
Understanding Host Network Stack Overheads
Qizhe Cai

Cornell University
Shubham Chaudhary

Cornell University
Midhul Vuppalapati

Cornell University

Jaehyun Hwang
Cornell University

Rachit Agarwal
Cornell University

ABSTRACT
Traditional end-host network stacks are struggling to keep up with
rapidly increasing datacenter access link bandwidths due to their
unsustainable CPU overheads. Motivated by this, our community is
exploring a multitude of solutions for future network stacks: from
Linux kernel optimizations to partial hardware offload to clean-slate
userspace stacks to specialized host network hardware. The design
space explored by these solutions would benefit from a detailed
understanding of CPU inefficiencies in existing network stacks.

This paper presents measurement and insights for Linux kernel
network stack performance for 100Gbps access link bandwidths.
Our study reveals that such high bandwidth links, coupled with
relatively stagnant technology trends for other host resources (e.g.,
core speeds and count, cache sizes, NIC buffer sizes, etc.), mark a
fundamental shift in host network stack bottlenecks. For instance,
we find that a single core is no longer able to process packets at line
rate, with data copy from kernel to application buffers at the receiver
becoming the core performance bottleneck. In addition, increase in
bandwidth-delay products have outpaced the increase in cache sizes,
resulting in inefficient DMA pipeline between the NIC and the CPU.
Finally, we find that traditional loosely-coupled design of network
stack and CPU schedulers in existing operating systems becomes a
limiting factor in scaling network stack performance across cores.
Based on insights from our study, we discuss implications to design
of future operating systems, network protocols, and host hardware.

CCS CONCEPTS
• Networks → Transport protocols; Network performance
analysis; Data center networks; • Hardware → Networking
hardware;

KEYWORDS
Datacenter networks, Host network stacks, Network hardware
ACM Reference Format:
Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang,
and Rachit Agarwal. 2021. Understanding Host Network Stack Overheads.
In ACM SIGCOMM 2021 Conference (SIGCOMM ’21), August 23–27, 2021,
Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.
org/10.1145/3452296.3472888

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’21, August 23–27, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00
https://doi.org/10.1145/3452296.3472888

1 INTRODUCTION
The slowdown of Moore’s Law, the end of Dennard’s scaling, and
the rapid adoption of high-bandwidth links have brought tradi-
tional host network stacks at the brink of a breakdown—while
datacenter access link bandwidths (and resulting computing needs
for packet processing) have increased by 4 − 10× over the past few
years, technology trends for essentially all other host resources
(including core speeds and counts, cache sizes, NIC buffer sizes,
etc.) have largely been stagnant. As a result, the problem of design-
ing CPU-efficient host network stacks has come to the forefront,
and our community is exploring a variety of solutions, including
Linux network stack optimizations [11, 12, 21, 24, 32, 41], hardware
offloads [3, 6, 9, 16], RDMA [31, 34, 43], clean-slate userspace net-
work stacks [4, 27, 30, 33, 36], and even specialized host network
hardware [2]. The design space explored by these solutions would
benefit from a detailed understanding of CPU inefficiencies of tradi-
tional Linux network stack. Building such an understanding is hard
because the Linux network stack is not only large and complex, but
also comprises of many components that are tightly integrated into
an end-to-end packet processing pipeline.

Several recent papers present a preliminary analysis of Linux
network stack overheads for short flows [21, 30, 32, 38, 40]. This
fails to provide a complete picture due to two reasons. First, for
datacenter networks, it is well-known that an overwhelmingly large
fraction of data is contained in long flows [1, 5, 28]; thus, even if
there are many short flows, most of the CPU cycles may be spent in
processing packets from long flows. Second, datacenter workloads
contain not just short flows or long flows in exclusion, but a mixture
of different flow sizes composed in a variety of traffic patterns; as
we will demonstrate, CPU characteristics change significantly with
varying traffic patterns and mixture of flow sizes.

This paper presents measurement and insights for Linux kernel
network stack performance for 100Gbps access link bandwidths.
Our key findings are:

High-bandwidth links result in performance bottlenecks
shifting from protocol processing to data copy. Modern Linux
network stack can achieve ∼42Gbps throughput-per-core by ex-
ploiting all commonly available features in commodity NICs, e.g.,
segmentation and receive offload, jumbo frames, and packet steer-
ing. While this throughput is for the best-case scenario of a single
long flow, the dominant overhead is consistent across a variety of
scenarios—data copy from kernel buffers to application buffers (e.g.,
> 50% of total CPU cycles for a single long flow). This is in sharp
contrast to previous studies on short flows and/or low-bandwidth
links, where protocol processing was shown to be the main bottle-
neck. We also observe receiver-side packet processing to become a
bottleneck much earlier than the sender-side.

https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888
https://doi.org/10.1145/3452296.3472888

• Implications. Emerging zero-copy mechanisms from the Linux
networking community [11, 12] may alleviate data copy over-
heads, and may soon allow the Linux network stack to process as
much as 100Gbps worth of data using a single core. Integration
of other hardware offloads like I/OAT [37] that transparently
mitigate data copy overheads could also lead to performance
improvements. Hardware offloads of transport protocols [3, 43]
and userspace network stacks [21, 27, 30] that do not provide
zero-copy interfaces may improve throughput in microbench-
marks, but will require additional mechanisms to achieve CPU
efficiency when integrated into an end-to-end system.

The reducing gap between bandwidth-delay product (BDP)
and cache sizes leads to suboptimal throughput. Modern CPU
support for Direct Cache Access (DCA) (e.g., Intel DDIO [25]) allows
NICs to DMA packets directly into L3 cache, reducing data copy
overheads; given its promise, DDIO is enabled by default in most
systems. While DDIO is expected to improve performance during
data copy, rather surprisingly, we observe that it suffers from high
cache miss rates (49%) even for a single flow, thus providing limited
performance gains. Our investigation revealed that the reason for
this is quite subtle: host processing becoming a bottleneck results
in increased host latencies; combined with increased access link
bandwidths, BDP values increase. This increase outpaces increase
in L3 cache sizes—data is DMAed from the NIC to the cache, and
for larger BDP values, cache is rapidly overwritten before the ap-
plication performs data copy of the cached data. As a result, we
observe as much as 24% drop in throughput-per-core.
• Implications. We need new mechanisms to minimize delay be-
tween packet reception and subsequent data copy to minimize
cache miss rates during data copy. One possibility is to rearchitect
host network stacks to enable independent scaling of processing
capacity for individual layers (e.g., enabling multiple cores to
perform data copy for a single flow) to overcome bottlenecks. In
addition, window size tuning should take into account not only
traditional metrics like latency and throughput, but also L3 sizes.

Host resource sharing considered harmful.Weobserve asmuch
as 66% difference in throughput-per-core across different traffic
patterns (single flow, one-to-one, incast, outcast, and all-to-all) due
to undesirable effects of multiple flows sharing host resources. For
instance, multiple flows on the same NUMA node (thus, sharing
the same L3 cache) make the cache performance even worse—the
data DMAed by the NIC into the cache for one flow is polluted by
the data DMAed by the NIC for other flows, before application for
the first flow could perform data copy. Multiple flows sharing host
resources also results in packets arriving at the NIC belonging to
different flows; this, in turn, results in packet processing overheads
getting worse since existing optimizations (e.g., coalescing packets
using generic receive offload) lose a chance to aggregate larger
number of packets. This increases per-byte processing overhead,
and eventually scheduling overheads.
• Implications. In the Internet and in early-generation datacenter
networks, performance bottlenecks were in the network core;
thus, multiple flows “sharing” host resources did not have per-
formance implications. However, for high-bandwidth networks,
such is no longer the case—if the goal is to design CPU-efficient

network stacks, one must carefully orchestrate host resources so
as to minimize contention between active flows. Recent receiver-
driven transport protocols [18, 35] can be extended to reduce the
number of concurrently scheduled flows, potentially enabling
high CPU efficiency for future network stacks.

The need to revisit host layering and packet processing
pipelines. We observe as much as ∼43% reduction in throughput-
per-core compared to the single flow case when applications gen-
erating long flows share CPU cores with those generating short
flows. This is both due to increased scheduling overheads, and also
due to high CPU overheads for short flow processing. In addition,
short flows and long flows suffer from very different performance
bottlenecks—the former have high packet processing overheads
while the latter have high data copy overheads; however, today’s
network stacks use the same packet processing pipeline indepen-
dent of the type of the flow. Finally, we observe ∼20% additional
drop in throughput-per-core when applications generating long
flows are running on CPU cores that are not in the same NUMA
domain as the NIC (due to additional data copy overheads).

• Implications. Design of CPU schedulers independent of the net-
work layer was beneficial for independent evolution of the two
layers; however, with performance bottlenecks shifting to hosts,
we need to revisit such a separation. For instance, application-
aware CPU scheduling (e.g., scheduling applications that generate
long flows on NIC-local NUMA node, scheduling long-flow and
short-flow applications on separate CPU cores, etc.) are required
to improve CPU efficiency. We should also rethink host packet
processing pipelines—unlike today’s designs that use the same
pipeline for short and long flows, achieving CPU efficiency re-
quires application-aware packet processing pipelines.

Our study not only corroborates many exciting ongoing activities
in systems, networking and architecture communities on designing
CPU-efficient host network stacks, but also highlights several inter-
esting avenues for research in designing future operating systems,
network protocols and network hardware. We discuss them in §4.

Before diving deeper, we outline several caveats of our study.
First, our study uses one particular host network stack (the Linux
kernel) running atop one particular host hardware. While we fo-
cus on identifying trends and drawing general principles rather
than individual data points, other combinations of host network
stacks and hardware may exhibit different performance characteris-
tics. Second, our study focuses on CPU utilization and throughput;
host network stack latency is another important metric, but re-
quires exploring many additional bottlenecks in end-to-end system
(e.g., network topology, switches, congestion, etc.); a study that
establishes latency bottlenecks in host network stacks, and their
contribution to end-to-end latency remains an important and rel-
atively less explored space. Third, kernel network stacks evolve
rapidly; any study of our form must fix a version to ensure consis-
tency across results and observations; nevertheless, our preliminary
exploration [7] suggests that the most recent Linux kernel exhibits
performance very similar to our results. Finally, our goal is not to
take a position on how future network stacks will evolve (in-kernel,
userspace, hardware), but rather to obtain a deeper understanding
of a highly mature and widely deployed network stack.

