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Abstract

Consider the coloring of a vertex-labelled r-uniform hypagh G(V, E), whereV’
is the vertex set at labelled vertices, and is the set of hyperedges. In case of proper
bicoloring, given two colors, we need to assign each vertexavithof the colors so that
none of the hyperedges is monochromatic. This may not alvegysgsible. In such cases,
we use multiple bicolorings to ensure that each hyperedgeoeply colored in at least
one of the colorings. This is called the bicolor cover of tgpdrgraph. We establish the
following result: forr-uniform hypergraphs with hyperedge getdefined om vertices,
the size of bicolor cover is upper-bounded®fiog | E|). We also extend this result for
tricoloring.

Consider again the coloring of vertices of a vertex-labeliggergraphz(V, E') using
a given set of c distinct colors. In this work, we try to estdbli®unds on the number
of hyperedges that will ensure the existence of a proper aritg, given|e;| > r. We
define the discrepancy in case of tricoloring (c = 3) as a meastd the uniformity of a
particular coloring and then try to establish upper boundasib Further, we generalise
the definition of discrepancy and proof for bounds on disaney for c-coloring where
c> 3.
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Chapter 1

Introduction

1.1 Definitions

Definition 1. A hypergraph G is a pairG = (V, E') whereV is a set of elements, called
nodes or vertices, and E is a set of non-empty subsets of &dcayiperedges or links.
Therefore, E is a subset #f(V/)\ ¢, whereP (1) is the power set of .

Figure 1.1: A hypergrapty(V, E') with 9 vertices and 5 hyperedges.

So, a hypergraph is similar to a graph except that in case gbergraph, a hyperedge
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may connect any number of vertices while an edge in a graphceanect only two
vertices.

Definition 2. A r-uniform hypergraph is a hypergraph such that all its hyperedges have
sizer.

Definition 3. A bicoloring of a hypergraph G is a coloring of the vertices of G with two
colors. Each of the vertices is assigned one of the two colors.

A proper bicoloringrefers to a bicoloring of the vertices of the hypergraph ichsa
way that no hyperedge is monochromatic, i.e., each hyperbdg atleast one vertex of

each color.

>

Figure 1.2: A proper bicoloring of a hypergraphV, ) using colors red and blue.
mydef

Definition 4. Atricoloring of a hypergraph G is a coloring of the vertices of G with three
colors.

A proper tricoloringrefers to a tricoloring of the vertices of the hypergraphuntsa
way that every hyperedge has atleast one vertex of each tirdne colors.

Definition 5. The chromatic numbey(G) of a graph is the minimum number of colors
required to color the vertices of a graph such that no two a€lfacvertices receive the
same color.
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SR
=55

Figure 1.3: A proper tricoloring of a hypergragh(V, E') using colors red, green and
blue.

Definition 6. A bicolor cover is a set of bicolorings such that each bicoloring individu-
ally bicolors a set of hyperedeges properly and the unionlidha hyperedges properly
bicolored using the bicolorings is the set of all the hypeeeslin the hypergraph.

1.2 Overview of the work

We have worked on two problems pertaining to hypergraphs :

1.2.1 Bicolor cover

There is an already existing work [2] on the bound on the marmmumber of bicolorings
required to cover a hypergraph. However, it deals with ondpecial type of bicoloring

in which only one vertex of a hyperedge is colored with oneo{shy white) and all
the remaining vertices of the hyperedge are colored witlother color(say black). In
our work (presented in chapter 2), we have proved a boundeom#ximum number of
bicolorings required to cover a hypergraph using generalbrings. A lower bound on
the size of bicolor cover for-regular hypergraphs is also provided [2]. We have also
proved the upper bound on the number of tricolorings requiecover a hypergrah.
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1.2.2 Tricoloring of hypergraphs

There are bounds on the size of hyperedges and number ofduges that ensure the
existence of a proper bicoloring[3]. The Chernoff bound &xfsr the discrepancy of
hypergraph bicoloring. There also exists a Las Vegas dtguarfor finding a bicoloring
for a hypergraph with bounded discrepancy. In our work @né=d in chapter 3), we
have proved a bound on the number of hyperedges which ertberegistence of proper
tricoloring. We also provide a scheme to establish an uppent on the number of
hyperedges which ensures the existence of progetoring forc > 3. Further, we have
defined discrepancy for coloring with more than 2 colors astdldished an upper bound
on the discrepancy in tricoloring of a hypergraph and alsoatestrated how to find an
upper bound on discrepancy fe«coloring forc > 3.



