
FATOMAS - A Fault-Tolerant Mobile Agent System Based on the
Agent-Dependent Approach

Stefan Pleisch
IBM Research

Zurich Research Laboratory
CH-8803 Rüschlikon

spl@zurich.ibm.com

André Schiper
Operating Systems Laboratory

Swiss Federal Inst. of Technology (EPFL)
CH-1015 Lausanne
Andre.Schiper@epfl.ch

Abstract

Fault tolerance is fundamental to the further develop-
ment of mobile agent applications. In the context of mobile
agents, fault-tolerance prevents a partial or complete loss
of the agent, i.e., it ensures that the agent arrives at its des-
tination. In this paper, we present FATOMAS, a Java-based
fault-tolerant mobile agent system based on an algorithm
presented in an earlier paper. In contrary to the standard
“place-dependent” architectural approach, FATOMAS uses
the novel “agent-dependent” approach introduced in the
paper. In this approach, the protocol that provides fault
tolerance travels with the agent. This has the important ad-
vantage to allow fault-tolerant mobile agent execution with-
out the need to modify the underlying mobile agent platform
(in our case ObjectSpace’s Voyager).

In our performance evaluation, we show the costs of our
approach relative to the single, non-replicated agent exe-
cution. Pipelined mode and optimized agent forwarding
are two optimizations that reduce the overhead of a fault-
tolerant mobile agent execution.

1 Introduction
Mobile agents are computer programs that act au-

tonomously on behalf of a user, and travel through a net-
work of heterogeneous machines. Failures in a mobile agent
system may lead to a partial or complete loss of the agent1.
To achieve fault-tolerance, the agent owner (i.e., the person
or application creating and configuring the agent) can try to
detect the failure of its agent, and upon such an event launch
a new agent. However, this requires the ability to correctly
detect the crash of the agent, i.e., to distinguish between a
failed agent and an agent that is delayed by slow proces-
sors or slow communication links. Unfortunately this can-
not be achieved in systems such as the Internet. An agent

1In the following the term agent denotes a mobile agent unless explic-
itly stated otherwise.

owner who tries to detect the failure of his agent thus cannot
prevent the case where he mistakenly thinks that the agent
has crashed. In this case, launching a new agent leads to
multiple executions of the agent, i.e., to the violation of
the desired exactly-once property of agent execution. Even
though this may be acceptable for certain applications (e.g.,
applications whose operations do not have side-effects, i.e.,
are idempotent), others clearly forbid it. Fortunately, multi-
ple agent executions can be prevented in environments with
unreliable failure detection by replicating agents with an ad-
equate protocol. Indeed, if failure detection is unreliable,
replication by itself does not ensure the exactly-once ex-
ecution property. For example, exactly-once execution is
not ensured by the protocol of [5], which assumes a per-
fect failure detection mechanism. Some systems have tried
to address the exactly-once issue in the context of unre-
liable failure detection, and have proposed complex solu-
tions based on transactions and leader election [2, 9]. Other
approaches address the exactly-once execution problem by
detecting duplicate agents at the end of the agent execu-
tion, and undoing at that moment the effects of multiple ex-
ecutions [6, 10]. However, undoing the effects of duplicate
agents at the end of the execution is not simple, and often
limits dramatically the overall system throughput. In con-
trast to these different approaches, we have presented in an
earlier paper [8] an approach that ensures the exactly-once
execution property using a very simple principle: the mo-
bile agent execution is modeled as a sequence of agreement
problems. In the current paper, we present FATOMAS, a
Java-based FAult-TOlerant Mobile Agent System, that im-
plements this approach.

In order to characterize the architecture of FATOMAS,
we start by introducing two approaches called place-
dependent and agent-dependent. Place-dependent is the
standard approach that integrates fault tolerance into the
mobile agent platform (the platform, that provides the sup-
port for mobile agents). Agent-dependent is the new ap-

proach introduced by FATOMAS. In this approach, the pro-
tocol that provides fault tolerance travels with the agent.
This has the important advantage to allow fault-tolerant
agent execution without having to modify the underlying
mobile agent platform. Currently, FATOMAS supports Ob-
jectSpace’s Voyager mobile agent platform [7]. However,
our design enables to easily port FATOMAS to other mo-
bile agent platforms.

The rest of the paper is structured as follows. Section 2
presents the model for fault-tolerant mobile agent execu-
tion. In Section 3, we explain the architectural choices
in FATOMAS, in particular the agent-dependent approach.
Section 4 discusses important implementation issues. The
performance evaluation of FATOMAS is presented in Sec-
tion 5. Section 6 summarizes other work published in this
area and compares it with our work. Finally, Section 7 con-
cludes the paper.

2 Fault-Tolerant Mobile Agent Execution:
Background

In this section, we give a brief overview of the model of
fault-tolerant mobile agent execution, and of the algorithm
that ensures fault-tolerance. A detailed presentation is given
in [8].

2.1 System Model
We assume an asynchronous distributed system, where

processes communicate by message passing. Processes
only fail by crashing, i.e., we exclude malicious processes.
The system is asynchronous, i.e., we do not assume any
bound on the transmission delay of messages and on rel-
ative process speeds. Because agreement problems are not
solvable in an asynchronous system [4], we assume that the
system is augmented with a failure detector allowing us to
solve consensus [1], a particular agreement problem. Con-
sensus is mentioned in Section 2.5.

