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Abstract

Consider the coloring of a vertex-labelled r-uniform hypergraph G(V,E), whereV

is the vertex set ofn labelled vertices, andE is the set of hyperedges. In case of proper

bicoloring, given two colors, we need to assign each vertex withone of the colors so that

none of the hyperedges is monochromatic. This may not always be possible. In such cases,

we use multiple bicolorings to ensure that each hyperedge is properly colored in at least

one of the colorings. This is called the bicolor cover of the hypergraph. We establish the

following result: forr-uniform hypergraphs with hyperedge setE defined onn vertices,

the size of bicolor cover is upper-bounded byO(log |E|). We also extend this result for

tricoloring.

Consider again the coloring of vertices of a vertex-labelledhypergraphG(V,E) using

a given set of c distinct colors. In this work, we try to establish bounds on the number

of hyperedges that will ensure the existence of a proper c-coloring, given|ei| ≥ r. We

define the discrepancy in case of tricoloring (c = 3) as a measure of the uniformity of a

particular coloring and then try to establish upper bounds on it. Further, we generalise

the definition of discrepancy and proof for bounds on discrepancy for c-coloring where

c ≥ 3.
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Chapter 1

Introduction

1.1 Definitions

Definition 1. A hypergraph G is a pairG = (V,E) whereV is a set of elements, called

nodes or vertices, and E is a set of non-empty subsets of V called hyperedges or links.

Therefore, E is a subset ofP (V )�φ, whereP (V ) is the power set ofV .

Figure 1.1: A hypergraphG(V,E) with 9 vertices and 5 hyperedges.

So, a hypergraph is similar to a graph except that in case of a hypergraph, a hyperedge
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may connect any number of vertices while an edge in a graph canconnect only two

vertices.

Definition 2. A r-uniform hypergraph is a hypergraph such that all its hyperedges have

size r.

Definition 3. A bicoloring of a hypergraph G is a coloring of the vertices of G with two

colors. Each of the vertices is assigned one of the two colors.

A proper bicoloringrefers to a bicoloring of the vertices of the hypergraph in such a

way that no hyperedge is monochromatic, i.e., each hyperedge has atleast one vertex of

each color.

Figure 1.2: A proper bicoloring of a hypergraphG(V,E) using colors red and blue.

mydef

Definition 4. A tricoloring of a hypergraph G is a coloring of the vertices of G with three

colors.

A proper tricoloringrefers to a tricoloring of the vertices of the hypergraph in such a

way that every hyperedge has atleast one vertex of each of thethree colors.

Definition 5. The chromatic numberχ(G) of a graph is the minimum number of colors

required to color the vertices of a graph such that no two adjacent vertices receive the

same color.
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Figure 1.3: A proper tricoloring of a hypergraphG(V,E) using colors red, green and

blue.

Definition 6. A bicolor cover is a set of bicolorings such that each bicoloring individu-

ally bicolors a set of hyperedeges properly and the union of all the hyperedges properly

bicolored using the bicolorings is the set of all the hyperedges in the hypergraph.

1.2 Overview of the work

We have worked on two problems pertaining to hypergraphs :

1.2.1 Bicolor cover

There is an already existing work [2] on the bound on the maximum number of bicolorings

required to cover a hypergraph. However, it deals with only aspecial type of bicoloring

in which only one vertex of a hyperedge is colored with one color(say white) and all

the remaining vertices of the hyperedge are colored with theother color(say black). In

our work (presented in chapter 2), we have proved a bound on the maximum number of

bicolorings required to cover a hypergraph using general bicolorings. A lower bound on

the size of bicolor cover forr-regular hypergraphs is also provided [2]. We have also

proved the upper bound on the number of tricolorings required to cover a hypergrah.
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1.2.2 Tricoloring of hypergraphs

There are bounds on the size of hyperedges and number of hyperedges that ensure the

existence of a proper bicoloring[3]. The Chernoff bound exists for the discrepancy of

hypergraph bicoloring. There also exists a Las Vegas algorithm for finding a bicoloring

for a hypergraph with bounded discrepancy. In our work (presented in chapter 3), we

have proved a bound on the number of hyperedges which ensuresthe existence of proper

tricoloring. We also provide a scheme to establish an upper bound on the number of

hyperedges which ensures the existence of properc-coloring forc > 3. Further, we have

defined discrepancy for coloring with more than 2 colors and established an upper bound

on the discrepancy in tricoloring of a hypergraph and also demonstrated how to find an

upper bound on discrepancy forc-coloring forc > 3.



Chapter 2

Covering hypergraphs using colorings

Given a hypergraphH, we wish to find the minimum number of bicolorings required that

can cover all the hyperedges. In case a hypergraph is properly bicolorable, this number is

1 because a single bicoloring covers all the hyperedges. If ahypergraph is not properly

bicolorable, then a certain bicoloring will properly bicolor a set of hyperedges and not all

the hyperedges. For the remaining hyperedges, we need more bicoloring scheme(s). And

so, the bicolor cover will have size greater than 1.