Chapter 2
Covering hypergraphs using colorings

Given a hypergrapli/, we wish to find the minimum number of bicolorings requiredtth
can cover all the hyperedges. In case a hypergraph is pydgedlorable, this number is
1 because a single bicoloring covers all the hyperedgeshypargraph is not properly
bicolorable, then a certain bicoloring will properly biook set of hyperedges and not all
the hyperedges. For the remaining hyperedges, we need meotering scheme(s). And
so, the bicolor cover will have size greater than 1.

Fig. 2.1(a) shows a hypergraph which is not bicolorable. Bibeloring in Fig.2.1(b)
can properly bicolor hyperedgdsl and E2 only while that in Fig.2.1(c) can properly
bicolor hyperedge#/1 and E3 only. However, the union of the hyperedges properly
colored by either of the bicolorings contains all the hyplges in the hypergraph and
hence, the bicolorings in Fig.2.1(b) and (c) together ctivethypergraph.

In this chapter, we discuss the already existing bound fpeaial type of bicoloring[2]
and then move on to provide a proof for the number of bicolygirequired in the general
case.

2.1 Special case with one white and remaining black ver-
tices in an edge

In this section, we consider a special case of bicoloririgfusolors say black and white)
in which the bicoloring is said to be proper if there existdyovertex in an hyper-
edge which is colored white and all the remaining verticethenhyperedge are colored
black[2].

Theorem 2.1. The number of such bicolorings reqiured to cover a hyperesie C'
hyperedges is upper bounded ®@ylog C).
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(b) (c)

Figure 2.1: Bicolor cover of a non-bicolorable hypergraph.

Proof. Let us consider an-uniform hypergraph. Lef’(A;}) denote the probability that
thei' hyperedgé; is not properly bicolored by a random bicoloring. Theresachoices
for the white vertex in a hyperedge and for each choice, thbability of that vertex be-
ing white isp. The probability that the rest of the vertices are bladk is- p)" =Y.

P(AD) = rp(1 —p)"! (2.1)
Therefore, the probability that the strategy does not pigfecolor an edge; is
P(A)) =1—rp(l—p)" (2.2)

Suppose we repeat the bicoloringimes. Then, the probability that none of thatrate-
gies properly bicolorg; is

P(AY) = (1 —rp(1—p) )" (2.3)

Let b; denote the indicator variable which equals 1 if hyperefdge not satisfied (by any
of thez strategies in the proposed solution) and 0, otherwise.
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C

LetB = Z b;. B = 0, if and only if thex randomly chosen strategies bicolor all the C
1

hyperedges properly.

C C
E(B)=E (Z bi> =Y E(bi)=Cx P (A7) (2.4)

Supposer is such thatF(B) < 1. SinceE(B) < 1, the integral random variabl8
should take the value 0 for some random choice sfrategies. So, an integral valueaof
satisfying the strict inequality is the suffficient numbérstrategies that together satisfy
H.
CxP((AY) <1 (2.5)
So, we have
Cx(1—rp(l—p) <1 (2.6)
We now findx satisfying the above inequality as,
(1—rp(1—=p) )" <1/C
= zlog(1—rp(1—p)" ") < —logC
—log C

T gl ) &0

Takingp = 1,
—logC

log (1— (1= 1))
So, there exists a proper bicolor covering of sizgog C').

The absolute value of the (negative) denominator in the alogquality forz shrinks
fromlog, 2 = 1 for r = 2, and approachegog, (1 — 1) | asr grows. O

xr >

= 0O (log C) (2.8)

2.2 Case with general proper bicoloring

Theorem 2.2. The size of bicolor cover of aruniform hypergraph witiC' hyperedges
is upper bounded b§(log C').