2.2 Mobile Agent Model
A mobile agent executes on a sequence of machines,

where a place �� provides the logical execution environment
for the agent (see Figure 1). Executing the agent at a place is
called a stage �� of the agent execution. We call the places
where the first and last stages of an agent execute the agent
source and destination. Logically, a mobile agent executes
in a sequence of actions. Each action is represented by an
agent ���� � � � �� at the corresponding stages ��. Place
�� executes agent �� at stage ��, which results in a new in-
ternal state of the agent as well as potentially a new state of
the place (if the operations of an agent have side effects) 2.
We denote the resulting agent ����. Place �� forwards ����
to ���� (for � � �).

2Interactions with remote places potentially also lead to modifications
of their state. This paper does not explore these aspects further, as they are
similar to the state modifications on the hosting place.

p1 p2 p3p0

Agent
Source

Agent
Destination

a1 a2 a3a0
a2a1 a3

Stage S 1Stage S 0 Stage S 2 Stage S 3

Figure 1. Model of a mobile agent execution
with four stages.

2.3 Mobile Agent Model With Replication
Without replication, the forwarding scheme of the pre-

vious section leads to blocking, as a failure may cause the
loss of the agent. To prevent blocking, the agent at stage � �

is sent to a set ���� of places at ����, instead of only to
one place ����. In other words, the place ��� hosts the agent
replica ��� of agent ��. We will omit the superscripted index
if the agent replica is understood from the context. If one
place ����� ����� fails while executing the agent, another

place ����� � ���� �� �� �� takes over. Figure 2 depicts an
example of a mobile agent execution.

p1
0 p2

0

p0 p3

Agent
Source

Agent
Destination

a1 a2

a3a0 p1
1 a1

p1
2 a1

p2
1 a2

p2
2 a2

a1 a2
a3

Stage S 1

Stage S 0

Stage S 2

Stage S 3

M2M1

M0 M3

Figure 2. Example of an agent execution with
three redundant places.
The so-called pipelined mode reduces the communica-

tion overhead caused by the agent forwarding. Instead of
forwarding the agent at each stage �� to a new set of places
����, previous stage places are reused as witnesses for the
execution at the new stage (see Figure 3). A witness is a
place that can execute the agent, but cannot deliver the re-
quested service to the agent: the call to the service fails and
the agent can then take corresponding actions such as noti-
fying the user or backtracking. Any place that can execute
the agent can act as a witness.

p1 p2 p3p0

Agent
Source

Agent
Destination

a1 a2 a3a0
a2a1 a3

M0
M1

M2
M3

Stage S 0 Stage S 1 Stage S 2 Stage S 3

Figure 3. Model of the pipelined mode.

2.4 Algorithmic Issues
The redundancy illustrated in Figure 2 enables the mo-

bile agent execution to proceed despite failures, i.e., pre-
vents blocking. However, the algorithm that prevents block-
ing while ensuring a consistent execution is not as easy as

one might guess. This is related to the fact that we assume a
system model in which failure detection is unreliable. The
solution presented in [8] consists, for all agent replicas at
stage ��, to solve the stage agreement problem, which leads
them to agree on:

� the place that has executed the agent, called the pri-
mary and denoted ������ ,

� the resulting agent ����, and

� ����, the set of places for stage ����

Hence, the fault-tolerant mobile agent execution leads
to a sequence of agreement problems. Figure 4 shows an
example of a mobile agent execution spanning 4 stages (� �

to ��). Note that at stage ��, place ��� fails, which causes ���
to take over the execution. Solving an agreement problem
leads all places in �� to agree on ��� as the place that has
executed ��. This would be of particular importance if ���
had been erroneously suspected by the other places in � �.

Stage S 3

Stage S 2

Stage S 1

Stage S 0

p1
0 a1

p1
1

p1
2

p1
3

p2
0

a2

p2
1

p2
2

p2
3

< a 2,M2 >

p3
0 a3

< a 3,M3 >

p0
0

< a 1,M1 >

a0

a2

Crash

p0
0

p1
0

p2
1

D
IV

C
on

se
ns

us

D
IV

C
on

se
ns

us

Reliable
broadcast

Figure 4. Agent execution where ��� fails. An
erroneously suspected place ��� leads to the
same situation.

2.5 Two Building Blocks: DIV Consensus and Re-
liable Broadcast

At every stage �� (1) one (or potentially multiple) of the
replica agents ��� executes the stage operation phase, then
(2) solves an agreement problem with all replica agents, and
(3) finally � �����	���
 is sent to the next stage.

Items (1) and (2) are done together as part of a variant of
the consensus problem, called Deferred Initial Value Con-
sensus (DIV Consensus for short) [3]. DIV Consensus is
the first building block of our FATOMAS system. In the
consensus problem, each process needs an initial value at
the beginning of consensus [1]. In our problem, the initial
value at stage �� for place ��� is obtained by executing agent
��. Executing �� on all the places of stage �� is not wanted
and too costly. DIV Consensus allows us to defer the com-
putation of the initial value of some place ��� and only per-

form the computation when requested by the DIV Consen-
sus algorithm. For example, if ��� succeeds in computing its
initial value and does not crash, no other place � �� , �
 �,
will be required to provide (i.e., compute) an initial value.
DIV Consensus assumes that a majority of participants does
not fail.3

Item (3) is an instance of the reliable broadcast problem.
Traditional reliable broadcast protocols assume a � � �

communication scheme where one process broadcasts a
message to � destination processes. In our case we have
a � � � communication schema: � sender have the same
message to reliably broadcast to � destinations. This is
discussed in Section 4.1.2.