Device Driver
• Memory allocation/deallocation
• Scheduling

Network Subsystem
• Netdevice subsystem
• skbmanagement

TCP/IP Protocol Stack
• TCP/IP processing

Socket Interface
• skbmanagement
• Lock/unlock
• Memory allocation/deallocation

User Space

Kernel Space

Sender

socket

Netfilter

Queuing Discipline

XPS

write

TCP/IP State

Driver TX

App
Receiver
App

socket

GRO

read

IRQ Handler

RX NAPI

TCP/IP State

GSO

Read Data Path

Write Data Path

Interrupt

Physical Transmission

socket Queue

DRAM Circular Buffer

Coalescing/Splitting

Netfilter

RPS/RFS

Critical Section
between Application
and IRQ Context

Application
• Scheduling
• Data copy

Hardware

Figure 1: Sender and receiver-side data path in the Linux network stack. See §2.1 for description.

Component Description

Data copy From user space to kernel
space, and vice versa.

TCP/IP All the packet processing at
TCP/IP layers.

Netdevice sub-
system

Netdevice and NIC driver op-
erations (e.g., NAPI polling,
GSO/GRO, qdisc, etc.).

skb manage-
ment

Functions to build, split, and
release skb.

Memory de-
/alloc

skb de-/allocation and page-
related operations.

Lock/unlock Lock-related operations (e.g.,
spin locks).

Scheduling Scheduling/context-
switching among threads.

Others All the remaining functions
(e.g., IRQ handling).

Table 1: CPU usage taxonomy. The compo-
nents are mapped into layers as shown in Fig. 1.

2 PRELIMINARIES
The Linux network stack tightly integrates many components into
an end-to-end pipeline. We start this section by reviewing these
components (§2.1). We also discuss commonly used optimizations,
and corresponding hardware offloads supported by commodity
NICs. A more detailed description is presented in [7]. We then
summarize the methodology used in our study (§2.2).

2.1 End-to-End Data Path
The Linux network stack has slightly different data paths for the
sender-side (application to NIC) and the receiver-side (NIC to ap-
plication), as shown in Fig. 1. We describe them separately.

Sender-side. When the sender-side application executes a write
system call, the kernel initializes socket buffers (skbs). For the data
referenced by the skbs, the kernel then performs data copy from the
userspace buffer to the kernel buffer. The skbs are then processed
by the TCP/IP layer. When ready to be transmitted (e.g., conges-
tion control window/rate limits permitting), the data is processed
by the network subsystem; here, among other processing steps,
skbs are segmented into Maximum Transmission Unit (MTU) sized
chunks by Generic Segmentation offload (GSO) and are enqueued
in the NIC driver Tx queue(s). Most commodity NICs also support
hardware offload of packet segmentation, referred to as TCP seg-
mentation offload (TSO); see more details in [7]. Finally, the driver
processes the Tx queue(s), creating the necessary mappings for the
NIC to DMA the data from the kernel buffer referenced by skbs.
Importantly, almost all sender-side processing in today’s Linux
network stack is performed at the same core as the application.

Receiver-side. The NIC has a number of Rx queues and a per-Rx
queue page-pool from which DMA memory is allocated (backed by
the kernel pageset). The NIC also has a configurable number of
Rx descriptors, each of which contains a memory address that the

NIC can use to DMA received frames. Each descriptor is associated
with enough memory for one MTU-sized frame.

Upon receiving a new frame, the NIC uses one of the Rx descrip-
tors, and DMAs the frame to the kernel memory associated with the
descriptor. Ordinarily, the NIC DMAs the frame to DRAM; however,
modern CPUs have support for Direct Cache Access (DCA) (e.g.,
using Intel’s Data Direct I/O technology (DDIO) technology [25])
that allows NIC to DMA the frames directly to the L3 cache. DCA
enables applications to avoid going to DRAM to access the data.

Asynchronously, the NIC generates an Interrupt ReQuests (IRQ)
to inform the driver of new data to be processed. The CPU core that
processes the IRQ is selected by the NIC using one of the hardware
steering mechanisms; see Table 2 for a summary, and [7] for details
on how receiver-side flow steering techniques work. Upon receiving
an IRQ, the driver triggers NAPI polling [17], that provides an
alternative to purely interrupt-based network layer processing—the
system busy polls on incoming frames until a certain number of
frames are received or a timer expires1. This reduces the number of
IRQs, especially for high-speed networks where incoming data rate
is high. While busy polling, the driver allocates an skb for each
frame, and makes a cross reference between the skb and the kernel
memory where the frame has been DMAed. If the NIC has written
enough data to consume all Rx descriptors, the driver allocates more
DMA memory using the page-pool and creates new descriptors.

The network subsystem then attempts to reduce the number of
skbs by merging them using Generic Receive Offload (GRO), or its
corresponding hardware offload Large Receive Offload (LRO); see
discussion in [7]. Next, TCP/IP processing is scheduled on one of the
CPU cores using the flow steering mechanism enabled in the system
(see Table 2). Importantly, with aRFS enabled, all the processing (the

1These NAPI parameters can be tuned via net.core.netdev_budget and
net.core.netdev_budget_usecs kernel parameters, which are set to 300 and 2ms
by default in our Linux distribution.

Mechanism Description
Receive Packet Steering (RPS) Use the 4-tuple hash for core selection.
Receive Flow Steering (RFS) Find the core that the application is running on.
Receive Side Steering (RSS) Hardware version of RPS supported by NICs.
accelerated RFS (aRFS) Hardware version of RFS supported by NICs.

Table 2: Receiver-side flow steering techniques.

IRQ handler, TCP/IP and application) is performed on the same CPU
core. Once scheduled, the TCP/IP layer processing is performed and
all in-order skbs are appended to the socket’s receive queue. Finally,
the application thread performs data copy of the payload in the
skbs in the socket receive queue to the userspace buffer. Note that
at both the sender-side and the receiver-side, data copy of packet
payloads is performed only once (when the data is transferred
between userspace and kernel space). All other operations within
the kernel are performed using metadata and pointer manipulations
on skbs, and do not require data copy.

2.2 Measurement Methodology
In this subsection, we briefly describe our testbed setup, experimen-
tal scenarios, and measurement methodology.

Testbed setup. To ensure that bottlenecks are at the network
stack, we setup a testbed with two servers directly connected
via a 100Gbps link (without any intervening switches). Both of
our servers have a 4-socket NUMA-enabled Intel Xeon Gold 6128
3.4GHz CPU with 6 cores per socket, 32KB/1MB/20MB L1/L2/L3
caches, 256GB RAM, and a 100Gbps Mellanox ConnectX-5 Ex NIC
connected to one of the sockets. Both servers run Ubuntu 16.04
with Linux kernel 5.4.43. Unless specified otherwise, we enable
DDIO, and disable hyperthreading and IOMMU in our experiments.

Experimental scenarios.We study network stack performance
using five standard traffic patterns (Fig. 2)—single flow, one-to-one,
incast, outcast, and all-to-all—using workloads that comprise long
flows, short flows, and even a mix of long and short flows. For
generating long flows, we use a standard network benchmarking
tool, iPerf [14], which transmits a flow from sender to receiver;
for generating short flows, we use netperf [22] that supports ping-
pong style RPC workloads. Both of these tools perform minimal
application-level processing, which allows us to focus on perfor-
mance bottlenecks in the network stack (rather than those arising
due to complex interactions between applications and the network
stack); many of our results may have different characteristics if
applications were to perform additional processing. We also study
the impact of in-network congestion, impact of DDIO and impact
of IOMMU. We use Linux’s default congestion control algorithm,
TCP Cubic, but also study impact of different congestion control
protocols. For each scenario, we describe the setup inline.

Performance metrics.We measure total throughput, total CPU
utilization across all cores (using sysstat [19], which includes
kernel and application processing), and throughput-per-core—ratio
of total throughput and total CPU utilization at the bottleneck
(sender or receiver). To perform CPU profiling, we use the standard
sampling-based technique to obtain a per-function breakdown of
CPU cycles [20]. We take the top functions that account for ∼95%
of the CPU utilization. By examining the kernel source code, we
classify these functions into 8 categories as described in Table 1.

App

App

App

App

App

App

App

App

App

App AppApp

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

(a) Single

App

App

App

App

App

App

App

App

App

App AppApp

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

(b) One-to-one

App

App

App

App

App

App

App

App

App

App AppApp

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

(c) Incast

App

App

App

App

App

App

App

App

App AppApp

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App AppApp

App
App
App

(d) Outcast

App

App

App

App

App

App

App

App

App

App AppApp

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

App
App
App

(e) All-to-all

Figure 2: Traffic patterns used in our study. (a) Single flow from one
sender core to one receiver core. (b) One flow from each sender core to a
unique receiver core. (c) One flow from each sender core, all to a single
receiver core. (d) One flow to each receiver core all from a single sender
core. (e) One flow between every pair of sender and receiver cores.

3 LINUX NETWORK STACK OVERHEADS
We now evaluate the Linux network stack overheads for a variety of
scenarios, and present detailed insights on observed performance.

3.1 Single Flow
We start with the case of a single flow between the two servers, each
running an application on a CPU core in the NIC-local NUMA node.
We find that, unlike the Internet and early incarnations of datacenter
networks where the throughput bottlenecks were primarily in the
core of the network (since a single CPU was sufficient to saturate
the access link bandwidth), high-bandwidth networks introduce
new host bottlenecks even for the simple case of a single flow.