Proof. We use similar notations as used in the previous section.Pdf ) denote the
probability that theth hyperedgeé; is not properly bicolored by a random bicoloring.
A hyperedgéh; is not properly bicolored if it is monochromatic ,i.e., @tlall the vertices
are colored white or all the vertices are colored black. hefdrobability of a vertex being
colored white i and ,therefore, the probability of being colored blacklis- p).

P(A)=p +(1-p) (2.9)
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Suppose, we repeat the bicolorimdimes. The probability that none of thestrategies
properly bicolorh; is

P(A7) =@ +(1-p)")° (2.10)
Let, b; denote the indicator variable which equals 1 if hyperektlgs not satisfied (by
any of thex strategies in the proposed solution) and 0, otherwise.

C
LetB:Zbi.

B =0if 1and only if the z randomly chosen strategies bicolor all thehyperedges
properly.

C C

E(B)=E (Z bi> =Y E(b)=CxP(A}) (2.11)

1 1
Supposey is such thatt (B) < 1. SinceE (B) < 1, the integral random variablB
should take the value O for some random choice sfrategies. So, an integral value of
x satisfying the strict inequality is the sufficient numbestategies that together satisfy

the hypergraph.
CxP(AY) <1 (2.12)

So, we have
Cx(p+1-p")<i1 (2.13)

We now findx satisfying the above inequality as:

P+1-p") < 1

C
= zlog(p" + (1 —p)") < —logC
- 7> —logC (2.14)

log (p" + (1 —p)")

If we considerp = % such that a vertex is colored white or black with equal prdtgb
then:

- —logC
log (3 + 3)
—logC'

log (57+1)

log C
22 —0( 2.1
:>x>(r—1)log2 O (log C) (2.15)

T

=T >

From this, we can infer that there exists atleast one proigetds cover of the size given
by the above bound which ©(log C), where C is the number of hyperedges in the
hypergraph. O
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2.3 Lower bound on the size of bicolor cover

In this section, we derive non-trivial and asymptoticatigrieasing bounds on the size of
the hypergraph bicolor cover for r-uniform complete hypapis,r > 2. The proof is
essentially the same as provided in [2]. For each bicolaitag covers some of the hy-
peredges by properly bicoloring them, we define a partiattion f from V' to {w, b, —}.
We say that strategy properly colors the hyperedgeif f (v) € {w,b} for every vertex

v € h and there exist;,v, € h such thatf (v;) = w and f (v2) = b. We also say
that the bicoloring strategy satisfiesh, if the bicoloring f properly colorsh. We define

f (v) ='—"to indicate the bicoloringf is not defined for vertex. This happens when
does not belong to any hyperedge properly colored by thddsiog f.

Theorem 2.3. The number of bicolorings required to cover a complete uteghyper-
graph K, is lower bounded bylog; (-2) |.

Proof. Let S be the set of bicolorings required to cover the hypergrapét.|&| = m.
Consider then-tuples|f; (v;), f2 (vi),- -, fm (v;)] Where eacly; (v;) € {b,w,}, 1 <
Jj < m,1 < i < n. Here, each partial functiori; is a bicoloring strategy in S. If
fi (v;) = —, itimplies that thej*" strategy is not defined for the otherwise it implies
the vertexy; is colored white) or blackg) in the ;" strategy. We now generatesuch
m-tuples randomly and uniformly and assign them tostheertices.

Let us assume that < logs (-2). We can write this ag3™ x (r — 1)) < n. Total
number of suchn-tuples possible i8™. Now, each of the: vertices is assigned one of
the 3™ m-tuples. Therefore, there exists atleast am¢uple that has been assigned to
[ 55 | vertices. But,

[Sﬁmw Sro1 (2.16)

So, the number of vertices that have been assigned the sdarercall the m bi-
colorings is greater than — 1. Therefore, we conclude that there must be atleast one
hyperedge (set ofr vertices), all of whose vertices are assigned the same coklt
them bicolorings. So, there exists atleast one hyperedge inypergraph which can not
be properly bicolored using less thhrg; (Ll) bicolorings. Hence, fof to be a proper

r—

bicolor cover,|S| > logs (-%5). O

2.4 Tricolor cover of a hypergraph

Sometimes, it may not be possible to properly tricolor &l llyperedges of a hypergraph
using only one tricoloring. But we can have a set of tricolgsiisuch that each hyperedge
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is properly colored in at least one of the tricolorings. Sadet of tricolorings is called a
tricolor coverof the hypergraph.