2.6 Asynchronous Agent Propagation
We have assumed (Section 2.1) an asynchronous sys-

tem, where there is no bound on the transmission delay of
messages. This has an impact on the different instances
of the agreement protocol (i.e., DIV Consensus) that run
at each stage �� of an agent execution. Because of the
asynchrony, the agent �� may not arrive simultaneously at
the different places ��� of stage ��. Assume for instance
that the agent replicas ��� � �

�
� � �

�
� are sent respectively to

��� � �
�
� � �

�
� � �� (see Figure 4), and assume that ��� arrives

late at ��� . DIV Consensus may have already started execut-
ing for agent replicas ��� and ��� when ��� arrives. The exe-
cution of DIV Consensus may even have terminated when
��� arrives. The late arrival of ��� at ��� is indistinguishable
to ��� and ��� from the crash of ��� followed by the recovery
of ��� . Thus, the asynchrony assumption forces us indirectly
to support the recovery of agents after a crash.

3 Architecture
3.1 Isolation of the Fault Tolerance Mechanisms

Conceptually, a mobile agent executes in three phases:
(1) an initialization phase, (2) stage operation phases, and
(3) a termination phase. The initialization phase takes place
on the agent source ��, while the termination phase is exe-
cuted on the agent destination��. Between the agent source
and destination, the stage operation phase is run at each
stage �� �� � � � ��. Hence, it is executed multiple times.

Ideally, fault tolerance should be orthogonal to mobile
agents and its mechanisms transparent to the agent owner.
Unfortunately, complete transparency is difficult to achieve
and the user-defined agent, i.e., the part that defines the
application-specific operations of the agent, needs to inter-
act with the fault tolerance mechanisms. While in single-
agent execution, for instance, an agent just needs to specify
the next place it moves to, our fault-tolerant agent execution
generally4 requires a set of destination places for the next

3In the following, the term “consensus” denotes DIV Consensus unless
explicitly stated otherwise.

4Except in the particular case of the pipelined mode (see Section 2.3).

stage (����). Clearly, the agent is aware of the replication
and complete transparency is no more possible. Moreover,
ensuring fault tolerance adds another phase to the agent ex-
ecution: the commit/abort phase. In Section 2, we mention
that imperfect failure detection may lead to a violation of
the exactly-once property of mobile agent execution. Solv-
ing an agreement problem prevents multiple executions of
the agent by deciding on a primary ������ . Only the primary
commits the operations, while all other places that have ex-
ecuted the agent as well must abort/undo the agent opera-
tions. Hence we need a commit/abort phase. The semantics
of this phase depend on the agent operations. For instance,
database transactions need to be committed or aborted (or
rolled back, depending on the database), while idempotent
operations generally do not require any further action.

Fault tolerance
enabler (FTE)

User-defined
agent

Stage
0<i<n

Stage operation
phase

Stage commit/abort
phase

Move to the next
stage

Solving the
agreement
problem i

i := i + 1
1

2

3

4

5

Figure 5. Phases of a fault-tolerant mobile
agent execution and interaction with the FTE.

We propose an architecture that isolates the fault tol-
erance mechanisms in a component called Fault Toler-
ance Enabler (FTE). Figure 5 shows the flow of interac-
tion between the FTE and the user-defined agent. This in-
teraction occurs during the stage operation and the com-
mit/abort phase. The FTE groups the fault tolerance
mechanisms, while the user-defined agent contains the
application-specific part. At each stage �� �� � � � ��,
the FTE solves the stage agreement problem. Depending
on the outcome of the agreement, the operations performed
in the stage operation phase (see Figure 5, arrow 1 and 2)
are either committed or aborted (arrow 3 and 4). Finally, the
FTE moves the agent to the set of places in���� (arrow 5),
which are computed by the user-defined agent and returned
as the result of the stage operation phase (see Section 2.4).

We can identify two approaches related to the location
of the FTE: the agent-dependent (FTE with the agent) and
the place-dependent approach (FTE with the places). Our
system uses the agent-based approach, which is presented
in more detail in the next section. We only briefly discuss
the place-dependent approach.

3.2 Agent-Dependent Approach
In the agent-dependent approach, the FTE is integrated

into the agent and travels with it. Only one instance of the
FTE exists per agent. It is initialized by the user-defined
agent at the agent source, and triggers the termination phase
of the user-defined agent at the agent destination. The inter-
action of a user-defined agent with the FTE creates a fault-
tolerant mobile agent. Hence, the replication mechanisms
are completely transparent to the places; the agent appears
to the place as a normal agent. Consequently, existing mo-
bile agent platforms do not need to be modified. However,
we redefine the way agents are created and moved. Instead
of programming the agent against the proprietary mobile
agent platform API, the agent uses the functionality of the
FTE-API (see Figure 6). The FTE then addresses issues
such as fault tolerance and mobility. For instance, in Ob-
jectSpace’s Voyager mobile agent platform [7], an agent
moves with a call to the move method. Beside the destina-
tion, the move method also accepts the name of the method
to be called upon arrival on the destination place. In our
approach, the callback method doStageOperation in
the FTE-API is invoked whenever the agent arrives at a new
destination. The next destination places are returned as a
result of the execution of method doStageOperation.
These changes are straightforward and, in our opinion, sim-
plify the notion of an agent.

Mobile Agent a

FTE

ServicesServicesServicesServices

User-
defined
Agent

communication
with another
agent replica

iPlace p j

Recovery

Repository

FT
E

-A
P

I

Stage
Agreement

Reliable
Forwarding

i

Figure 6. Agent-dependent approach: ar-
chitecture of the fault-tolerant mobile agent
framework.