Fig. 2.1(a) shows a hypergraph which is not bicolorable. Thebicoloring in Fig.2.1(b)

can properly bicolor hyperedgesE1 andE2 only while that in Fig.2.1(c) can properly

bicolor hyperedgesE1 andE3 only. However, the union of the hyperedges properly

colored by either of the bicolorings contains all the hyperedges in the hypergraph and

hence, the bicolorings in Fig.2.1(b) and (c) together coverthe hypergraph.

In this chapter, we discuss the already existing bound for a special type of bicoloring[2]

and then move on to provide a proof for the number of bicolorings required in the general

case.

2.1 Special case with one white and remaining black ver-

tices in an edge

In this section, we consider a special case of bicoloring(using colors say black and white)

in which the bicoloring is said to be proper if there exists only vertex in an hyper-

edge which is colored white and all the remaining vertices inthe hyperedge are colored

black[2].

Theorem 2.1. The number of such bicolorings reqiured to cover a hyperedgewith C

hyperedges is upper bounded byO(logC).
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Figure 2.1: Bicolor cover of a non-bicolorable hypergraph.

Proof. Let us consider anr-uniform hypergraph. LetP (A1
i ) denote the probability that

theith hyperedgehi is not properly bicolored by a random bicoloring. There arer choices

for the white vertex in a hyperedge and for each choice, the probability of that vertex be-

ing white isp. The probability that the rest of the vertices are black is(1− p)(r−1).

P (A1
i ) = rp(1− p)r−1 (2.1)

Therefore, the probability that the strategy does not properly bicolor an edgehi is

P (A1
i ) = 1− rp(1− p)r−1 (2.2)

Suppose we repeat the bicoloringx times. Then, the probability that none of thex strate-

gies properly bicolorshi is

P (Ax
i ) = (1− rp(1− p)r−1)x (2.3)

Let bi denote the indicator variable which equals 1 if hyperedgehi is not satisfied (by any

of thex strategies in the proposed solution) and 0, otherwise.
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Let B =
C
∑

1

bi. B = 0, if and only if thex randomly chosen strategies bicolor all the C

hyperedges properly.

E(B) = E

(

C
∑

1

bi

)

=
C
∑

1

E (bi) = C × P (Ax
i ) (2.4)

Supposex is such thatE(B) < 1. SinceE(B) < 1, the integral random variableB

should take the value 0 for some random choice ofx strategies. So, an integral value ofx

satisfying the strict inequality is the suffficient number of strategies that together satisfy

H.

C × P (Ax
i ) < 1 (2.5)

So, we have

C × (1− rp (1− p)r−1)x < 1 (2.6)

We now findx satisfying the above inequality as,

(1− rp (1− p)r−1)x < 1/C

⇒ x log(1− rp (1− p)r−1) < − logC

⇒ x >
− logC

log (1− rp(1− p)r−1)
(2.7)

Takingp = 1
r
,

x >
− logC

log
(

1−
(

1− 1
r

)r−1
) = O (logC) (2.8)

So, there exists a proper bicolor covering of sizeO(logC).

The absolute value of the (negative) denominator in the above inequality forx shrinks

from log2 2 = 1 for r = 2, and approaches| log2
(

1− 1
e

)

| asr grows.

2.2 Case with general proper bicoloring

Theorem 2.2. The size of bicolor cover of anr-uniform hypergraph withC hyperedges

is upper bounded byO(logC).

Proof. We use similar notations as used in the previous section. LetP (A1
i ) denote the

probability that theith hyperedgehi is not properly bicolored by a random bicoloring.

A hyperedgehi is not properly bicolored if it is monochromatic ,i.e., either all the vertices

are colored white or all the vertices are colored black. Let the probability of a vertex being

colored white isp and ,therefore, the probability of being colored black is(1− p).

P
(

A1
i

)

= pr + (1− p)r (2.9)
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Suppose, we repeat the bicoloringx times. The probability that none of thex strategies

properly bicolorhi is

P (Ax
i ) = (pr + (1− p)r)

x (2.10)

Let, bi denote the indicator variable which equals 1 if hyperedgehi is not satisfied (by

any of thex strategies in the proposed solution) and 0, otherwise.

LetB =
C
∑

1

bi.

B = 0 if and only if thex randomly chosen strategies bicolor all theC hyperedges

properly.

E (B) = E

(

C
∑

1

bi

)

=
C
∑

1

E (bi) = C × P (Ax
i ) (2.11)

Suppose,x is such thatE (B) < 1. SinceE (B) < 1, the integral random variableB

should take the value 0 for some random choice ofx strategies. So, an integral value of

x satisfying the strict inequality is the sufficient number ofstrategies that together satisfy

the hypergraph.