Theorem 2.4. The number of tricolorings required to coverrauniform hypergraph is
upper bounded by (log C') whereC' is the number of hyperedges.

Proof. We again use similar notations as used in the previous sscfitf A} ) denotes the
probability that theth hyperedgé; is not properly tricolored by a random tricoloring.
A hyperedge; is not properly tricolored if it is does not have at least oagex colored
with each of the three colors.

3x2 -3 2 -1

P (/41) 3r 3r41

(2

(2.17)

On repeating the random tricoloringtimes, the probability that the hyperedbgis not
properly tricolored in any of the tricolorings is given by :

P (A7) = (QT — 1)9; (2.18)

3r—1

Again, b; denotes the indicator variable which equals 1 if hyperédge not satisfied (by
any of thex strategies in the proposed solution) and 0, otherwise.

Let B =Y"b,.

B = 0 if and only if thez randomly chosen strategies tricolor all thehyperedges

properly.
C

EB)=EF (i bi> = E(b)=CxP(A) (2.19)

1
Now, let z be such that” (B) < 1. Using similar arguments, sincg(B) < 1, the
integral random variabl#& should take the value O for some random choice efrate-
gies. So, an integral value afsatisfying the strict inequality is the sufficient number of
strategies that together satisfy the hypergraph.

Cx P(AT) < 1 (2.20)

So, we have

2" —1\"
C x ( = ) <1 (2.21)
We now findzx satisfying the above inequality as:
2" —1\* - 1
3r—1 C

if a:log( ><—10gC'

3r—1
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. —logC'
U e 1) —log (3T
. log C'
i > (r—1)log3 —log(2r —1)
1
if x> 0gC O(log C) (2.22)

(r—1)log3 —rlog2 -

Therefore, using) (log C') tricolorings, we can cover all the hyperedges with proper

tricoloring because the expected number of hyperedgesmpegy tricolored in any
of the tricolorings is less than one, which essentially nsesero because the number of
hyperedges should be an integer. Hence, the size of thdotricover of ar-uniform
hypergraph is upper bounded by(log C). O]



Chapter 3
Hypergraph c-coloring

A set system or hypergraph G(V, E) is a pair of two désndE. V is a set of» elements
(vertices) and the set containingm subsets: C V of these elements, and| > r.
Such subsets € E are called hyperedges and such a set sysiém F) is called a
hypergraph. We want to colour the vertices with some codans( colors) and wish to
know whether a given hypergraph hapraper c-coloring(i.e. no hyperedge is colored
using less than colors).

3.1 Existence of proper bicoloring

Consider sparse hypergraphs such that< 27-!, where|e;| > r for all ¢; € E. If we
do a random bicoloring, then

the probability that a hyperedge is monochromatig x 27 = 2-(—1 |

Therefore, the probability that some hyperedge is monauhtic < |E| x 270D <
2r=1 x 2701 = 1,
Hence, the probability that no hyperedge is monochromatioin-zero for such a sparse
graph. Therefore, there must be a proper bicoloring.
Further, we can also calculate the expected number of moowetiic hyperedges in the

hypergraph. The probability of a particular hyperedge pemonochromatic i@,
|E|

Therefore, the expected number of monochromatic hypeeeﬂdgE 9~ (r=1) < o(r=1)
=1

2-(=1) — 1. So, the expected number of monochromatic hyperedgesdsystess than

1. And therefore, there must be a proper bicoloring of the ryyagh.
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3.2 Combinatorial discrepancy for bicoloring

In this section, we discuss the upper bound on the discrgdanbicoloring[3]. For the
hypergraph G(V, E), wher€ = {vy,--- ,v,} is the set of vertices anll = {ey,--- , e, }

is the set of hyperedges, we wish to calor using two colors, say red and blue, such that
within each hyperedge, no color outnumbers the other by too much. Formally, we can
definediscrepancyas

x(e) = x(vy) (3.1)

v;€e;
wherex(v;) € {1,—1} depending on the color of the vertex Thediscrepancyof the
hypergraph under a given bicoloring is the maximumgk;)| over alle; € E. When
no particular bicoloring is specified, then tiscrepancyof the hypergraph refers to the
minimum discrepancy of the hypergraph over all possiblelbrings.