Figure 6 shows the architecture of the agent-dependent
approach. The FTE is composed of a stage agreement
component (implementing consensus), a reliable forward-
ing component (responsible for the agent forwarding to the
next stage), and a recovery component. The latter handles
the recovery in case the agent fails or arrives late at a place
(see Section 2.6). Finally, the repository is a location where
place specific fault tolerance information can be stored tem-
porarily. This location is agent platform dependent, but
typically corresponds to some sort of local repository, such
as the Voyager directory. For convenience, we require that
such repositories allow other agents at place �� to remotely
access some information at another place �� �� �� ��. If
this is not the case, an agent needs to be defined that acts
as a proxy between the local directory and the fault-tolerant

agents.

3.3 Place-Dependent Approach
In the place-dependent approach, the FTE is provided by

the mobile agent platform, e.g., [6, 10]. Here, fault toler-
ance is built into the places, and a new instance of the FTE
is created and executes at every stage of the agent execu-
tion. A disadvantage of the place-dependent approach is the
need to modify existing proprietary mobile agent platforms.
In particular, the installed base of mobile agent platforms
needs to be replaced by platforms that all use the same
fault tolerance mechanisms, which is problematic. More-
over, providing the fault tolerance mechanisms locally on a
place may lead to versioning problems.

On the other hand, the FTE can be reused if two agents
� and execute on a similar set of places (��) at stage
��. However, the performance gain is small, as we believe
that the sets �� for an agent � and �� for an agent are
generally not identical. Another advantage of the place-
dependent approach is that it allows the places to selectively
instantiate the agent replicas ��� when needed. Indeed, only
agent replicas are instantiated whose stage operation phase
is really executed. Nevertheless, each place runs an instance
of the FTE per agent replica ��� , whether the agent replica
�
�
� itself is instantiated or not, in order to participate in the

stage fault tolerance protocol for �� (i.e., the consensus al-
gorithm). Since the FTE is located at the places, it does not
need to be transported with the agents, thus limiting the size
of the agent and improving transmission performance.

4 Implementation Issues
This section describes the implementation of

FATOMAS. As indicated in Section 3, we build fault
tolerance on top of an existing mobile agent platform,
without modifying existing code. We use ObjectSpace’s
Voyager v3.1.2 [7] as the Java mobile agent platform. In
the following, we first discuss the implementation of the
FTE in Section 4.1. Section 4.2 then explains the problem
of deadlock and shows a way to prevent it.

4.1 FTE
The interface of the FTE to the user-defined agent, i.e.,

the FTE-API (see Figure 6), consists of a single method,
called start. Invoking this method causes the FTE to
take over the responsibility for executing the agent. As
shown in Section 3, the FTE interacts with the user-defined
agents in the stage operation phase and in the commit/abort
phase. For this purpose, the user-defined agent implements
the callback method doStageOperation, which repre-
sents the stage operation phase and returns the set of desti-
nation places at the next stage. The callback methods com-
mit and abort implement the commit/abort phase. The
next subsection discusses in more details how a stage exe-
cution works.

4.1.1 Stage Execution
A stage execution works as follows: On arrival on place

�
�
� , the agent replica ��� (more specifically the FTE) imme-

diately starts executing consensus.
The communication among the agent replicas � �� is cur-

rently based on the communication means of Voyager, more
specifically VoyagerSpaces for multicasts, and Voyager re-
mote method invocation for point-to-point communication
[7]. Remote method invocations are synchronous calls in
FATOMAS and return an exception if the communication
link is broken or the receiver is not available. These excep-
tions are caught and the message is confided to a dedicated
sender thread that keeps on resending the message until it
is successfully delivered or the stage execution has termi-
nated. Replica agents that arrive when the other replica
agents are already done with the stage execution run the
recovery protocol.

When the consensus algorithm decides, the FTE stores
the decision value in a local repository (see Figure 6). Actu-
ally, only part of the decision is stored, i.e., the primary’s ID
�
����
� . This information must be kept until all participants

in a stage execution, i.e., ��, are aware of the result. In
particular, participants that have crashed during consensus
and are assumed to recover again need to learn about the
primary to decide whether to commit or abort the agent’s
operation on their place. However, it is not necessary to for-
ward the agent to the next stage, as the agent execution may
well have terminated in the meantime. After a certain time,
the decision value is discarded. Selecting a timeout value
that is sufficiently large, the probability of erroneously dis-
carding an entry becomes very small and thus negligible.

Having stored the decision value in the repository, the
FTE either calls commit or abort on the user-defined
agent, depending on the decision value, more specifically,
on the �

����
� value of the decision (Section 2.4). Finally,

the FTE forwards the agent to the next stage as described in
the next section.

