
Modeling Fault-Tolerant Mobile Agent Execution
as a Sequence of Agreement Problems

Stefan Pleisch
IBM Research

Zurich Research Laboratory
CH-8803 Rüschlikon

spl@zurich.ibm.com

André Schiper
Operating Systems Laboratory

Swiss Federal Institute of Technology (EPFL)
CH-1015 Lausanne
Andre.Schiper@epfl.ch

Abstract

Fault-tolerance is fundamental to the further develop-
ment of mobile agent applications. In the context of mobile
agents, fault-tolerance prevents a partial or complete loss
of the agent, i.e., ensures that the agent arrives at its desti-
nation. Simple approaches such as checkpointing are prone
to blocking. Replication can in principle improve solutions
based on checkpointing. However, existing solutions in this
context either assume a perfect failure detection mechanism
(which is not realistic in an environment such as the Inter-
net), or rely on complex solutions based on leader election
and distributed transactions, where only a subset of solu-
tions prevents blocking.

This paper proposes a novel approach to fault-tolerant
mobile agent execution, which is based on modeling agent
execution as a sequence of agreement problems. Each
agreement problem is one instance of the well-understood
consensus problem. Our solution does not require a perfect
failure detection mechanism, while preventing blocking and
ensuring that the agent is executed exactly once.

1 Introduction
Mobile agents1 are computer programs that act au-

tonomously on behalf of a user and travel through a network
of heterogeneous machines [9].

Failures in such an environment may lead to a partial or
complete loss of the agent. For instance, a failure of the
device on which the agent is currently executing causes all
information about the agent not held in stable storage to be
lost. In the worst case, the information about the entire
agent is discarded. As no boundaries on relative proces-
sor speed and communication delays exist in asynchronous
systems such as the Internet, the owner of the agent (i.e.,

1In the following, the term “agent” denotes a mobile agent unless ex-
plicitly stated otherwise.

the person who created the mobile agent) is left with the
problem of uncertainty. Indeed, the agent owner cannot de-
termine whether the agent is lost or whether its execution
has only been delayed due to slow processors or commu-
nication links. This uncertainty may lead to the following
situations:

� The agent owner believes that the agent has been lost,
when in fact it has not been. Launching another agent
may cause multiple executions of the agent code on
some devices.

� The agent owner waits for the agent to finish its execu-
tion, but the agent has failed. Clearly, this is a blocking
situation.

Fault-tolerant mobile agent execution removes this un-
certainty and ensures that the agent eventually reaches its
destination or at least notifies the agent owner of a poten-
tial problem. We first show that a simple checkpointing-
based execution of an agent, even though it ensures that the
agent is not lost, is prone to blocking (the agent execution
might not terminate until the crashed machine recovers).
Whereas adding a simple time-out-based failure detection
mechanism solves the blocking problem, it also leads to the
violation of the exactly-once execution property, which is
fundamental to many applications (the exactly-once execu-
tion property is violated when the code of the agent is exe-
cuted more than once).

Replication allows us to solve both the blocking problem
and the exactly-once execution problem. The idea of repli-
cation in the context of mobile agents is not new [4, 7, 10].
However, on the one hand, [7] assumes a perfect failure de-
tection mechanism, which is a very constraining assump-
tion in the context of a wide area network such as the In-
ternet. On the other hand, [4, 10] model their solution as a
sequence of two problems: leader election and distributed
transactions. The interference of those two problems leads
to a complex and difficult-to-understand solution. We pro-

pose a much simpler solution, which is specified in terms of
a single problem, the consensus problem. More specifically,
our solution models a mobile agent execution as a sequence
of agreement problems, where each agreement problem de-
cides, at each stage (an agent executes in a sequence of
stages) of the agent execution, on:

� the place (i.e., the logical agent execution environment
running on a machine) that has executed the agent,

� the resulting agent, and

� the set of places for the next stage of the execution.

Such a model is extremely easy to understand, and
at the same time addresses the issues of blocking and of
exactly-once execution of agents.

The rest of the paper is structured as follows. Sec-
tion 2 presents an overview of the problem. In Section 3,
we specify the problem. Section 4 discusses how consensus
can be used to solve the agreement problems. In Section 5,
we summarize other work published in this area and
compare it with our work. Finally, Section 6 concludes the
paper.

2 Overview
2.1 Agent Execution

A mobile agent executes on a sequence of machines, as
shown in Figure 1. A place �� thereby provides a logical
execution environment for the agent. Each machine may
potentially host multiple places. Executing the agent at a
place is called a stage �� of the agent execution. Two stages
�� and ���� are separated by a move or a spawn operation
of the agent. A move operation describes the transfer of the
agent from one place to another, whereas with a spawn oper-
ation, an agent launches another (sub)agent. In an applica-
tion that is comprised of mobile agents we call its principal
agent owner, and the places where its first and last stages
execute we call the agent source and destination. The agent
source and the destination may be identical.