C × P (Ax
i ) < 1 (2.12)

So, we have

C × (pr + (1− p)r)
x
< 1 (2.13)

We now findx satisfying the above inequality as:

(pr + (1− p)r)
x
<

1

C
⇒ x log (pr + (1− p)r) < − logC

⇒ x >
− logC

log (pr + (1− p)r)
(2.14)

If we considerp = 1
2

such that a vertex is colored white or black with equal probability,

then:

x >
− logC

log
(

1
2r

+ 1
2r

)

⇒ x >
− logC

log
(

1
2r−1

)

⇒ x >
logC

(r − 1) log 2
= O (logC) (2.15)

From this, we can infer that there exists atleast one proper bicolor cover of the size given

by the above bound which isO(logC), where C is the number of hyperedges in the

hypergraph.
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2.3 Lower bound on the size of bicolor cover

In this section, we derive non-trivial and asymptotically increasing bounds on the size of

the hypergraph bicolor cover for r-uniform complete hypergraphs,r ≥ 2. The proof is

essentially the same as provided in [2]. For each bicoloringthat covers some of the hy-

peredges by properly bicoloring them, we define a partial functionf fromV to {w, b,−}.

We say that strategyf properly colors the hyperedgeh if f (v) ∈ {w, b} for every vertex

v ∈ h and there existv1, v2 ∈ h such thatf (v1) = w andf (v2) = b. We also say

that the bicoloring strategyf satisfiesh, if the bicoloringf properly colorsh. We define

f (v) =‘−’ to indicate the bicoloringf is not defined for vertexv. This happens whenv

does not belong to any hyperedge properly colored by the bicoloring f .

Theorem 2.3. The number of bicolorings required to cover a complete r-regular hyper-

graphKr
n is lower bounded by

⌊

log3
(

n
r−1

)⌋

.

Proof. Let S be the set of bicolorings required to cover the hypergraph. Let |S| = m.

Consider them-tuples[f1 (vi) , f2 (vi) , · · · , fm (vi)] where eachfj (vi) ∈ {b, w, }, 1 ≤
j ≤ m, 1 ≤ i ≤ n. Here, each partial functionfj is a bicoloring strategy in S. If

fj (vi) = −, it implies that thejth strategy is not defined for thevi otherwise it implies

the vertexvi is colored white(w) or black(b) in thejth strategy. We now generaten such

m-tuples randomly and uniformly and assign them to then vertices.

Let us assume thatm < log3
(

n
r−1

)

. We can write this as(3m × (r − 1)) < n. Total

number of suchm-tuples possible is3m. Now, each of then vertices is assigned one of

the 3m m-tuples. Therefore, there exists atleast onem-tuple that has been assigned to

⌈ n
3m

⌉ vertices. But,
⌈ n

3m

⌉

> r − 1 (2.16)

So, the number of vertices that have been assigned the same color in all them bi-

colorings is greater thanr − 1. Therefore, we conclude that there must be atleast one

hyperedgeh (set ofr vertices), all of whose vertices are assigned the same colorin all

them bicolorings. So, there exists atleast one hyperedge in the hypergraph which can not

be properly bicolored using less thanlog3
(

n
r−1

)

bicolorings. Hence, forS to be a proper

bicolor cover,|S| > log3
(

n
r−1

)

.

2.4 Tricolor cover of a hypergraph

Sometimes, it may not be possible to properly tricolor all the hyperedges of a hypergraph

using only one tricoloring. But we can have a set of tricolorings such that each hyperedge
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is properly colored in at least one of the tricolorings. Sucha set of tricolorings is called a

tricolor coverof the hypergraph.

Theorem 2.4. The number of tricolorings required to cover ar-uniform hypergraph is

upper bounded byO(logC) whereC is the number of hyperedges.

Proof. We again use similar notations as used in the previous sections.P (A1
i ) denotes the

probability that theith hyperedgehi is not properly tricolored by a random tricoloring.

A hyperedgehi is not properly tricolored if it is does not have at least one vertex colored

with each of the three colors.

P
(

A1
i

)

=
3× 2r − 3

3r
=

2r − 1

3r−1
(2.17)

On repeating the random tricoloringx times, the probability that the hyperedgehi is not

properly tricolored in any of thex tricolorings is given by :

P (Ax
i ) =

(

2r − 1

3r−1

)x

(2.18)

Again,bi denotes the indicator variable which equals 1 if hyperedgehi is not satisfied (by

any of thex strategies in the proposed solution) and 0, otherwise.

LetB =
∑C

1 bi.

B = 0 if and only if thex randomly chosen strategies tricolor all theC hyperedges

properly.

E (B) = E

(

C
∑

1

bi

)

=
C
∑

1

E (bi) = C × P (Ax
i ) (2.19)

Now, let x be such thatE (B) < 1. Using similar arguments, sinceE (B) < 1, the

integral random variableB should take the value 0 for some random choice ofx strate-

gies. So, an integral value ofx satisfying the strict inequality is the sufficient number of

strategies that together satisfy the hypergraph.