4.1.2 Reliably Forwarding the Agent
Having solved consensus at stage ��, the agent needs to

be forwarded reliably to members 	 ��� of the next stage.
To assure reliable forwarding, each participant of stage � �

sends a clone of the agent to the participants in� ��� ���.
If ���� ��� � �, i.e., the places at two consecutive

stages �� and ���� form disjoint sets, the simplest solution
to reliable forwarding consists in sending 	��	
 	����	
agents (see Figure 7). However, to reduce the communica-
tion overhead, we chose the following optimistic approach:
the agent ���� is sent to each places in ���� only by the
agent �� at the place ������ . The other agents ��� �� �

����
�

simply verify whether the agent ���� has arrived at the
places in ���� by remotely accessing the corresponding
value in the repository on the places in � ���. If an entry
for the agent ����� already exists, the agent ����� has suc-

Stage S i+1

pi
2 ai

2

pi
1 ai

1

pi
0 ai

0

pi+1
2ai+1

2

pi+1
1ai+1

1

pi+1
0ai+1

0

Stage S i

M i M i+1

Figure 7. Reliably forwarding the agent from
�� to ����.

cessfully arrived, otherwise, the agent ����� is cloned and
sent to this place. In other words, instead of a priori always
sending the entire agent, a small message is sent to check
the need for sending the entire agent. This approach is opti-
mistic, since it assumes that in most cases the agents arrive
at their destinations. Even though the performance gain for
a single agent is not great, the communication overhead is
reduced for large agents, as discussed in Section 5.5.2. If an
agent fails to arrive at its destination, because either (1) the
sender place failed or (2) the agent was lost during trans-
mission, agent forwarding leads to additional latency.

4.1.3 Recovery
Even though recovery and non-simultaneous agent ar-

rival can be handled in the same way (see Section 2.6), our
prototype distinguishes between the two problems: a de-
layed agent ��� takes part in the running instance of consen-
sus (except if consensus has finished already), whereas a re-
covering agent does not. A recovering agent ��

� requests the
decision value of the consensus, more specifically �

����
� ,

once it is available. Based on �
����
� , ��� either commits or

aborts its stage operations and can thus recover into a con-
sistent state.

A recovering place that failed in stage �� takes again part
in the mobile agent execution at any stage � ���
 �� (if it is
in ��) as well as in the execution of any other agent. For
this case, no particular recovery algorithm is needed.

4.2 Interaction of FTE and User-Defined Agent:
The Deadlock Problem

A deadlock may occur between two different agents � �

and �, if they happen to share the same places. This
deadlock is a consequence of the interaction between the
DIV Consensus algorithm and the stage operations. Con-
sider for example the two replicas ��� , ��� of agent �� and the
two replicas �� , �� of agent �, were ��� , �� share the place
��� and ��� , �� the place ��� (Figure 8).5 Assume further that

5Actually, to be accurate, we should have three replicas in our example.
However, for simplicity, we consider only two replicas. Anyone familiar
with the consensus algorithms based on the rotating coordinator paradigm
and �� should mentally replace everywhere “two” by “three”.

agent �� performs stage operation �� (either on ��� or on
���), and � performs stage operation �	 (either on ��� or on
���), and that the two operations �� and �	 access the same
data item. Accessing the data item requires locking of the
data, and the data must remain locked until the decision of
the consensus of stage �� is known.

pi
1 ai

1 bi
1

pi
0 ai

0 bi
0

Stage S i

Figure 8. Deadlock between the agents � and
 at stage ��.

Let us assume first the solution where we have one single
thread per agent ��� , denoted by ������� �, for (1) executing
the consensus on place ��� and (2) performing the operation
� on ��� . This can lead to the following wait-for dependen-
cies:

� Because of the distributed consensus algorithm, we
can have ������� � � ������� �, where � stands for
“waits-for”.6

� For the same reason, we can have ������ � �
������ �.

� Because of the data locking, we can have ������ � �
������� � (if ������� � locks the data item of place ���
before ������ �).

� For the same reason, we can have ������� � �
������ �.

We have here a cycle in the wait-for-graph, i.e., a dead-
lock, as shown in Figure 9 a). Deadlocks can be prevented
by having two threads per agent ��� : one thread, denoted
by ����������� �, for executing the consensus on place ��� ,
and another thread, denoted by ��������� � for executing
the stage operation on place ��� . The above wait-for depen-
dencies become:

� ����������� �� ����������� �.

� ���������� �� ���������� �.

� �������� �� ��������� �.

� ��������� �� �������� �.

Obviously the cycle in the wait-for-graph, and the dead-
lock, have disappeared. Another solution that requires only
one thread is the use of timed locks7 in data accesses.

6��
�

, the coordinator of the first round has been suspected, and ��
�

is the
coordinator of the second round.

7A timed lock is a lock where a thread is blocked until either it is granted
the lock, or a timeout value is reached. The thread can then take the corre-
sponding actions and potentially retry to acquire the lock.

Thr(a i
0)

Thr(a i
1)

Thr(b i
0)

Thr(b i
1)

ConsThr(a i
0)

ConsThr(a i
1)

OpThr(a i
0)

OpThr(a i
1)

OpThr(b i
0)

OpThr(b i
1)

ConsThr(b i
0)

ConsThr(b i
1)

a) deadlock b) no deadlock

Figure 9. Wait-for-graphs for (a) the single
thread and (b) the double thread case.

5 Performance Evaluation
This section evaluates the performance of FATOMAS.

Our evaluation uses the example agent presented in the next
section.

5.1 Example: A Fault-Tolerant Agent Accessing
Counters

To measure the performance of FATOMAS, we use a
simple service running on every place: a counter. Accesses
to this counter are performed as local transactions, via the
three methods: increment (to increment the value of
the counter), commit (to commit the modifications), and
abort (if the modifications need to be undone). A call
to method increment locks the counter; the lock is only
released after a call to either commit or abort.

Our test consists in sending a number of agents that in-
crement the value of the counter at each stage of the execu-
tion. Each agent starts at the agent source and returns to the
agent source, which allows to measure its round-trip time.
Between two agents, the places are not restarted. Conse-
quently, the first agent needs considerably longer for its ex-
ecution, as all classes need to be loaded into the cache of
the virtual machines. Consecutive agents benefit from al-
ready cached classes and thus execute much faster. We do
not consider the first agent execution in our measurement
results. For a fair comparison, we used the same approach
for the single agent case (no replication).