Upper bound on discrepancy
Lets considee; to be bad iflx(e;)| > /2|e;| In(2m).

If X = Z x; 1S the sum of, mutually independent random variablesuniformly dis-

i=1
tributed in{1, —1}, then, for anyy > 0,

Prob[X > 6] < ¢~ %/?" (3.2)

Using the result of Eqn.3.2,

Prob[x(ei) > /2Jei] 1n(2m)] < =2 Cm)/@ed) 1 jopy (3.3)

Since, the random variable can assume two values, we2také /2m = 1/m as
the limiting probability. Therefore, the probability thatleast one hyperedge is bad
< m x 1/m = 1. The probability that no hyperedge is bad is positive. Se,dls-

crepancy of the hypergraph can not be more t{)éﬂ_m In(2m).

Las Vegas algorithm for finding a bicoloring with bounded disaepancy
Again, if we considef; to be bad if|x(e;)| > /3|ei| In(2m), then by the Chernoff’s
bound shown in eqn.3.2, probability that a particulais bad< m~3/2, and thus, the
probability that atleast ong is bad< 1//m. Therefore, a Las Vegas algorithm can be
designed to find a bicoloring, within the above discrepa’nmyﬁm = \/m steps.
If £ independent rounds of random bicoloring are done, then ttblegbility that all of
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them have some bad hyperedgél#,/m)" = —.
Therefore, probability of finding the desired discrepanalpdng ink trials= 1 — #

3.3 Existence of proper tricoloring

A tricoloring is said to beroperif every hyperedge contains vertices colored with all the
three colors.

Theorem 3.1.For a hypergraphG(V, E) with |e;| > rforall e; € E, a proper tricoloring
3(r=1)

exists if|[E| < %

Proof. Let us consider sparse hypergraphs such tRat< o, wherele;| > r for all
e; € E. If we do a random tricoloring, that is, color the verticesdamly with the three
colors, then lets calculate the probability that a hypeeadgot trichromatic.

Let M (I, k, c¢) denote the number of ways of colorihgertices with exactly: colors out
of ¢ colors (i.e. each of thé colors is used atleast once).

M(l,1,3) = G’) x1'=3 (3.4)

M (1,2, 3) will be number of ways of choosirgcolors out of3 colors times the number
of ways of coloring thé vertices using both the colors atleast once (which is equidile
number of ways of coloringvertices usin@ colors - number of such colorings in which
only 1 color was used).

M(1,2,3) = (g) x (2'=2)=3x2'-6 (3.5)

Therefore, the number of different tricolorings of a hymlge (with/ vertices) which
are not propee= M (l,1,3) + M(l,2,3). The total number of ways in which the hyper-

edge can be colored 3'. Let P; (e;) denote the probability that the hyperedgeés not
trichromatic.

o M(|62‘7173) +M(‘€Z|’273)

Py(e:) = 3lesl

3 x 2l -3

= P3 (ez - 3|€i|
3 x 2leil

= Pyle) <222 "

3|ez‘

3x 2

= P () x

37‘
(3.6)
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Therefore, the probability that some hyperedge is nottoictatic< |E| x 5 XTQ

Hence, for the probability that all hyperedges are trichmis non-zero for such a
sparse graph, the probability that some hyperedge is mbirtnmatic should be strictly
less than 1. This is true if :

27”
B <222 <y
3r
3(r=1)
= B =—; (3.7)

Since a random tricoloring in such a case yields a propesltnitmg with nonzero proba-

bility, there must be a proper tricoloring whén| > r for all ¢; € E and|E| < 322

27

Again, we can also calculate the expected number of nohrtnmatic hyperedges in
the hypergraph to prove the existence of a proper tricajorifihe probability of a par-
ticular hyperedge being non-trichromaticéih. Therefore, the expected number of

|E| r 3(7*71) or

non-trichromatic hyperedges 2 50D < o X T 1. So, the expected
number of non-trichromatic hyperedges is strictly lessithaAnd therefore, there must
be a proper tricoloring of the hypergraph. ]

