Failure Detection Sequencers:
Necessary and Sufficient Information about
Failures to Solve Predicate Detection

Felix C. Géartner! and Stefan Pleisch?

! Department of Computer Science, Darmstadt University of Technology,
D-64283 Darmstadt, Germany, felix@informatik.tu-darmstadt.de
2 IBM Research, Zurich Research Laboratory
CH-8803 Riischlikon, Switzerland, spl@zurich.ibm.com

Abstract. This paper investigates the amount of information about fail-
ures needed to solve the predicate detection problem in asynchronous
systems with crash failures. In particular, we show that predicate de-
tection cannot be solved with traditional failure detectors, which are
only functions of failures. In analogy to the definition of failure detec-
tors, we define a failure detection sequencer, which can be regarded as
a generalization of a failure detector. More specifically, our failure de-
tection sequencer X outputs information about failures and about the
final state of the crashed process. We show that X' is necessary and suf-
ficient to solve predicate detection. Moreover, ¥ can be implemented
in synchronous systems. Finally, we relate sequencers to perfect failure
detectors and characterize the amount of knowledge about failures they
additionally offer.

1 Introduction

Predicate detection in distributed settings is a well-understood problem and
many techniques together with their detection semantics have been proposed [6].
Most of these techniques address predicate detection with the assumption that
no faults occur in the system. However, it is desirable to also detect predicates
which refer to the operational state of processes, e.g., predicates such as “x; =
1A crashed;”, where crashed; is a predicate that is true iff (if and only if) process
p; has crashed. Since z; = 1 might indicate the presence of a lock, the given
predicate can be used to formalize special conditions such as “process p; crashed
while holding a lock”, which is useful in the context of databases.

In the context of crash failures and the consensus problem, failure detec-
tors have been devised to provide information about failures [3], but they offer
“solely” information about failures. To detect general predicates such as the ex-
ample predicate above, failure detection information needs to be combined with
additional information about the internal state of a process. Indeed, while a fail-
ure detector may capture the predicate crashed;, it gives no information about
the value of z;.

Ideally, a predicate detection algorithm never erroneously detects a predicate
and does not miss any occurrence of the predicate in the underlying computation.
As shown in [10], the quality of predicate detection critically depends on the



quality of failure detection. This explains why work in [8, 16, 18] puts a restriction
on the type of detectable predicates, or [9] weakens the semantics of predicate
detection.

In previous work [10], we have investigated predicate detection in an asyn-
chronous system with crash failures and found that it is impossible to solve
predicate detection even with a very strong failure detector, the perfect failure
detector [3]. In this paper, we show that predicate detection cannot be solved
with any failure detector (as defined in [3]), no matter how strong it is. For exam-
ple, consider a “real-time perfect” failure detector which makes no mistakes and
flags the occurrence of a crash immediately. Even this failure detector is insuffi-
cient to solve predicate detection. The reason for this impossibility is that failure
detectors are only functions of failures. Our proof is a generalization of previous
impossibility proofs by the present authors [10] and by Charron-Bost, Guerraoui
and Schiper [5]. We attempt to remedy the unpleasant situation caused by the
result and (in analogy to the definition of failure detectors) define a failure de-
tection sequencer. A failure detection sequencer is a generalization of a failure
detector in that it conveys information that is a function of the failures and the
current history of the system which is under observation. To solve predicate de-
tection, we define a particular failure detection sequencer class X', that only gives
one additional piece of information: for every crashed process it gives the latest
state of the process before this one crashes. We show that X is necessary and
sufficient to solve predicate detection and consequently is the “weakest failure
detection sequencer” to solve predicate detection.

Although X is in a sense “stronger” than a perfect failure detector, it is still
possible to implement X' in synchronous systems. Moreover, we argue that using
X it is possible to implement a synchronizer for asynchronous crash-affected
systems which makes these systems equivalent to purely synchronous systems
in terms of the solvability of time-free [5] problems. We finally argue that while
perfect failure detectors can be viewed as capturing the synchrony of processes,
failure detection sequencers in addition also capture the synchrony of communi-
cation.

After presenting the system model and defining the problem of predicate
detection in Sections 2 and 3, we present our contributions in the following order:
First, we show that it is impossible to achieve predicate detection with any failure
detector in the sense of Chandra and Toueg [3] in Section 4. Section 5 introduces
the failure detection sequencer abstraction and shows that a particular sequencer
X is equivalent to predicate detection. In Section 6, we show how to implement
X and then discuss the strength of X in Section 7. Finally, Section 8 concludes
the paper. For the full proofs, the reader is referred to [11].