Moreover, we assume that the Java class files are lo-
cally available on each place. Clearly, this is a simplifi-
cation, as the class files do not need to be transported with
the agent. Remote class loading adds an additional costs
because the classes need to be transported with the agent
and then loaded into the virtual machine. The size of the
class files for a single agent is about 8KBytes, for the repli-
cated agent 50KBytes (including the classes for the FTE).
An upper bound on these costs is modeled in our experi-
ments by increasing the size of our agent. However, these
experiments also contain the additional costs of executing
consensus for an agent of the corresponding size. These
are costs that are not relevant in the case of remote class
loading. The class files are only transported once between
the places of consecutive stages, but not between places of
the same stage. As our chosen platform does not properly
support remote class loading, we plan to port FATOMAS to

another mobile agent platform to test the performance with
remote class loading enabled.

5.2 Experimental Setup
Our performance tests are run on seven AIX machines

(PowerPC 233 MHz processor, 256MByte of RAM). The
machines are connected by either 100Mbps Ethernet or
16Mbps Tokenring; they are on 3 different subnets. As
our evaluation results are in the area of hundreds of mil-
liseconds, the difference in network bandwidth is negligi-
ble. The influence of the different subnets does not turn out
to be significant either.

5.3 Costs of Replication
We measure two aspects of the replication costs: (1)

the overhead of the replication mechanism, by considering
replication degree 1, and (2) the costs of replication degree
3. The replication degree denotes the number of places at a
stage and is an indicator of the number of failures the algo-
rithm tolerates at a stage. Because of the assumption for our
consensus algorithm, i.e., a majority of agent replicas do not
fail (see Section 2.5), replication degree 3 handles one fail-
ure, and replication degree 5 would handle 2 failures. The
results of these measurements are given in Table 1. They
represent the arithmetic average of 10 runs, with the high-
est and lowest values discarded to eliminate outliers. The
coefficient of variations is in most cases much lower than
5%. However, for very few results, it went up to 15%. As
a mobile agent execution combines agent forwarding and
consensus, minor variations on network load and load on
the AIX machine have a considerable influence on the exe-
cution time of a mobile agent.

The first line in Table 1 shows the costs for a single agent,
i.e., a traditional Voyager agent, that performs exactly the
same task as the replicated agent. The single FTE-agent
(line 2 in Table 1) uses the replicated agent’s code to exe-
cute in a single agent mode. Compared with the previous
line, the second line shows the overhead of the replication
mechanism (increased agent state adding to the communi-
cation costs, increased computing time). The results show
that the replication mechanisms add about a 30% overhead
compared to a single agent. The overhead is lower (18%)
in the case of three stages, as no communication between
intermediate stages occurs.

A replicated agent that is able to tolerate one failure at
a stage is three to four times more expensive than a sin-
gle agent (line 3). The increase in the agent execution time
is mainly caused by the additional communication costs of
agent forwarding and consensus. Indeed, consider for in-
stance the single agent execution on 4 stages: there are
here 3 messages in the critical path. On the other hand,
with replication there are 12 messages in the critical path
in the most favorable scenario. We suspect Voyager com-
munication to be rather inefficient. Nevertheless, the over-

Type of Agent 3 stages 4 stages 5 stages

Single agent (666 bytes) 793 100% 1089 100% 1546 100%
Single FTE-agent, degree 1 (1440 bytes) 939 118% 1427 131% 2004 130%
Replicated FTE-agent, degree 3 2369 290% 4375 402% 6470 418%
Replicated FTE-agent, 10000 + 10000 + 10000 +
degree 3, with failure (timeout = 10000) 2445 1569% 4631 1344% 6299 1054%

Table 1. Costs of replication degree 1 and 3 in milliseconds compared to the single agent.

head of the fault tolerance mechanisms seems reasonable,
considering the guarantees the fault tolerance mechanisms
provide: non-blocking and exactly-once mobile agent ex-
ecution. Moreover, in our experiment the execution time
of the agent’s stage operation is less than 5ms and there-
fore not significant. Clearly, the larger the execution time
of the agent’s stage operation is, the smaller the ratio of the
overhead between the single agent and the replicated agent
becomes.

Finally, the last line shows the execution costs when the
coordinator fails. For this purpose, we force agent replica
��� to crash in exactly the situation presented in Figure 4
(stage 2). The main part of the costs stems from the selected
timeout value in the failure detection mechanisms for con-
sensus (timeout = 10000ms). A more aggressive timeout
value allows to considerably speed up the agent execution,
but increases the risk of false suspicions.

Table 2 indicates an upper bound on the costs that can
be attributed to consensus. It shows the costs of instanti-
ating the consensus objects and of running the consensus
algorithm. The test measures the costs of consensus at the
intermediate stage of a mobile agent execution with three
stages. The agent source sends the agent sequentially to
the three places of the intermediate stage. As in agent for-
warding between intermediate stages one can assume some
degree of concurrency these results show an upper bound
value. They highlight a significant difference of the costs
among the places, caused by asynchronous agent arrival as
discussed in Section 2.6 and by the intrinsic properties of
our consensus algorithm.

The results confirm the obvious expectation that the size
of the agent has an impact on the costs of consensus. We
discuss this impact in more detail in Section 5.4.

agent size in byte place ��� place ��� place ���
1440 30718 570 1264

11440 4949 3237 6156
51440 25846 15819 26446

101440 49855 31127 51222

Table 2. Costs of consensus in milliseconds
for a replication FTE-agent of degree 3.

