An Analysis of Facebook Photo Caching

Instrumented Stack

Deep and Distributed
1. 4 layers of cache and storage.
2. ~12M user IPs, ~20 Point-of-Presence, 4 Datacenters.

- **Browser (millions)**
 - 77.2M user reqs
 - 65.5% hit ratio
 - 65.5% reqs share

- **Edge (dozens)**
 - 26.6M reqs
 - 58% hit ratio
 - 20% reqs share
 - Routing factors:
 - Latency
 - Edge capacity
 - Peering cost

- **Origin (one)**
 - 11.2M reqs
 - 31.8% hit ratio
 - 4.6% reqs share
 - Routed by consistent hashing

- **Haystack**
 - 7.6M reqs
 - 9.9% reqs share
 - Prefers local Haystack

Workload

At top layers, req popularity follows a power-law dist., but curve flattens as reqs tunnels deeper.

- **Browser Cache**
 - Popularity dist.: Exponential
 - Hit ratio: 37%
 - Traffic: 99.93%
 - L1 miss rate: 0.07%

- **Edge Cache**
 - Popularity dist.: Stretched Exponential
 - Hit ratio: 58%
 - Traffic: 99.87%
 - L1 miss rate: 0.17%

- **Origin Cache**
 - Popularity dist.: Stretched Exponential
 - Hit ratio: 31.8%
 - Traffic: 99.75%
 - L1 miss rate: 0.27%

- **Haystack**
 - Popularity dist.: Consistent hashing
 - Hit ratio: 31.8%
 - Traffic: 99.75%
 - L1 miss rate: 0.27%

Cache Performance

Traffic Share by Photo Popularity

Cache traffic share drop for less popular items.
1. Top 1K photos attract 25% traffic.
2. Cache serves 99.93% reqs for them.
3. Haystack handles the tail.

Browser Caching

1. Clients with <10 reqs send 37% traffic.
2. Active clients have higher hit ratio.
3. Increasing cache size helps.

Edge Caching & Origin Caching

1. Request from clients are often routed to remote Edges.
2. Collaborative Edges (collab bar) increases hit ratio by 17%.

3. S4LRU increases hit ratio significantly both at Edge and Origin.