2 Model

We consider an asynchronous distributed system in which processes communi-
cate via message passing. This means that no bounds on message transmission
time nor on relative process speeds exist. Message delivery is reliable, i.e., a sent



message is eventually delivered, no spurious messages are delivered, and mes-
sages are not altered. Processes can fail by crashing, i.e., they simply stop to
execute steps. Crashed processes do not recover any more. Processes which do
not crash are called correct.

2.1 Distributed Computations

A distributed system, called the application system, consists of a finite set IT of
n processes pi,ps,---,pn (called application processes). Each process p; has a
local state s; (defined by the values assigned to its local variables) and performs
atomic state transitions according to a local algorithm A. Such a state transition
is also called an event. Sending and receiving a message also results in a state
change. If a process p; sends a message in state s; which is received by process
p; resulting in state s;, we say that s; and s; correspond.

We define a relation of potential causality (denoted “—”) [2] on local states
as the transitive closure of the following two relations:

— s — s’ if s and s’ happen on the same process and s happens before s’.
— s — s’ if s and s’ happen on different processes and s and s’ correspond.

A local history of p; is an (infinite) sequence sy, so, ... of states. A distributed
computation is defined as a set of local histories, one for every process. A global
state of the computation is a vector G = (s1, 82, - . -, s,) of local states, one for
each process. Each local state identifies a point in the local history of a process
and thus is equivalent to the set of all local states the process went through to
reach its “current” local state. A global state G is consistent if the union of these
sets (of all local states in G) is left-closed with respect to —, i.e., if a state s
is in this set and s’ — s, then s’ must also be in this set. The set of all global
states of a computation together with — define a lattice [14].

We assume the existence of a discrete global clock. Processes do not have
access to this global clock; it is merely a fictional device to simplify presentation.
Let 7 denote the range of output values of the global clock. For simplicity we
think of 7 to be the set of natural numbers.

2.2 Failure Detectors

A failure detector is a device that can be queried at any time ¢ € 7 and outputs
the set of processes that it suspects to have crashed at time ¢.

We adopt the formal definitions of failure detectors by Chandra and Toueg
[3]. A failure pattern F' is a mapping from 7T to the powerset of IT. The value of
F(t) specifies the set of application processes that have crashed until time ¢ € 7.
We define crashed(F') = |J,o+ F(t) and correct(F') = II \ crashed(F). A failure
detector history H is a mapping from IT x T to the powerset of IT. The value of
H(p,t) denotes the return value of the failure detector module for process p at
time t, i.e., if p queries the failure detector at time ¢, H(p,t) contains the set of
processes suspected at that time.



A failure detector D maps a failure pattern F' to a set of failure detector
histories. The set of histories returned by the failure detector satisfy certain
accuracy and completeness properties. A perfect failure detector satisfies strong
accuracy and strong completeness:

— Strong accuracy: no process is suspected before it crashes. Formally:
VFVH € D(F)Vt € TNp,q e I\ F(t).p € H(q,t)

— Strong completeness: a crashed process is eventually permanently suspected
by every correct process. Formally:

VFNH € D(F).3t € T Vp € crashed(F).Nq € correct(F).Nt' > t.p € H(q,t")

The set of all perfect failure detectors is denoted by P. In the following, we will
sometimes use the symbol P as a shorthand for any failure detector from P.

2.3 Runs and Steps

Chandra and Toueg [3] define a computation (which they call a run) to be a tuple
R=(F,D,1,5,T), where S is a sequence of algorithm steps and T is a sequence
of increasing time values when these steps are taken. Steps are defined with
respect to an algorithm which in turn is a collection of deterministic automata.
We define a run in a slightly different but equivalent manner. Instead of S and
T we use two functions: a step function Ss from T to the set of all algorithm
steps, and a process function S, from 7 to II. Briefly spoken, S,(t) denotes the
process which takes a step at time ¢ and S (¢) identifies the step which was taken.
Without loss of generality, we assume that at any instance of time at most one
process takes a step. If no process takes a step at time ¢, both functions evaluate
to L. A computation then is a tuple R = (F,D, I, S, Sp).