Before diving deeper, we make a note on our experimental con-
figuration for the single flow case. When aRFS is disabled, obtaining
stable and reproducible measurements is difficult since the default
RSS mechanism uses hash of the 4-tuple to determine the core for
IRQ processing (§2.1). Since the 4-tuple can change across runs,
the core that performs IRQ processing could be: (1) the application
core; (2) a core on the same NUMA node; or, (3) a core on a differ-
ent NUMA node. The performance in each of these three cases is
different, resulting in non-determinism. To ensure deterministic
measurements, when aRFS is disabled, we model the worst-case sce-
nario (case 3): we explicitly map the IRQs to a core on a NUMA node
different from the application core. For a more detailed analysis of
other possible IRQ mapping scenarios, see [7].

A single core is no longer sufficient. For 10 − 40Gbps access
link bandwidths, a single thread was able to saturate the network
bandwidth. However, such is no longer the case for high-bandwidth
networks: as shown in Fig. 3(a), even with all optimization enabled,
Linux network stack achieves throughput-per-core of ∼42Gbps2.
Both Jumbo frames3 and TSO/GRO reduce the per-byte processing
overhead as they allow each skb to bring larger payloads (up to
9000B and 64KB respectively). Jumbo frames are useful even when
GRO is enabled, because the number of skbs to merge is reduced
with a larger MTU size, thus reducing the processing overhead for
packet aggregation in software. aRFS, along with DCA, generally

2We observe a maximum throughput-per-core of upto 55Gbps, either by tuning NIC
Rx descriptors and TCP Rx buffer size carefully (See Fig. 3(e)), or using LRO instead
of GRO (See [7]). However, such parameter tuning is very sensitive to the hardware
setup, and so we leave them to their default values for all other experiments. Moreover,
the current implementation of LRO causes problems in some scenarios as it might
discard important header data, and so is often disabled in the real world [10]. Thus we
use GRO as the receive offload mechanism for the rest of our experiments.
3Using larger MTU size (9000 bytes) as opposed to the normal (1500 bytes).

 0

 10

 20

 30

 40

 50

 60

All Opt. w/o TSO/GRO w/o Jumbo
 0

 10

 20

 30

 40

 50

 60

T
�
�
o
�
�
�
h
�
�

 P
e
�

 C
o
�
e
��
b
h
�
�

T o
�

	

l T
�
�
o
�
�
�
h
�
�
��
b
h
�
�

No Opt.
TSO/GRO
Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 50

 100

 150

 200

 250

 300

No Opt. +TSO/GRO +Jumbo +aRFS
 0

 10

 20

 30

 40

 50

 60

C
�
�

 �
U�
l�
z
�
U�
�
�
��
�

To
ta

l

T
	

�

o
�
	
h
o
U�

�
b
h

�

Sender CPU Util
Receiver CPU Util

Total Thpt

(b) CPU utilization (%)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d�
�� c

��
y

�c�
ti�

 �r�
co
��i
��

ne�
do
vic

o �s
��y

��o
�

skb
 mg

��

�o
��

my �
ll�
ctd

o�l
l�c

l�c
	tu
nl�

c	

�c

od
ulin
g

o�c
.

F
�
�

��
�
�

 �
�

C
�
�

 C
�

��
� N� Op��

+TSO/GRO
+Jumbo
+aRFS

(c) Sender CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d�
�� c

��
y

�c�
ti�

 �r�
co
��i
��

ne�
do
vic

o �s
��y

��o
�

skb
 mg

��

�o
��

my �
ll�
ctd

o�l
l�c

l�c
	tu
nl�

c	

�c

od
ulin
g

o�c
.

F
�
�

��
�
�

 �
�

C
�
�

 C
�

��
� N� Op��

+TSO/GRO
+Jumbo
+aRFS

(d) Receiver CPU breakdown

 0

 10

 20

 30

 40

 50

 60

 70

 80

128 256 512 1024 2048 4096 8192

 0

 20

 40

 60

 80

 100

 120

 140

 160

T
�
�
o
�
�
�
h
�
��
G
�
h
�
�

C
	

�
�

 M
is
s
 R

	
��
��
�

N� ���� B���er Size

3200K�

6400K�

Default
12800KB

 3200KB
6400KB

Default
12800KB

Throughput Cache Miss Rate

(e) Cache miss rate (%)

 0

 500

 1000

 1500

 2000

 2500

 3000

100 200 400 800 1600 3200 6400 12800

L
at

e
n
cy

 f
ro

m
 N

A
P

I
to

 A
p

p
 (

u
s)

TCP Rx buffer size(KB)

Avg. Latency
Tail (99p) Latency

(f) Latency from NAPI to start of data copy

Figure 3: Linux network stack performance for the case of a single flow. (a) Each column shows throughput-per-core achieved for different combinations
of optimizations. Within each column, optimizations are enabled incrementally, with each colored bar showing the incremental impact of enabling the
corresponding optimization. (b) Sender and Receiver total CPU utilization as all optimizations are enabled incrementally. Independent of the optimizations
enabled, receiver-side CPU is the bottleneck. (c, d)With all optimizations enabled, data copy is the dominant consumer of CPU cycles. (e) Increase in NIC ring
buffer size and increase in TCP Rx buffer size result in increased cache miss rates and reduced throughput. (f) Network stack processing latency from NAPI to
start of data copy increases rapidly beyond certain TCP Rx buffer sizes. See §3.1 for description.

improves throughput by enabling applications on the NIC-local
NUMA node cores to perform data copy directly from L3 cache.

Receiver-side CPU is the bottleneck. Fig. 3(b) shows the overall
CPU utilization at sender and receiver sides. Independent of the
optimizations enabled, receiver-side CPU is the bottleneck. There
are two dominant overheads that create the gap between sender and
receiver CPU utilization: (1) data copy and (2) skb allocation. First,
when aRFS is disabled, frames are DMAed to remote NUMA mem-
ory at the receiver; thus, data copy is performed across different
NUMA nodes, increasing per-byte data copy overhead. This is not
an issue on the sender-side since the local L3 cache is warm with
the application send buffer data. Enabling aRFS alleviates this issue
reducing receiver-side CPU utilization by as much as 2× (right-most
bar in Fig. 3(b)) compared to the case when no optimizations are
enabled; however, CPU utilization at the receiver is still higher than
the sender. Second, when TSO is enabled, the sender is able to allo-
cate large-sized skbs. The receiver, however, allocates MTU-sized
skbs at device driver and then the skbs are merged at GRO layer.
Therefore, the receiver incurs higher overheads for skb allocation.

Where are the CPU cycles going? Figs. 3(c) and 3(d) show the
CPU usage breakdowns of sender- and receiver-side for each com-
bination of optimizations. With none of the optimizations, CPU
overheads mainly come from TCP/IP processing as per-skb pro-
cessing overhead is high (here, skb size is 1500B at both sides4).
When aRFS is disabled, lock overhead is high at the receiver-side
because of the socket contention due to the application context
thread (recv system call) and the interrupt context thread (softirq)
attempting to access the same socket instance.

4Linux kernel 4.17 onwards, GSO is enabled by default. We modified the kernel to
disable GSO in “no optimization” experiments to evaluate benefits of skb aggregation.

These packet processing overheads are mitigated with several
optimizations: TSO allows using large-sized skb at the sender-
side, reducing both TCP/IP processing and Netdevice subsystem
overheads as segmentation is offloaded to the NIC (Fig. 3(c)). On
the receiver-side, GRO reduces the CPU usage by reducing the
number of skbs, passed to the upper layer, so TCP/IP processing
and lock/unlock overheads are reduced dramatically, at the cost of
increasing the overhead of the network device subsystem where
GRO is performed (Fig. 3(d)). This GRO cost can be reduced by
66% by enabling Jumbo frames as explained above. These reduced
packet processing overheads lead to throughput improvement, and
the main overhead is now shifted to data copy, which takes almost
49% of total CPU utilization at the receiver-side when GRO and
Jumbo frames are enabled.

Once aRFS is enabled, co-location of the application context
thread and the IRQ context thread at the receiver leads to improved
cache and NUMA locality. The effects of this are two-fold:

(1) Since the application thread runs on the same NUMA node as
the NIC, it can now perform data copy directly from the L3
cache (DMAed by the NIC via DCA). This reduces the per-byte
data copy overhead, resulting in higher throughput-per-core.

(2) skbs are allocated in the softirq thread and freed in the appli-
cation context thread (once data copy is done). Since the two
are co-located, memory deallocation overhead reduces. This
is because page free operations to local NUMA memory are
significantly cheaper than those for remote NUMA memory.

Even a single flow experiences high cache misses. Although
aRFS allows applications to perform data copy from local L3 cache,
we observe as much as 49% cache miss rate in this experiment.
This is surprising since, for a single flow, there is no contention

for L3 cache capacity. To investigate this further, we varied various
parameters to understand their effect on cache miss rate. Among
our experiments, varying the maximum TCP receive window size,
and the number of NIC Rx descriptors revealed an interesting trend.

Fig. 3(e) shows the variation of throughput and L3 cachemiss rate
with varying number of NIC Rx descriptors and varying TCP Rx
buffer size5. We observe that, with increase in either of the number
of NIC Rx descriptors or the TCP buffer size, the L3 cache miss
increases and correspondingly, the throughput decreases. We have
found two reasons for this phenomenon: (1) BDP values being larger
than the L3 cache capacity; and (2) suboptimal cache utilization.

