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Abstract

Mobile agents constitute a computing paradigm of a more general nature than the widely used
client/server computing paradigm. A mobile agent is essentially a computer program that acts au-
tonomously on behalf of a user and travels through a network of heterogeneous machines. How-
ever, the greater flexibility of the mobile agent paradigm compared to the client/server computing
paradigm comes at additional costs. These costs include, among others, the additional complexity
of developing and managing mobile agent-based applications. This additional complexity com-
prises such issues as reliability. Before mobile agent technology can appear at the core of tomor-
row’s business applications, reliability mechanisms for mobile agents must be established. In this
context,fault toleranceandtransaction supporare mechanisms of considerable importance.

Various approaches to fault tolerance and transaction support exist. They have different
strengths and weaknesses, and address different environments. Because of this variety, it is of-
ten difficult for the application programmer to choose the approach best suited to an application.
This thesis introduces a classification of current approaches to fault-tolerant and transactional mo-
bile agent execution. The classification, which focuses on algorithmic aspects, aims at structuring
the field of fault-tolerant and transactional mobile agent execution and facilitates an understanding
of the properties and weaknesses of particular approaches.

In a distributed system, any software or hardware component may be subject to failures. A
single failing component (e.g., agent or machine) may prevent the agent from proceeding with its
execution. Worse yet, the current state of the agent and even its code may be lost. We say that the
agent execution iblocked For the agent owner, i.e., the person or application that has configured
the agent, the agent does not return. To achieve fault-tolerance, the agent owner can try to detect
the failure of the agent, and upon such an event launch a new agent. However, this requires the
ability to correctly detect the crash of the agent, i.e., to distinguish between a failed agent and an
agent that is delayed by slow processors or slow communication links. Unfortunately, this cannot
be achieved in systems such as the Internet. An agent owner who tries to detect the failure of the
agent thus cannot prevent the case in which the agent is mistakenly assumed to have crashed. In
this case, launching a new agent leads to multiple executions of the agent, i.e., to the violation
of the desiredexactly-onceproperty of agent execution. Although this may be acceptable for
certain applications (e.g., applications whose operations do not have side-effects), others clearly
forbid it. In this context, launching a new agent is a form of replication. In general, replication
prevents blocking, but may lead to multiple executions of the agent, i.e., to a violation of the
exactly-once execution property. This thesis presents an approach that ensures the exactly-once
execution property using a simple principle: the mobile agent execution is modeled as a sequence
of agreement problems. This model leads to an approach based on two well-known building
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blocks: consensus and reliable broadcast. We validate this approach with the implementation of
FATOMAS, a Java-based FAult-TOlerant Mobile Agent System, and measure its overhead.
Transactional mobile agents execute the mobile agent as a transaction. Assume, for instance,
an agent whose task is to buy an airline ticket, book a hotel room, and rent a car at the flight
destination. The agent owner naturally wants all three operations to succeed or none at all. Clearly,
the rental car at the destination is of no use if no flight to the destination is available. On the other
hand, the airline ticket may be useless if no rental car is available. The mobile agent’s operations
thus need to execui@omically, i.e., either all of them or none at all. Execution atomicity also
needs to be ensured in the event of failures of hardware or software components. The approach
presented in this thesis i®n-blocking A non-blocking transactional mobile agent execution has
the important advantage that it can make progress despite failures. In a blocking transactional
mobile agent execution, by contrast, progress is only possible when the failed component has
recovered. Until then, the acquired locks generally cannot be freed. As no other transactional
mobile agents can acquire the lock, overall system throughput is dramatically reduced. The present
approach reuses the work on fault-tolerant mobile agent execution to prevent blocking. We have
implemented the proposed approach and present the evaluation results.



Version abregee

Récemment, les agents mobiles sont devemis mode en tant que paradigme pleséral que

le traditionel paradigme client/serveur. Un agent mobile est un programme qui agitafe fac
autonome pour le compte d'un utilisateur et qui traverse ageal d’ordinateursetérogenes.
Cependant la plus grande flexibdidu paradigme, compardu paradigme client/serveur, a un

calt. Ce cait comprend entre autres une plus grande comgekitEveloppement et de la gestion

des applications. Il faut aussi compter dans cette complexitlitionelle I'aspect fiabikt” Avant

gue la technologie des agents mobiles ne puisse s'installer au coeur des futures applications de
businessla fiabilité doit étre dfvelopge. Parmi ces ptanismes, laoErance aux fautest le

support transactionnedont extemement importants.