In predicate detection, which is defined in the following section, we wish
to detect whether a predicate holds on the state of processes. We assume that
the state resulting from an algorithm step contains enough information to infer
the validity of the predicate. For instance, a predicate referring to the number
of events that have occurred in the system requires that an event counter is
part of the local state. In general, the state must allow to infer the events that
have happened and are of interest for the predicate. We assume that there is at
least a correspondence between the most recent step of a process and the state
resulting from executing that step. In this paper, we use the terms state and
step interchangeably.

3 Predicate Detection

To detect predicates in the application system (see Section 2.1), the application
system is extended with a set @ of m monitor processes by, ...,b,. The sets IT
and @ together form the observation system.



While application processes may crash we assume, for simplicity, that monitor
processes do not'. Crashes of application processes do not change the local state
of the process[9]. However, the operational state of a process p; is modeled by
a virtual boolean variable crashed; on every monitor. The global state of the
system together with the vector of crashed variables defines the extended global
state of the system.

The task of the monitor processes is to observe the application processes and
invoke a special primitive detected if the state of the system satisfies a certain
predicate. A predicate ¢ is a boolean function on the extended global state of
the application system. For example, the predicate z; = 2 A crashed; is true in
a global state if the variable z; of p; equals 2 and p; has crashed. We say that ¢
holds in a computation c iff there exists a consistent global state in ¢ such that
¢ is true in that state.

In our version of predicate detection, monitors can observe multiple predi-
cates simultaneously. More specifically, the predicate detection algorithm main-
tains a set S of currently active predicates. A special primitive fork(¢) can be
used to add a predicate ¢ to this set. Whenever some ¢ € S is found to hold in
the computation, the predicate detection algorithm indicates this by pointing to
¢, i.e., by calling detected(¢). Formally, detecting any ¢ € S corresponds to de-
tecting the disjunction of all such ¢. This formulation of predicate detection has
the important advantage of allowing us to increase the set of observed predicates
at runtime. In other words, it does not matter when a predicate ¢ is added to S.
Even if ¢ held “early” in the computation and fork(¢) is invoked very late (e.g.,
after hours), then still the algorithm must eventually invoke detected () 2. In this
sense, our predicate detection concept is adaptive and thus slightly more gen-
eral than other definitions of predicate detection (e.g., perfect predicate detection
[10]). This is reflected in the following definition:

Definition 1 (predicate detection). A predicate detection algorithm is a dis-
tributed algorithm running on the observation system with an input operation
fork() and an output operation detected(). Using fork(¢) a new predicate can be
added to an initially empty set S of predicates. The algorithm must satisfy the
following properties:

— (Safety) If a monitor invokes detected(¢) then ¢ holds in the computation
and p € S.

— (Liveness) If ¢ € S and ¢ holds in the computation, then eventually a mon-
itor must invoke detected(p).

Our definition of predicate detection makes no reference to a specific imple-
mentation. Generally, one expects application processes to use causal broadcast
[2] to consistently disseminate information about every local state change to all

1 Our results remain valid even if some monitors fail. The possibility results in Sect. 5
merely require that at least one monitor is correct.

2 Later in Section 5.2 we show how this property can be implemented in asynchronous
systems.



monitor processes. But this is not required by the specification. Furthermore,
there is no indication how monitors keep track of the changes of crashed values
of processes, i.e., we do not postulate the existence of a special type of failure
detector in the specification. However, failure detection can be considered a spe-
cial case of predicate detection on the extended state space where the predicate
to be detected consists only of the crashed variables of processes. This highlights
the close relationship between failure detection and predicate detection which is
studied in the following sections.

Note that the meaning of “¢ holds in the computation” corresponds to the
detection modality possibly(¢) [7,13]. Detecting possibly(¢) involves construct-
ing the entire computation lattice in the general case. The lattice represents all
possible observations; hence, an observation is a path through the lattice. For
simplicity we restrict our attention to observer-independent predicates [4]. For
these types of predicates it is sufficient to construct a single observation, i.e.,
a single path through the lattice, to check whether ¢ holds in the observation.
For example, stable predicates are observer-independent (a predicate is stable
iff once it holds it holds forever). However, not all observer independent predi-
cates are stable. For example, predicates which are local to a single process are
observer-independent but may not be stable.

