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1 Introduction
Mobile agents are computer programs that act au-

tonomously on behalf of a user and travel through a network
of heterogeneous machines. On each machine�, a place
�� �� � � � �� provides the logical execution environment
for the agent at stage�� of the agent execution. Agent�� at
the corresponding stage�� represents the agent� that has
executed the stage actions��� on places�� �� � �� and is
about to execute on place�� (Fig. 1).

To enable mobile agent technology for e-business, trans-
action support needs to be provided, in particular execution
atomicity. Execution atomicity ensures that either all op-
erations of the agent succeed, or none at all, and needs to
be ensured also in the face ofinfrastructure failures (i.e.,
crash failures of agents, places, and machines). Note that
a crashing machine leads to the crash of all places and all
agents running on it, and a failure of a place also crashes the
agents running on this place [3]. Indeed, any component
in a system is subject to failures. In this context, we dis-
tinguish betweenblocking and non-blocking solutions for
transactional mobile agents, i.e., mobile agents, that exe-
cute as a transaction. Blocking occurs, if the failure of a
single component prevents the agent from continuing its ex-
ecution. In contrast, the non-blocking property ensures that
the mobile agent execution can make progress any time, de-
spite of failures. While other approaches [5] block if the
place running the mobile agent fails, the approach presented
in this paper is non-blocking. A non-blocking transactional
mobile agent execution has the important advantage, that
it can make progress despite failures. In a blocking agent
execution, progress is only possible when the failed com-
ponent has recovered. Until then, the acquired locks cannot
be freed (unless compensating transactions are assumed as
in [1]). As no other transactional mobile agents can acquire
the lock, overall system throughput is dramatically reduced.

2 The Problem of Execution Atomicity
An atomic mobile agent execution ensures that either all

stage operations succeed or none at all. Assume, for in-

stance, a mobile agent that books a flight to New York,
books a hotel room there, and rents a car. Clearly, the use
of the hotel room and the car in New York is limited if no
flight to New York is available any more. In this case, we
speak of asemantic failure. More generally, a semantic fail-
ure occurs if a requested service is not delivered because of
the application logic or because the process providing this
requested service has failed. On the other hand, the flight
is not of great use if neither a hotel room nor a rental car is
available. This example illustrates that either all three oper-
ations (i.e., flight ticket purchase, hotel room booking, and
car rental) need to succeed or none at all, i.e., the operations
have to be executedatomically.
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Figure 1. Successful transactional mobile
agent execution 	�.

To achieve execution atomicity in a transactional mobile
agent execution	�, place�� only forwards agent�� to the
place���� at stage���� if the execution of�� has been
successful (Fig. 1, with� � �). At stage����, the suc-
cessful execution of���� triggers a commit to all places
�� �� � � � � � ��. Consequently, only place���� can
decide to commit	�. However, every place�� can decide
to unilaterally abort	�, when it is executing��. Terminat-
ing 	� already at stage���� instead of�� prevents block-
ing due to disconnections of mobile devices (i.e., place��).
The agent�� is then kept at place���� until �� reconnects
and is able to collect the result.

Infrastructure failures may lead to blocking or to a vi-
olation of the atomic execution of the transactional mo-
bile agent. Assume that place�� fails while executing��
(Fig. 1). In an asynchronous system, where no bounds on
communication delays nor on relative processor speed ex-
ist, �� and�� are left with the uncertainty of whether�� has
actually failed or is just slow. In addition, it is impossible



for �� and�� to detect the exact point where�� failed in its
execution. More specifically, they cannot detect whether��
has succeeded in forwarding the agent to the next stage or
not. If �� has failed before forwarding��, the agent execu-
tion is blocked. To prevent blocking, another place such as
�� could monitor place��. If it detects the failure of��, it
could then abort	�. However, unreliable failure detection
potentially leads to a violation of the atomicity property. In-
deed, assume that�� detects the failure of��. Place�� thus
assumes the responsibility for the decision and decides to
abort transaction	�. However, because of unreliable failure
detection,�� may erroneously suspect��. Actually, even
if �� has failed, it may have succeeded in forwarding the
agent to��, resulting in potentially conflicting decisions on
the outcome of the transaction. Indeed, while�� decides
to abort the transaction,�� may decide to commit	�. This
conflicting outcome clearly violates the atomic execution
property of the transaction’s operations, as certain opera-
tions are aborted (i.e., on��), whereas others are committed
(on��) or may be committed later (on��).

3 Non-Blocking Transactional Mobile
Agents

The approach we advocate adapts earlier work on fault-
tolerant mobile agent execution [3] to provide non-blocking
to the transactional mobile agents. Instead of sending the
agent from one place to the other, it is sent to the set� � of
places��� at stage��. This redundancy enables the mobile
agent execution to proceed despite infrastructure failures,
i.e., prevents blocking. As we do not assume reliable fail-
ure detection, redundant agents potentially lead to multiple
executions of the agent code. The solution presented in [3]
consists, for all agent replicas at stage��, to agree on (1)
the place������ that has executed the agent, (2) the result-
ing agent����, and (3) the set of places of the next stage
����. In the context of fault-tolerant mobile agent execu-
tion, (1), (2), and (3) are important to prevent multiple exe-
cutions of the agent, i.e., ensure the exactly-once property.
All the places that have potentially started executing� �, ex-
cept������ , abort. Only������ commits the modifications
of �� (Fig. 2). In fault-tolerant mobile agent execution,� �
decides unilaterally which subtransaction to commit. More
specifically, the decision is taken independently of the par-
ent transaction, as no such transaction exists.

To achieve non-blocking atomic commitment, the mod-
ifications of �� on the primary������ �� �

����
��� (i.e., the

subtransactionsa����� ) are not immediately committed after
the stage execution. In other words, stage actionsa����

� ��

sa������� cannot unilaterally decide commit. This is funda-
mentally different from the fault-tolerant mobile agent exe-
cution approach in [3]. The decision to commit rather de-
pends on the outcome of the transaction	�.

To terminate a pending transactional mobile agent execu-
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Figure 2. Non-blocking transactional mobile
agent with crash of ���.

tion such as	�, each primary place runs astationary (i.e.,
not mobile)stage action termination (SAT) agent. During
its execution, agent� maintains a list of all the SAT agents
that it needs to contact in order to commit or abort the trans-
action. At every primary place������ ready to commit, a
new entry is appended to this list. As soon as the outcome
of 	� is clear, all SAT agents in the list are notified of this
outcome. It is important that this message eventually arrives
at all destination (i.e., the SAT agents participating in	�).
Indeed, a destination SAT agent that does not receive the de-
cision message does not learn the outcome of the transaction
	� and still retains all locks on the data items. Hence, the
decision message is distributed using a reliable broadcast
mechanism that ensures the eventual arrival of the message
at all destinations.

The other ACID properties of a transactional mobile
agent execution (i.e., consistency, isolation, and durability)
are enforced using standard approaches [2], as well as for
deadlock resolution, where we apply the timeout-based ap-
proach.

We have implemented a prototype system and evaluated
its performance. The interested reader is referred to [4] for
more details.
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