To understand the first one, consider an extreme case of large
TCP Rx buffer sizes. In such a case, TCP will keep BDP worth of
data in flight, where BDP is defined as the product of access link
bandwidth and latency (both network and host latency). It turns
out that large TCP buffers can cause a significant increase in host
latency, especially when the core processing packets becomes a
bottleneck. In addition to scheduling delay of IRQ context and
application threads, we observe that each packet observe large
queueing behind previous packets. We measure the delay between
frame reception and start of data copy by logging the timestamp
when NAPI processing for an skb happens, and the timestamp
when the data copy of it starts, and measure the difference between
the two. Fig. 3(f) shows the average and 99th percentile delays
observed with varying TCP Rx buffer size. As can be seen, the delays
rise rapidly with increasing TCP Rx buffer size beyond 1600KB.
Given that DCA cache size is limited6, this increase in latency has
significant impact: since TCP buffers and BDP values are large, NIC
always has data to DMA; thus, since the data DMAed by the NIC
is not promptly copied to userspace buffers, it is evicted from the
cache when NIC performs subsequent DMAs (if the NIC runs out of
Rx descriptors, the driver replenishes the NIC Rx descriptors during
NAPI polling). As a result, cache misses increase and throughput
reduces. When TCP buffer sizes are large enough, this problem
persists independent of NIC ring buffer sizes.

To understand the second reason, consider the other extreme
where TCP buffer sizes are small but NIC ring buffer sizes are large.
We believe cache misses in this case might be due to an imperfect
cache replacement policy and/or cache’s complex addressing, re-
sulting in suboptimal cache utilization; recent work has observed
similar phenomena, although in a different context [15, 39]. When
there are a large number of NIC Rx descriptors, there is a corre-
spondingly larger number of memory addresses available for the
NIC to DMA the data. Thus, even though the total amount of in-
flight data is smaller than the cache capacity, the likelihood of a
DCA write evicting some previously written data increases with
the number of NIC Rx descriptors. This limits the effective utiliza-
tion of cache capacity, resulting in high cache miss rates and low
throughput-per-core.

Between these two extremes, both of the factors contribute to the
observed performance in Fig. 3(e). Indeed, in our setup, DCA cache
capacity is ∼3MB and hence TCP buffer size of 3200KB and fewer
than 512 NIC Rx descriptors (512 × 9000 bytes ≈ 4MB) delivers

5The kernel uses an auto-tuning mechanism for the TCP Rx socket buffer size with the
goal of maximizing throughput. In this experiment, we override the default auto-tuning
mechanism by specifying an Rx buffer size.
6DCA can only use 18% (∼3MB) of the L3 cache capacity in our setup.

 0

 10

 20

 30

 40

 50

 60

 NIC-local NUMA NIC-remote NUMA
 0

 20

 40

 60

 80

 100

 120

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

C
ac

h
e
 M

is
s

R
at

e
(%

)

Throughput Per Core
Receiver: Cache Miss Rate

Figure 4: Linux network stack performance for the case of a single
flow on NIC-remote NUMA node. When compared to the NIC-local
NUMA node case, single flow throughput-per-core drops by ∼20%.

the optimal single-core throughput of ∼55Gpbs. An interesting
observation here is that the default auto-tuning mechanism used
in the Linux kernel network stack today is unaware of DCA effects,
and ends up overshooting beyond the optimal operating point.

DCA limited to NIC-local NUMA nodes. In our analysis so far,
the application was run on a CPU core on the NIC-local NUMA
node. We now examine the impact of running the application on
a NIC-remote NUMA node for the same single flow experiment.
Fig. 4 shows the resulting throughput-per-core and L3 cache miss
rate relative to the NIC-local case (with all optimizations enabled in
both cases). When the application runs on NIC-remote NUMA node,
we see a significant increase in L3 cache miss rate and ∼20% drop in
throughput-per-core. Since aRFS is enabled, the NIC DMAs frames
to the target CPU’s NUMA node memory. However, because the
target CPU core is on a NIC-remote NUMA node, DCA is unable to
push the DMAed frame data into the corresponding L3 cache [25].
As a result, cache misses increase and throughput-per-core drops.

3.2 Increasing Contention via One-to-one
We now evaluate the Linux network stack with higher contention
for the network bandwidth. Here, each sender core sends a flow to
one unique receiver core, and we increase the number of core/flows
from 1 to 24. While each flow still has the entire host core for itself,
this scenario introduces two new challenges compared to the single-
flow case: (1) network bandwidth becomes saturated as multiple
cores are used; and (2) flows run on both NIC-local and NIC-remote
NUMA nodes (our servers have 6 cores on each NUMA node).

Similar to §3.1, to obtain deterministic measurements when aRFS
is disabled, we explicitly map IRQs for individual applications to a
unique core on a different NUMA node.

Host optimizations become less effective with increasing
number of flows. Fig. 5(a) shows that, as the number of flows
increases, throughput-per-core decreases by 64% (i.e., 15Gbps at
24 flows), despite each core processing only a single flow. This is
because of reduced effectiveness of all optimizations. In particular,
when compared to the single flow case, the effectiveness of aRFS
reduces by as much as 75% for the 24-flow case; this is due to
reduced L3 cache locality for data copy for NIC-local NUMA node
cores (all cores share L3 cache), and also due to some of the flows
running on NIC-remote NUMA nodes (that cannot exploit DCA, see
§3.1, Fig. 4). The effectiveness of GRO also reduces: since packets
at the receiver are now interleaved across flows, there are fewer
opportunities for aggregation; this will become far more prominent
in the all-to-all case, and is discussed in more depth in §3.5.

 0

 10

 20

 30

 40

 50

1 8 16 24
 0

 20

 40

 60

 80

 100

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

T
o

ta
l T

h
ro

u
gh

p
u
t(

G
b

p
s)

Flows

No Opt.
TSO/GRO

Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(b) Sender CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(c) Receiver CPU breakdown

Figure 5: Linux network stack performance for one-to-one traffic pattern. (a) Each column shows throughput-per-core achieved for different number
of flows. At 8 flows, the network is saturated, however, throughput-per-core decreases with more flows. (b, c) With all optimizations enabled, as the number
of flows increase, the fraction of CPU cycles spent in data copy decreases. On the receiver-side, network saturation leads to lower memory management
overhead (due to better page recycling) and higher scheduling overhead (due to frequent idling). The overall receiver-side CPU utilizations for x= 1, 8, 16 and
24 cases are, 1, 3.75, 5.21 and 6.58 cores, respectively. See §3.2 for description.

 0

 10

 20

 30

 40

 50

 60

1 8 16 24
 0

 10

 20

 30

 40

 50

 60

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

T
o

ta
l T

h
ro

u
gh

p
u
t(

G
b

p
s)

Flows

No Opt.
TSO/GRO

Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(b) Receiver CPU breakdown

 30

 35

 40

 45

1 8 16 24
 40

 50

 60

 70

 80

 90

 100

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

C
ac

h
e
 M

is
s

R
at

e
(%

)

Flows

Throughput Per Core
Receiver: Cache Miss Rate

(c) L3 cache miss rate (%)

Figure 6: Linux network stack performance for incast traffic pattern. (a) Each column shows throughput-per-core for different number of flows
(receiver core is bottlenecked in all cases). Total throughput decreases with increase in the number of flows. (b) With all optimizations enabled, the fraction of
CPU cycles used by each component does not change significantly with number of flows. See [7] for sender-side CPU breakdown. (c) Receiver-side cache miss
rate increases with number of flows, resulting in higher per-byte data copy overhead, and reduced throughput-per-core. See §3.3 for description.

Processing overheads shift with network saturation. As
shown in Fig. 5(a), at 8 flows, the network link becomes the bottle-
neck, and throughput ends up getting fairly shared among all cores.
Fig. 5(c) shows that bottlenecks shift in this regime: scheduling
overhead increases and memory management overhead decreases.
Intuitively, when the network is saturated, the receiver cores start
to become idle at certain times—threads repeatedly go to sleep while
waiting for data, and wake up when new data arrives; this results in
increased context switching and scheduling overheads. This effect
becomes increasingly prominent with increase in number of flows
(Fig. 5(b), Fig. 5(c)), as the CPU utilization per-core decreases.

To understand reduction in memory alloc/dealloc overheads, we
observe that the kernel page allocator maintains per-core pageset
that includes a certain number of free pages. Upon an allocation re-
quest, pages can be fetched directly from the pageset, if available;
otherwise the global free-list needs to be accessed (which is a more
expensive operation). When multiple flows share the access link
bandwidth, each core serves relatively less amount of traffic com-
pared to the single flow case. This allows used pages to be recycled
back to the pageset before it becomes empty, hence reducing the
memory allocation overhead (Fig. 5(c)).

3.3 Increasing Receiver Contention via Incast
We now create additional contention at the receiver core using an
incast traffic pattern, varying number of flows from 1 to 24 (each
using a unique core at the sender). Compared to previous scenarios,
this scenario induces higher contention for (1) CPU resources such

as L3 cache and (2) CPU scheduling among application threads. We
discuss how these changes affect the network processing overheads.

Per-byte data copy overhead increases with increasing flows
per-core. Fig. 6(a) shows that throughput-per-core decreases with
increase in number of flows, observing as much as ∼19% drop with
8 flows when compare to the single-flow case. Fig. 6(b) shows that
the CPU breakdown does not change significantly with increasing
number of flows, implying that there is no evident shift in CPU
overheads. Fig. 6(c) provides some intuition for the root cause of
the throughput-per-core degradation. As number of flows per core
increases at the receiver side, applications for different flows com-
pete for the same L3 cache space resulting in increased cache miss
rate (the miss rate increases from 48% to 78%, as the number of
flows goes from 1 to 8.). Among other things, this leads to increased
per-byte data copy overhead and reduced throughput-per-core. As
shown in Fig. 6(c), the increase in L3 cache miss rate with increasing
flows correlates well with degradation in throughput-per-core.

Sender-driven nature of TCP precludes receiver-side sched-
uling. Higher cache contention observed above is the result of
multiple active flows on the same core. While senders could po-
tentially reduce such contention using careful flow scheduling, the
issue at the receiver side is fundamental: the sender-driven nature
of the TCP protocol precludes the receiver to control the number of
active flows per core, resulting in unavoidable CPU inefficiency. We
believe receiver-driven protocols [18, 35] can provide such control
to the receiver, thus enabling CPU-efficient transport designs.

