an
equilibrium for the players to truthfully tell F their inputs, running Π on the same set of inputs
(and with the same utility functions) is also an equilibrium, and produces the same distribution
over outputs as F .8

Note that by requiring the implementation to work for all games, not only do we ensure that
players have proper incentives to execute protocols with their intended input, even if they consider
computation a costly resource, but we get the privacy and correctness requirements “for free”. For
suppose that, when using Π, some information about i’s input is revealed to j. We consider a zero-
sum game G where a player j gains some significant utility by having this information. In this game,
i will not want to use Π. However, our notion of implementation requires that, even with the utilities
in G, i should want to use Π if i is willing to use the mediator F . (This argument depends on the
fact that we consider games where computation is costly; the fact that j gains information about
i’s input may mean that j can do some computation faster with this information than without
it.) As a consequence, our definition gives a relatively simple (and strong) way of formalizing
the security of protocols, relying only on basic notions from game theory. Perhaps surprisingly,
as we show in [Halpern and Pass 2009a], under weak restrictions on the utility functions of the
players (essentially, that players never prefer to compute more), our notion of implementation
is equivalent to a variant of the cryptographic notion of secure computation. This result shows

8While the definitions of implementation in the game-theory literature (e.g., [Forges 1986; Forges 1990]) do not
stress the uniformity of the implementation—that is, the fact that it works for all games—the implementations
provided are in fact uniform in this sense.

27



that the two approaches used for dealing with “deviating” players in two different communities—
Nash equilibrium in game theory, and zero-knowledge “simulation” in cryptography—are intimately
connected; indeed, they are essentially equivalent in the context of implementing mediators, once
we take the cost of computation into account. Moreover, thinking in game-theoretic terms suggests
useful generalizations of the standard cryptographic definition; for example, by restricting the class
of utility functions so that players strictly prefer to compute less, or players prefer not to get caught
“cheating”. See [Halpern and Pass 2009a] for further discussion of this issue.

8 Conclusion

We have defined a general approach to taking computation into account in game theory that
subsumes previous approaches. This opens the door to a number of exciting research directions.
We briefly describe a few here:

• In our framework we are assuming that the agents understand the costs associated with each
Turing machine. That is, they do not have to do any “exploration” to compute the costs. As
mentioned, we can model uncertainty regarding complexity by letting the complexity function
take also the state of nature as input. However, even if we do this, we are assuming that
agents can compute the probability of (or, at least, are willing to assign a probability to)
events like “TM M will halt in 10,000 steps” or “the output of TM M solves the problem I
am interested in on this input”. But calculating such probabilities itself involves computation,
which might be costly. Similarly, we do not charge the players for computing which machine
is the best one to use in a given setting, or for computing the utility of a given machine profile.
It would be relatively straightforward to extend our framework so that the TMs computed
probabilities and utilities, as well as actions; this would allow us to “charge” for the cost of
computing probabilities and utilities. However, once we do this, we need to think about what
counts as an “optimal” decision if the DM does not have a probability and utility, or has a
probability only on a coarse space.

A related problem is that we have assumed that the players have all options available “for
free”. That is, the players choose among a set of TMs which is given ex ante, and does not
change. But, in practice, it may be difficult to generate alternatives. (Think of a chess player
trying to generate interesting lines of play, for example.) Again, we can imagine charging
for generating such alternatives. One approach we are currently exploring for dealing with
this complex of problems is to assume that the DM starts with a small set of TMs that he
understands (by which we mean that he understands the behavior of the TM, and has a
good estimate of its running time). One of the TMs he can choose involves “thinking”; the
result of such thinking is to perhaps produce further alternatives (i.e., more TMs that he can
choose among), or to give a more refined or accurate estimate of the probabilities, utilities,
and complexities for the TMs that he is currently aware of. If the player believes that he has
already generated enough good alternatives, he may decide to stop thinking, and act. But, in
general, he can go back to thinking at any time. In any case, in such a framework, it makes
sense to talk about a player making a best response at all times, even as he is generating
for alternatives. These ideas are clearly related to work on awareness in games (see, e.g.,
[Heifetz, Meier, and Schipper 2007; Halpern and Rêgo 2006]); we are planning to explore the
connection.