Machine 4Machine 0

Machine 1

p1

Machine 2

p2

Machine 3

p3

p0 p4

Agent
Source

Agent
Destination

A

A

A

A

A

Figure 1. Example of the execution of an agent
A.

Logically, a mobile agent executes in a sequence of ac-
tions, where each action is represented by an agent � ��� �
� � �� at the corresponding stages ��. Place �� executes
agent �� at stage ��, which results in a new internal state of
the agent as well as potentially a new state of the place (if
the operations of an agent have side effects)2. We denote
the resulting agent ����. Place �� forwards ���� to ����
(for � � �). Figure 2 illustrates the logical agent execution
based on the previous figure.

p1 p2 p3p0 p4

Agent
Source

Agent
Destination

a1 a2 a3 a4a0
a2a1 a3 a4

Stage S 1Stage S 0 Stage S 2 Stage S 3 Stage S 4

Figure 2. Logical agent execution.

The agent execution must ensure that the agent is exe-
cuted exactly once. The exactly-once property is crucial to
mobile agent execution.

2.2 The Problem of Failures
Any hardware and software component in a computing

environment is potentially subject to failures. This paper
addresses the following failures: crash of an agent, a place,
or a machine. Clearly, the crash of a machine causes any
place and any agent running on this machine to crash as well
(Figure 3.d). A crashing place causes the crash of any agent
on this place, but this generally does not affect the machine
(Figure 3.c). Similarly, a place and the machine survive the
crash of an agent (Figure 3.b). We do not consider program-
ming errors in the code of the agent or the place as relevant
failures in this sense.

2.2.1 Atomicity and Durability
As mentioned in Section 2.1, executing an agent action

on a place generally results in a modification of the agent
state as well as the state of the place. Because of the par-
ticular failure dependency between agent and place, a crash
of the agent may leave the machine and the place in an in-
correct state. Assume, for instance, that the agent transfers
money from a banking service provided by the place to it-
self. If the agent fails at this point, the state of the place
reflects the agent’s operation (money retrieval), whereas the
agent state (and the money itself) is potentially lost. Clearly,
this leads to an incorrect place state.

Consequently, the agent actions on the place have to be
undoable and adequate protocols must be devised that en-
sure the consistent state of machine and place even when

2Interactions with remote places or other agents potentially also lead
to modifications of their state. This paper does not explore these aspects
further, as they are similar to the state modifications on the hosting place.

place i

state
of

place iplace i

state
of

place i

machine i

place i

ai

machine i

place i

ai

machine i

ai

machine i

ai

a) no failure b) agent only c) place d) machine

Xstate
of

place i

state
of

place i

Figure 3. Failure model for mobile agents.

the agent fails. Generally, two approaches are possible: pes-
simistic and optimistic execution.

Pessimistic execution The pessimistic execution approach
assumes that failures and incorrect failure suspicions
occur with a non-negligeable frequency and thus need
to be dealt with in an efficient way. Agent opera-
tions are thus executed tentatively and changes to the
place and the machine made permanent (i.e., commit-
ted) only when it is ensured that the agent does not fail.

Optimistic execution On the other hand, in optimistic ex-
ecution, failures and incorrect failure detection are as-
sumed to be quite rare and modifications are immedi-
ately made permanent. Failure recovery (i.e., undoing
agent actions) thus becomes a more complex and trou-
blesome task.

Our model supports both optimistic and pessimistic ex-
ecution. These issues are not discussed any further, as they
are orthogonal to the main contribution of this paper.

2.2.2 Non-blocking Execution of Agents
In mobile agent execution, a single failing component

(agent, place, or machine) may block or corrupt the entire
mobile agent execution, or result in a partial or complete
loss of the agent. Assume, for instance, that the place ��
crashes while executing �� (see Figure 4). Without ade-
quate measures, the agent �� is lost.

p1 p2p0

Agent
Source

a1 a2a0
a2a1

Stage S 1Stage S 0 Stage S 2

Figure 4. Logical agent execution where place
�� crashes while executing ��.

The loss of the agent �� can be prevented by checkpoint-
ing its code and its state on stable storage before starting its
execution on ��. In this case the agent �� survives the crash
of ��. After recovery of ��, the execution of �� can proceed.

However, while the place �� is down (i.e., �� has crashed
but not yet recovered), the agent execution is blocked. One
way to circumvent the blocking problem is the following. A
copy of �� is kept on place �� (see Figure 4). If �� detects
the crash of ��, it resends �� to another place that provides
the same service as ��. This, however, requires the ability of
�� to reliably detect failures of ��, i.e., a reliable failure de-
tection mechanism. Indeed, assume that �� erroneously de-
tects the failure of �� and resends the agent to another place
���. We would have two instances of the agent, which vio-
lates the exactly-once execution property of agents at each
stage. Obviously, in the Internet, reliable failure detection
is impossible.

