
Membership-Oblivious Protocols

Fernando Pedone? Pascal Felber† Stefan Pleisch‡

?Università della Svizzera Italiana (USI), CH-6904 Lugano, Switzerland
E-mail: fernando.pedone@unisi.ch

†Institut Eurecom, 2229 route des Crêtes, B.P.193, 06904 Sophia Antipolis, France
E-mail: pascal.felber@eurecom.fr

‡École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
E-mail: stefan.pleisch@epfl.ch

Abstract

Many distributed protocols explicitly depend on mem-
bership information, such as the identity or number of
sites that are currently part of the system. Given this im-
portance, several mechanisms have been proposed over
the past decades to handle membership information, but
most of them do not scale well in large- and highly-
dynamic systems. In this paper we advocate the use of
“membership-oblivious” protocols, i.e., protocols that do
not depend on the number of processes in the system, and
therefore do not depend on membership. Our approach is
based on the use of currency.

1. Introduction

A lot of effort has been put over the past
decades into developing group-membership sys-
tems [Bir93, CKV01]. Such systems provide pro-
cesses with accurate information about which other
non-failed processes are part of the system at a given
time. Membership information is of great impor-
tance since it can considerably simplify the design of
distributed protocols built on top of group member-
ship.

However, implementing accurate group-membership
systems is difficult and expensive, let alone their pos-
sible dependencies on the underlying system model.
Therefore, many approaches make restrictive assump-
tions about the underlying system and, to improve
performance, weak variants of group membership have
been proposed. Such variants, for instance, provide pro-
cesses with different views of the system at the same

time and compensate for this lack of consistency with
other types of guarantees, such as total ordering of mes-
sages and views.

Despite the many implementation efforts and weak
variants in semantics, group-membership protocols re-
main expensive, especially in settings involving large
numbers of participants or wide geographical disper-
sion. Furthermore, in large-scale systems, processes are
loosely coupled by nature and it is not clear whether in
such environments group membership is the right ab-
straction.

In this paper we advocate a new way to design large-
scale systems, which does not require its members to
have complete knowledge about the current system’s
participants. System participants are still required to
know some other participants (e.g., a small set of neigh-
bors) to avoid isolation, but they do not need to have
a global view of the system. We propose a distributed
system model adapted to “membership-oblivious” pro-
tocols, i.e., protocols that do not depend on the num-
ber of processes in the system, and therefore do not
depend on membership. Such protocols are clearly use-
ful when processes join and leave the system frequently,
making them particularly suitable for mobile environ-
ments.

We propose to implement membership-oblivious dis-
tributed protocols using the notion of voting currency,
and to use epidemic message propagation for inter-
process communication. A currency management sys-
tem, built on top of the underlying network (e.g., Inter-
net or wireless mobile network), is responsible for dis-
tributing voting currency to processes, which employ it
to participate in membership-oblivious protocols. The
currency management system can be implemented in

several different ways depending on the underlying net-
work. In contrast, the membership-oblivious protocols
only rely on the currency abstraction and do not de-
pend on the underlying network model.

The rest of this paper is organized as follows: Sec-
tion 2 discusses related work. Section 3 introduces our
membership-oblivious distributed system model. Sec-
tion 4 presents the currency management system and
Section 5 presents concluding remarks.

2. Related Work

Reliable protocols derived from agreement problems
traditionally rely on the notion of group membership.
For instance, group communication systems [Bir93] or-
der messages relative to consistent “views” agreed-
upon by non-failed processes. These systems explic-
itly rely on group membership to implement view-
synchronous communication and maintain strong pro-
cess consistency.

Consistent group-membership protocols and related
agreement protocols in general are costly and known
not to scale well to large populations and wide geo-
graphical dispersion [CS93, CKV01, PS97]. Several ap-
proaches have been devised to alleviate scalability lim-
itations.

In [Gol92], Golding proposed lightweight and scal-
able protocols that implement weakly-consistency
group membership. These protocols allow tempo-
rary inconsistencies in membership views, but ensure
that all processes eventually converge to a consis-
tent view of the membership.