Actuellement il existe diffrentes approches pour ladmdnce aux fautes et le support trans-
actionnel, chacune ayant des avantages et des ian@ns, eteSolvant des probmes dans
des domaines d’applications difénts.A cause de cette va, il est souvent difficile pour le
développeur d’applications de choisir la meilleure approche. Une des contributions de esdte th”
est l'introduction d’une classification des approches existantes. Cette classification, qui est centr’
sur les aspects algorithmiques, tente de structurer le domaine des agerastsofiux fautes et
transactionnels, et aidecomprendre les avantages esdvantages d’approches partierds.

Dans un sysme distribe n’importe quel composant logiciel ou reagl peutetre sujea’'une
défaillance. Celle-ci (par exemple, celle d’un agent ou d’'une machine) pewdaeplragent de
continuer son ex¢ution ; plus grave encoregtéat actuel de I'agent, etemie son code, peuvent
étre perdus. Nous disons que I'agentt#stje. Le propritaire de I'agent, c'est-dire la personne
ou 'application qui a configw'agent, constate que I'agent ne revient pas. o toErant aux
fautes, le propataire peut essayer detdcter la dfaillance de I'agent, dans le but d’envoyer un
nouvel agent. Par contre, ceaagssite de pouvoiredéctercorrectementies dsfaillances d'un
agent, et donc de pouvoir faire la distinction entre un agefaiint et un agent qui auragé
retarcE par des processeurs ou des liens de communication lents. Malheureusement, ceci n’est pas
possible dans des sgshes tels que I'internet. Le proptdire de I'agent qui essaye detétter
la défaillance de son agent ne peut donc paseshpf le cas wil commettrait une erreur sur
I"etat de I'agent. Dans ce cas, il risque d’envoyer un nouvel agent, ce qui cardistercutions
multiples de I'agent, et dona une violation de la propté d'exécution “une et une seule fois”
(exactly-oncg Bien que ceci puissetfe acceptable pour certaines applications, comme par ex-
emple les applications dont les operations n’ont pas d’effets de bord, ce n’est pas le cas de toutes
les applications. Dans ce contexte, I'envoi d’'un nouvel agent est une formeplieation. La
réplication empthe les blocages de I'agent, mais peut condaides egcutions multiples de
'agent. Cette thSe propose une approche qui assure la prtEpd’exécution exactly-onceen
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utilisant un principe simple : I'ex¢ution de I'agent mobile est melisée comme uneesjuence
de probEmes d'agements. Ce maglé nmene a une approche foeel'sur deux blocs de bases :
le consensus et la diffusiom{lticas) fiable. Notre approche est vadid gecea FATOMAS
(FAult-TOlerant Mobile Agent Systénun syséme dvelop@ en Java, dont nowsvaluons la per-
formance.

Les agents mobiles transactionnels gextent comme une transaction. Supposons par exem-
ple gu’un agent doive acheter un ticket d’avioesefver une chambre at€l et louer une voiture.
Le proprétaire de I'agent exige eregéral que les trois agrations eussissent ou aucune. En effet,
louer une voiture n’a pas de sens si aucun vol n’est disponible. Par ailleurs, le ticket d’avion est
inutile si aucune voiture ne peetre lole sur place. Les @pations de I'agent mobile doivent
donc s’excuter de facomtomique L'atomicité de I'exécution doitetre garantie mme en cas de
défaillance de composants logiciels ou mrétls. L'approche propeg dans cette #se est non-
bloguante. Une ecution non-bloguante de I'agent transactionnel permet de continuecliggh
malg® des @faillances. Dans une egtion bloquante, un progs n’est possible que lorsque le
composant dfaillant re@marre. Entre temps, les verrous acquis ne pewsteatibérés, et comme
aucun autre agent mobile transactionnel ne peutex@gees verrous, la performance du gyee
est considrablement euite. Notre approche est le@ssur notre proposition dans le domaine
des agents tefants aux fautes. Nous avons iemién€ I'approche propas, et pesentons ses
performances.
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Chapter 1