 0

 20

 40

 60

 80

 100

 120

 140

1 8 16 24

 0

 20

 40

 60

 80

 100

 120

 140

T
�
�
o
�
�
�
h
�
�

P

e
�

 S
e
�
�
e
�

 C
o
�
e
��

b
p
s)

To
ta
l T
h
ro
u
gh
p
u
t(
G
b
p
s)

# F	ows

N
 O��

��O/��O

Jumbo
a���

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1 ow
8 ows

16 ows
24 ows

(b) Sender CPU breakdown

 0

 100

 200

 300

 400

 500

 600

1 8 16 24

 0

 10

 20

 30

 40

 50

 60

C
�
�

 �
U�
l�
z
�
U�
�
�
��
�

C
�
	

�

 M
��
�

 R
�
U�
��
�

Flows

S��� CPU Util

Receiv� CPU Util

S���: Cache Miss Rate

(c) CPU utilization (%)

Figure 7: Linux network stack performance for outcast traffic pattern. (a) Each column shows throughput-per-sender-core achieved for different
number of flows, that is the maximum throughput sustainable using a single sender core (we ignore receiver core utilization here). Throughput-per-sender-core
increases from 1 to 8 flows, and then decreases as the number of flows increases. (b) With all optimizations enabled, as the number of flows increases from 1
to 8, data copy overhead increases but does not change much when the number of flows is increased further. Refer to [7] for receiver-side CPU breakdown. (c)
For 1 flow, sender-side CPU is underutilised. Sender-side cache miss rate increases slightly as the number of flows increases from 8 to 24, increasing the
per-byte data copy overhead, and there is a corresponsing decrease in throughput-per-core. See §3.4 for description.

3.4 Increasing Sender Contention via Outcast
All our experiments so far result in receiver being the bottleneck.
To evaluate sender-side processing pipeline, we now use an outcast
scenario where a single sender core transmits an increasing number
of flows (1 to 24), each to a unique receiver core. To understand the
efficiency of sender-side processing pipeline, this subsection focuses
on throughput-per-sender-core: that is, the maximum throughput
achievable by a single sender core.

Sender-side processing pipeline can achieve up to 89Gbps per
core. Fig. 7(a) shows that, with increase in number of flows from 1
to 8, throughput-per-sender-core increases significantly enabling
total throughput as high as ∼89Gbps; in particular, throughput-per-
sender-core is 2.1× when compared to throughput-per-receiver-
core in the incast scenario (§3.3). This demonstrates that, in today’s
Linux network stack, sender-side processing pipeline is much more
CPU-efficient when compared to receiver-side processing pipeline.
We briefly discuss some insights below.

The first insight is related to the efficiency of TSO. As shown
in Fig. 7(a), TSO in the outcast scenario contributes more to
throughput-per-core improvements, when compared to GRO in
the incast scenario (§3.3). This is due to two reasons. First, TSO is a
hardware offload mechanism supported by the NIC; thus, unlike
GRO which is software-based, there are no CPU overheads associ-
ated with TSO processing. Second, unlike GRO, the effectiveness
of TSO does not degrade noticeably with increasing number of
flows since data from applications is always put into 64KB size
skbs independent of the number of flows. Note that Jumbo frames
do not help over TSO that much compared to the previous cases as
segmentation is now performed in the NIC.

Second, aRFS continues to provide significant benefits, contribut-
ing as much as ∼46% of the total throughput-per-sender-core. This
is because, as discussed earlier, L3 cache at the sender is always
warm: while cache miss rate increases slightly with larger number
of flows, the absolute number remains low (∼11% even with 24
flows); furthermore, outcast scenario ensures that not too many
flows compete for the same L3 cache at the receiver (due to receiver
cores distributed across multiple NUMA nodes). Fig. 7(b) shows
that data copy continues to be the dominant CPU consumer, even
when sender is the bottleneck.

3.5 Maximizing Contention with All-to-All
We now evaluate Linux network stack performance for all-to-all
traffic patterns, where each of x sender cores transmit a flow to each
of the x receiver cores, for x varying from 1 to 24. In this scenario,
we were unable to explicitly map IRQs to specific cores because,
for the largest number of flows (576), the number of flow steering
entries requires is larger than what can be installed on our NIC.
Nevertheless, even without explicit mapping, we observed reason-
ably deterministic results for this scenario since the randomness
across a large number of flows averages out.

Fig. 8(a) shows that throughput-per-core reduces by ∼67% going
from 1 × 1 to 24 × 24 flows, due to reduced effectiveness of all
optimizations. The benefits of aRFS drop by ∼64%, almost the same
as observed in the one-to-one scenario (§3.2). This is unsurprising,
given the lack of cache locality for cores in non-NIC-local NUMA
nodes, and given that cache miss rate is already abysmal (as dis-
cussed in §3.2). Increasing the number of flows per core on top of
this does not make things worse in terms of cache miss rate.

Per-flow batching opportunities reduce due to large number
of flows. Similar to the one-to-one case, the network link becomes
the bottleneck in this scenario, resulting in fair-sharing of band-
width among flows. Since there are a large number of flows (e.g.,
24×24with 24 cores), each flow achieves very small throughput (or
alternatively, the number of packets received for any flow in a given
time window is very small). This results in reduced effectiveness of
optimizations like GRO (that operate on a per-flow basis) since they
do not have enough packets in each flow to aggregate. As a result,
upper layers receive a larger number of smaller skbs, increasing
packet processing overheads.

Fig. 8(c) shows the distribution of skb sizes (post-GRO) for vary-
ing number of flows. We see that as the number of flows increase,
the average skb size reduces, leading to our argument above about
the reduced effectiveness of GRO. We note that the above phenom-
enon is not unique to the all-to-all scenario: the number of flows
sharing a bottleneck resource also increase in the incast and one-
to-one scenarios. Indeed, this effect would also be present in those
scenarios, however the total number of flows in those cases is not
large enough to make these effects noticeable (max of 24 flows in
incast and one-to-one versus 24 × 24 flows in all-to-all).

 0

 10

 20

 30

 40

 50

1x1 8x8 16x16 24x24
 0

 20

 40

 60

 80

 100

T
h
ro

u
gh

p
u
t

Pe
r

C
o

re
(G

b
p

s)

T
o

ta
l T

h
ro

u
gh

p
u
t(

G
b

p
s)

Flows

No Opt.
TSO/GRO

Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

1x1 ow
8x8 ows

16x16 ows
24x24 ows

(b) Receiver CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

5 10 15 20 25 30 35 40 45 50 55 60 65

Fr
ac

ti
o

n
 o

f
Sa

m
p

le
s

SKB size(KB)

4x4 ows
8x8 ows

16x16 ows
24x24 ows

(c) skb size distribution

Figure 8: Linux network stack performance for all-to-all traffic pattern. (a) Each column shows throughput-per-core achieved for different number of
flows. With 8 × 8 flows, the network is fully saturated. Throughput-per-core decreases as the number of flows increases. (b) With all optimizations enabled,
as the number of flows increase, the fraction of CPU cycles spent in data copy decreases. On the receiver-side, network saturation leads to lower memory
management overhead (due to better page recycling) and higher scheduling overhead (due to frequent idling and greater number of threads per core.). TCP/IP
processing overhead increases due to smaller skb sizes. The overall receiver-side CPU utilizations for x= 1 × 1, 8 × 8, 16 × 16 and 24 × 24 are 1, 4.07, 5.56 and
6.98 cores, respectively. See [7] for sender-side CPU breakdown. (c) The fraction of 64KB skbs after GRO decreases as the number of flows increases because
the larger number of flows prevent effective aggregation of received packets. See §3.5 for description.

 0

 10

 20

 30

 40

 50

 60

0 1.5e-4 1.5e-3 1.5e-2
 0

 10

 20

 30

 40

 50

 60

T
�
�
o
�
�
�
h
�
�

P
e
�

 C
o
�

e(
G

b
h
�
�

T
o
��

l T
�
�
o
�
�
�
h
�
��
	
b
h
�
�

L
�� R��

N
 Opt.
��O��RO

Ju��

�Ra�

T
�l Thpt

(a) Throughput-per-core (Gbps)

 0

 20

 40

 60

 80

 100

0 1.5e-4 1.5e-3 1.5e-2

C
�
�

 �
U
�l
�z
�
U�
�
�
��
�

Loss Rate

Sender CPU Util

Receiver CPU Util

(b) CPU Utilization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d�
�� c

��
y

�c�
ti�

 �r�
co

��i
��

ne
�d
ov

ico
 �s�

�y�
�o�

�	
� �

��
�

�o�
�m

y �ll
�c

tdo
�ll
�c

l�c
	tu
nl�

c	

�c

o

ds
li�

�
o�c
.

Fr
ac
ti
o
n
 o
f
C
P
U

 C
yc
le
s loss rate: 0

loss rate: 1.5e-4

loss rate: 1.5e-3

loss rate: 1.5e-2

(c) Sender CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d�
�� c

��
y

�c�
ti�

 �r�
co

��i
��

ne
�d
ov

ico
 �s�

�y�
�o�

�	
� �

��
�

�o�
�m

y �ll
�c

tdo
�ll
�c

l�c
	tu
nl�

c	

�c

o

ds
li�

�
o�c
.

Fr
ac
ti
o
n
 o
f
C
P
U

 C
yc
le
s loss rate: 0

loss rate: 1.5e-4

loss rate: 1.5e-3

loss rate: 1.5e-2

(d) Receiver CPU breakdown

Figure 9: Linux network stack performance for the case of a single flow, with varying packet drop rates. (a) Each column shows throughput-per-core
achieved for a specific packet drop rate. Throughput-per-core decreases as the packet drop rate increases. (b) As the packet drop rate increases, the gap
between sender and receiver CPU utilisation decreases because the sender spends more cycles for retransmissions. (c, d) With all optimizations enabled, as
the packet drop rate increases, the overhead of TCP/IP processing and netdevice subsystem increases. See §3.6 for description.