Epidemic protocols, also known as gossip protocols,
were introduced in [DGH+87] in the context of repli-
cated database consistency management. Since then, a
wide range of epidemic-style and probabilistic protocols
have been proposed for various problems, such as reli-
able broadcast [BHO+99, LM99, SS00, FP02, KMG03],
failure detection [RMH98, GCG01], garbage collection
[GHvR+97], and leader election [GvRB00]. Such pro-
tocols guarantee correctness with a very high proba-
bility and, at the same time, scale significantly bet-
ter than deterministic protocols. Optimistic protocols
(e.g., [GPP93, PS98, FS01]), optimized for certain run-
time conditions, have also proved to be more scalable
than traditional protocols with strong reliability prop-
erties. Of particular interest are epidemic-style group
membership protocols [AKM01, EHG+01, GKM03],
which provide each node with a partial group view used
to disseminate messages in the system. Such protocols
are orthogonal to our techniques. Since they do not re-
quire processes to know the complete membership of

the system at any time, we could build currency man-
agement on top of them.

Quorum systems and weighted voting
schemes [Gif79] are mechanisms that only re-
quire a subset of the processes to be available to
ensure progress and preserve safety. As such, quo-
rum systems are well adapted to environments where
some processes frequently become unreachable. Prob-
abilistic quorum systems [MRW97] further improve
the performance and availability of quorum sys-
tems in face of failures by only ensuring consistency
of replicated data with high probability. Such sys-
tems do, however, rely on consistent group member-
ship. In [Kel99], Keleher introduced the notion of “cur-
rency” for distributed protocols as an extension of
weighted voting that does not depend on member-
ship. Keleher proposes a decentralized data replication
protocol that combines epidemic propagation with vot-
ing to eventually commit updates on data items. The
techniques described in this paper generalize and ex-
tend this work.

Membership-oblivious protocols are especially use-
ful for mobile environments, where connectivity is in-
termittent and strong group membership is often un-
maintainable. Distributed protocols targeted at mobile
systems have been an active field of research recently.
In [PB98], the authors propose a multi-level architec-
ture for group communication adapted to mobile envi-
ronments; group membership is implemented on top of
a proximity layer that provides an abstract, high-level
view of the underlying mobile network. Protocols for
causal ordering and consensus in mobile environments,
which do not explicitly rely on group membership,
have also been presented in [PRS96] and [BHM99].
In this paper, we propose mechanisms for building
membership-oblivious protocols that can be readily ap-
plied in, but are not limited to, mobile environments.

3. Membership-Oblivious Protocols

3.1. System Assumptions

We consider a distributed system Π = {p1, p2, ...}
composed of processes that communicate by message
passing. The system is asynchronous, that is, we make
no assumptions about the time it takes for processes
to execute and messages to be transmitted. Processes
can crash and subsequently recover, but they never be-
have maliciously (i.e., we do not consider Byzantine
failures). Some processes may have access to local sta-
ble storage (e.g., local disk).

We define two special system events: connect and
disconnect. Process p connects to the system when it

(re)starts its computation after being disconnected or
when it recovers from a failure; p disconnects from the
system when it voluntarily interrupts its computation
or when it crashes. We assume that the system is large
and composed of a variety of dynamic processes: some
remain connected for long durations while others re-
main connected for short durations only. When a dis-
tinction is needed in the paper, we call processes in the
former category stable and processes in the latter cate-
gory unstable. The set of connected processes at time t
is denoted by Up(t). The Up(t) notation is only used to
simplify the presentation; no process knows all the pro-
cesses connected to the system at any time.

Communication links are unreliable but fair. If
sender and receiver remain connected long enough,
and messages are continuously re-transmitted, they
are eventually received—such communication links are
also known as fair-lossy links [ACT00]. Our notion
of communication link does not only model a physi-
cal cable connecting two computers, but also wireless
connections. We denote by neighbors(p) the set of pro-
cesses with which process p can communicate directly.
Process p can communicate directly with its neigh-
bors and indirectly with any process q as long as there
is a path between p and q.