3.4 Existence of proper c-coloring

Let us now consider the case when we have to color ust@ors, given thate;| > r.
A c-coloringis said to be proper if in every hyperedge, there exist vestmolored with
each of the: colors. M (I, k, c¢) is the number of ways of coloringvertices with exactly
k colors out ofc colors. M (I, k, ¢) can be recursively defined as :

k—1
M (I, k,c) = (2) x (kl — ZM(l,j, k:)) (3.8)

Let P. (e;) denote the probability that the hyperedges not properlyc-coloredin a
randomc-coloringwhere all the vertices are colored randomly usingdhelors.
Therefore,

7C7C)

M (le;
Pc(ei) :1—T
d”'——ﬁf(kﬂ,qc)

c‘€i|

PC (62) =
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> M (e oo
PC (62) = d

c|ei|

(3.9)

The probability that some hyperedge is not propedgoloredin a randomc-coloring

becomesFE| x P.(e;). Hence, to ensure that a propgecoloringexists, this probability
should be strictly less than

’E’ x P. (ez) <1
1
Pc (ez)

(3.10)

= |E] <

Let us use this relation to establish an upper boun¢iigjrfor the case when we are
using4 colors.

3

ZM(|€i|aja 4)

= Pile) =
M(|el‘7 ]-74) +M(‘62|7274) + M(|62|7374)
= Pile) = Ales
446 x (214l —2) +4 x (3l —3 x 2l 43
. BT - (21 =2 )
4 x 3leil — 6 x 2leil 44
= Dile) = Alei
4x3 —6x2 44
= Pl <=2 4TX >3 (3.11)
1
Bl <
P4 (61)
f |E 4 3.12
if |E| <4><3\ei|_6><2\e7;|+4 (3.12)
47‘
if |E| Vr >3 (3.13)

SIxy —6x2 44 =

3.5 Bounded discrepancy tricoloring

We use another definition of discrepancy to calculate thereimncy in case of tricolor-
ing. Lete be the upper bound on the discrepancy of an edge of the tricglave want
so as to ensure that a tricoloring with discrepagcy. e exists. Thereforel [x(e;) > €|
should be less than somethat ensures that the probability that there is atleast awe b
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edge (edge with discrepancy greater thgis strictly less than 1, and thus the probability
that there is no bad edge is greater than zero, thereby agghbét there exists atleast one
tricoloring with discrepancy less than the bound

For the hypergraph G(V, E), wheré = {vy,--- ,v,} is the set of vertices and
E = {e1, -+ ,e,} is the set of hyperedges, we wish to colgs using three colors,
say (i, Cy and (3, such that within each hyperedgg no color outhumbers the other
by too much. Lety,, € {1,w,w?} depending on the color of the vertex, wherel, w
andw? are cube roots of unity. Say,, = 1 if the vertexv; is colored withC1, w, if it
is colored withC, andw?, if it is colored withC5. Thediscrepancyin this case can be
defined as

x(e)) = max (| X1, [ Xiwl, [Xiw2]) (3.14)
Xi = > (3.15)
’vjEBi

where, X; ;, X;,, and.X; .. are the projections of the vector representiigon the vec-
tors representing, w andw?, respectively, in the complex plane. THiscrepancyof the
hypergraph under a given tricoloring is the maximumxgfe;)| over alle; € E. When
no particular tricoloring is specified, then tbescrepancyof the hypergraph refers to the
minimum discrepancy of the hypergraph over all possibt®tarings.

Take for example a hyperedggewith 9 vertices which are to be colored with 3 colors
(say R, G& B). Suppose 3 vertices are colored with R, another 3 with G asktimaining
3 with blue. In this caseX; = 3 + 3w + 3w? = 0. So,X,,, X;, andX; .. are all 0 and
thus, the discrepancy (e;) = 0, as expected. Now, suppose the color distribution is
skewed so that there are 7 R, 1 G and 1 B vertices and R, G and Bpone tol, w
andw?, respectively. ThereforeX; =7 + w + w? = 6 and thusX,; = 6, X;, = —3 and
X2 = —3. Hence (e;) = 6 in this case. The value of (¢;) € [0, |e;]].