4 TImpossibility of Predicate Detection in a Faulty
Environment using Failure Detectors

In this section we show that predicate detection cannot be solved with any failure
detector in the sense of Chandra and Toueg [3]. This is because failure detec-
tors are “functions of failures”, i.e., the failure detector D is a function which
maps a failure pattern F' to some element of an arbitrary range G. The proof
is based on the assumption that apart from using failure detectors and (asyn-
chronous) messages, no information can flow between processes. Messages sent
by application processes to monitor processes for the sake of predicate detec-
tion are called control messages. The impossibility holds even if we assume that
state changes on the application processes and the broadcast of control messages
happen atomically.

Theorem 1. It is impossible to solve predicate detection with any failure detec-
tor D.

Proof. The proof is by contradiction and thus assumes that there exists an al-
gorithm A which solves predicate detection using some failure detector D. Now
consider a run Ry = (F,D(F),I,S;,S,) in which p crashes without executing
a single step and consider A detecting the predicate ¢ ="p crashed in initial
state”. Since A solves predicate detection, A will eventually detect ¢ (e.g., at
time #;). Now consider a run Ry with the same failure pattern F, but different
Ss and S, where p executes a step s; before it crashes. Since A is correct and
¢ never holds, A will never detect ¢. Since we assume that the only means of
communication are control messages, A must receive the message m about the



occurrence of s; in Ry before t1. If it would receive m later, A must act like in Ry
since it has no means to distinguish R; and R» (not even the failure detector can
help here). But postulating that m is received before t; violates the asynchrony
of communication, a contradiction.

In the next section we consider a way of circumventing the impossibility by
extending the concept of a failure detector to a component which we call a failure
detection sequencer.

5 Failure Detection Sequencers

The failure detector abstraction was introduced by Chandra and Toueg [3] to
characterize different system models with respect to the solvability of problems
in fault-tolerant computing. We take a similar approach and devise an oracle that
encodes enough information to solve predicate detection in asynchronous systems
with process crashes. As shown in the previous section, information about failures
alone is not sufficient. Hence, our oracle also needs to provide information about
the state of the process at the moment this process has crashed.

5.1 Definition

We now define a failure detection sequencer X', which consists of a set of passive
modules, one for each monitor process. The sequencer can be queried by the
monitor and returns an array of size n. The value at index i of the array is
either L or contains a predicate ¢ on the local state of process p;. Informally
spoken, the latter means that p; has crashed and that its final state satisfied
. The predicate ¢ may have different forms, e.g., indicate a unique sequence
number of the step last performed by p;. Let A denote the set of all possible
array values, i.e., combinations of | and local predicates, which can be returned
by X. Formally, X' is defined as follows:

A sequencer history Hyx is a mapping from & x T to A. The value of
Hyx(m,t) indicates the return value of X' at monitor b if it is queried at time
t. If Hy;(m,t)[i] = s, then b suspects p; at time ¢ to be in s (s #L1). A failure
detection sequencer X maps a failure pattern F, a step function S and a process
function S, to a set of sequencer histories.

Given a time t, the most recent step of a process p; can be determined by
inspecting S, and Sj. If p; has not executed any step, then the most recent step
is denoted by e. Formally, the most recent step (mrs) of p; at t given Ss and S,
is s iff
mrs(pi,t,Ss, Sp) : I < .(Ss(t') = )A(S,(t) = pi) A(VE" .t <" < t.S,(t") # pi)

We require that the set of all possible sequencer histories Hy satisfies the
following two properties:

— (Accuracy) No process is incorrectly suspected to be in state s. Formally:

VYm.p; Vt.Hy (m,t)[i] = s #L=p; € F(t) A (s = mrs(pi,t,Ss, Sp))



— (Completeness) If p crashes, then eventually every monitor will permanently
suspect p to be in some state. Formally:

Vm.p;Vt.p € F(t) = ' > tVt" > t' . Hx(m,t")[i] #L

Since the accuracy requirement has a conjunction in the consequent, it is
possible to separate it into a step accuracy part and a crash accuracy part.
Crash accuracy corresponds to strong accuracy of Chandra and Toueg [3] (“no
process is suspected before it crashes”), while step accuracy would mean that a
non-_L sequencer output for process p; at time ¢ always equals the state which p;
is in at the same moment (i.e., at time t). Clearly, this property has only trivial
solutions (i.e., a solution which always outputs L) since asynchronous message
passing does not allow instantaneous message delivery. However, the combination
of step accuracy and crash accuracy makes sense again since crashes “freeze” the
state of a process so that there is no danger of state change once the sequencer
has suspected that process.