2.3 Introducing Replication
The discussion in the previous section has shown an ap-

proach to overcome the blocking problem. However, this
approach leads to a violation of the exactly-once property,
based on the impossibility of reliable failure detection.

Replication of the agent enables prevention of blocking
without requiring a reliable failure detection mechanism.
In other words, the failure detection mechanism is allowed
to erroneously suspect failures. Adding redundancy at the
stage execution masks system failures and enables the agent
to continue execution despite failures, as shown in Figure 5.
Instead of sending the agent to a single place ��� at the
next stage, the agent is forwarded to a set �� of places
���� � �

�
� � �

�
� � � � ��. The places ��� thereby are either:

Hetero-places Every place �
�
� can potentially execute the

agent and deliver the required services3, but at most
one of them will have executed the agent. For instance,
if ��� is the server of Swissair, ��� �	 �� �� could be the
server of a Swissair partner airline that offers compa-
rable quality and prices.

Hetero-places with witnesses This case is a variant of
hetero-places. Every place �

�
� can potentially execute

the agent, but only a subset of them can potentially de-
liver the required services, and at most one will have
executed the agent. A witness is a place that can host
and run the agent, but cannot provide the requested
services (e.g., a weather forecast service) to the agent.
The execution of ��’s call to the service on a witness
�
�
� thus raises an exception within the agent and forces

the agent to take adequate measures to handle this case.
A potential reaction of the agent could be to return to
the previous place. In the meantime, the state of the
agent has changed, which prevents it from retrying the
same (failed) place again. This approach is preferable

3Every place can execute the agent as long as it offers the corresponding
execution environment (e.g., a Java runtime environment for a Java agent).
However, not all places can generally deliver a particular service, because
this service (e.g., telling machine) may not be installed on the place.

to an approach where the agent simply backtracks with
no state changes, which potentially results in the agent
retrying the failed place again and again.

Iso-places Every place ��� can execute the agent, and after
execution, all of the places will reflect the execution of
the agent. The modifications of the state of one place
by the agent are reflected on the other places by the
replication protocol of the places. Indeed, replica �

�
�

is a replica of ��� (same state as ���), and not a replica
of the agent. It is important to note that the replica-
tion of the places ��� is independent of our replication
protocol for mobile agents (even though our protocol
may potentially take advantage of it). Iso-places are
the classical case of using redundancy to achieve high
server availability (i.e., fault tolerance of the server).

To improve performance, the two instances of replica-
tion could be integrated. We refer to this case as in-
tegrated replication. This is not discussed here4; we
assume the non-integrated replication case in this pa-
per.

The model in Section 3 will handle these three cases.

The group of places of a stage �� is responsible for
the fault-tolerant agent execution. To prevent a machine
crash from affecting multiple places in stage ��, each place
�
�
� �	 � �� �� ���� is generally located on a different machine

(even though this is not a requirement).
Redundancy is not required at the agent source and des-

tination. At the agent source, the agent initializes and reads
its configuration and thus is still under the control of the
agent owner. The agent destination is the place where the
agent makes its results available to the agent owner.

p1
0 p2

0 p3
0

p0 p4

Agent
Source

Agent
Destination

a1 a2 a3

a4a0 p1
1 a1

p1
2 a1

p2
1 a2

p2
2 a2

p3
1 a3

p3
2 a3

a1 a2
a3 a4

Stage S 1

Stage S 0

Stage S 2 Stage S 3

Stage S 4

Figure 5. Example of an agent execution with
three redundant places.

Revisiting the previous example (Figure 4) of a place
failure, Figure 6 shows that the agent execution can now
proceed at places ��� and ���, even though place ��� failed.
The agent owner thus has the guarantee that its agent will
eventually terminate its execution.

4The mobile agent thus also ensures the consistency of the replicas.
However, this requires that an instance of the agent (1) executes on all
replicas, and (2) must not fail as long as the service is up and running.

p1
0 p2

0 p3
0

p0 p4

Agent
Source

Agent
Destination

a1 a2 a3

a4a0 p1
1 a1

p1
2 a1

p2
1 a2

p2
2 a2

p3
1 a3

p3
2 a3

a1 a2 a3
a4

Stage S 0

Stage S 1 Stage S 2 Stage S 3

Stage S 4

Figure 6. Agent execution with redundant
places, where a place fails. The redundant
places mask the place failure.