Theorem 3.2. The discrepancy in tricoloring of a hypergraph cannot be entian

\/ (gnlog(ﬁm)).

Proof. Let us first consider an edggand take the projection of; on the x-axis.
Using Markov’s inequality,

Prob[X;; > 6] = Prob[e**t > eM] < e ME [eMi1] (3.16)

E [6/\X¢,1] = E |:€/\Zvj€ei Re(X(Uj))] (317)
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Each ofx(v;) is an independent random variable. Therefore,

E [eAXm] — E !H e)‘Re(X(UJ))]

vj€e;

— H E [eARe(X(Uj))}

vj€e;

= (E [R0e]

_ B (e teT +e?>ril
BECE) e

Taking the first two terms out of the summation and then comgithe consecutive even
and odd terms,

o= [3(oe 5 (e 202
- (B (B oy 2 200
S )]
SO )]
Bl et
) %<3+§<<g)' (”miﬁp}l))):% (ash < 1)
- 5 (e (o () ))]
[esEEEEE))
< [l S )]
SHCHEIEESEE
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S ERC=INN

- S (Ee)”

3

(t+7)x (20 +1)

7 leil

Substituting\ = <| ‘> which is less than 1 as used in the above proof because the
discrepancy cannot be more than the total number of verticése hyperedge, in the
above equation, we get :

62 | 52 252

Prob[X;, > 0] < ¢ Tal 3l = ¢ 3l (3.19)

Using similar argument, the same bounds existXor, and X; .. Now each of the
X1, X;» and X; 2 can either be positive or negative with maximum absoluteie/al
Therefore, o

Prob|x (e;) > §] < 6e 3leil (3.20)

If we consider a hyperedge to be bad ify(e;) > (2|e;] 10g(6m))1/2, then :

[ 3 21
Prob| x(e;) > (§|ei]log(6m)) < (3.21)
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Hence, the probability that a hyperedge is bad is stricg Man%. Therefore, the
probability that atleast one hyperedge is badn x 1/m = 1. The probability that no
hyperedge is bad is non-zero. So, the discrepancy of thedmgm can not be more than

\/ <gnlog(6m)). 0

3.6 Lower bound on discrepancy for tricoloring

Consider an-uniform hypergraplG(V, E)) with 2m vertices wheren is even. Let the
hyperedges; ande; do not have any common vertex. We construct the other edges in
such a way that each edge contathgommon vertices with both; ande,. We include

all such possible hyperedges. We now show that the disceggantricoloring of such a
hypergraph is always greater thgn

Theorem 3.3. The discrepancy for tricoloring of such a hypergraph is alwayeater
than .

Proof. Let the three colors be represented RyG and B. Consider any tricoloring of
the hypergraph.
If either of e; or e; hasxz > % vertices of the same color, then its discrepancy will be

Otherwise, each color has less than or equdl:tgertices ine; ande,, each. Let the
number of vertices colored witR in e; ande, be r; andr,, respectively. Both; and
r, are less tharfy. Without loss of generality, lets assume that maximum nunolbe
vertices are colored witlR. Therefore,r; + ro > sz Now, consider a hyperedge
which contains all the; vertices ofe; that are colored with? and all ther, vertices
of e, that are colored with. The number of vertices colored wifk in ¢; is therefore
ro+ry > %m which is greater than the number of vertices colored Wtr B in e;.
Hence, the discrepancy of = (ry + rp) — 20472l = 3utre) _m > m o m,

Hence, the discrepancy of such a hypergraph is always gtbate? . n

3.7 Combinatorial discrepancy for c-coloring

Let us try to define discrepancy for c-coloring by extending tlefinition that we have
used for tricoloring. In the discrepancy upper bound fardioring, the vectors represent-
ing the cube roots of unity can be seen as the vectors fromethiieicto the vertices of a
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2-simplex. So, if we consider-coloringof hypergraphs, we can use an regular 1)-
simplex and use the vectors from its center to the verticeetmte each color.