C × P (Ax
i ) < 1 (2.20)

So, we have

C ×
(

2r − 1

3r−1

)x

< 1 (2.21)

We now findx satisfying the above inequality as:
(

2r − 1

3r−1

)x

<
1

C

if x log

(

2r − 1

3r−1

)

< − logC
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if x >
− logC

log (2r − 1)− log (3r−1)

if x >
logC

(r − 1) log 3− log (2r − 1)

if x >
logC

(r − 1) log 3− r log 2
= O(logC) (2.22)

Therefore, usingO (logC) tricolorings, we can cover all the hyperedges with proper

tricoloring because the expected number of hyperedges not properly tricolored in any

of the tricolorings is less than one, which essentially means zero because the number of

hyperedges should be an integer. Hence, the size of the tricolor cover of ar-uniform

hypergraph is upper bounded byO (logC).



Chapter 3

Hypergraph c-coloring

A set system or hypergraph G(V, E) is a pair of two setsV andE. V is a set ofn elements

(vertices) and the setE containingm subsetse ⊆ V of these elements, and|e| ≥ r.

Such subsetse ∈ E are called hyperedges and such a set systemG(V,E) is called a

hypergraph. We want to colour the vertices with some colors(sayc colors) and wish to

know whether a given hypergraph has aproper c-coloring(i.e. no hyperedge is colored

using less thanc colors).

3.1 Existence of proper bicoloring

Consider sparse hypergraphs such that|E| < 2r−1, where|ei| ≥ r for all ei ∈ E. If we

do a random bicoloring, then

the probability that a hyperedge is monochromatic≤ 2× 2−r = 2−(r−1) .

Therefore, the probability that some hyperedge is monochromatic≤ |E| × 2−(r−1) <

2r−1 × 2−(r−1) = 1.

Hence, the probability that no hyperedge is monochromatic is non-zero for such a sparse

graph. Therefore, there must be a proper bicoloring.

Further, we can also calculate the expected number of monochromatic hyperedges in the

hypergraph. The probability of a particular hyperedge being monochromatic is2−(r−1).

Therefore, the expected number of monochromatic hyperedges=
|E|
∑

i=1

2−(r−1) < 2(r−1) ×

2−(r−1) = 1. So, the expected number of monochromatic hyperedges is strictly less than

1. And therefore, there must be a proper bicoloring of the hypergraph.
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3.2 Combinatorial discrepancy for bicoloring

In this section, we discuss the upper bound on the discrepancy for bicoloring[3]. For the

hypergraph G(V, E), whereV = {v1, · · · , vn} is the set of vertices andE = {e1, · · · , em}
is the set of hyperedges, we wish to colorvis using two colors, say red and blue, such that

within each hyperedgeei, no color outnumbers the other by too much. Formally, we can

definediscrepancyas

χ(ei) =
∑

vj∈ei

χ(vj) (3.1)

whereχ(vj) ∈ {1,−1} depending on the color of the vertexvj. Thediscrepancyof the

hypergraph under a given bicoloring is the maximum of|χ(ei)| over all ei ∈ E. When

no particular bicoloring is specified, then thediscrepancyof the hypergraph refers to the

minimum discrepancy of the hypergraph over all possible bicolorings.

Upper bound on discrepancy

Lets considerei to be bad if|χ(ei)| >
√

2|ei| ln(2m).

If X =
n
∑

i=1

xi is the sum ofn mutually independent random variablesxi uniformly dis-

tributed in{1,−1}, then, for anyδ > 0,

Prob[X ≥ δ] < e−δ2/2n (3.2)

Using the result of Eqn.3.2,

Prob
[

χ(ei) >
√

2|ei| ln(2m)
]

< e−2|ei| ln(2m)/(2|ei|) = 1/2m (3.3)

Since, the random variable can assume two values, we take2 × 1/2m = 1/m as

the limiting probability. Therefore, the probability thatatleast one hyperedge is bad

< m × 1/m = 1. The probability that no hyperedge is bad is positive. So, the dis-

crepancy of the hypergraph can not be more than
√

2n ln(2m).

Las Vegas algorithm for finding a bicoloring with bounded discrepancy

Again, if we considerei to be bad if|χ(ei)| >
√

3|ei| ln(2m), then by the Chernoff’s

bound shown in eqn.3.2, probability that a particularei is bad< m−3/2, and thus, the

probability that atleast oneei is bad< 1/
√
m. Therefore, a Las Vegas algorithm can be

designed to find a bicoloring, within the above discrepancy,in 1
1/

√
m

=
√
m steps.

If k independent rounds of random bicoloring are done, then the probability that all of
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them have some bad hyperedge =(1/
√
m)k = 1

mk/2 .

Therefore, probability of finding the desired discrepancy coloring ink trials= 1− 1
mk/2 .

3.3 Existence of proper tricoloring

A tricoloring is said to beproper if every hyperedge contains vertices colored with all the

three colors.