Figure 6 assumes that the entire place ��� has crashed
at stage ��. However, our failure model (see Section 2.2)
also identifies agent crashes. If only the agent fails, but the
place survives, modifications to the place state by the failed
agent survive. As the agent is then executed on place ���,
modifications are applied twice (to ��� and ���). Replication
of the agent thus leads to a violation of the exactly-once
execution property of mobile agents. Consequently, the
replication protocol of agents has to undo the modifications
of �� to the place ���. This is fundamentally different from
the traditional modeling approach for replication, where all
the state is supposed to be maintained in the server replica
and is lost with the crash of the replica. The computing
environment thus automatically remains in a consistent
state even when replicas fail.

Similar issues arise because of imperfect failure de-
tection. Relying only on imperfect failure detection may
lead to false suspicions. Given potentially false suspicions,
a place �

�
� may be considered to have crashed, when, in

fact, it has not. While another place is executing the agent,
�
�
� already has partially or completely executed � �. This

leads to multiple executions of agent operations, which
violates the exactly-once property of normal mobile agent
execution. Again, the issue of undoing agent operations
becomes prominent.

3 Fault-Tolerant Mobile Agent Execution:
Specification of the Problem

We have claimed in the previous section that replication
of agents allows blocking to be prevented without depend-
ing on reliable failure detection. However, to enforce the
exactly-once property of mobile agent execution, the repli-
cas have to decide on a place that has executed the agent 5.
This decision is modeled as an agreement problem.

5In the case of “iso-places”, a violation of the exactly-once property of
mobile agent execution leads to multiple executions of the agent operations
on all places.

3.1 Basic Agreement Problem
Despite the differences of iso-places, hetero-places, and

hetero-places with witnesses, we give a specification of the
problem that encompasses the three cases. The idea is to
model the execution of each stage �� as an agreement prob-
lem. By
���� we denote the agreement problem of stage
��. The problem
���� is to be solved by the places6 in
��, and the solution is the decision on which all places in
�� agree. We denote by ���� the decision (i.e., the solu-
tion) of
����, with the safety properties:

� (Agreement) No two correct7 places of stage �� decide
differently.

� (Uniform validity) If a place of stage � � decides ����,
then ���� was proposed by some place of �� and is the
result of executing �� at that place.

� (Uniform integrity) Every place of stage � � decides at
most once.

The liveness property requires that every correct place of
stage �� decides eventually.

The decision ���� is as follows for the three cases
identified in Section 2.3:

Hetero-places. The decision ���� has three parts: (1) the
single place ������ � ��, called primary, that has ex-
ecuted the agent in stage ��, (2) the resulting agent
����, and (3) the places ���� for ����.

Hetero-places with witnesses. Similar to the previous
case. Place ������ can potentially be a witness.

Iso-places (non integrated replication case). The deci-
sion ���� is similar to the case with hetero-places.

Iso-places (integrated replication case) In the integrated
replication case (see Section 2.3) the decision value is
different: (1) the new state for all the places in� �, (2)
the resulting agent ����, and (3) the places ���� for
����. Because of this difference in the integrated repli-
cation case, the agent must know beforehead whether
it deals with iso-places or hetero-places.

In the following we no longer distinguish among the four
cases.

The agreement problem is fundamental to enforce the
exactly-once property of an agent execution. Assume, for
instance, that the participants of a stage are separated by
a network partition or slow communication (represented
by the wavy line in Figure 7), such as ��� from ��� and ���.

6In the agent-based approach mentioned in Section 4.1.2, the agree-
ment is actually solved by the agent itself.

7A place is called correct if it does not fail.

If the places participating in a stage execution disagree
on the outcome of the stage execution, a subset of these
places (i.e., ���) could decide on a different outcome (� ��,
��

�) than the rest (��, ��). As the action �� has thus been
executed twice, resulting in two different agents �� and ���,
the exactly-once property is violated.

p1
0

p2
0

p3
0

p0

Agent
Source

a1 a2

a3a0 p1
1 a1

p1
2 a1

p2
1 a2

p2
2 a2 p3

1 a3

p3
2 a3

a1 a2

a3

p'3
0

p'3
1

p'3
2

a3' a3'

a3'

a3'

Stage S 0

Stage S 1 Stage S 2

Stage S 3

Stage S 3'

Figure 7. Disagreeing stage agents poten-
tially lead to a violation of the exactly-once
property.

3.2 Sequence of Agreement Problems
Having defined the basic agreement problem
��� �,

we define now the entire mobile agent execution as a se-
quence of agreement problems. This is done as follows:

� The initial problem
���� of stage �� is solved by ��
only. This can be seen as a trivial agreement problem
(only one process has to decide). The decision is (1)
��, (2) ��, and (3) the places ��. The agent �� is
then sent to the places ��. In practice, the agreement
problem is reduced to a configuration problem. The
agent owner configures the agent before sending it off
to stage ��.

