Implementing Group Communication Protocols using SDL

Richard Ekwall1111, Stefan Pleisch, André Schiper

Ecole Polytechnique Fédérale de Lausanne, Distributed Systems Laboratory

 CH-1015 Ecublens, Switzerland

{nilsrichard.ekwall, stefan.pleisch, andre.schiper}@epfl.ch

Abstract

Group communication is a class of protocols from the distributed systems field. It aims at providing high-level abstractions for processes that wish to communicate together as a group. Group communication is instrumental to building replicated, fault-tolerant distributed applications such as replicated databases.

This paper presents the first implementation of a group communication protocol stack using the Specification and Description Language (SDL) and shows the multiple advantages of using a finite state machine oriented language such as SDL over other languages such as Java.

Keywords

Group communication, protocol stack composition, Specification and Description Language (SDL)

1 Introduction

Group communication is a class of protocols from the distributed systems field and aims at providing high-level abstractions for processes
 communicating together as a group. Such abstractions include communication primitives that ensure reliable or totally ordered message delivery to all members of a group. Group communication is instrumental to building replicated, fault-tolerant distributed applications [Guerraoui, Schiper, 1996], such as replicated databases. In a replicated service, all servers receive the requests in the same order and are therefore in the same state after a given request has been processed.

The Specification and Description Language (SDL) [SDL Forum] is a widespread language in the telecommunications industry. It is mainly used to describe communication protocols, but is well suited for any system based on finite state machines.

Over the past years, many group communication stacks (e.g., [Hayden, 1998] [Birman et al., 2000] [Moser et al., 1996] [Dolev, Malkhi, 1996] [Malloth et al., 1995]) or frameworks (e.g., Appia [Miranda et al., 2001] or Cactus [Hiltunen, Schlichting, 1998]) have been implemented, but none of them use SDL. Most of the implementations either use C/C++ or Java. In the Distributed Systems Laboratory, we have also built several implementations in C and Java. However, using SDL to implement the group communication stack, we have discovered that SDL is an ideal programming language for this purpose, for multiple reasons:

· The finite state machine model underlying SDL is very close to the way group communication protocols are generally presented and theoretically proven.

· Using signals for the communication between finite state machines directly maps the event model used in group communication. Moreover, these signals are a useful mechanism for the composition of the group communication protocols and do not require additional frameworks such as Appia and Cactus for Java. Hence, SDL greatly facilitates the composition of the group communication protocols.

· A number of language constructs (e.g., constraints on gates) are very useful and reduce to a large extent the amount of code needed, and thus the potential for bugs in the code.

Hence, SDL can become an interesting choice for implementing group communication stacks in the group communication community. In this paper, we present our implementation of a group communication stack in SDL. We show that SDL is a natural choice both to specify and to implement group communication protocols. To our knowledge, our implementation is the first in SDL.

The rest of the paper is structured as follows. Section 2 outlines the context of this work and overviews SDL. In Section 3 we give an introduction to group communication. Section 4 describes our implementation and contains the main contribution of this paper. Finally, Section 5 concludes the paper.

2 REMUNE and SDL

The Specification and Description Language (SDL) [SDL Forum] is a standard of the International Telecommunication Union (ITU). It is widely distributed in the telecommunication industry, where it is mainly used to describe communication protocols. However, it is suitable for any system based on finite state machines.

SDL can be used during the requirements phase of a project (in which case it can be compared to some aspects of a modelling language such as UML), as well as during the implementation phase. An implementation developed in SDL can be represented both in textual and graphical form, which adds to its ease of use and broadens its scope to non-technical members of a development team. The language provides a model of processes communicating by signal exchange. The processes themselves are extended finite state machines that share no common global memory. Finally, in its latest version, the SDL language has also been augmented with object oriented features. The wide acceptance of this language by the telecommunication industry comes from the features above.