Theorem 3.1.For a hypergraphG(V,E) with |ei| ≥ r for all ei ∈ E, a proper tricoloring

exists if|E| < 3(r−1)

2r

Proof. Let us consider sparse hypergraphs such that|E| < δ, where|ei| ≥ r for all

ei ∈ E. If we do a random tricoloring, that is, color the vertices randomly with the three

colors, then lets calculate the probability that a hyperedge is not trichromatic.

LetM (l, k, c) denote the number of ways of coloringl vertices with exactlyk colors out

of c colors (i.e. each of thek colors is used atleast once).

M(l, 1, 3) =

(

3

1

)

× 1l = 3 (3.4)

M (l, 2, 3) will be number of ways of choosing2 colors out of3 colors times the number

of ways of coloring thel vertices using both the colors atleast once (which is equal to the

number of ways of coloringl vertices using2 colors - number of such colorings in which

only 1 color was used).

M(l, 2, 3) =

(

3

2

)

×
(

2l − 2
)

= 3× 2l − 6 (3.5)

Therefore, the number of different tricolorings of a hyperedge (with l vertices) which

are not proper= M(l, 1, 3) +M(l, 2, 3). The total number of ways in which the hyper-

edge can be colored= 3l. Let P3 (ei) denote the probability that the hyperedgeei is not

trichromatic.

P3 (ei) =
M (|ei|, 1, 3) +M (|ei|, 2, 3)

3|ei|

⇒ P3 (ei) =
3× 2|ei| − 3

3|ei|

⇒ P3 (ei) <
3× 2|ei|

3|ei|

⇒ P3 (ei) <
3× 2r

3r

(3.6)
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Therefore, the probability that some hyperedge is not trichromatic< |E| × 3× 2r

3r
.

Hence, for the probability that all hyperedges are trichromatic is non-zero for such a

sparse graph, the probability that some hyperedge is not trichromatic should be strictly

less than 1. This is true if :

|E| ×3× 2r

3r
≤ 1

⇒ |E| ≤ 3(r−1)

2r
(3.7)

Since a random tricoloring in such a case yields a proper tricoloring with nonzero proba-

bility, there must be a proper tricoloring when|ei| ≥ r for all ei ∈ E and|E| < 3(r−1)

2r
.

Again, we can also calculate the expected number of non-trichromatic hyperedges in

the hypergraph to prove the existence of a proper tricoloring. The probability of a par-

ticular hyperedge being non-trichromatic is
2r

3(r−1)
. Therefore, the expected number of

non-trichromatic hyperedges<
|E|
∑

i=1

2r

3(r−1)
<

3(r−1)

2r
× 2r

3(r−1)
= 1. So, the expected

number of non-trichromatic hyperedges is strictly less than 1. And therefore, there must

be a proper tricoloring of the hypergraph.

3.4 Existence of proper c-coloring

Let us now consider the case when we have to color usingc colors, given that|ei| ≥ r.

A c-coloring is said to be proper if in every hyperedge, there exist vertices colored with

each of thec colors.M (l, k, c) is the number of ways of coloringl vertices with exactly

k colors out ofc colors.M (l, k, c) can be recursively defined as :

M (l, k, c) =

(

c

k

)

×
(

kl −
k−1
∑

j=1

M (l, j, k)

)

(3.8)

Let Pc (ei) denote the probability that the hyperedgeei is not properlyc-colored in a

randomc-coloringwhere all the vertices are colored randomly using thec colors.

Therefore,

Pc (ei) = 1− M (|ei|, c, c)
c|ei|

Pc (ei) =
c|ei| −M (|ei|, c, c)

c|ei|
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Pc (ei) =

c−1
∑

j=1

M (|ei|, j, c)

c|ei|

(3.9)

The probability that some hyperedge is not properlyc-colored in a randomc-coloring

becomes|E| × Pc (ei). Hence, to ensure that a properc-coloringexists, this probability

should be strictly less than1.

|E| ×Pc (ei) < 1

⇒ |E| <
1

Pc (ei)
(3.10)

Let us use this relation to establish an upper bound on|E| for the case when we are

using4 colors.

⇒ P4 (ei) =

3
∑

j=1

M (|ei|, j, 4)

4|ei|

⇒ P4 (ei) =
M (|ei|, 1, 4) +M (|ei|, 2, 4) +M (|ei|, 3, 4)

4|ei|

⇒ P4 (ei) =
4 + 6×

(

2|ei| − 2
)

+ 4×
(

3|ei| − 3× 2|ei| + 3
)

4|ei|

⇒ P4 (ei) =
4× 3|ei| − 6× 2|ei| + 4

4|ei|

⇒ P4 (ei) <
4× 3r − 6× 2r + 4

4r
, ∀r ≥ 3 (3.11)

|E| <
1

P4 (ei)

if |E| <
4|ei|

4× 3|ei| − 6× 2|ei| + 4
(3.12)

if |E| <
4r

4× 3r − 6× 2r + 4
, ∀r ≥ 3 (3.13)