� The problem
���� of stage �� is solved by ��.
The decision is �

����
� , ��, and the places ��. The

agent �� is then sent to the places ��.

� � � �

� The problem
���� of stage �� is solved by��. The
decision is �

����
� , ����, and the places ����. The

agent ���� is then sent to the places ����.

� � � �

� Similar to the problem
����,
���� of stage ��
is solved by only one place. At this stage, the agent’s

results are presented to the agent owner or to another
designated destination.

4 Modeling Fault-Tolerant Mobile Agent Ex-
ecution as a Sequence of Consensus Prob-
lems

The previous section has shown that fault-tolerant
mobile agent execution can be expressed as a sequence
of agreement problems. In this section we show how the
agreement problem is solved using consensus and identify
which mechanisms are required to reliably forward the
agent. Our approach encompasses various system models
such as process recovery or unreliable communication,
depending on the implementation of consensus and of the
reliable forwarding of agents.

Figure 8 depicts a mobile agent execution without
failures. The execution at stage �� consists of (1) one
(or, in case of a failure, multiple) place(s) executing the
agent, (2) the places in �� reaching an agreement on the
computation result, and (3) the reliable forwarding of the
result ���� to the next stage ����. The computational result
contains the new agent ���� and the set of places executing
the agent at stage ����, as well as the place ������ that has
executed the agent. Note that the latter relates to stage � �,
whereas the former two results provide information about
the next stage ����.

Figure 9 illustrates the case of a place failure in stage 2.
When ��� detects the failure of ���, which attempted an exe-
cution of �� first, it executes the agent and tries to impose
its computation as the decision value of the agreement
protocol to all ��� � ��.

In our discussion so far, we assumed that ���� and
�� are a disjoint set of places. However, this is not a
requirement. On the contrary, reusing places of stage � ���

as witnesses8 for �� (see Section 2.3, case 2) improves the
performance of the protocol and prevents high messaging
costs. At a limit, every stage �� merely adds another place
to ����, while removing the oldest from the set ����. In
this mode, forwarding costs are minimized and limited to
forwarding the agent to the new place (see Figure 10). We
call this mode pipelined.

In the following sections, we present the Consensus with
Deferred Initial Value (DIV consensus) as the means to
solve the successive agreement problem (Section 4.1) as
well as a protocol to reliably forward the agent to the next
stage (Section 4.2).

8One can also imagine particular scenarios that cover case 1 of Sec-
tion 2.3. For instance, if an agent is to visit sequentially the servers of
Swissair, Lufthansa, Delta, etc., we would rather deal with case 1.

p1 p2 p3p0 p4

Agent
Source

Agent
Destination

a1 a2 a3 a4a0
a2a1 a3 a4

M0
M1

M2

M3

M4

Stage S 0 Stage S 1 Stage S 2 Stage S 3 Stage S 4

Figure 10. Pipelined mode without failures.

4.1 Solving the Agreement Using DIV Consensus
4.1.1 DIV Consensus Problem

The consensus problem is a well-specified and studied
problem in fault-tolerant distributed systems research. It is
defined in terms of the primitive ����������. Every process
�� in a set of processes � calls this primitive with an initial
value �� as an argument. Informally, the consensus allows
an agreement on a certain value to be reached among the
correct processes in �. Formally, consensus is specified as
follows [3]9:

� Termination. Every correct process in � eventually de-
cides some value.

� Uniform integrity. Every process in � decides at most
once.

� Uniform agreement. No two processes in � decide dif-
ferently.

� Uniform validity. If a process in � decides some value
�, then � was proposed by some process in �.

Reference [3] solves the consensus problem with the un-
reliable failure detector �� and a majority of correct pro-
cesses. DIV consensus10 [5] modifies the consensus prob-
lem such that all processes need not have an initial value.
The initial value is computed during the execution of the
consensus algorithm, whenever needed. Specifically, in the
absence of failures, only one process computes the initial
value. For this purpose, the participants do not invoke the
consensus by passing their initial value as an argument.
Rather, they pass a handler ���� that allows the protocol
to compute the initial value only when needed.

4.1.2 Applying DIV Consensus
At each stage ��, an instance of DIV consensus is solved

and determines the outcome of the stage execution. Using
DIV consensus requires the following transformations:

9Actually, this is the definition of uniform consensus. However, as
shown in [6], in some system models, each algorithm that solves consensus
also solves uniform consensus. For this reason, we do not make a distinc-
tion between consensus and uniform consensus.

10DIV = Deferred Initial Value.