Until recently, SDL could not be used in all phases of an implementation. Indeed, the tools supporting SDL provided functionalities for the initial design of a system, but fell short of providing a finalized, working system. In the final stages of development, such tools typically generated code from the SDL design in some other, lower level, more general-purpose language, such as C. The compilation, running and testing of an application were thus not performed with the native SDL design, but rather with the code generated by these tools. This of course slowed down the whole development process and also slightly reduced the utility of the SDL design, since it did not participate in the final steps of the development.

The IST/IMS REMUNE (Advanced Real-Time Multimedia and Networking Execution Platform and Development Environment) project aims at delivering tools for creating, running, and testing systems entirely in SDL [REMUNE]. For this purpose, REMUNE provides a platform that integrates this functionality. This work is performed in the context of the REMUNE project. Our group communication protocol stack is implemented on top of the REMUNE platform, using the tools provided for development, testing, and executing.

3 Group Communication

Group communication provides high-level abstractions for communication among the processes of a group. Such abstractions include reliable or totally ordered message delivery and are instrumental to build replicated, fault-tolerant distributed applications. The members of a group do not have access to shared global memory; instead, they only communicate by exchanging messages. The group itself can be either static (i.e. all member processes are known from the start, processes can fail, but no process can be added or removed from the group) or dynamic (the set of member processes, called the view, can change over time).

Group communication algorithms are often described in pseudo-code (e.g., in [Chandra, Toueg, 1996]). Usually, messages (or events) are expected for a given state of the protocol and trigger message broadcasts and state transitions. The algorithms are however not genuine finite state machines (they are usually not described as a set of states with transitions based on input), but rather procedures that handle given messages or events.

Furthermore, in group communication algorithms, the reception of a message is subject to a number of constraints. Since the processes in the system might work at different speeds and the transmission of a message can be delayed, all the processes in the system are not necessarily in the same state at a given time. Therefore, some processes might receive messages that they are not yet ready to handle. In the description of the algorithms, the set of messages that can be received is constrained, based on some timestamp that is carried by the message itself. All messages that cannot be processed in a given state are implicitly saved and used later on. Implementations of group communication protocols need to take this into consideration: messages that are received too early must be saved and garbage collection must be performed on messages that won't be used anymore. This is often non-trivial and adds to the complexity of implementing group communication stacks using general-purpose languages such as Java or frameworks based on such languages.

3.1 Group Communication Protocol Stack

The layered architecture of our group communication protocol stack is shown in Figure 1. It consists of Reliable Point-to-point, Reliable Broadcast, Consensus, and Atomic Broadcast module. Every layer of the stack is implemented by a module. These modules communicate vertically (i.e., inside a single machine) and horizontally (i.e., between corresponding modules on several machines, over the network) in order to provide their services. Figure 1 is an over-simplified view of the stack: the dependencies between the modules are not strictly hierarchical and the protocol stack is actually a protocol graph. We now present the layers of our typical protocol stack, starting at the bottom of the stack:

Reliable Point-To-Point. The reliable point-to-point module provides the abstraction of a message passing model, in which processes only communicate by sending messages. More specifically, its interface contains two methods: send(msg, destination) and deliver(msg). The first method reliably sends the message msg to destination, while the second method hands received message msg over to the upper protocol layer. Note that reliable point-to-point can be built on top of connection-oriented communication protocols such as TCP.

Reliable Broadcast. The module implementing reliable broadcast provides reliable message diffusion. It ensures that if a group member (i.e., a process) sends a message, then either all other group members that do not crash eventually receive this message, or none of them receive it. Reliable broadcast thus ensures the all-or-nothing (or atomicity) property on message delivery. A message may not be delivered to any member of the group if the sender fails.

Consensus. Consensus is a basic building block for implementing atomic broadcast and allows the group of processes to reach a common decision. In other words, all members that do not crash will eventually decide on the same value. In the context of atomic broadcast, the common value denotes the order in which messages will be delivered to the application. Consensus is built on top of reliable multicast and is a very complex protocol whose correctness has been theoretically proven [Chandra, Toueg, 1996].