Due to disconnections, the system may become par-
titioned. For example, if messages from processes in
some subset A of the system addressed to processes in
subset B have to pass by some process p and p is dis-
connected, then communication between processes in
the different subsets is not possible. We tolerate parti-
tions but assume that they eventually heal. In our ex-
ample above, this means that either p eventually con-
nects back, or another communication link is created
between processes in A and in B.

Our system model is meant to capture a large vari-
ety of real systems since we believe that membership-
oblivious protocols are useful in many different con-
texts. Two examples of such contexts are large
Internet-based environments and mobile networks.
In both cases, due to scale and frequent connec-
tions and disconnections, system membership is hard
to obtain. In the Internet, stable and unstable pro-
cesses can map onto servers and end-user comput-
ers (e.g., with a dial-up connection), respectively,
while in mobile networks they map onto base sta-
tions and mobile hosts, respectively.

3.2. General Framework

Quorum-based protocols [Gif79] are commonly used
in distributed systems to coordinate the execution of
multiple processes, despite some of them being unavail-

able (i.e., disconnected). Provided that quorums inter-
sect, reaching agreement among all processes of a single
quorum is sufficient for preventing other processes from
taking conflicting decision. Quorums promote availabil-
ity because only a subset of the processes is necessary
for making progress. In order to implement a quorum-
based solution, however, processes have to know the
current membership of the system, i.e., which processes
are part of the system, or at least the current mem-
bership cardinality, i.e., how many processes are part
of the system. In large and dynamic systems, obtain-
ing membership information may be expensive if feasi-
ble at all. For such situations we need alternative ways
to allow processes to know when they have gathered a
quorum while lacking membership information.

In this paper we consider an alternative approach
based on currencies instead of quorums. The basic
idea is to assign to each process in the system a cer-
tain amount of currency. Membership-oblivious proto-
cols can then be designed to rely only on the currency
assigned to processes, and currency management can
be performed independently of the protocol that uses
it (see Figure 1).

Membership−Oblivious Protocol

Currency Management System

Network (wireless, IP, etc.)

Currency request Currency

Figure 1. Membership-oblivious protocols

Currencies can be assigned to processes in many dif-
ferent ways, but whatever scheme is chosen, the two
properties presented below are always guaranteed to
hold. Hereafter, the currency assigned to process p at
time t is denoted currencyp(t).

P1 The currency assigned to each process at any time
is a value between 0 and 1.
Formally, ∀p ∈ Π,∀t : 0 ≤ currencyp(t) ≤ 1.

P2 The sum of all currencies assigned to connected
processes at any time is at most 1.
Formally, ∀t :

∑
p∈Up(t) currencyp(t) ≤ 1.

Therefore, the condition to gather a quorum is no
longer dictated by the number of processes that are
part of the quorum, but by the amount of currency

these processes have. In particular, an intersection be-
tween quorums is guaranteed whenever enough pro-
cesses are gathered so that their aggregated currency is
greater than 0.5. In principle, this is similar to weighted
voting, introduced in the late 70’s by Gifford [Gif79].

The contribution of this paper does not lie on
the notion of currency itself—the concept, an exten-
sion of weighted voting, has been introduced else-
where [Kel99]—but rather on the management of cur-
rencies and how it can be used to devise protocols that
have been traditionally based on membership informa-
tion. We also discuss issues involving the separation be-
tween membership-oblivious protocols, which use cur-
rencies, and the currency management system compo-
nent.

Currency management essentially involves assign-
ing currency to processes and reclaiming currency from
processes. Even if processes knew the system member-
ship cardinality (i.e., |Π|)—in which case each process
could be trivially assigned 1/|Π| as its currency1—some
form of currency management would still be suitable
to prevent the system from blocking. Indeed, if “too
many” processes are temporarily disconnected, proto-
cols based on static currency assignment may become
indefinitely blocked. Moreover, as we show later in the
paper, we can improve the performance of currency-
based protocol by handling currencies adequately (i.e.,
by applying an adequate distribution policy).

4. Currency Management

The use of process-independent currency makes it
possible to develop membership-oblivious protocols. A
number of non-trivial issues, however, have to be care-
fully dealt with for this scheme to be effective. In this
section we address issues related to currency allocation,
distribution policy, process failures, point-to-point cur-
rency transfer between processes, and currency redis-
tribution.