Stage S 4

Stage S 3

Stage S 2

Stage S 1

Stage S 0

p1
0 a1

p1
1

p1
2

p1
3

Agreement
Protocol

p2
0 a2

p2
1

p2
2

p2
3

Agreement
Protocol

<a2,M2>

p3
0 a3

p3
1

p3
2

p3
3

Agreement
Protocol

<a3,M3>

p0
0

<a1,M1>

a0

p4
0 a4

<a4,M4>

p0
0 p1

0

p2
0 p3

0

Figure 8. Agent execution without failures. The notation � ��������� �
�
����

�

means that ������ has
executed agent �� (which leads to ���� and ����).

Stage S 3

Stage S 2

Stage S 1

Stage S 0

Stage S 4

p1
0 a1

p1
1

p1
2

p1
3

p2
0

a2

p2
1

p2
2

p2
3

< a 2,M2 >

p3
0 a3

p3
1

p3
2

p3
3

Agreement
Protocol

< a 3,M3 >

p0
0

< a1,M1 >

a0

p4
0

a4

< a 4,M4 >

a2

Agreement
Protocol

Crash

Agreement
Protocol

p0
0

p1
0

p2
1 p3

0

Figure 9. Agent execution with ��� failing. An erroneously suspected place ��� leads to the same
situation.

Initial handler ����. The initial handler ���� passed as
an argument to the function ������� is the agent � �,
or, more precisely, a method of � �. It is executed only
when needed during the execution of DIV consensus.
In particular, in the absence of failures, it is executed
only once.

Decision value ���. The execution of consensus decides
on the tuple ���� �� ��������� ��

����

�

, where:

� �
����

� is the primary of the current stage execu-
tion

� ���� is the resulting agent
� ���� is the set of places for stage ����

DIV Consensus ensures that all ��� � �� agree on the
�
����
� that has executed ��, on the new agent ����, as well

as on the places of the next stage ����.
From an implementation point of view, two approaches

for solving consensus are possible: place-based or agent-
based. In the place-based approach, the places implement
the consensus protocol and only the primary place executes
the agent (i.e., � is identical to ��). This approach re-
quires a modification to all the places potentially hosting
fault-tolerant mobile agents. On the other hand, the fault
tolerance mechanisms are transparent to the agent devel-
oper, with the exception of the set of destination places � �

for every stage.
The agent-based approach requires the agent to imple-

ment the consensus protocol (i.e., � corresponds to the
set of copies of �� at the places �

�
� � ��). Contrary to

the place-based approach, a copy of the agent is run on
each �

�
� � ��. The agents reach an agreement among

themselves and adopt the result. Clearly, the size of the
agents increases because it also contains the code for
the agreement. However, fault tolerance is transparent to
the places and therefore does not require modifications
to existing places. In the following, we focus on the
place-based approach. The same reasoning, however, also
applies for the agent-based approach.

In our discussion so far, we have not addressed the
recovery from failures of machines, places, or agents.
The protocol presented can easily be extended to also
encompass recovery by using a corresponding version of
consensus [1].

4.2 Reliably Forwarding the Agent Between ��

and ����

Having solved the problem of executing the agent at a
stage, we must address the issue of reliably forwarding the
agent to the next stage. A naive approach (which we call in-
dependent approach) leads to a protocol, where every place
in �� multicasts the result ���� to every place in ����.

However, this incurs significant overhead in terms of mes-
sage number as well as number of communication steps 11,
depending on the protocol selected. Our approach (called
the integrated approach) reduces this overhead consider-
ably. For this purpose, we take advantage of the reliable
broadcast used as part of the DIV consensus algorithm to
send the decision ���� to all participants of the consensus.
Instead of reliably broadcasting ���� only to �

�
� � ��, we

broadcast it to��	����. This ensures that the agent ����
is not lost. The changes to the DIV Consensus algorithm are
small.

4.3 Handling Spawn Agents
So far, we have not discussed the case of spawning a

child agent. This case is more difficult to handle than the
normal case. We briefly outline an approach to this case.

The agent �� at stage �� can spawn a new agent ����,
which causes two agents to move off stage ��, ���� result-
ing from executing �� on �� and ���� (see Figure 11). If
�� crashes, then all its modifications have to be undone.
In particular, the spawn agent ���� has to be terminated
as well and its operations undone. If ���� has been im-
mediately sent off, undoing its operations is not a simple
task. Indeed, the undoing message may trace agent � ���
forever, never really catching up with it12. Therefore, ����
can only start execution when the current stage � � has de-
cided on the result. This requires that ���� and its set
of executing places �

�
� � ��

��� be part of the decision
value ���� �� ���������� � ������

�
��� ���

����

�

. The

places in ��
��� only receive ���� when the decision is re-

liably broadcast to the concerned places. At this point, the
decision is stable and the execution of the spawn agent can
proceed.