We have called the new device a “sequencer” because it allows to implement
causal order on failure detection events. Indeed, using X' it is possible to infer
the state of a process at the moment it is suspected. This means that it is
possible to know how many control messages are in transit. Hence, the “delivery”
of the suspicion can be delayed until all causally preceding events have been
delivered; X' can be used to “sequence” crash notifications, as shown in the
following section.

5.2 Equivalence to Predicate Detection

Now we investigate the power of failure detection sequencers and show that
they are sufficient and necessary to solve predicate detection. First we consider
sufficiency.

The idea of implementing predicate detection using X is to embed crash
events consistently into the causal order — of events in a computation. For
this purpose, the algorithm shown in Figure 1 uses causal broadcast [2] (using
primitives c-bcast and c-deliver) to disseminate information about state changes
to all monitors and to withhold issuing the crash occurrence when Y suspects p;
after some state s until the state of p; has indeed reached state s. This is done
using a vector def_crash[i] (for “deferred crash”).

The adaptiveness (i.e., the ability to “restart” predicate detection via fork)
of predicate detection is implemented by using a variable history, which stores
the sequence of global states. Whenever a new predicate ¢ is issued using the
fork command, the entire history is checked whether or not ¢ held in the past.

Theorem 2. Predicate detection can be solved using X .

Proof. Proving the safety property of predicate detection requires to show that
every state constructed by the algorithm in Figure 1 is a consistent global state
over the extended state space of the application. Similarly, the liveness property
can be proven by showing that once ¢ holds in the application, eventually every



monitor will construct a corresponding global state (this is where the complete-
ness property of X' is needed).

We now show that X' is necessary to solve predicate detection. To do this we
assume the existence of an abstract algorithm PD that solves predicate detection
on a given computation. Then we give an algorithm that emulates the output
vector of X using PD.

Similar to the predicate detection algorithm in Figure 1 we instruct applica-
tion processes to send a control message to all monitors if a local event happens.
These control messages are used to fork an increasing number of instances of
PD. Initially, a single instance for the predicate “p; crashed in initial state” is
started for every process p;. When the first control message (i, s) arrives, a new
instance is forked for the predicate “p; crashed in state s”. This is done whenever
a new control message arrives.

The output vector which simulates the output of X is initialized with L values
and only changed, if one of the instances of predicate detection terminates by
issuing detected(¢). This indicates that a process crashed in some state. The
algorithm reflects this by changing the corresponding entry in output. The change
is permanent since the state in which a process crashes does not change anymore.

Theorem 3. If predicate detection is solvable, then X can be implemented.

Proof. The accuracy property of X follows directly from the safety property
of the predicate detection algorithm. Exploiting the adaptiveness of predicate
detection allows us to show the completeness property of X

It is interesting to study the role of adaptiveness in the proof of Theorem 3.
For example, consider a definition of predicate detection without adaptiveness,
i.e., it is merely possible to start instances of PD at the beginning of the com-
putation. Not knowing the way in which the computation will proceed, it is
necessary to invoke an instance of predicate detection for every state a process
may reach. Hence, non-adaptive predicate detection can be used to implement
X7 as long as the state space of a process is finite. Adaptiveness allows to invoke
instances of predicate detection “on demand”. This means that — given infinite
state space — while there is no bound on the number of calls to fork, the number
of concurrent instances of predicate detection is always finite.

The following theorem is an immediate consequence of Theorems 2 and 3.
It can be rephrased as showing that X is the “weakest failure detector” for
solving predicate detection. The quotation marks are important, because from
Theorem 1 we know that we should not call X' a failure detector.

Theorem 4. Solving predicate detection is equivalent to implementing X.