Currency management may be dealt with in a num-
ber of ways, and they only concern the management of
the currency itself; the actual usage of the currency in
membership-oblivious protocols is not affected by any
of the mechanisms presented below, although they have
an impact on the performance of the protocol. This is
a powerful characteristic of membership-oblivious pro-
tocols since performance can be improved by monitor-
ing the execution of the system and adequately assign-
ing currencies to processes without making any changes
to the protocols that use them.

1 Notice that in this case,
∑

p∈Π currencyp(t) = 1, which im-

plies ∀t :
∑

p∈Up(t) currencyp(t) ≤ 1.

Each process has access to a local currency manage-
ment component. We denote the currency management
component at process pi by CurrencyMgri. It handles
issues related to currency management such as point-
to-point currency transfer and currency redistribution.
The former denotes the transfer of currency between
two processes, while the latter resets the currency dis-
tribution in the entire system. The currency manager
provides two functions: (1) getting the actual amount
of currency and (2) releasing all the currency. Func-
tion (1) returns the actual amount of currency that
is allocated to the particular process. Function (2) re-
turns all the currency to the process that has originally
issued it. This abstraction allows us to implement dif-
ferent currency management policies transparently to
the process holding the currency. However, closer inter-
action may take place between the currency manager
and the application, as the application semantics may
be instrumental to devise an adequate currency distri-
bution policy.

4.1. Currency Allocation

We assign to stable processes the role of collecting
and distributing the currency in the system. They can
be, for instance, base stations in a wireless network or
highly-available servers in a wired network. We do not
make any assumptions about unstable processes’ avail-
ability and location. They can disconnect and recon-
nect infinitely often, they can disappear from the sys-
tem altogether, and in mobile environments they can
even change their physical location inside the system.

Stable processes can be seen as a core group of pro-
cesses that are closely coupled: they maintain (not nec-
essarily complete) information about other stable pro-
cesses in the system and can communicate reliably with
each other.2 We also assume that the currency man-
ager of a stable process has access to stable memory,
so that it can recover its state after a failure. Note
that stable processes are only needed for currency man-
agement. Membership-oblivious protocols that use the
currency manager do not necessarily need any assump-
tions about process stability.

To simplify the explanation, we assume some initial
configuration in which each stable process is assigned a
certain amount of the global currency and no currency
is assigned to unstable processes. We also consider that

2 Reliable communication is built on top of unreliable links by
re-transmitting lost messages. Unstable processes can also in
principle implement reliable communication through similar
means, but since they are not expected to remain connected
for long periods, re-transmission is more limited than with sta-
ble processes, and thus we do not assume that unstable pro-
cesses can communicate reliably.

the sum of all the currency assigned to stable processes
is 1 (Property P2 in Section 3).

Stable processes can use their currency to partici-
pate in the execution of a membership-oblivious pro-
tocol, or they can distribute part of their currency
to other processes. Typically, a stable process would
distribute some of its currency to its neighbors. In a
wireless network, a base station would distribute cur-
rency to mobile processes within its cell (i.e., the area
within which it can communicate with mobile processes
through wireless communication links). In a wired net-
work, a highly-available server could distribute its cur-
rency to geographically-close processes.

In general, the more currency is distributed, i.e., the
smaller the amount of currency per process, the more
fault-tolerant the application becomes. On the other
hand, the performance decreases, as more messages are
needed before a process can gather a certain amount
of currency.

A stable process should not distribute more currency
that it currently owns. Although obvious, this observa-
tion makes currency allocation a challenging problem
since stable processes must avoid running out of cur-
rency. A simple solution to the problem is to distribute
currency sparsely, for example by always allocating a
fraction (e.g., 1/10) of the currency currently available.
Therefore, it does not matter how many processes re-
quest currency; stable processes will always be able to
provide some.

The problem with this allocation strategy is that
it is not fair: late processes will receive less currency
than early processes. In fact, if some stable process al-
ways gives 1/c of its initial currency K, the n-th pro-
cess will only receive K(c − 1)n−1/cn. A fair scheme
would require the number of processes requesting cur-
rency to be known beforehand by the stable process.