• In a companion paper [Halpern and Pass 2010], we apply our framework to decision theory.
We show that the approach can be used to explain the status quo bias [Samuelson and
Zeckhauser 1998], belief polarization [Lord, Ross, and Lepper 1979], and other biases in
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information processing. Moreover, we use the framework to define two extensions of the
standard notion of value of information: value of computational information and value of
conversation. Recall that value of information is meant to be a measure of how much a
decision maker (DM) should be willing to pay to receive new information. In many cases, a
DM seems to be receiving valuable information that is not about what seem to be the relevant
events. This means that we cannot do a value of information calculation, at least not in the
obvious way. For example, suppose that the DM is interested in learning a secret, which
we assume for simplicity is a number between 1 and 1000. A priori, suppose that the DM
takes each number to be equally likely, and so has probability .001. Learning the secret has
utility, say, $1,000,000; not learning it has utility 0. The number is locked in a safe, whose
combination is a 40-digit binary numbers. What is the value to the DM of learning the first
20 digits of the combination? As far as value of information goes, it seems that the value is
0. The events relevant to the expected utility are the possible values of the secret; learning
the combination does not change the probabilities of the numbers at all. This is true even if
we put the possible combinations of the lock into the sample space. On the other hand, it
is clear that people may well be willing to pay for learning the first 20 digits. It converts an
infeasible problem (trying 240 combinations by brute force) to a feasible problem (trying 220

combinations). Because we charge for computation, it becomes straightforward to define a
notion of value of computational information that captures the value of learning the first 20
digits.9 The notion of value of (computational) conversation further extends these ideas by
allowing a DM to interact with an informed observer before making a decision (as opposed
to just getting some information). In making these definitions, we assumed, as we did in
this paper, that all the relevant probabilities and utilities were given. It seems interesting to
explore how things change in this setting if we charge for computing the probabilities and
utilities.

• In our framework, the complexity profile depends only on the strategy profile of the players
and the inputs to the machines. We could extend the framework to also require that players’
beliefs are computable by Turing machines, and additionally charge for the complexity of
those beliefs. For instance, a player might wish to play a strategy that can be justified by a
“simple” belief: Consider a politician that needs to have a succint explanation for his actions.

• A natural next step would be to provide a computational definition of rationalizability. Here
we might want to take seriously the cost of computing the beliefs that rationalize the choice
of a strategy.

• It would be interesting to provide epistemic characterization of various solution concepts for
machine games. It seems relatively straightforward to define Kripke structures for machine
games that model agents’ beliefs about their own and others complexities and utilities, and
their belief about other agents’ beliefs about complexity and utility (as well as their beliefs
about beliefs etc.). We do not yet know if we can provide epistemic characterizations using
such Kripke structures.

• As we have seen, Nash equilibria do not always exist in games with computation. This leaves
open the question of what the appropriate solution concept is.

• A natural next step would be to introduce notions of computation in the epistemic logic.
There has already been some work in this direction (see, for example, [Halpern, Moses, and

9Our notion of value of computational information is related to, but not quite the same as, the notion of value of
computation introduced by Horvitz [1987, 2001]; see [Halpern and Pass 2010] for further discussion.
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Tuttle 1988; Halpern, Moses, and Vardi 1994; Moses 1988]). We believe that combining the
ideas of this paper with those of the earlier papers will allow us to get, for example, a cleaner
knowledge-theoretic account of zero knowledge than that given by Halpern, Moses, and Tuttle
[1988]. A first step in this direction is taken in [Halpern, Pass, and Raman 2009].

• Finally, it would be interesting to use behavioral experiments to, for example, determine the
“cost of computation” in various games (such as finitely repeated prisoner’s dilemma).
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