3.6 Impact of In-network Congestion
In-network congestion may lead to packet drops at switches, which
in turn impacts both the sender and receiver side packet processing.
In this subsection, we study the impact of such packet drops on
CPU efficiency. To this end, we add a network switch between the
two servers, and program the switch to drop packets randomly. We
increase the loss rate from 0 to 0.015 in the single flow scenario
from §3.1, and observe the effect on throughput and CPU utilization
at both sender and receiver.

Impact on throughput-per-core is minimal. As shown in
Fig. 9(a) the throughput-per-core decreases by∼24% as the drop rate
is increased from 0 to 0.015. Fig. 9(b) shows that the receiver-side
CPU utilization decreases with increasing loss rate. As a result, the
total throughput becomes lower than throughput-per-core, and the
gap between the two increases. Interestingly, the throughput-per-
core slightly increases when the loss rate goes from 0 to 0.00015.
We observe that the corresponding receiver-side cache miss rate
is reduced from 48% to 37%. This is because packet loss essentially
reduces TCP sending rate, thus resulting in better cache hit rates at
the receiver-side.

Figs. 9(c) and 9(d) show CPU profiling breakdowns for different
loss rates. With increasing loss rate, at both sender and receiver,
we see that the fraction of CPU cycles spent in TCP, netdevice
subsystem, and other (etc.) processing increases, hence leading to
fewer available cycles for data copy.

The minimal impact is due to increased ACK processing.
Upon detailed CPU profiling, we found increased ACK processing
and packet retransmissions to be the main causes for increased
overheads. In particular:

• At the receiver, the fraction of CPU cycles spent in generating
and sending ACKs increases by 4.87× (1.52% → 7.4%) as the
loss rate goes from 0 to 0.015. This is because, when a packet is
dropped, the receiver gets out-of-order TCP segments, and ends
up sending duplicate ACKs to the sender. This contributes to an
increase in both TCP and netdevice subsystem overheads.

• At the sender, the fraction of CPU cycles spent in processing
ACKs increases by 1.45× (5.79% → 8.41%) as the loss rate goes
from 0 to 0.015. This is because the sender has to process ad-
ditional duplicate ACKs. Further, the fraction of CPU spent in
packet retransmission operations increases by 1.34%. Both of
these contribute to an increase in TCP and netdevice subsys-
tem overheads, while the former contributes to increased IRQ
handling (which is classified under “etc.” in our taxonomy).

Sender observes higher impact of packet drops. Fig. 9(b) shows
the CPU utilization at the sender and the receiver. As drop rates
increase, the gap between sender and receiver utilization decreases,
indicating that the increase in CPU overheads is higher at the sender
side. This is due to the fact that, upon a packet drop, the sender
is responsible for doing the bulk of the heavy lifting in terms of
congestion control and retransmission of the lost packet.

 0

 5

 10

 15

 20

 25

4 16 32 64
 0

 5

 10

 15

 20

 25

T
�
�
o
�
�
�
h
�
�

h
p
�

 C
o
�

e(
G

b
h
�
�

T
o
��

l T
�
�
o
�
�
�
h
�
��
	
b
h
�
�

R
� S���K��

No Opt.
�S���RO
Jumbo
aR�S

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

4KB
16KB
32KB
64KB

(b) Server CPU breakdown

 0

 5

 10

 15

 20

 25

NIC-local NUMA NIC-remote NUMA
 0

 20

 40

 60

 80

 100

T
�
�
o
�
�
�
h
�
�

P

er
 C
o
re

��
b
h
�
�

C
	

�
e

 M
� �
�

 R
	
�e
��
�

Throughput Per Core
Receiver: Cache Miss Rate

(c) NIC-remote NUMA effect (4KB)

Figure 10: Linux network stack performance for short flow, 16:1 incast traffic pattern, with varying RPC sizes. (a) Each column shows throughput-
per-core achieved for a specific RPC size. Throughput-per-core increases with increasing RPC size. For small RPCs, optimizations like GRO do not provide
much benefit due to fewer aggregation opportunities. (b) With all optimizations enabled, data copy quickly becomes the bottleneck. The server-side CPU was
completely utilized for all scenarios. See [7] for client-side CPU breakdown. (c) Unlike long flows, no significant throughput-per-core drop is observed even
when application runs on NIC-remote NUMA node core at the server. See §3.7 for description.

3.7 Impact of Flow Sizes
We now study the impact of flow sizes on the Linux network stack
performance. We start with the case of short flows: a ping-pong
style RPC workload, with message sizes for both request/response
being equal, and varying from 4KB to 64KB. Since a single short flow
is unable to bottleneck CPU at either the sender or the receiver,
we consider the incast scenario—16 applications on the sender
send ping-pong RPCs to a single application on the receiver (the
latter becoming the bottleneck). Following the common deployment
scenario, each application uses a long-running TCP connection.

We also evaluate the impact of workloads that comprise of a mix
of both long and short flows. For this scenario, we use a single core
at both the sender and the receiver. We run a single long flow, and
mix it with a variable number of short flows. We set the RPC size
of short flows to 4KB.

DCA does not help much when workloads comprise of
extremely short flows. Fig. 10(a) shows that, as expected,
throughput-per-core increases with increase in flow sizes. We make
several observations. First, as shown in Fig. 10(b), data copy is no
longer the prominent consumer of CPU cycles for extremely small
flows (e.g., 4KB)—TCP/IP processing overhead is higher due to low
GRO effectiveness (small flow sizes make it hard to batch skbs),
and scheduling overhead is higher due to ping-pong nature of the
workload causing applications to repeatedly block while waiting
for data. Second, data copy not being the dominant consumer of
CPU cycles for extremely short flows results in DCA not contribut-
ing to the overall performance as much as it did in the long-flow
case: as shown in Fig. 10(c), while NIC-local NUMA nodes achieve
significantly lower cache miss rates when compared to NIC-remote
NUMA nodes, the difference in throughput-per-core is only mar-
ginal. Third, while DCA benefits reduce for extremely short flows,
other cache locality benefits of aRFS still apply: for example, skb
accesses during packet processing benefit from cache hits. However,
these benefits are independent of the NUMA node on which the
applications runs. The above three observations suggest interesting
opportunities for orchestrating host resources between long and
short flows: while executing on NIC-local NUMA nodes helps long
flows significantly, short flows can be scheduled on NIC-remote
NUMA nodes without any significant impact on performance; in
addition, carefully scheduling the core across short flows sharing
the core can lead to further improvements in throughput-per-core.

 0

 10

 20

 30

 40

 50

0 1 4 16
 0

 10

 20

 30

 40

 50

T
�
�
o
�
�
�
h
�
�

h
p
�

 C
o
�

e(
G

b
h
�
�

T
o
��

l T
�
�
o
�
�
�
h
�
��
	
b
h
�
�

S
��t �ws

N� O�t�

�SO���O

Ju���
a��S

T�tal �
�t

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

data co
py

tcp
/ip processi

ng

netdevice
 su

bsys
tem

skb m
gm

t

memory
allo

c/
deallo

c

lock/unlock

sch
eduling

etc.

Fr
ac

ti
o

n
 o

f
C

P
U

 C
yc

le
s

0 short ow
1 short ow

4 short ows
16 short ows

(b) Server CPU breakdown

Figure 11: Linux network stack performance for workloads that
mix long and short flows on a single core. (a) Each column shows
throughput-per-core achieved for different number of short flows colocated
with a long flow. Throughput-per-core decreases with increasing number of
short flows. (b) Even with 16 flows colocated with a long flows, data copy
overheads dominate, but TCP/IP processing and scheduling overheads start
to consume significant CPU cycles. The server-side CPU was completely
utilized for all scenarios.; refer to [7] for client-side CPU breakdown. See
§3.7 for description.

We note that all the observations above become relatively obso-
lete even with slight increase in flow sizes—with just 16KB RPCs,
data copy becomes the dominant factor and with 64KB RPCs, the
CPU breakdown becomes very similar to the case of long flows.

Mixing long and short flows considered harmful. Fig. 11(a)
shows that, as expected, the overall throughput-per-core drops by
∼43% as the number of short flows colocated with the long flow is
increased from 0 to 16. More importantly, while throughput-per-
core for a single long flow and 16 short flows is ∼42Gbps (§3.1) and
∼6.15Gbps in isolation (no mixing), it drops to ∼20Gbps and ∼2.6
Gbps, respectively when the two are mixed (48% and 42% reduction
for long and short flows). This suggests that CPU-efficient network
stacks should avoid mixing long and short flows on the same core.

 0

 10

 20

 30

 40

 50

 60

Default DCA Disabled IOMMU Enabled

 0

 10

 20

 30

 40

 50

 60

T
h
ro
u
gh
p
u
t
Pe
r
C
o
re
(G
b
p
s)

To
ta
l T
h
ro
u
gh
p
u
t(
G
b
p
s)

No Opt.
TSO/GRO
Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d���
 c��y

�c�
ti�

 �r�
co

��i
��

ne�
dovi

co
 �s��y�

�o�

skb
 mg

��

�o��my �
ll�

ctd
o�l

l�c

l�c	
tun

l�c	

�c

odu
ling o�c

.

F
�
�

��
�
�

 �
�

C
�
�

 C
�

��
� D������

D�A D !�bled
IOMMU E"�#��$

(b) Sender CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

d���
 c��y

�c�
ti�

 �r�
co

��i
��

ne�
dovi

co
 �s��y�

�o�

skb
 mg

��

�o��my �
ll�

ctd
o�l

l�c

l�c	
tun

l�c	

�c

odu
ling o�c

.

F
�
�

��
�
�

 �
�

C
�
�

 C
�

��
� D������

D�A D !�bled
IOMMU E"�#��$

(c) Receiver CPU breakdown

Figure 12: Impact of DCA and IOMMU on Linux network stack performance. (a) Each column shows throughput-per-core achieved for different
DCA and IOMMU configurations: Default has DCA enabled and IOMMU disabled. Either of disabling DCA or enabling IOMMU leads to decrease in
throughput-per-core. (b, c) Disabling DCA does not cause a significant shift in CPU breakdown. Enabling IOMMU causes a significant increase in memory
management overheads at both the sender and the recever. See §3.8 and §3.9 for description.