6 Implementing ¥

The sequencer Y is a rather strong device and its strength makes it a highly
desirable tool in crash-affected systems. Hence, the question naturally arises on



1 On every application process p;:

2 (whenever a state change from s to s’ happens) do

3 c-beast (i,s) to all monitors

2 On every monitor process b;:

5 variables:

6 state[1l..n] of (local state information) init (initial states of processes)
7 crashed[1..n] of boolean init false

8 def_crashed[1..n] of {1} U (local state information)

9 history sequence of ((state, crashed)) init (initial state)
10 S set of (global predicates) init ()

1 algorithm:

12 do forever

13 case (next event) of {* three cases possible *}
1 case 1: ((4, s) is c-delivered)

15 state[i] := s

16 history := history - (state, crashed)

i if 3¢ € S.¢(state, crashed) then detected (¢) endif

18 if def_crash[i] = state[i] then

19 crashed[i] :== true

20 history := history - (state, crashed)

2 if 3¢ € S.¢(state, crashed) then detected($) endif
2 endif

2 case 2: (X suspects p; in s)

24 if state[i] = s then

2 crashed[i] :== true

2 history := history - (state, crashed)

2 if 3¢ € S.¢(state, crashed) then detected($) endif
2 else {* state[i] # s *}

2 def-crash[i] := s

30 endif

31 case 3: (fork(¢) is called)

32 S:=SU{¢}

3 if ds € history.¢(si) then detected (p) endif

e end {* case *}

3 end {* do forever *}

Fig. 1. Solving predicate detection using Y. The primitives c-bcast and c-deliver denote
causal broadcast and causal message delivery, respectively. The operator - denotes
concatenation of sequences. Furthermore, the choice of the case statement is supposed
to happen in a fair manner (e.g., event handling is performed using first-come first-
serve).



1 On every application process p;:

2 (whenever a state change (s, s’) happens) do

3 c-beast (i,s) to all monitors

4 On every monitor process b;:

5 variables:

6 output[1l..n] of {L} U (process state information) initially L
7 algorithm:

8 for all i € {1,...,n} do begin

9 fork(“p; crashed in initial state”) end

10 do forever

i (wait until (i, s) is c-delivered or detected () is invoked)
12 if ((4,s) was c-delivered) then

13 fork(“p; crashed in state s”)

1 elsif (detected (¢) was called) then

15 {* ¢ is “p; crashed in s” *}

16 output[i] := s

17 endif

18 end {* do forever *}

Fig. 2. Emulating ¥ using a predicate detection algorithm. State changes and send-
ing control messages on application processes is assumed to happen atomically. Event
handling in line 11 is again performed in a fair manner, e.g., using first-come first-serve.

how to implement X in “real” systems. First, consider synchronous systems,
i.e., systems where bounds on message delivery delays and relative processing
speeds exist. In synchronous systems, X' can easily be implemented, for instance,
by the algorithm in Figure 3. This algorithm is a variant of the algorithm for
implementing a perfect failure detector in synchronous systems presented by Tel
[15]. With every local step, process p; decrements a special timer variable r,
one for every remote process. Upon message reception from process p; (j # i),
the timer is reset to the in-ital value §, which is computed from the maximum
message delivery delay and the difference in relative processing speed. If p; fails
to receive a message from p; before the timer elapses, then p; is suspected by
bi-

To see that the algorithm indeed implements Y, we need to show that it
satisfies the accuracy and completeness properties given in Section 5.1. The
proof of the completeness property is the same as for perfect failure detectors.
To see that the accuracy property is satisfied, consider the sequence of “alive”
messages received by Y. As these messages are sent and arrive in FIFO order?,
the failure detector also receives the correct sequence of state information. If p;
crashes, the final message received by p; (i # j) is also the final message which
was sent by p;. This implies that the state information given in that message is
a true indication of the most recent step performed by p;.

3 FIFO broadcasts are implementable in synchronous systems, as they can even be
implemented in asynchronous systems [12].



1 On every process pj:
2 with (every step) FIFOsend “alive in state s” to all
3 On every process p;:
4 variables:
D;[1..n] init (L,..., L) {* sequencer output *}

5

6 ri[l.m] init (§,...,d) {* timers *}

7 S;[1..n] init (initial states of p1,...,pn)

8 algorithm:

B upon FIFOreceive “alive in state s” from p; do
10 (reset timer r;[4] to d)

1 Silj] :==s

12 upon (expiry of timer r;[j]) do

" D,[j] = Silj

Fig. 3. Implementing ¥ in synchronous systems. The value § is a local timeout value
computed from the global boundary on message delivery delay and relative processing
speeds.

Theorem 5. In a synchronous system the output of the algorithm in Figure 3
satisfies the accuracy and completeness conditions of X.

Note that in general the entire state of the crashed process needs to be
delivered by the failure detection sequencer. The efficiency of the implementation
can be improved by taking into account the semantics of the predicate and the
application (e.g., by delivering only references to certain predefined states).