3.5 Bounded discrepancy tricoloring

We use another definition of discrepancy to calculate the discrepancy in case of tricolor-

ing. Let ǫ be the upper bound on the discrepancy of an edge of the tricoloring we want

so as to ensure that a tricoloring with discrepancyχ ≤ ǫ exists. Therefore,P [χ(ej) > ǫ]

should be less than somep that ensures that the probability that there is atleast one bad
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edge (edge with discrepancy greater thanǫ) is strictly less than 1, and thus the probability

that there is no bad edge is greater than zero, thereby ensuring that there exists atleast one

tricoloring with discrepancy less than the boundǫ.

For the hypergraph G(V, E), whereV = {v1, · · · , vn} is the set of vertices and

E = {e1, · · · , em} is the set of hyperedges, we wish to colorvi’s using three colors,

sayC1, C2 andC3, such that within each hyperedgeei, no color outnumbers the other

by too much. Letχvj ∈ {1, ω, ω2} depending on the color of the vertexvj, where1, ω

andω2 are cube roots of unity. Say,χvj = 1 if the vertexvj is colored withC1, ω, if it

is colored withC2 andω2, if it is colored withC3. Thediscrepancyin this case can be

defined as

χ(ei) = max (|Xi,1| , |Xi,ω| , |Xi,ω2 |) (3.14)

Xi =
∑

vj∈ei

χvj (3.15)

where,Xi,1, Xi,ω andXi,ω2 are the projections of the vector representingXi on the vec-

tors representing1, ω andω2, respectively, in the complex plane. Thediscrepancyof the

hypergraph under a given tricoloring is the maximum of|χ(ei)| over allei ∈ E. When

no particular tricoloring is specified, then thediscrepancyof the hypergraph refers to the

minimum discrepancy of the hypergraph over all possible tricolorings.

Take for example a hyperedgeei with 9 vertices which are to be colored with 3 colors

(say R, G& B). Suppose 3 vertices are colored with R, another 3 with G and the remaining

3 with blue. In this case,Xi = 3 + 3ω + 3ω2 = 0. So,Xi,1, Xi,ω andXi,ω2 are all 0 and

thus, the discrepancyχ (ei) = 0, as expected. Now, suppose the color distribution is

skewed so that there are 7 R, 1 G and 1 B vertices and R, G and B correspond to1, ω

andω2, respectively. Therefore,Xi = 7 + ω + ω2 = 6 and thusXi,1 = 6, Xi,ω = −3 and

Xi,ω2 = −3. Hence,χ (ei) = 6 in this case. The value ofχ (ei) ∈ [0, |ei|].

Theorem 3.2.The discrepancy in tricoloring of a hypergraph cannot be more than
√

(

3

2
n log(6m)

)

.

Proof. Let us first consider an edgeei and take the projection ofXi on the x-axis.

Using Markov’s inequality,

Prob[Xi,1 ≥ δ] = Prob
[

eλXi,1 ≥ eλδ
]

≤ e−λδE
[

eλXi,1
]

(3.16)

E
[

eλXi,1
]

= E
[

e
λ
∑

vj∈ei
Re(χ(vj))

]

(3.17)
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Each ofχ(vj) is an independent random variable. Therefore,

E
[

eλXi,1
]

= E





∏

vj∈ei

eλRe(χ(vj))





=
∏

vj∈ei

E
[

eλRe(χ(vj))
]

= (E
[

eλRe(χ(vj))
]

)|ei|

=

[

1

3

(

eλ + e
−λ
2 + e

−λ
2

)

]|ei|

=

[

1

3

( ∞
∑

i=0

(

λi

i!
+ 2× (−λ/2)i

i!

)

)]|ei|

(3.18)

Taking the first two terms out of the summation and then combining the consecutive even

and odd terms,

E
[

eλXi,1
]

=

[

1

3

(

3 +
∞
∑

i=2

(

λi

i!
+ 2× (−λ/2)i

i!

)

)]|ei|

=

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!
+

λ2i+1

(2i+ 1)!
+

2(−λ/2)2i

(2i)!
+

2(−λ/2)2i+1

(2i+ 1)!

)

)]|ei|

=

[

1

3

(

3 +
∞
∑

i=1

(

1

(2i)!

(

λ2i +
λ2i+1

2i+ 1
+

λ2i

22i−1
− λ2i+1

22i(2i+ 1)

))

)]|ei|

=

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

1 +
λ

2i+ 1
+

1

22i−1
− λ

22i(2i+ 1)

))

)]|ei|

<

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

1 +
λ

2i+ 1
+

1

22i−1

))

)]|ei|

<

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

1 +
1

2i+ 1
+

1

22i−1

))

)]|ei|

(asλ ≤ 1)

=

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

22ii+ 22i−1 + 22i−1 + 2i+ 1

(2i+ 1)22i−1

))

)]|ei|

=

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

22ii+ 22i + 2i+ 2− 1

(2i+ 1)22i−1

))

)]|ei|

<

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

(22i + 2) (i+ 1)

(2i+ 1)22i−1

))

)]|ei|

=

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

((

2 +
1

22i−2

)

i+ 1

2i+ 1

))

)]|ei|
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<

[

1

3

(

3 +
∞
∑

i=1

(

λ2i

(2i)!