 0

 10

 20

 30

 40

 50

 60

CUBIC BBR DCTCP

 0

 10

 20

 30

 40

 50

 60

T
h
ro
u
gh
p
u
t
Pe
r
C
o
re
(G
b
p
s)

To
ta
l T
h
ro
u
gh
p
u
t(
G
b
p
s)

No Opt.
TSO/GRO
Jumbo
aRFS

Total Thpt

(a) Throughput-per-core (Gbps)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

dat
a co
py

tcp
/ip

 pro
ces
sin
g

net
dev
ice

 sub
sys
tem

skb
 mg
mt

me
mo
ry a
llo
c/d
eal
loc

loc
k/u
nlo
ck

sch
ed
ulin
g

etc
.

Fr
ac
ti
o
n
 o
f
C
P
U

 C
yc
le
s

CUBIC

BBR

DCTCP

(b) Sender-side CPU breakdown

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

dat
a co
py

tcp
/ip

 pro
ces
sin
g

net
dev
ice

 sub
sys
tem

skb
 mg
mt

me
mo
ry a
llo
c/d
eal
loc

loc
k/u
nlo
ck

sch
ed
ulin
g

etc
.

Fr
ac
ti
o
n
 o
f
C
P
U

 C
yc
le
s

CUBIC

BBR

DCTCP

(c) Receiver CPU breakdown (IOMMU enabled)

Figure 13: Impact of congestion control protocols on Linux network stack performance. (a) Each column shows throughput-per-core achieved for
different congestion control protocols. There is no significant change in throughput-per-core across protocols. (b, c) BBR causes a higher scheduling overhead
on the sender-side. On the receiver-side, the CPU utilization breakdowns are largely similar. For all cases, receiver-side core is fully utilized for all protocols.
See §3.10 for description.

3.8 Impact of DCA
All our experiments so far were runwith DCA enabled (as is the case
by default on Intel Xeon processors). To understand the benefits of
DCA, we now rerun the single flow scenario from §3.1, but with
DCA disabled. Fig. 12(a) shows the throughput-per-core without
DCA relative to the scenario with DCA enabled (Default), as each
of the optimizations are incrementally enabled. Unsurprisingly,
with all optimizations enabled, we observe a 19% degradation in
throughput-per-core when DCA is disabled. In particular, we see a
∼50% reduction in the effectiveness of aRFS; this is expected since
disabling DCA reduces the data copy benefits of NIC DMAing the
data directly into the L3 cache. The other benefits of aRFS (§3.1)
still apply. Without DCA, the receiver-side remains the bottleneck,
and we do not observe any significant shift in the CPU breakdowns
at sender and receiver (Figs. 12(b) and 12(c)).

3.9 Impact of IOMMU
IOMMU (IO Memory Management Unit) is used in virtualized en-
vironments to efficiently virtualize fast IO devices. Even for non-
virtualized environments, they are useful for memory protection.
With IOMMU, devices specify virtual addresses in DMA requests
which the IOMMU subsequently translates into physical addresses
while implementing memory protection checks. By default, the
IOMMU is disabled in our setup. In this subsection, we study the
impact of IOMMU on Linux network stack performance for the
single flow scenario (§3.1).

The key take-away from this subsection is that IOMMU, due to
increased memory management overheads, results in significant

degradation in network stack performance. As seen in Fig. 12(a),
enabling IOMMU reduces throughput-per-core by 26% (compared
to Default). Figs. 12(b) and 12(c) show the core reason for this
degradation: memory alloc/dealloc becoming more prominent in
CPU consumption at both sender and receiver (now consuming
30% of CPU cycles at the receiver). This is because of two additional
per-page operations required by IOMMU: (1) when the NIC driver
allocates new pages for DMA, it has to also insert these pages into
the device’s pagetable (domain) on the IOMMU; (2) once DMA is
done, the driver has to unmap those pages. These two additional
per-page operations result in increased overheads.

3.10 Impact of Congestion control protocols
Our experiments so far use TCP CUBIC, the default congestion
control algorithm in Linux. We now study the impact of congestion
control algorithms on network stack performance using two other
popular algorithms implemented in Linux, BBR [8] and DCTCP [1],
again for the single flow scenario (§3.1). Fig. 13(a) shows that choice
of congestion control algorithm has minimal impact on throughput-
per-core. This is because, as discussed earlier, receiver-side is the
core throughput bottleneck in high-speed networks; all these al-
gorithms being “sender-driven”, have minimal difference in the
receiver-side logic. Indeed, the receiver-side CPU breakdowns are
largely the same for all protocols (Fig. 13(c)). BBR has relatively
higher scheduling overheads on the sender-side (Fig. 13(b)); this
is because BBR uses pacing for rate control (with qdisc) [42], and
repeated thread wakeups when packets are released by the pacer
result in increased scheduling overhead.

4 FUTURE DIRECTIONS
We have already discussed several immediate avenues of future
research in individual subsections—e.g., optimizations to today’s
Linux network stack (e.g., independent scaling of each process-
ing layer in the stack, rethinking TCP auto-tuning mechanisms
for receive buffer sizing, window/rate mechanisms incorporating
host bottlenecks, etc.), extensions to DCA (e.g., revisiting L3 cache
management, support for NIC-remote NUMA nodes, etc.) and, in
general, the idea of considering host bottlenecks when designing
network stacks for high-speed networks. In this section, we outline
a few more forward-looking avenues of future research.

Zero-copy mechanisms. The Linux kernel has recently intro-
duced new mechanisms to achieve zero-copy transmission and
reception on top of the TCP/IP stack:
• For zero-copy on the sender-side, the kernel now has
MSG_ZEROCOPY feature [11] (since kernel 4.14), which pins
application buffers upon a send system call, allowing the NIC to
directly fetch this data through DMA reads.

• For zero-copy on the receiver-side, the kernel now supports a
special mmap overload for TCP sockets [12] (since kernel 4.18).
This implementation enables applications to obtain a virtual
address that is mapped by the kernel to the physical address
where the NIC DMAs the data.

Some specialized applications [13, 26] have demonstrated achieving
∼100Gbps of throughput-per-core using the sender-side zero-copy
mechanism. However, as we showed in §3, receiver is likely to be
the throughput bottleneck for many applications in today’s Linux
network stack. Hence, it is more crucial to eliminate data copy over-
heads on the receiver-side. Unfortunately, the above receiver-side
zero-copy mechanism requires changes in the memory manage-
ment semantics, and thus requires non-trivial application-layer
modifications. Linux eXpress Data Path (XDP) [23] offers zero copy
operations for applications that use AF_XDP socket [29] (intro-
duced in kernel 4.18), but requires reimplementation of the entire
network and transport protocols in the userspace. It would be in-
teresting to explore zero-copy mechanisms that do not require
application modifications and/or reimplementation of network pro-
tocols; if feasible, such mechanisms will allow today’s Linux net-
work stack to achieve 100Gbps throughput-per-core with minimal
or no modifications.

CPU-efficient transport protocol design. Transport design has
traditionally been an “algorithmic” problem—designing congestion
and flow control algorithms to achieve a multi-objective optimiza-
tion goal (e.g., a combination of objectives like low latency, high
throughput, etc.). This state of affairs is because, for the Internet and
for early incarnations of datacenter networks, performance bottle-
necks were primarily in the core of the network. Our study suggests
that this is no longer the case: adoption of high-bandwidth links
shifts performance bottlenecks to the host. Thus, future protocol
designs should explicitly orchestrate host resources (just like they
orchestrate network resources today), e.g., by taking not just tradi-
tional metrics like latency and throughput into account, but also
available cores, cache sizes and DCA capabilities. Recent receiver-
driven protocols [18, 35] have the potential to enable such fine-
grained orchestration of both the sender and the receiver resources.

Rearchitecting the host stack. We discuss two directions in rela-
tively clean-slate design for future network stacks. First, today’s
network stacks use a fairly static packet processing pipeline for
each connection—the entire pipeline (buffers, protocol processing,
host resource provisioning, etc.) is determined at the time of socket
creation, and remains unchanged during the socket lifetime, inde-
pendent of other connections and their host resource requirements.
This is one of the core reasons for the many bottlenecks identified
in our study: when the core performing data copy becomes the
bottleneck for long flows, there is no way to dynamically scale
the number of cores performing data copy; even if short flows and
long flows have different bottlenecks, the stack uses a completely
application-agnostic processing pipeline; and, there is no way to
dynamically allocate host resources to account for changes in con-
tention upon new flow arrivals. As performance bottlenecks shift
to hosts, we should rearchitect the host network stack to achieve a
design that is both more dynamic (allows transparent and indepen-
dent scaling of host resources to individual connections), and more
application-aware (exploits characteristics of applications colocated
on a server to achieve improved host resource orchestration).

The second direction relates to co-designing CPU schedulers
with the underlying network stack. Specifically, CPU schedulers in
operating systems have traditionally been designed independent of
the network stack. This was beneficial for independent evolution
of the two layers. However, with increasingly many distributed
applications and with performance bottlenecks shifting to hosts,
we need to revisit such a separation. For instance, our study shows
that network-aware CPU scheduling (e.g., scheduling applications
that generate long flows on NIC-local NUMA node, scheduling
long-flow and short-flow applications on separate CPU cores, etc.)
has the potential to lead to efficient host stacks.