Now consider a system without bounds on relative process speeds but bounded
communication delays (i.e., asynchronous processes with synchronous commu-
nication). In such systems, X is implementable if any D € P is given. The
algorithm is shown in Figure 4 and is similar to the one in Figure 3. Here the
timing bound ¢ refers to the synchrony of the communication channels. Com-
pleteness is achieved through the completeness of D and the fact that the timer
eventually runs out. Accuracy is satisfied because of the accuracy of D, the FIFO
property of messages (as above), and the fact that after expiry of the timer, no
message can be in transit (bounded communication delays).

Theorem 6. In a system with asynchronous processes, synchronous communi-
cation, and any D € P, the output of the algorithm in Figure j satisfies the
accuracy and completeness conditions of X.

We discuss the relationship between perfect failure detectors and X' in more
detail in the following section.

7 Discussion

We have shown that predicate detection cannot be solved with a perfect failure
detector. However, it is solvable using failure detection sequencer Y. In a sense



8 algorithm:

0 upon FIFOreceive “alive in state s” from p; do
10 S []] =S

1 upon (D suspects p;) do

12 (reset timer r;[4] to J)

13 upon (expiry of timer r;[j]) do

1 if (D suspects p;) then

o Dilj] = Silj]

16 endif

Fig. 4. Implementing ¥ using D € P and synchronous communication (lines 1 to 7
are the same as in Figure 3). The value § is a local timeout value computed from the
global boundary on message delivery delay.

this means that X is “stronger” than a perfect failure detector. Since both ab-
stractions can be implemented in synchronous systems, a perfect failure detector
seems to “loose” some information that a sequencer retains at its interface. In
this context, two questions arise which we now discuss: (1) How can this dif-
ference in information be characterized, and (2) how much information (if any)
does a sequencer loose compared to a fully synchronous system?

Regarding question (1), it seems that the synchrony of communication is the
aspect which ¥ (in contrast to perfect failure detectors) encapsulates. Consider
for example an additional oracle A which can be queried whether or not the
communication channel to a process p; is empty. Both oracles, A and any D €
P, are incomparable, since they cannot emulate each other in asynchronous
crash-affected systems. However, using A instead of the timeout mechanism in
the algorithm of Figure 4 yields Y. Hence, knowledge about the synchrony of
communication channels is all that is needed to strengthen a perfect failure
detector to X. Conversely, this information can be regarded as being “lost” at
the interface of a perfect failure detector.

Regarding question (2), we now argue that X retains the full information
present in synchronous systems. Using X, it is possible to implement a synchro-
nizer [1] for asynchronous crash-affected systems. A synchronizer is a distributed
algorithm that allows asynchronous processes to proceed in rounds. For this, the
synchronizer generates a sequence of clock-pulses [1] at each process which sep-
arate the rounds. With every pulse, a process is allowed to send at most one
message to one of its neighbors. The synchronizer ensures that all messages sent
at the beginning of round r are received within round r. It also ensures that
every correct process (i.e., a process that does not fail) participates in infinitely
many rounds.

Since the failure detection sequencer makes it possible to identify the final
message from a crashed process, it is possible to implement such a synchronizer
just like in the fault-free case [15, p. 408]: At the beginning of round r, every
surviving process sends exactly one message m, to every other process (using
reliable broadcast [12]). The application message which the process might send



in round r is associated with this synchronizer message to form a single message.
A process p; waits until, for every other process pj, either (a) m, is received or
(b) X suspects p;. Note that in the latter case it is possible to distinguish the two
cases where p; crashed before or after sending the message m,. (This distinction
is not possible with a perfect failure detector.) Waiting for m,. is important in
order to satisfy the specification of the synchronizer, as no other way exists to
prevent application messages from round r to be received in round r+1 or later.

The pulses generated by the synchronizer resemble a form of global logical
time. Such a time is present in synchronous systems and so the synchronizer
transforms the asynchronous system into a synchronous system, with the ex-
ception of global real time. In other words, time-free applications [5] perceive
an asynchronous system augmented with X' as equally strong as a synchronous
system. Hence, X can be regarded as a form of failure detector which offers
applications full synchrony without referring to a global clock.