(

3 (i+ 1)

2i+ 1

))

)]|ei|

=

[

1 +
∞
∑

i=1

(

λ2i

(2i)!

(i+ 1)

(2i+ 1)

)

]|ei|

=















1 +
∞
∑

i=1















λ2i

i!

(i+ 1)
i
∏

j=1

(i+ j)× (2i+ 1)





























|ei|

=















1 +
∞
∑

i=1















λ2i

i!

1
i−1
∏

j=0

(i+ 2 + j)





























|ei|

<

[

1 +
∞
∑

i=1

(

λ2i

i!

1

(i+ 2)i

)

]|ei|

<

[

1 +
∞
∑

i=1

(

λ2i

i!

1

3i

)

]|ei|

=

[ ∞
∑

i=0

λ2i

3ii!

]|ei|

=
[

e
λ2

3

]|ei|

= e
|ei|λ

2

3

Substitutingλ =
(

δ
|ei|

)

, which is less than 1 as used in the above proof because the

discrepancy cannot be more than the total number of verticesin the hyperedge, in the

above equation, we get :

Prob[Xi,1 ≥ δ] < e
− δ2

|ei|
+ δ2

3|ei| = e
− 2δ2

3|ei| (3.19)

Using similar argument, the same bounds exist forXi,ω andXi,ω2 . Now each of the

Xi,1, Xi,ω andXi,ω2 can either be positive or negative with maximum absolute value.

Therefore,

Prob[χ (ei) ≥ δ] < 6e
− 2δ2

3|ei| (3.20)

If we consider a hyperedgeei to be bad ifχ(ei) >
(

3
2
|ei| log(6m)

)1/2
, then :

Prob

[

χ(ei) >

(

3

2
|ei| log(6m)

)1/2
]

<
1

m
(3.21)
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Hence, the probability that a hyperedge is bad is strictly less than1
m

. Therefore, the

probability that atleast one hyperedge is bad< m × 1/m = 1. The probability that no

hyperedge is bad is non-zero. So, the discrepancy of the hypergraph can not be more than
√

(

3

2
n log(6m)

)

.

3.6 Lower bound on discrepancy for tricoloring

Consider am-uniform hypergraphG(V,E) with 2m vertices wherem is even. Let the

hyperedgese1 ande2 do not have any common vertex. We construct the other edges in

such a way that each edge containsm
2

common vertices with bothe1 ande2. We include

all such possible hyperedges. We now show that the discrepancy for tricoloring of such a

hypergraph is always greater thanm
4

.

Theorem 3.3. The discrepancy for tricoloring of such a hypergraph is always greater

than m
4

.

Proof. Let the three colors be represented byR, G andB. Consider any tricoloring of

the hypergraph.

If either of e1 or e2 hasx > m
2

vertices of the same color, then its discrepancy will be

x− m−x
2

= 3x
2
− m

2
> m

4
.

Otherwise, each color has less than or equal tom
2

vertices ine1 ande2, each. Let the

number of vertices colored withR in e1 ande2 be r1 andr2, respectively. Bothr1 and

r2 are less thanm
2

. Without loss of generality, lets assume that maximum number of

vertices are colored withR. Therefore,r1 + r2 ≥ 2m
3

. Now, consider a hyperedgeej
which contains all ther1 vertices ofe1 that are colored withR and all ther2 vertices

of e2 that are colored withR. The number of vertices colored withR in ej is therefore

r1 + r2 ≥ 2m
3

which is greater than the number of vertices colored withG or B in ej.

Hence, the discrepancy ofej = (r1 + r2)− m−(r1+r2)
2

= 3(r1+r2)
2

− m
2
≥ m

2
> m

4
.

Hence, the discrepancy of such a hypergraph is always greater thanm
4

.

3.7 Combinatorial discrepancy for c-coloring

Let us try to define discrepancy for c-coloring by extending the definition that we have

used for tricoloring. In the discrepancy upper bound for tricoloring, the vectors represent-

ing the cube roots of unity can be seen as the vectors from the center to the vertices of a
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2-simplex. So, if we considerc-coloringof hypergraphs, we can use an regular(c− 1)-

simplex and use the vectors from its center to the vertices todenote each color.