A particular case arises for small agents (first line in Ta-

ble 2). Because of asynchronous agent propagation, � �� and
��� solve consensus and are forwarded to the next stage be-
fore ��� establishes the communication with them. There-
fore, ��� uses the recovery mechanisms to learn about the
result of consensus. This explains the high value for ��� ,
which is mainly caused by timeouts.

5.4 Influence of the Size of the Agent
As already indicated in the previous section, the size of

the agent has a considerable impact on the performance of
the fault-tolerant mobile agent execution. To measure this
impact, the agent carries a Byte array of variable length,
that is used to increase the size of the agent. As the results
in Figure 10 show, the execution time of the agent increases
linearly with increasing size of the agent. Compared to the
single agent, the slope of the curve for the replicated agent
is steeper. Table 2 indicates the part of the costs that can
be attributed to consensus. For instance, with the agent size
of 11440 bytes, consensus needs 3.3 seconds at each in-
termediate stage. Figure 10 indicates that the costs for the
entire agent execution is 13.4 seconds. From this we con-
clude that the communication overhead is about 7 seconds.
The case of the forwarding optimization will be discussed
in Section 5.5.2.

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80 100

tim
e

[s
]

agent size [KBytes]

Influence of the Agent Size on the Execution Time (4 Stages)

single agent
replicated agent degree 3

forwarding optimization

Figure 10. The costs of single and replicated
agent execution with increasing agent size (4
stages).

5.5 Optimizations
In this section we present two optimizations: pipelined
mode and forwarding optimization.

5.5.1 Pipelined Mode
We briefly introduced the pipelined mode in Section 2.3.

It results in a reduced number of messages (i.e., forwarded
agents), as the agent only needs to be forwarded to one new
place of the next stage. This reduced number of messages
does not entirely show in the performance gain, because our
algorithm waits only for the reception of the first message.
Reducing the number of messages, however, has a great im-
pact on the underlying communication infrastructure.

Nevertheless, Figure 11 shows that the pipelined mode
has a lower execution time than the normal replicated agent.
The performance gains increase with increasing agent size,
as one would expect. In this test, we used an agent that
visits 8 stages, including agent source and destination.

0

20

40

60

80

100

120

140

160

0 5 10 15 20 25 30 35 40 45 50 55

tim
e

[s
]

agent size [KBytes]

Optimizations by the pipelined mode for 8 stages

Replicated agent
Replicated agent pipelined

Figure 11. Performance gain with the
pipelined mode for 8 stages.

5.5.2 Forwarding Optimization
Similar to the pipelined mode, this optimization ad-

dresses also the communication overhead (Section 4.1.2).
Even though the number of bytes transfered is reduced with
this approach, in particular for large agents, the perfor-
mance gain for the agent execution itself is small (see Fig-
ure 10), as our algorithm waits only for the arrival of the
first copy of the agent.

6 Related Work
Recently, fault-tolerant mobile agent execution has been

a very active field of research. We distinguish between
spatial-replication-based (SRB) approaches [2, 5, 9, 11] and
temporal-replication-based (TRB) [6, 10] approaches; our
paper advocates a SRB approach.

A SRB approach sends the replicas of the agent at the
same time to a set � of places of the next stage. Having
multiple replicas of the agent allows to mask failures and to
proceed despite of failing replicas. To ensure the exactly-
once execution property, SRB schemes need to solve an
agreement problem. Current SRB schemes assume reli-
able failure detection [5], are based on complex models
[2, 9, 11], or block even on a single place failure [9, 11]
(see [8] for an in-depth discussion). Our approach, which
is based on an easily understandable model, does not as-
sume reliable failure detection and prevents blocking. To
our knowledge, our work is the first to perform an evalua-
tion of a SRB approach for fault-tolerant mobile agents. In
[10], Silva et al. compare their TRB approach with some
basic performance results from their partial implementation
of [9]. However, no details about the implementation are
presented.

A TRB approach, on the other hand, attempts an agent
execution on one place. If the execution fails, the agent is
sent to another place. Incorrect failure suspicion may lead to
duplicate agents and thus to a violation of the exactly-once
execution property. Generally, duplicate agents are only de-
tected at the agent destination [6, 10]. Consequently, ac-
cessed data items need to remain locked until the execution
of the current agent finishes. If this is not the case, other
agents may read incorrect data. At the end of the agent ex-
ecution, the operations of the valid mobile agent need to be
committed while those of the superfluous duplicate agents
need to be aborted or undone. As incorrect failure suspi-
cions may happen at any point, the commit/abort mecha-
nism is always needed, even though at the end of the agent
execution no duplicate agent may have occurred. In other
words, when the agent execution is done, either a number of
messages or another agent need to be sent to commit and/or
abort all operations. This additional overhead, that, to our
understanding, seems not taken into account in the perfor-
mance evaluation in [6, 10], results in reduced overall sys-
tem throughput. The JAMES platform [10] uses a replicated
lookup directory to prevent certain duplicate agents. How-
ever, such a lookup directory violates to some extent the
autonomy property of a mobile agent. In contrary, our ap-
proach does not need to run a global commit/abort protocol.
Instead, undoing failed operations happens on a per-stage-
basis and therefore does not create dependencies among
stages. Locked data items are freed earlier, improving sys-
tem throughput. In addition, undoing duplicate agents is
difficult and involves undoing the agent’s operations. Per-
forming the undo operation on a language level [6] requires
specific knowledge about the way applications handle roll-
backs. To our understanding, [6] assumes standard inter-
faces for rollbacks and undo operations. In contrary, we
leave the undo operation to the application, which has the
best knowledge about the services it is using and their way