5 Related Work
Fault tolerance for mobile agents has been an active field

of research. Various work relies on replication to enable
fault-tolerant mobile agent execution [4, 7, 10, 12]. We start
by briefly discussing the first two references in Section 5.1.
A more detailed comparison with our work and the latter
two references is in Section 5.2.

5.1 Perfect Failure Detection and Byzantine Fail-
ure Model

One approach to fault-tolerant mobile agent execution
has been suggested by Johansen et al. [7]. It assumes a
fail-stop model, which corresponds to a perfect failure

11A communication step is identified as the sending of a message that is
in the critical path of the protocol, i.e., the protocol cannot proceed until it
has received this message.

12Murphy et al. [8] provide a solution for reliable message delivery to
mobile agent, however, only in an environment without failures and at a
considerable cost.

p1
0 p2

0

p0

Agent
Source

a1 a2

a0 p1
1 a1

p1
2 a1

p2
1 a2

p2
2 a2

a1 a2
a3

b1

q1
2 b1q1

1 b1q1
0 b1 Stage S 1

b

b2

...

...
Stage S 0

Stage S 1 Stage S 2

Figure 11. Agent �� spawns a new agent �� at
stage ��.

detector [11]. Our algorithm, on the other hand, tolerates
incorrect failure detection and thus is of more general use.
For example, [7] cannot handle partitions in the network.
Rather, using an adequate algorithm for consensus, our
solution is able to cope with network partitions.

Work in a Byzantine failure model has been consid-
ered by Schneider [12]. Schneider’s protocol is based on
the assumption that multiple replicas of a place exist in the
system. Copies of the agent are executed on each replica,
producing a deterministic result. A secret is associated
with each copy and allows the valid outcome of a stage
execution to be determined. As the Byzantine failure
handling is based on the execution of multiple instances
of the agent, exactly-once execution is not an issue and
consequently not enforced by the protocol.

5.2 Transaction-Based Solutions
The solutions described in [4] and [10] are based on

transactions. From a formal point of view, the Atomic Com-
mitment problem (in the context of transactions) requires a
perfect failure detector [6]. However, weak Atomic Com-
mitment13 does not require a perfect failure detector. In this
context, a solution based on transactions is adequate in an
environment such as the Internet, and it is worth comparing
transaction-based solutions with our solution in more detail.

Rothermel et al. [10] model fault-tolerant and exactly-once
mobile agent execution as a sequence of two problems:

13In the Weak Atomic Commitment problem, if one of the data man-
agers is suspected, the transaction may abort even if all data managers are
correct and have voted yes, see [6].

leader election (called voting protocol in [10]) and
distributed transactions. Communication between consec-
utive stages �� and ���� is based on transactional message
queues, shown as shaded rectangles in Figure 12. At each
stage, a place retrieves the agent from its input queue,
executes the agent, and places the resulting agent in the
input queues of the next stage’s places as one transaction
(illustrated by the dotted line). A place �

�
� can only

commit the distributed transaction when it is elected by the
places in ��, i.e., when it receives a majority of votes.
Rothermel uses a 2-phase commit protocol [2] to commit
the transactions, the election protocol thereby acting as a
resource manager to the transaction manager.

pi-1
0

pi-1
1

pi-1
2

pi
0

pi
1

pi
2

pi+1
0

pi+1
1

pi+1
2

ai

Stage S i-1 Stage S i Stage S i+1

Figure 12. Rothermel’s protocol. Shaded
rectangles represent transactional message
queues, whereas the dotted line indicates the
borders of a stage transaction.

Modeling fault-tolerant mobile agent execution based on
two different, interfering problems (i.e., leader election and
distributed transactions) leads to a more complex solution
than ours. In addition, understanding the weaknesses of
such a solution is difficult and tedious. Our solution, how-
ever, is specified in terms of a single problem, the con-
sensus problem, an intensively studied problem with well-
understood solutions.

In Rothermel’s model, the execution of the agent as well
as the forwarding of the agent from stage � � to ���� run as
a transaction. Our model, in contrast, clearly decouples the
mechanisms that provide fault tolerance from the execution
properties of the agent operations. In particular, the agent
operations do not need to run as a transaction. If they do,
they have their own transaction manager.

Moreover, to our understanding, Rothermel’s algorithm
may block on a single place failure. Indeed, once the elec-
tion protocol has elected a leader to commit the transaction,
another leader can only be elected if the current leader
explicitly resigns. Assume that the leader fails immediately
after its election, but before committing the transaction. As
the leader can no longer explicitly resign and thus no other
leader is able to get elected and commit its transaction, the
mobile agent execution is effectively blocked. The use of a
3-phase commit protocol instead of the (blocking) 2-phase

commit proposed in [10] does not prevent this blocking
problem.