Atomic Broadcast. This module ensures that all messages are delivered at all group members in the same order. Applications that atomically broadcast a message are guaranteed that all group members receive the same sequence of messages.

Recall that the protocol stack in Figure 1 is a simplified version. Indeed, the interaction between the layers is not as straightforward as what is shown; rather, the Atomic Broadcast layer, for example, depends both on Reliable Broadcast and Consensus. The global picture given below however simplifies the presentation of the implementation and focuses on the modules with the greatest complexity, which were the main beneficiaries of the capabilities offered by SDL.

 [image: image1.emf]Machine 3

Atomic Broadcast

Consensus

Reliable Broadcast

Application

(Replica 1)

Reliable

Point-to-point

G

C

P

r

o

t

o

c

o

l

S

t

a

c

k

Machine 2

Atomic Broadcast

Consensus

Reliable Broadcast

Application

(Replica 1)

Reliable

Point-to-point

G

C

P

r

o

t

o

c

o

l

S

t

a

c

k

N

e

t

w

o

r

k

Machine 1

Atomic Broadcast

Consensus

Reliable Broadcast

Application

(Replica 1)

Reliable

Point-to-point

G

C

P

r

o

t

o

c

o

l

S

t

a

c

k

Figure 1. Simplified stack of three server replicas communicating through a network. Each replica communicates using the group communication protocol stack.
4 The Group Communication Protocol Stack – Using SDL’s Hierarchical Composition Model

In this section, we first highlight the advantages of using SDL to implement group communication protocols. We then present the design and implementation of one group communication module, before explaining how the entire group communication protocol stack is composed.

4.1 Group Communication Meets SDL

Although the algorithms that implement the group communication primitives are not described as finite state machines, they are logically very close to the model used by SDL. First of all, message (or signal) passing is the only form of communication between processes. Secondly, the algorithms generally await the reception of a message and then take some actions based on the type of the received message. This can be seen as an extended finite state machine: a message (input signal) triggers a transition (with an associated set of actions that need to be executed) into another state, in which the protocol starts waiting for the next message. Moreover, the algorithms often contain tasks that execute periodically. Such tasks can be easily represented using SDL timers.

Furthermore, as seen above, the descriptions of the group communication algorithms implicitly or explicitly constrain the messages that can be received in a given state. This can be done very naturally in SDL, since constraints can be put on the parameters of the signals that are to be received. This is not possible in languages such as Java, where a signal first has to be read, and then stored somewhere to be processed later.

SDL also provides language support for saving signals, by means of the save construct. Signals that cannot be accepted in a given state can be saved for later processing, using this construct, which simply skips the signal, but keeps it in the input queue for the following states.

4.2 Specification of a Group Communication Module

We represent a layer of the group communication protocol stack with a SDL block. The block is a so-called scope unit and allows us to group together other blocks and SDL processes (finite state machines). It provides an interface that is defined by multiple gates. These gates specify a set of Signal Lists, which contain the signals that are sent or received by a given block. Each gate (together with the signals it accepts) can thus be seen as the application programming interface (API) provided by the block.

In addition to its API gate, each protocol layer specifies one or multiple gates corresponding to the services it needs (Figure 2). These gates receive all the signals the protocol expects from the other protocols it depends on. The use of multiple gates increases the modularity of the entire protocol stack. Indeed, a protocol module does not need to know which other module(s) will eventually provide the services it needs. Instead, the protocol relies only on the specification of its gates to provide its services.

[image: image2.emf]Protocol Y

Protocol X

API of Protocol Y

API of Protocol X

Signals exchanged

between the protocols

Expected Services Interface

Expected Services Interface

Expected Services Interface

Services Expected by Y

Services Expected by Y

Figure 2. Two protocol modules (implemented using SDL blocks) communicate through their interfaces. Each protocol has one or multiple interfaces for the services it expects to receive and one for the services it provides (API). The connection between both protocol modules is only established at composition time, not during the development of both blocks.