to handle rollbacks.
To the best of our knowledge, our approach is the first to

propose a platform-independent architecture, the so-called
agent-dependent approach (see Section 3.2). The work of
[2, 5, 6, 9, 10] all use a place-dependent approach. As their
approaches for fault-tolerant mobile agent execution are in-
herently different from ours, the place-dependent architec-
ture may be better suited for them. Indeed, Mohindra [6],
for instance, defines a new scripting language, with fault
tolerance tightly integrated into language constructs. The
TRB approach of [10] also seems to benefit from a place-
based approach. Indeed, a failure causes the previous place
to send the agent to another place to circumvent the failed
place. It is difficult, even though probably not impossible,
to achieve the same behavior with an agent-dependent ap-
proach. Nevertheless, contrary to our agent-dependent ap-
proach, the place-dependent approach has the major draw-
back to require modification to the existing mobile agent
platform.

7 Conclusion and Future Work
In this paper we have presented FATOMAS, a Java-based

fault-tolerant mobile agent system. Contrary to [6, 10]
we use a spatial-replication-based (SRB) approach to fault-
tolerant mobile agent execution. Our paper presents the first
detailed evaluation of such a SRB approach, as [2, 5, 9] do
not give any performance results.

We have also introduced a novel architectural approach
for fault-tolerant mobile agents: the agent-dependent ap-
proach. Instead of integrating the fault tolerance mecha-
nisms into the mobile agent platform, the fault tolerance
mechanisms travel with the mobile agent. This has the im-
portant advantage that existing mobile agent platforms do
not need to be modified. Indeed, our framework builds en-
tirely on top of ObjectSpace’s Voyager mobile agent plat-
form. Therefore, mobile agents can even travel to places
that do not support fault tolerance. We think that these
advantages outweight the performance penalty FATOMAS
pays compared to the place-dependent approach.

Our results show the costs of fault tolerance compared
to a single, non-replicated, agent. These costs depend on
the number of stages as well as on the size of the agent.
Increasing the size of the agent and the number of stages
also increases the execution time for a mobile agent. These
costs are reasonable considering the guarantees FATOMAS
provides: non-blocking and exactly-once mobile agent exe-
cution. Finally, we have presented the pipelined mode and
the agent forwarding optimization, that allow to alleviate
these costs to a certain extent.

In the future, we plan (1) to port FATOMAS to other mo-
bile agent platforms to further validate our architecture and
(2) to improve the performance of FATOMAS. To achieve
the latter, we plan to investigate the efficiency of other com-

munication packages. As a large part of the overhead is
caused by an increased number of communication messages
(see Section 5), the efficiency of the communication pack-
age is instrumental to the performance of FATOMAS. Fi-
nally, we want to study the effect of remote class loading on
the performance of our system.

References
[1] T. Chandra and S. Toueg. Unreliable failure detectors for

reliable distributed systems. J ACM, 43(2):225–267, Mar.
1996.

[2] F. de Assis Silva and R. Popescu-Zeletin. An approach for
providing mobile agent fault tolerance. In K. Rothermel and
F. Hohl, editors, Proc. of the Second International Workshop
on Mobile Agents (MA), LNCS 1477, pages 14–25. Springer
Verlag, Sept. 1998.

[3] X. Défago, A. Schiper, and N. Sergent. Semi-passive repli-
cation. In Proc. of the 17th IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 43–50, West Lafayette,
IN, Oct. 1998.

[4] M. Fischer, N. Lynch, and M. Paterson. Impossibility of
distributed consensus with one faulty process. In Proc. of
the Second ACM SIGACT-SIGMOD Symposium on Princi-
ples of Database Systems, pages 1–7, Atlanta, Georgia, Mar.
1983.

[5] D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen, and
D. Zagorodnov. NAP: Practical fault-tolerance for itinerant
computations. In Proc. of the 19th IEEE International Con-
ference on Distributed Computing Systems (ICDCS), Austin,
Texas, June 1999.

[6] A. Mohindra, A. Purakayastha, and P. Thati. Exploiting non-
determinism for reliability of mobile agent systems. In Proc.
of the International Conference on Dependable Systems and
Networks, pages 144–153, New York, June 2000.

[7] ObjectSpace. Voyager: ORB 3.1 Developer Guide, 1999.
http://www.objectspace.com/products.

[8] S. Pleisch and A. Schiper. Modeling fault-tolerant mobile
agent execution as a sequence of agreement problems. In
Proc. of the 19th IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 11–20, Nuremberg, Germany, Oct.
2000.

[9] K. Rothermel and M. Strasser. A fault-tolerant protocol for
providing the exactly-once property of mobile agents. In
Proc. of the 17th IEEE Symposium on Reliable Distributed
Systems (SRDS), pages 100–108, West Lafayette, Indiana,
Oct. 1998.

[10] L. Silva, V. Batista, and J. Silva. Fault-tolerant execution
of mobile agents. In Proc. of the International Conference
on Dependable Systems and Networks, pages 135–143, New
York, June 2000.

[11] M. Strasser, K. Rothermel, and C. Maihöfer. Providing
reliable agents for electronic commerce. In W. Lamers-
dorf and M. Merz, editors, Proc. of the Int. Conference
on Trends in Distributed Systems for Electronic Commerce
(TREC), LNCS 1402, pages 241–253, Hamburg, Germany,
June 1998. Springer Verlag.