Assis et al. [4] improve Rothermel’s algorithm by
overcoming some of its limitations. In particular, to prevent
the blocking problem in [10], they use a different leader
election protocol and commit the stage transaction using
a 3-phase commit protocol [2]. However, this particular
combination of leader election and transaction model may
lead to a violation of the exactly-once property. Therefore,
[4] relies on a so-called distributed context database for
synchronization to prevent more than one concurrent leader
and thus enforce the exactly-once property. This replicated
database achieves fault tolerance, but makes the protocol
even more complex as well as difficult to understand and
to prove correct. It also creates a strong interdependence
among the different places. By comparison, our algorithm
only relies on message passing between the various places
and does not incur the cost of having to set up this database.

6 Conclusion

In this paper, we show that simple approaches such as
checkpointing prevent the loss of the agent, but are prone
to blocking. Extending this approaches leads to solutions
that can handle blocking, but may violate the exactly-once
property of mobile agent execution. Replication allows
us to address the issues of fault tolerance and blocking,
while, using adequate agreement algorithms, not violating
the exactly-once property of agent execution. We thus
model fault-tolerant mobile agent execution as a sequence
of agreement problems. Contrary to [7], our solution does
not require a reliable failure detection mechanism. All the
places involved in the execution of the agent � � at stage ��
have to agree on the new agent, the set of places of the next
stage ����, as well as on the place that has executed ��. We
propose using consensus to solve the agreement problem at
stage ��. Consensus is a well defined and proved problem
and thus renders our solution much simpler than those
proposed so far [4, 10].

A prototype of the model is currently being devel-
oped. It will allow one to compute the cost of the fault
tolerance mechanisms and to measure the performance of
our approach.

References
[1] M. Aguilera, W. Chen, and S. Toueg. Failure detection and

consensus in the crash-recovery model. Technical Report
TR 98-1676, Cornell University, Apr. 1998.

[2] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency
Control and Recovery in Database Systems. Addison-Wes-
ley, Reading, Massachusetts, USA, 1987.

[3] T. Chandra and S. Toueg. Unreliable failure detectors for
reliable distributed systems. J ACM, 43(2):225–267, 1996.
A preliminary version appeared in Proceedings of the Tenth
ACM Symposium on Principles of Distributed Computing,
pp 325-340, ACM Press, August 1991.

[4] F. de Assis Silva and R. Popescu-Zeletin. An approach for
providing mobile agent fault tolerance. In K. Rothermel and
F. Hohl, editors, Mobile Agents, Proceedings of the Second
International Workshop, MA’98, LNCS 1477, pages 14–25.
Springer Verlag, Sept. 1998.

[5] X. Défago, A. Schiper, and N. Sergent. Semi-passive repli-
cation. In Proceedings of the 17th IEEE Symposium on
Reliable Distributed Systems (SRDS), pages 43–50, West
Lafayette, IN, USA, Oct. 1998.

[6] R. Guerraoui. Revisiting the relationship between non-
blocking atomic commitment and consensus. In Proceed-
ings of the 9th International Workshop on Distributed Algo-
rithms (WDAG-9), LNCS 972, pages 87–100, Le Mont-St-
Michel, France, Sept. 1995. Springer-Verlag.

[7] D. Johansen, K. Marzullo, F. B. Schneider, K. Jacobsen,
and D. Zagorodnov. NAP: Practical fault-tolerance for itin-
erant computations. In Proceedings of the 19th IEEE In-
ternational Conference on Distributed Computing Systems
(ICDCS’99), Austin, Texas, USA, June 1999.

[8] A. Murphy and G. Picco. Reliable communication for highly
mobile agents. In Proc. of the 1st Int. Symposium on Agent
Systems and Applications and 3rd Int. Symposium on Mobile
Agents (ASA/MA 99), Palm Springs, CA, USA, pages 141–
150. IEEE, Oct. 1999.

[9] Object Management Group. Mobile Agent System Inter-
operability Facilities Specification, OMG TC Document
orbos/97-10-05, Nov. 1997. http://www.omg.org.

[10] K. Rothermel and M. Strasser. A fault-tolerant protocol for
providing the exactly-once property of mobile agents. In
Proceedings of the 17th IEEE Symposium on Reliable Dis-
tributed Systems (SRDS), Purdue University, West Lafayette,
Indiana, USA, pages 100–108, Oct. 1998.

[11] L. Sabel and K. Marzullo. Simulating fail-stop in asyn-
chronous distributed systems. In Proceedings of the 13th
Symposium on Reliable Distributed Systems (SRDS), Dana
Point, CA, USA, pages 138–147, Oct. 1994.

[12] F. Schneider. Towards fault-tolerant and secure agentry.
In Proceedings of the 11th International Workshop on Dis-
tributed Algorithms, Saarbrücken, Germany, Sept. 1997. In-
vited paper.