Figure 3 shows the SDL graphical representation of the atomic broadcast module, using SDL blocks, gates, and processes. The atomic broadcast layer provides an API gate, and depends on two other modules, reliable broadcast and consensus. Consequently, the atomic broadcast block type defines three gates, with a separate signal list for every one of them. All other protocol modules are implemented in a similar way.

The atomic broadcast algorithm is implemented inside the AtomicBroadcastP finite state machine. This finite state machine is connected to the gates of the Atomic Broadcast block using three gates. The GateToApplication provides the API of the atomic broadcast algorithm. An A-broadcast signal can be sent to the algorithm to request a message to be ordered by the group, and the A-deliver signal is sent to the application whenever a message has successfully been ordered.

The signals used be the atomic broadcast protocol are exchanged using the two other gates. The GateToRbcast provides an interface between atomic broadcast and reliable broadcast (which, as mentioned before, provides reliable delivery of messages, without any ordering guarantees). Messages can either be sent (R-broadcast signal) or received (R-deliver signal) by the atomic broadcast protocol through GateToRbcast.

[image: image3.emf]block Atomic

Broadcast

Atomic-

BroadcastP

ProvidedServices

RBCastServices

[A-deliver]

[A-broadcast]

[Decide]

[R-broadcast]

GateToApplication

GateToCons GateToRbcast

[R-deliver]

[Propose]

ConsensusServices

Figure 3. Graphical representation of the atomic broadcast protocol layer in SDL.

Finally, atomic broadcast uses a consensus protocol to order messages. The interaction with consensus is performed using the Propose and Decide signals sent and received through GateToCons. The implementation of consensus can easily be changed without affecting the atomic broadcast algorithm, since atomic broadcast only defines which signals it expects and needs, which is independent of the implementation of the underlying consensus. Clearly, the implementation of consensus must also satisfy the (semantic) specification of consensus.

To execute A-broadcast(m):

 R-broadcast(m) /* call to Reliable Broadcast */

A-deliver(-) occurs as follows:

 when R-deliver(m) /* call to Reliable Broadcast */

 /* … */

 when R-delivered – A-delivered ≠ Ø
 /* … */

 propose(k, initialValue); /* call to Consensus */

 /* … */

 STATE initialized;

 INPUT A-broadcast(m) VIA GateToApplication

 OUTPUT R-broadcast(m) VIA GateToRbcast

 NEXTSTATE-;

 INPUT R-deliver(m) VIA GateToRbcast

 /* … */

 DECISION R-delivered – A-delivered ≠ Ø;

 (true): /* … */

 OUTPUT propose(..) VIA GateToCons

 /* … */

 NEXTSTATE-;

ENDSTATE initialized;

Figure 4. Implementation of Atomic Broadcast module. The left column shows the simplified pseudo-code, given in [Chandra, Toueg, 1996], while the right column presents the corresponding SDL code.

As an example, Figure 4 presents the pseudo-code of atomic broadcast (left) and the corresponding specification in SDL (right). All instructions that are not relevant have been omitted.

4.3 Composing the Protocol Stack

In Section 4.2 we have presented the implementation of a group communication module. In this section, we show how these modules can be connected together to form the protocol stack.

Every module is defined as a block type and specifies a set of gates and the corresponding signals. Composing a group communication protocol stack thus involves connecting the corresponding gates of dependent group communication modules together. In other words, the gates of the module that expects a particular service have to be connected to the gates of a module that provides this service.

With the programming model offered by SDL, the protocol modules easily assemble to form the protocol stack: the gates of the different modules are connected together, and the entire protocol stack itself is encapsulated inside another block type. A particular protocol stack thus provides a single block type protocol stack that can be interfaced by the application. This protocol stack is however not monolithic, as it further decomposes into modules, that could be used independently to compose other communication stacks.