As Y is equivalent to a perfect failure detector which suspects a crashed
process only if there are no messages in transit from that process, one can argue
that X could be specified based on these properties. However, we feel that such a
specification makes assumptions about the implementation of failure detectors,
although most implementations will indeed be based on message reception (or
the lack thereof). Our specification, in contrast, is only based on the state of the
process and does not refer to a particular implementation.

8 Future Work

Many open issues for future work remain: For instance, can other protocols (like
those used for solving consensus) exploit the additional power of failure detection
sequencers to improve efficiency (e.g., in terms of message complexity)? Another
interesting issue is whether other (possibly weaker) classes of failure detection
sequencers are meaningful in asynchronous systems and offer more information
than failure detectors. An obvious candidate would be an “eventually accurate”
failure detection sequencer &Y. However, we conjecture that &X' is equivalent
to P with respect to the problems it allows to solve.

Acknowledgments

We wish to thank Rachid Guerraoui for his comments on an earlier version of
this paper and the anonymous reviewers for their suggestions. The first author
wishes to thank Ted Herman for many helpful discussions on the topic of failure
detection.

References

1. B. Awerbuch. Complexity of network synchronization. Journal of the ACM,
32(4):804-823, Oct. 1985.



10.

11.

12.

13.

14.

15.

16.

17.

18.

. K. Birman and T. Joseph. Reliable communication in the presence of failures.

ACM Transactions on Computer Systems, 5(1):47-76, Feb. 1995.
T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225-267, Mar. 1996.

. B. Charron-Bost, C. Delporte-Gallet, and H. Fauconnier. Local and temporal

predicates in distributed systems. ACM Transactions on Programming Languages
and Systems, 17(1):157-179, Jan. 1995.

B. Charron-Bost, R. Guerraoui, and A. Schiper. Synchronous system and perfect
failure detector: Solvability and efficiency issues. In International Conference on
Dependable Systems and Networks (IEEE Computer Society), 2000.

C. M. Chase and V. K. Garg. Detection of global predicates: Techniques and their
limitations. Distributed Computing, 11(4):191-201, 1998.

R. Cooper and K. Marzullo. Consistent detection of global predicates. ACM
SIGPLAN Notices, 26(12):167-174, Dec. 1991.

V. K. Garg and J. R. Mitchell. Distributed predicate detection in a faulty envi-
ronment. In Proceedings of the 18th IEEE International Conference on Distributed
Computing Systems (ICDCS98), 1998.

F. C. Gartner and S. Kloppenburg. Consistent detection of global predicates under
a weak fault assumption. In Proceedings of the 19th IEEE Symposium on Reliable
Distributed Systems (SRDS2000), pages 94-103, Nirnberg, Germany, Oct. 2000.
IEEE Computer Society Press.

F. C. Géartner and S. Pleisch. (Im)Possibilities of predicate detection in crash-
affected systems. In Proceedings of the 5th Workshop on Self-Stabilizing Systems
(WS52001), number 2194 in Lecture Notes in Computer Science, pages 98-113,
Lisbon, Portugal, Oct. 2001. Springer-Verlag.

F. C. Géartner and S. Pleisch. Failure detection sequencers: Necessary and sufficient
information about failures to solve predicate detection. Research Report RZ 3438,
IBM Research Laboratory, Zurich, 2002.

V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcasts
and related problems. Technical Report TR94-1425, Cornell University, Computer
Science Department, May 1994.

K. Marzullo and G. Neiger. Detection of global state predicates. In Proceedings
of the 5th International Workshop on Distributed Algorithms (WDAG91), pages
254-272, 1991.

F. Mattern. Virtual time and global states of distributed systems. In M. C. et al.,
editor, Proceedings of the International Workshop on Parallel and Distributed Al-
gorithms, pages 215-226, Chateau de Bonas, France, 1989. Elsevier Science Pub-
lishers. Reprinted on pages 123-133 in [17].

G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, second
edition, 2000.

S. Venkatesan. Reliable protocols for distributed termination detection. IEEE
Transactions on Reliability, 38(1):103-110, Apr. 1989.

Z. Yang and T. A. Marsland, editors. Global States and Time in Distributed Sys-
tems. IEEE Computer Society Press, 1994.

P. yu Li and B. McMillin. Fault-tolerant distributed deadlock detection/resolution.
In Proceedings of the 17th Annual International Computer Software and Applica-
tions Conference (COMPSAC’93), pages 224-230, Nov. 1993.