For the hypergraph G(V, E), wheré = {vy,--- ,v,} is the set of vertices and
E = {e1,--- ey} is the set of hyperedges, we wish to color the vertices usitmors
now. LetC; denotes theé' color. We want to color in such a way that within each hy-
peredgez;, no color outnumbers the other by too much. két;) € {wo, w1, - ,we_1}
depending on the color of the vertex, wherew;, denotes a vector from the centre to a
vertex of a(c — 1)-simplex. Say,(v;) = wy if the vertexv, is colored with colorCy,.
Thediscrepancycan now be defined as

X(ei) = nax (|Xi,w0| ) |Xi7UJ1| ) |Xi7wc71 D (3.22)
Xi = > (3.23)
’Ujeei

where, X, ,, denotes the projection of the vectdr on the vectorw,. Thediscrepancy
of the hypergraph under a given tricoloring is the maximunm@t;)| over alle; € E.
When no particular c-coloring is specified, then thecrepancyof the hypergraph refers
to the minimum discrepancy of the hypergraph over all pdssifrolorings.

We can utilise the following two properties of a regutadimensional simplex :
1. For aregular simplex, the distances of its vertices toatder are equal.
2. The angle subtended by any two vertices of an n-dimenissima@lex through its cen-
ter isarccos (_71)

Let x,, ., denote the projection of,, onw. Again, using the Markov’s inequality,

Prob[X;,,, > 6] = Prob[e* w0 > eM] < ¢™ME [eMiwo] (3.24)

E[*Xiw0] = E[eME] (3.25)
Sincey., «, are independent random variables,
E[eMi«] = E [H eAX“r%]
j=1

n

= e

J=1
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= (E [eMreo])
- &
- &

If ¢ is known, then we can proceed to find the upper bound on theegisoncy. Lets
consider the case with= 4.

B [Mi] — E (+ se?)}

leil
< [67] ,V]e;| >0

N =N les
e +€C 1 _|_ _|_ec71>

ol— ol— m

leil
e (c—1)e= 1)} (3.26)

= e 1 (3.27)
Again, substituting\ = ( >We get

52, 52 352

Prob[X; ., > 6] < e lal TGl = ¢ ] (3.28)

The same bound holds far,w; andws. And again, any ofvy, w;,ws andws can be
either positive or negative with maximum absolute valuentte

352

Prob|x (e;) > §] < 8¢ #il (3.29)
If we consider a hyperedge to be bad ify(e;) > (3]e;|log (8m)) 2, then
1 |
Prob lx(e,-) > (§|ez\ log (8m)) ] < (3.30)

So, the probability that a hyperedge is bad is strictly Ibaslt% and thus the probability
of atleast one hyperedge being bad is strictly less thanTmerefore the discrepancy can
not be more than/ snlog (8m).

Thus, using the above arguments, the discrepanay+totoringcan be upper bounded.



Chapter 4
Conclusion and Future Work

This thesis contains work on mainly three problems on hyjagtgs. The first one is the
size of the set of colorings required to cover a given hymgrar The second problem
relates to providing some conditions that will ensure thsterce of a propet-coloring.
The third problem is establishing bounds on the discrepdoicy—coloring of hyper-
graphs. In this work, we have established an upper bound ersi#e of the general
bicolor cover of hypergraphs. We have then extended the ¥eorkicoloring of hyper-
graphs. Then, we proved an upper bound on the number of hygesef a hypergraph
(with |e;| > r) that ensures presence of a proper tricoloring and extetigecesult for
c-coloring where: > 3. Next, we have defined discrepancy for tricoloring and @cob
wherec > 3 and established an upper bound on the discrepancy fordringl For a
special class of hypergraphs, we have established a lowsrdbon the discrepancy for
tricoloring. Regarding the discrepancy fexcoloring of hypergraphs, we have given a
scheme to upper bound the discrepancy for c-coloring where.

The future plan is to devise a Las Vegas algorithm to find altoiing under bounded
discrepancy. Regarding the upper bound on the number of égges that ensure the
existence of propet-coloring, we can try to prove a closed-form expression &s the
upper bound for any value ef Similar generalization can be done for the upper bound
on the discrepancy aefcoloring.
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