One approach to increase the fairness of the afore-
mentioned strategy without knowledge of the process
population is to ask processes to permanently “renego-
tiate” their currency. From time to time and unless it
fails, each unstable process gives back its currency to
the stable process that originally gave it away. The sta-
ble process adds up the received currency to its current
currency and immediately re-assigns a fraction of the
result to the unstable process. Provided that the num-
ber of unstable processes that contact a stable pro-
cess does not change for a certain duration, and they
all keep communicating with the stable process, then
the unstable processes will eventually have a similar
amount of currency. For example, if a single stable pro-
cess with currency 1 distributes 10% of its current cur-
rency to 10 processes, after 2 currency re-negotiations
the difference between the currency owned by any two

processes is less than 3%!
There are yet other approaches to deal with cur-

rency allocation. As a last example, we can have sta-
ble processes periodically invalidate all previously al-
located currency, and then redistribute the new one.
We elaborate on this approach in Section 4.3 as it also
helps deal with currency that disappears from the sys-
tem when processes fail.

4.2. Currency Distribution Policy

The currency distribution policy should take into
consideration the network topology, location of pro-
cesses, available resources such as bandwidth, CPU
or memory, and etc. Ideally, it would rely solely on
the currency management system. However, more ade-
quate currency distribution policies may be also based
on application semantics. Assume, for instance, an ap-
plication that relies on atomic broadcast (or total or-
der broadcast). Depending on the application seman-
tics, certain processes may broadcast significantly more
messages than others. Consequently, it may be more ef-
ficient to distribute the currency in such a way that it
is located close to these processes.

Geographical location plays an important role in a
wireless network. When a process (i.e., mobile process)
moves from one location (base station) to another, it
should keep its currency; when it disconnects, however,
it should give back its currency to some stable pro-
cess. By doing so, as processes move from one loca-
tion to another, the currency distribution will reflect
the processes distribution, assigning more currency to
densely populated regions, regardless of the strategy
used to initially assign currencies—better initial allo-
cation strategies may however speed up the process.
The motivation for concentrating currency in densely
populated locations is to reduce the average latency of
membership-oblivious protocols: locations with larger
population tend to send more messages and execute
more distributed protocols (assuming that processes
have similar characteristics); by concentrating curren-
cies in such places, processes can quickly reach the cur-
rency threshold necessary to terminate their protocols.

4.3. Process Failures

The failure of unstable processes may hamper the
execution of the system (note that voluntary disconnec-
tions are not much of a problem, as discussed above).
In this section, we show that failures may lead to block-
ing and we discuss approaches to prevent blocking.

4.3.1. The Blocking Problem Process failures
may lead to some currency becoming unavailable and

consequently hamper progress of currency-based pro-
tocols. We distinguish between the failure of (1) sta-
ble and (2) unstable processes. Case (1) is generally
less critical since stable processes usually have ac-
cess to stable memory and recover the state of the cur-
rency manager after recovering. The currency of a
failed stable process is eventually returned to the sys-
tem. Hence, the failure of a stable process may slow
down or prevent progress in the execution (i.e., block-
ing), but only temporarily during the process’ down-
time period. Clearly, even temporary blocking may
not be appropriate for certain applications, espe-
cially if the processes have long downtimes.

When an unstable process (with no stable storage)
fails, it may not be able to remember how much cur-
rency it had prior to a failure if it ever recovers. In gen-
eral, currency may be lost each time a process with-
out stable storage fails. In the extreme case, failures
may cause a membership-oblivious protocol to block if
there is not enough currency in the system to reach the
threshold necessary for protocol termination. In con-
trast to case (1) above, blocking here is permanent,
unless a mechanism is devised to recover lost currency.