Introduction

1.1 Context

The concept of distributed client/server computing can be too limiting for certain applications.
For instance, the functionality of a server is defined by its computing interface and generally
cannot be adapted to the client’s needs without recompiling that interface. Clearly, this limits
the flexibility with which a client can use a server and forces the client to process the server
data locally according to the client’s needs. Hence, tfabile codecomputing paradigm was
introduced. With this paradigm, not only data but also the code to act on the data is transported
between the client and the server. Transporting the code makes the applications more flexible
and allows the client to tailor the functionality provided by the server to its needs. Consider, for
instance, a client that accesses a database. Instead of transferring all the data to the client and
filtering the data on the client, the client can send the actual filter code to the database server,
perform the filtering close to the data, and return only the result to the client. Furthermore, code
can be transferred from the server to the client. Indeed, among the most widespread applications of
the mobile code computing paradigm aplet$, small pieces of Java code, that are downloaded
from a Web server to the client machine and executed there. The most general variety of the mobile
code computing paradigm aneobile agentand as such have received considerable attention. A
mobile agerttis a computer program that acts autonomously on behalf of a user and moves through
a network of heterogeneous machiféalith mobile agents, it is possible to bring the code close

to the resources, which is not foreseen by the traditional client/server paradigm. Mobile agent
technology thus has been considered for a variety of applications {@&KHK98, LO99] such

as systems and network management [BPW98, GFP99], mobile computing [TSTO01], information
retrieval [TROQ], and e-commerce [MGM99]. Moreover, mobile agent technology has attracted
renewed interest in the context of environments that provide/rent distributed computing resources
to users (e.g., grid computing [FKTO01]) [BSHO02]. In such environments, resources are available
on various machines, and the application is executed on any machine that is able to provide the

!See Sun’s Java applet homepdutigp://java.sun.com/applets/index.html

2In the following, the term “agent” denotes a mobile agent unless explicitly stated otherwise.

3The mobile agent research community has not yet agreed on a common definition of mobile agents. Consequently,
various definitions exist. For the purpose of this thesis, we adopt the definition given in [Mat98, Obj00]. It is beyond
the scope of this thesis to provide an universally accepted definition.

1



2 CHAPTER 1. INTRODUCTION

requested resources. This, however, may require that the application, i.e., its state and code, be
moved to the resources, where it can be executed. This is exactly the problem that mobile agent
technology tries to address, although generally a mobile agent makes multiple hops and not just
one.

agent destination

_____________________

agent owner's

. laptop

9 = [ ‘
agent owner's agent ==
laptop D
| travel agency
= —

airline

Internet

=
|

'

|

]
-

-

agent source

Figure 1.1: Example of an agent execution. The agent owner injects the agent into the Internet.
The agent sequentially visits multiple servers and is finally collected by the user again.