5 CONCLUSION
We have demonstrated that recent adoption of high-bandwidth
links in datacenter networks, coupled with relatively stagnant tech-
nology trends for other host resources (e.g., core speeds and count,
cache sizes, etc.), mark a fundamental shift in host network stack
bottlenecks. Using measurements and insights for Linux network
stack performance for 100Gbps links, our study highlights several
avenues for future research in designing CPU-efficient host network
stacks. These are exciting times for networked systems research—
with emergence of Terabit Ethernet, the bottlenecks outlined in
this study are going to become even more prominent, and it is only
by bringing together operating systems, computer networking and
computer architecture communities that we will be able to design
host network stacks that overcome these bottlenecks. We hope our
work will enable a deeper understanding of today’s host network
stacks, and will guide the design of not just future Linux kernel
network stack, but also future network and host hardware.

ACKNOWLEDGMENTS
We thank our shepherd, Neil Spring, SIGCOMM reviewers, Shrijeet
Mukherjee, Christos Kozyrakis and Amin Vahdat for their insightful
feedback. This work was supported by NSF grants CNS-1704742
and CNS-2047283, a Google faculty research scholar award and a
Sloan fellowship. This work does not raise any ethical concerns.

REFERENCES
[1] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). In ACM SIGCOMM.

[2] Amazon. 2021. Amazon EC2 F1 Instances. https://aws.amazon.com/ec2/
instance-types/f1/. (2021).

[3] Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer Rexford,
David Walker, and David Wentzlaff. 2020. Enabling Programmable Transport
Protocols in High-Speed NICs. In USENIX NSDI.

[4] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A Protected Dataplane Operating System for
High Throughput and Low Latency. In USENIX OSDI.

[5] Theophilus Benson, Aditya Akella, and David A Maltz. 2010. Network traffic
characteristics of data centers in the wild. In IMC.

[6] Zhan Bokai, Yu Chengye, and Chen Zhonghe. 2005. TCP/IP Offload Engine (TOE)
for an SOC System. https://www.intel.com/content/dam/www/programmable/
us/en/pdfs/literature/dc/_3_3-2005_taiwan_3rd_chengkungu-web.pdf. (2005).

[7] Qizhe Cai, Shubham Chaudhary, Midhul Vuppalapati, Jaehyun Hwang, and
Rachit Agarwal. 2021. Understanding Host Network Stack Overheads. https:
//github.com/Terabit-Ethernet/terabit-network-stack-profiling. (2021).

[8] Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh, and
Van Jacobson. 2016. BBR: Congestion-Based Congestion Control. ACM Queue
14, September-October (2016), 20 – 53.

[9] AdrianMCaulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy Fowers,
Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-Young Kim,
et al. 2016. A cloud-scale acceleration architecture. In IEEE/ACM MICRO.

[10] Jonathan Corbet. 2009. JLS2009: Generic receive offload. https://lwn.net/Articles/
358910/. (2009).

[11] Jonathan Corbet. 2017. Zero-copy networking. https://lwn.net/Articles/726917/.
(2017).

[12] Jonathan Corbet. 2018. Zero-copy TCP receive. https://lwn.net/Articles/752188/.
(2018).

[13] Patrick Dehkord. 2019. NVMe over TCP Storage with SPDK. https://ci.spdk.
io/download/events/2019-summit/(Solareflare)+NVMe+over+TCP+Storage+
with+SPDK.pdf. (2019).

[14] Jon Dugan, John Estabrook, Jim Ferbuson, Andrew Gallatin, Mark Gates, Kevin
Gibbs, Stephen Hemminger, Nathan Jones, Gerrit Renker Feng Qin, Ajay Tiru-
mala, and Alex Warshavsky. 2021. iPerf - The ultimate speed test tool for TCP,
UDP and SCTP. https://iperf.fr/. (2021).

[15] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire Jr., and Dejan Kostić. 2020.
Reexamining Direct Cache Access to Optimize I/O Intensive Applications for
Multi-hundred-gigabit Networks. In USENIX ATC.

[16] Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou, Alireza
Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu, Adrian Caulfield, Eric
Chung, et al. 2018. Azure accelerated networking: SmartNICs in the public cloud.
In USENIX NSDI.

[17] The Linux Foundation. 2016. Linux Foundation DocuWiki: napi. https://wiki.
linuxfoundation.org/networking/napi. (2016).

[18] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. 2015. phost: Distributed near-optimal datacenter transport
over commodity network fabric. In ACM CoNEXT.

[19] Sebastien Godard. 2021. Performance monitoring tools for Linux. https://github.
com/sysstat/sysstat. (2021).

[20] Brendan Gregg. 2020. Linux perf Examples. http://www.brendangregg.com/perf.
html. (2020).

[21] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In USENIX
OSDI.

[22] HewlettPackard. 2021. Netperf. https://github.com/HewlettPackard/netperf.
(2021).

[23] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System Kernel.
In ACM CoNEXT.

[24] Jaehyun Hwang, Qizhe Cai, Ao Tang, and Rachit Agarwal. 2020. TCP ≈ RDMA:
CPU-efficient Remote Storage Access with i10. In USENIX NSDI.

[25] Intel. 2012. Intel® Data Direct I/O Technology. https : / / www .
intel .com/content/dam/www/public/us/en/documents/technology-briefs/
data-direct-i-o-technology-brief.pdf. (2012).

[26] Intel. 2020. SPDK NVMe-oF TCP Performance Report. https://ci.spdk.io/
download/performance-reports/SPDK_tcp_perf_report_2010.pdf. (2020).

[27] EunYoung Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan
Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable User-level
TCP Stack for Multicore Systems. In USENIX NSDI.

[28] Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, and Ronnie
Chaiken. 2009. The nature of data center traffic: measurements & analysis. In
IMC.

[29] Magnus Karlsson and Björn Töpel. 2018. The Path to DPDK Speeds for AF XDP.
In Linux Plumbers Conference.

[30] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma, Arvind Krish-
namurthy, and Thomas Anderson. 2019. TAS: TCP Acceleration as an OS Service.
In ACM Eurosys.

[31] Yuliang Li, Rui Miao, Hongqiang Liu, Yan Zhuang, Fei Feng, Lingbo Tang, Zheng
Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019. HPCC:
High Precision Congestion Control. In ACM SIGCOMM.

[32] Xiaofeng Lin, Yu Chen, Xiaodong Li, Junjie Mao, Jiaquan He, Wei Xu, and
Yuanchun Shi. 2016. Scalable Kernel TCP Design and Implementation for Short-
Lived Connections. In ACM ASPLOS.

[33] Ilias Marinos, Robert NM Watson, and Mark Handley. 2014. Network stack
specialization for performance. ACM SIGCOMMComputer Communication Review
44, 4 (2014), 175–186.

[34] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting Network Support
for RDMA. In ACM SIGCOMM.

[35] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-driven Low-latency Transport Protocol Using Network Priori-
ties. In ACM SIGCOMM.

[36] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-scale Networked Tasks. In ACM SOSP.

[37] Quoc-Thai V Le, Jonathan Stern, and StephenM Brenner. 2017. Fast memcpy with
SPDK and Intel I/OAT DMA Engine. https://software.intel.com/content/www/
us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html.
(2017).

[38] Livio Soares and Michael Stumm. 2010. FlexSC: Flexible System Call Scheduling
with Exception-Less System Calls. In USENIX OSDI.

[39] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Katerina Argyraki,
Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ: Enabling SLOs in Network
Function Virtualization. In USENIX NSDI.

[40] Vijay Vasudevan, David G. Andersen, and Michael Kaminsky. 2011. The Case for
VOS: The Vector Operating System. In USENIX HotOS.

[41] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016.
StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs.
In USENIX ATC.

[42] Neal Cardwell Yuchung Cheng. [n. d.]. Making Linux TCP Fast. "https:
//netdevconf.info/1.2/papers/bbr-netdev-1.2.new.new.pdf". ([n. d.]).

[43] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,
Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion control for large-scale RDMA deployments. ACM
SIGCOMM Computer Communication Review 45, 4 (2015), 523–536.

https://aws.amazon.com/ec2/instance-types/f1/
https://aws.amazon.com/ec2/instance-types/f1/
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/dc/_3_3-2005_taiwan_3rd_chengkungu-web.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/dc/_3_3-2005_taiwan_3rd_chengkungu-web.pdf
https://github.com/Terabit-Ethernet/terabit-network-stack-profiling
https://github.com/Terabit-Ethernet/terabit-network-stack-profiling
https://lwn.net/Articles/358910/
https://lwn.net/Articles/358910/
https://lwn.net/Articles/726917/
https://lwn.net/Articles/752188/
https://ci.spdk.io/download/events/2019-summit/(Solareflare)+NVMe+over+TCP+Storage+with+SPDK.pdf
https://ci.spdk.io/download/events/2019-summit/(Solareflare)+NVMe+over+TCP+Storage+with+SPDK.pdf
https://ci.spdk.io/download/events/2019-summit/(Solareflare)+NVMe+over+TCP+Storage+with+SPDK.pdf
https://iperf.fr/
https://wiki.linuxfoundation.org/networking/napi
https://wiki.linuxfoundation.org/networking/napi
https://github.com/sysstat/sysstat
https://github.com/sysstat/sysstat
http://www.brendangregg.com/perf.html
http://www.brendangregg.com/perf.html
https://github.com/HewlettPackard/netperf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2010.pdf
https://ci.spdk.io/download/performance-reports/SPDK_tcp_perf_report_2010.pdf
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
https://software.intel.com/content/www/us/en/develop/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.html
"https://netdevconf.info/1.2/papers/bbr-netdev-1.2.new.new.pdf"
"https://netdevconf.info/1.2/papers/bbr-netdev-1.2.new.new.pdf"

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 End-to-End Data Path
	2.2 Measurement Methodology

	3 Linux Network Stack Overheads
	3.1 Single Flow
	3.2 Increasing Contention via One-to-one
	3.3 Increasing Receiver Contention via Incast
	3.4 Increasing Sender Contention via Outcast
	3.5 Maximizing Contention with All-to-All
	3.6 Impact of In-network Congestion
	3.7 Impact of Flow Sizes
	3.8 Impact of DCA
	3.9 Impact of IOMMU
	3.10 Impact of Congestion control protocols

	4 Future Directions
	5 Conclusion
	Acknowledgments
	References