4.3.2. Preventing the Loss of Currency To pre-
vent currency loss, the currency of the failed process
must be reclaimed and assigned to some non-failed pro-
cess. Unfortunately, in an asynchronous system, it is
impossible to distinguish between a slow and a failed
process [FLP85]. As a consequence, a process may re-
voke the currency of another process it considers failed,
although the latter is still operational. Solving such a
problem requires additional assumptions about the sys-
tem (i.e., timing assumptions). In the following, we de-
scribe two schemes for currency recovery that can be
implemented in our model: (1) logging the actual cur-
rency of unstable processes on a stable process, and (2)
relying on a leasing approach.

CurrencyLogging. In this approach, the amount of cur-
rency is logged on a stable process (generally the sta-
ble process that has issued the currency to the unsta-
ble process). Upon recovery, the unstable process has
to find the stable process that contains its log entry.
Unfortunately, no guarantees are given about whether
the unstable process eventually finds the stable process.
Moreover, the stable process may be down and the un-
stable process deprived of its currency until the stable
process recovers. Both problems can be dealt with by
having stable processes replicate the information about
unstable processes in several stable processes. Finally,
this approach can only be effective if the currency as-
signed to the unstable process does not change too of-
ten.

Leased Currency. Another approach is to limit the va-
lidity of the currency given to unstable processes (i.e.,
similarly to a lease). Currency would be tagged as be-
ing usable only for a certain duration. Using time, how-
ever, requires assumptions about clock synchroniza-
tion. Alternatively, the validity of currency can be com-
bined with the membership-oblivious application run-
ning on top of the currency management. For example,
if the application is based on “asynchronous rounds,”
(e.g., [FP02]) then the validity of a currency can be ex-
pressed in terms of number of rounds. Once currency
has expired, it is automatically recovered by the orig-
inating stable process and re-distributed to other pro-
cesses upon request.

With this scheme, an unstable process pj would re-
ceive some currency cj with expiration round of r from
process pi, where r is some round after pi’s current
round. Before giving the currency to pj , pi stores the
difference ci − cj in stable storage, as well as the infor-
mation that cj expires at round r. In the worst case, if
pj fails, some amount of currency may be unavailable
until round r, but afterwards, the currency cj is auto-
matically reclaimed. If pi fails, however, then cj may
be lost until pi recovers. The risk of temporary block-
ing can be decreased by allocating the initial currency
to a large number of stable processes.

4.4. Currency Transfers

Point-to-point currency transfer can occur between
two stable processes, or between a stable and an unsta-
ble process. The former exchange occurs when a new
stable process is added to the system. The new pro-
cess starts with no currency, but can ask other stable
processes for some of their currency. Point-to-point cur-
rency transfer between stable and unstable processes is
the classical transfer mechanism previously discussed,
with stable processes serving as currency distributors
for the unstable processes.

Assume that two processes pi and pj start with cur-
rencies ci and cj , respectively. After a currency trans-
fer, they hold currencies c′i and c′j . Ideally, the sum
of the currencies of pi and pj should be preserved, i.e.,
ci +cj = c′i +c′j . Clearly, if this is the case, Property P2
is preserved. Unfortunately, in an asynchronous system
where processes can fail, this is not possible to ensure.
Indeed, currency transfer must be performed atomi-
cally to conserve the amount of currency under vari-
ous failure patterns. As stable processes are assumed to
have stable storage, we can use traditional distributed
atomic commitment protocols3 for the currency trans-

3 Note that suchprotocols also need timing assumptions to guar-
antee liveness.

fer.
If the systems behaves in truly asynchronous man-

ner, with no timing assumptions, we can still imple-
ment currency transfers with the relaxed guarantee
that c′i + c′j ≤ ci + cj . Again, this may lead to the
loss of currency and risks of blocking in extreme cases.
As discussed in Section 4.3, the probability of block-
ing can be further reduced by using leased currency.

4.5. Currency Redistribution

From time to time, it may be necessary to redis-
tribute the currency in the system, i.e., to reset the sys-
tem to some initial state. The main motivations for do-
ing so are to reclaim lost currency that cannot be recov-
ered by other means, and to distribute currency evenly
when the currency ownership in the system has de-
generated over time into an unfavorable distribution.
Redistributing currency can be performed if a set of
processes with a certain currency threshold agree on a
new distribution, and generate new currency. Clearly,
this requires some sort of membership information. In-
deed, at least a set of stable processes that could dis-
tribute currency needs to be known. If messages are re-
ceived containing old currency, the senders are notified
that their currency has expired and they need to ob-
tain new currency.