For the hypergraph G(V, E), whereV = {v1, · · · , vn} is the set of vertices and

E = {e1, · · · , em} is the set of hyperedges, we wish to color the vertices usingc colors

now. LetCi denotes theith color. We want to color in such a way that within each hy-

peredgeei, no color outnumbers the other by too much. Letχ(vj) ∈ {ω0, ω1, · · · , ωc−1}
depending on the color of the vertexvj, whereωk denotes a vector from the centre to a

vertex of a(c− 1)-simplex. Say,χ(vj) = ωk if the vertexvj is colored with colorCk.

Thediscrepancycan now be defined as

χ(ei) = max
(

|Xi,ω0 | , |Xi,ω1 | , · · · ,
∣

∣Xi,ωc−1

∣

∣

)

(3.22)

Xi =
∑

vj∈ei

χvj (3.23)

where,Xi,ωk
denotes the projection of the vectorXi on the vectorωk. Thediscrepancy

of the hypergraph under a given tricoloring is the maximum of|χ(ei)| over all ei ∈ E.

When no particular c-coloring is specified, then thediscrepancyof the hypergraph refers

to the minimum discrepancy of the hypergraph over all possible c-colorings.

We can utilise the following two properties of a regularn-dimensional simplex :

1. For a regular simplex, the distances of its vertices to itscenter are equal.

2. The angle subtended by any two vertices of an n-dimensional simplex through its cen-

ter isarccos
(−1

n

)

.

Let χvj ,ωk
denote the projection ofχvj onωk. Again, using the Markov’s inequality,

Prob[Xi,ω0 ≥ δ] = Prob
[

eλXi,ω0 ≥ eλδ
]

≤ e−λδE
[

eλXi,ω0

]

(3.24)

E
[

eλXi,ω0

]

= E
[

eλ
∑n

j=1 χvj ,ω0

]

(3.25)

Sinceχvj ,ω0 are independent random variables,

E
[

eλXi,ω0

]

= E

[

n
∏

j=1

eλχvj,ω0

]

=
n
∏

j=1

E
[

eλχvj ,ω0
]
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=
(

E
[

eλχvj ,ω0
])|ei|

=

[

1

c

(

eλ + e
−λ
c−1 + · · ·+ e

−λ
c−1

)

]|ei|

=

[

1

c

(

eλ + (c− 1) e
−λ
c−1

)

]|ei|
(3.26)

If c is known, then we can proceed to find the upper bound on the discrepancy. Lets

consider the case withc = 4.

E
[

eλXi,ω0

]

=

[

1

4

(

eλ + 3e
−λ
3

)

]|ei|

<
[

e
λ2

4

]|ei|
, ∀|ei| > 0

= e
|ei|λ

2

4 (3.27)

Again, substitutingλ =
(

δ
|ei|

)

, we get

Prob[Xi,ω0 ≥ δ] < e
− δ2

|ei|
+ δ2

4|ei| = e
− 3δ2

4|ei| (3.28)

The same bound holds forω1, ω2 andω3. And again, any ofω0, ω1, ω2 andω3 can be

either positive or negative with maximum absolute value. Hence,

Prob[χ (ei) ≥ δ] < 8e
− 3δ2

4|ei| (3.29)

If we consider a hyperedgeei to be bad ifχ(ei) >
(

4
3
|ei| log (8m)

) 1
2 , then

Prob

[

χ(ei) >

(

4

3
|ei| log (8m)

) 1
2

]

<
1

m
(3.30)

So, the probability that a hyperedge is bad is strictly less than 1
m

and thus the probability

of atleast one hyperedge being bad is strictly less than one.Therefore the discrepancy can

not be more than
√

4
3
n log (8m).

Thus, using the above arguments, the discrepancy forc-coloringcan be upper bounded.



Chapter 4

Conclusion and Future Work

This thesis contains work on mainly three problems on hypergraphs. The first one is the

size of the set of colorings required to cover a given hypergraph. The second problem

relates to providing some conditions that will ensure the existence of a properc-coloring.

The third problem is establishing bounds on the discrepancyfor c−coloring of hyper-

graphs. In this work, we have established an upper bound on the size of the general

bicolor cover of hypergraphs. We have then extended the workfor tricoloring of hyper-

graphs. Then, we proved an upper bound on the number of hyperedges of a hypergraph

(with |ei| > r) that ensures presence of a proper tricoloring and extendedthe result for

c-coloring wherec > 3. Next, we have defined discrepancy for tricoloring and c-coloring

wherec > 3 and established an upper bound on the discrepancy for tricoloring. For a

special class of hypergraphs, we have established a lower bound on the discrepancy for

tricoloring. Regarding the discrepancy forc-coloring of hypergraphs, we have given a

scheme to upper bound the discrepancy for c-coloring wherec > 3.

The future plan is to devise a Las Vegas algorithm to find a tricoloring under bounded

discrepancy. Regarding the upper bound on the number of hyperedges that ensure the

existence of properc-coloring, we can try to prove a closed-form expression inc as the

upper bound for any value ofc. Similar generalization can be done for the upper bound

on the discrepancy ofc-coloring.
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