The hierarchical composition model offered by SDL perfectly matches the composition needs of a group communication stack. Each protocol module inside the stack is developed as a single block type. The stack itself is then simply implemented as a set of connections between the blocks (the protocol modules). "Gluing" the blocks together is trivial, since SDL supports the concept of interconnection between gates.

[image: image4.emf]Protocol

Stack

Simulated Network

Protocol

Stack

Real Network

Protocol

Stack

Protocol

Stack

Machine 1

Machine 2 Machine 3

Protocol

Stack

Protocol

Stack

Figure 5. Protocol stack running on top of a simulated or a real network: the protocol stack is exactly the same in both cases. Replacing one network model by another is done at composition time.

The definition of multiple gates and signal lists allows us to exchange one module with another one that provides the same service and has the same signal list. As an example, consider the case where a protocol stack is tested on a simulated network before being deployed on a real network. Using SDL, substituting one network model by another becomes trivial, if both networks provide the same interface. This is illustrated in Figure 5, where the same protocol stack runs on top of either a simulated network (where all group communication processes run on a single machine within the same SDL system) or on a real network (where the protocol stacks on different machines interact through the physical network).

In the case of an implementation that does not support exactly the same interface (so far, no interface standard for group communication has emerged), an adaptor block can be added between two modules to match the different signals to each other. This matching can be purely syntactic (e.g., based on ontologies), or may also involve more elaborate matching if the semantics of the signals are different.

5 Conclusion

Our implementation shows that SDL is very appropriate for the specification and implementation of group communication protocols. The abstractions in SDL and the availability of a graphical editor have greatly simplified the design and the implementation. Providing an implementation of group communication in SDL enables the application of group communication also in the telecommunication industry.

In the future, we plan to implement additional communication primitives (e.g., generic broadcast) and to evaluate the performance of the SDL group communication protocol stack, in comparison with other implementations such as Java or C/C++.

References

K.P. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh, R. van Renesse and W. Vogels: The Horus and Ensemble Projects: Accomplishments and Limitations. In Proceedings of the DARPA Information Survivability Conference & Exposition (DISCEX '00), Hilton Head, South Carolina, 2000.

T.D. Chandra and S. Toueg: Unreliable Failure Detectors for Reliable Distributed Systems. Journal of the ACM, 43(2):225-267, 1996.

D. Dolev and D. Malkhi: The Transis Approach to High Availability Cluster Communication. Communications of the ACM, 39(4):67-70, 1996.

R. Guerraoui , A. Schiper: Fault-tolerance by replication in distributed systems. In Reliable Software Technologies - Ada-Europe'96, LNCS 1088, pages 38-57. Springer-Verlag, June 1996.

M. Hayden: The Ensemble System. Technical Report TR98-1662, Department of Computer Science, Cornell University, January 1998.

M.A. Hiltunen and R.D. Schlichting: A Configurable Membership Service. IEEE Transactions on Computers, 47(5):573-586, 1998.

C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm: Phoenix: A Toolkit for Building Fault-Tolerant Distributed Applications in Large Scale. In Proceedings of the Workshop on Parallel and Distributed Platforms in Industrial Products, San Antonio, Texas, USA. 1995.

H. Miranda, A. Pinto, and L. Rodrigues: Appia, a flexible protocol kernel supporting multiple coordinated channels. In Proceedings of the 21st Int. Conference on Distributed Computing Systems (ICDCS'01), Phoenix, Arizona, April 2001. Pages 707-710.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia, and C. A. Lingley-Papadopoulos: Totem: a fault-tolerant multicast group communication system. Communications of the ACM, 39(4):54-63, 1996.

REMUNE: Advanced Real-Time Multi-media and Networking Execution Platform and Development Environment, http://lsrwww.epfl.ch/Research/Remune/
SDL Forum Society: Specification and Description Language. http://www.sdl-forum.org/.

� In group communication, a process has its own control flow (in the sense of a Unix thread). Such a process is different from an SDL process used later in the paper.