5. Final Remarks

Message ordering abstractions, and more specifically
group communication protocols, are very useful for
the design of reliable distributed systems. Such pro-
tocols traditionally rely on the notion of group mem-
bership, which is known not to scale well to large popu-
lations and wide geographical dispersion. Group mem-
bership is also prohibitively expensive in mobile envi-
ronment, where processes suffer from frequent discon-
nections and re-connections. Protocols that do not de-
pend on membership are better candidates for such en-
vironments.

In this paper, we have proposed a distributed sys-
tem model adapted to “membership-oblivious” proto-
cols, i.e., protocols that do not depend on membership.
A currencymanagement system, implemented on top of
the underlying network, is responsible for distributing
voting currency to processes, which employ it to par-
ticipate in membership-oblivious protocols.

There are striking commonalities between currency
management discussed in this paper and the function-
ing of the global economy. For instance, stable pro-
cesses that distribute currency act like the countries’
central banks. In the future, we plan to exploit mod-

els developed in the context of the global economy for
currency management. These models could enable fore-
casts as to how the currency distribution develops with
time. Moreover, we are considering extending our ap-
proach with further concepts from the global economy,
such as local currencies and inflation.

References

[ACT00] M.K. Aguilera, W. Chen, and S. Toueg. Failure
detection and consensus in the crash-recovery
model. Distributed Computing, 13(2):99–125,
2000.

[AKM01] A.J.Ganesh, A.-M Kermarrec, and L. Mas-
soulie. Scamp: Peer-to-peer lightweight mem-
bership service for large-scale group communi-
cation. In 3rd International workshop on Net-
worked Group Communication, London, UK,
November 2001.

[BHM99] N. Badache, M. Hurfin, and R. Macedo. Solv-
ing the consensus problem in a mobile environ-
ment. In Proceedings of the 1999 IEEE Interna-
tional Performance,Computing, andCommuni-
cations Conference (IPCCC’99), pages 29–35,
Phoenix, USA, February 1999.

[BHO+99] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao,
M. Budiu, and Y. Minsky. Bimodal multi-
cast. ACM Transactions on Computer Systems,
17(2):41–88, May 1999.

[Bir93] K.P.Birman. The process group approach to re-
liable distributed computing. Communications
of the ACM, 36(12):36–53, December 1993.

[CKV01] G.V. Chockler, I. Keidar, and R. Vitenberg.
Group communication specifications: A com-
prehensive study. ACM Computing Surveys,
33(4):427–469, December 2001.

[CS93] D.R. Cheriton and D. Skeen. Understanding
the limitations of causally and totally ordered
communication. InProceedings of the fourteenth
ACM symposium on Operating systems princi-
ples, pages 44–57. ACM Press, 1993.

[DGH+87] A. Demers, D. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for repli-
cated database maintenance. In Proceedings of
the 6th Annual ACM Symposium on Principles
of Distributed Computing, pages 1–12, Vancou-
ver, BC, Canada, August 1987.

[EHG+01] P. Eugster, S. Handurukande, R. Guerraoui, A.-
M. Kermarrec, and P. Kouznetsov. Lightweight
probabilistic broadcast. In Proceedings of the
20th Annual ACM Symposium on Principles
of Distributed Computing, Newport, Rhode Is-
land, USA, August 2001.

[FLP85] M.J. Fischer, N.A. Lynch, and M.S. Paterson.
Impossibility of distributed consensus with one

faulty process. Journal of the ACM, 32(2):217–
246, 1985.

[FP02] P. Felber and F. Pedone. Probabilistic atomic
broadcast. In Proceedings of the 21st Sympo-
sium on Reliable Distributed Systems, Osaka,
Japan, October 2002.

[FS01] P. Felber and A. Schiper. Optimistic active
replication. In 21st International Conference on
Distributed Computing Systems (ICDCS-21),
pages 333–341, Phoenix, AZ, April 2001.

[GCG01] I. Gupta, T. D. Chandra, and G. S. Goldszmidt.
On scalable and efficient distributed failure de-
tectors. In Proceedings of the 20th Annual ACM
Symposium on Principles of Distributed Com-
puting, Newport, Rhode Island, USA, August
2001.

[GHvR+97] K. Guo, M. Hayden, R. van Renesse, W. Vogels,
and K. P. Birman. GSGC: An efficient gossip-
style garbage collection scheme for scalable re-
liable multicast. Technical Report TR97-1656,
Cornell University, Computer Science, Decem-
ber 1997.

[Gif79] D.K. Gifford. Weighted voting for replicated
data. In Proceedings of the 7th ACM Sympo-
sium on Operating Systems Principles, pages
150–162, 1979.

[GKM03] A.J. Ganesh, A.-M Kermarrec, and L. Mas-
soulie. Peer-to-peer membership management
for gossip-based protocols. IEEE Transactions
on Computers, 52(2):139–149, February 2003.

[Gol92] R.A. Golding. Weak-consistency group commu-
nication and membership. PhD thesis, Univer-
sity of California, Santa Cruz, December 1992.
Number UCSC-CRL-92-52.

[GPP93] R.G. Guy, G.J. Popek, and T.W. Page Jr. Con-
sistencyalgorithms foroptimistic replication. In
1st IEEE Int. Conference on Network Protocols,
October 1993.

[GvRB00] I. Gupta, R. van Renesse, and K. P. Birman. A
probabilistically correct leader electionprotocol
for large groups. In Proceedings of the 14th In-
ternational Symposium on Distributed Comput-
ing, pages 89–103, Toledo, Spain, October 2000.

[Kel99] P.J. Keleher. Decentalized replicated-object
protocols. In Proceedings of the 18th ACM Sym-
posium on Principles of Distributed Computing,
pages 143–151, Atlanta, USA, May 1999.

[KMG03] A.-M Kermarrec, L. Massoulie, and A.J.
Ganesh. Probabilistic reliable dissemination in
large-scale systems. IEEETransactions onPar-
allel and Distributed Systems, 14(3):248–258,
March 2003.

[LM99] M.-J. Lin and K. Marzullo. Directional gos-
sip: Gossip in a wide area network. Technical
Report CS1999-0622, University of California,
San Diego, Computer Science and Engineering,
June 1999.

[MRW97] D. Malkhi, M. Reiter, and R. Wright. Proba-
bilistic quorum systems. In Proceedings of the
16th Annual ACM Symposium on Principles of
Distributed Computing, pages 267–273, August
1997.

[PB98] R. Prakash and R. Baldoni. Architecture for
group communication in mobile systems. In
Proceedings of the 17th Symposium on Reli-
able Distributed Systems, pages 235–242, West
Lafayette, USA, October 1998.

[PRS96] R. Prakash, M. Raynal, and M. Singhal. An effi-
cient causal ordering algorithm for mobile com-
puting environments. In Proceedings of the 16th
International Conference on Distributed Com-
puting Systems, pages 744–751, Hong Kong,
May 1996.

[PS97] R. Piantoni and C. Stancescu. Implementing
the swiss exchange trading system. In Proc.
of 27th Int. Symposium on Fault-Tolerant Com-
puting (FTCS), pages 309–313, Piscataway, NJ,
June 1997.

[PS98] F. Pedone and A. Schiper. Optimistic Atomic
Broadcast. In 12th. Intl. Symposium on Dis-
tributed Computing (DISC’98), pages 318–332,
Andros, Greece, September 1998. Springer Ver-
lag, LNCS 1499.

[RMH98] R. Van Renesse, Y. Minsky, and M. Hayden. A
gossip-style failure detection service. Technical
Report TR98-1687, Cornell University, Com-
puter Science, May 1998.

[SS00] Q. Sun and D. Sturman. A gossip-based reli-
able multicast for large-scale high-throughput
applications. In Proceedings of the Interna-
tional Conference on Dependable Systems and
Networks (DSN 2000), New York (USA), June
2000.