The greater flexibility of the mobile agent paradigm compared to the client/server computing
paradigm comes at additional costs. These costs include, among others, the additional complexity
and increased difficulties of developing and managing applications in this context. The additional
complexity comprises such issues as reliability. Before mobile agent technology can appear at
the core of tomorrow’s business applications, reliability mechanisms for mobile agents must be
established. Among these reliability mechanistiasilt toleranceand transaction supportare
mechanisms of considerable importance and are the subject of this thesis. For example, assume
a mobile agent in the context of e-commerce, whose task is to buy a particular book, a T-shirt,
and to withdraw money (i.e., electronic money such as e-coins [CFN90]) from a bank account
(see Figure 1.1). The agent owner (i.e., the person or application that has configured and launched
the agent) creates the agent on the owner’s device and configures the agt{aes buying the
book), sa (buying the T-shirt), anda (money withdrawal). Once the agent has been launched
into the network, it autonomously searches for the bookstore with the best price offer for the
particular book, and for a T-shirt that corresponds to the agent owner’s preferences (e.g., size
and color). Having executed actioss, sa, and sa the agent delivers the results (electronic
money and receipts of the book and T-shirt) to the agent owner. Unfortunately, failures can lead
to undesirable results of the mobile agent execution. Indeed, any software or hardware component
in a distributed system can be subject to failures. Assume, for instance, that the agent has bought
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the book at the book shop and currently executes on the server of a clothing shop which fails
by crashing (i.e., simply stops working). The agent execution thus cannot proceed any more.
Worse yet, the current state of the agent and even its code may be lost. In this case, we say that
the mobile agent execution ildocked After a certain time, the agent owner finds that the agent
has not returned yet. In an asynchronous system such as the Internet, it is impossible to detect
correctly whether the agent has failed or is merely slow [FLP83], as no boundaries on relative
processor speed and communication delay exist. In other words, the agent owner cannot correctly
detect failures of the mobile agent. Nor does the agent owner generally know where exactly the
agent failed and which shops it has visited, as the shops are autonomously selected by the agent.
If this selection algorithm is non-deterministic (i.e., if its result cannot be reproduced) then it is
difficult or even impossible to reproduce the itinerary of the mobile agent. Sending another agent
to perform the same tasks may lead to multiple executions of the agent’s code, i.e., a violation
of the exactly-onceexecution property. Whereas this is not a problem for idempotent operations
(i.e., operations that yield an equivalent result when redone an arbitrary number of times or only
once [GR93)), it leads to incorrect system states if the agent contains non-idempotent operations.
Assume, for instance, that the failed agent has withdrawn money from a bank account. Sending a
second agent results in two money withdrawals, which is clearly undesirable to the agent owner.
On the contrary, reading the balance of a bank account is an idempotent operation that can be
executed multiple times without influencing the state of the bank account nor the state of the agent
(unless the account balance has changed in the meantime).

Therefore, the agent owner has to wait for the agent to return. However, the agent execution
can only proceed if the failed machine and the agent recover. In the meantime, the agent execution
is blocked, in the worst case indefinitely (if the machine does not recover). If the agent owner is
another application, then this application may be blocked as well. Blocking is thus undesirable
in a mobile agent execution and mechanisms that prevent blocking are needed. The problem of
blocking is a fundamental issue in fault tolerance and can be addressed by masking the occurrence
of failures in a computing system to the user. The mechanism suggested for this is replication.
Although replication prevents blocking, it may lead to a violation of the exactly-once execution
property. For instance, sending another agent if the first does not return after a certain time is
a form of replication and may lead to multiple executions. In the present thesis, we propose an
approach for fault-tolerant mobile agents that prevents blocaimbensures that the agent is ex-
ecuted exactly-once. The idea is to model fault-tolerant mobile agent execution as a sequence of
agreement problems. In an agreement problem [CT96], a set of processes, the so-called partici-
pants in the agreement problem, all agree on a certain result. This well-studied problem is at the
basis of the present approach. The model is implemented in FATOMAS (FAult-TOlerant Mobile
Agent System) and the performance evaluation of the implementation is presented.

Moreover, we show how our approach relates to existing approaches to fault-tolerant mobile
agent execution. For this purpose, we propose a classification of existing approaches to facilitate
an understanding of the strengths and weaknesses of these approaches. In particular, we will show
that current solutions are either complex and thus difficult to prove correct [RS98, ASPZ98], or
that they make limiting assumptions such as correct failure detection @ $r strict timing
constraint$ [PPGO00].

“These strict timing constraints also enable correct failure detection.
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Although fault tolerance prevents blocking of the mobile agent, it does not guarantee the success
of the actions. Revisiting our example above, the desired book may be sold out and the account
balance equal to 0. Hence, both operations will be unsuccessful, although no failure occurs. We
say that the operations fakmantically Although some operations are unsuccessful, others (i.e.,
purchase of a T-shirt) may have succeeded. Upon its return, the agent has acquired a T-shirt on be-
half of the agent owner, but has failed to buy the book and withdraw the money. The agent owner
still keeps the T-shirt. Whereas the actions in this example are independent, other applications re-
quire that either all actions be successful or none at all. Assume a mobile agent that books a flight
and rents a car at the flight destination. Renting a car at the destination is of no use if no seats
are available with any airline. In the latter example, there exists a dependence between the actions
of the mobile agent, in that they all need to succeed or none at all. This is not something that is
covered by mechanisms that prevent blocking and ensure exactly-once execution, as elaborated
above. It is an additional property, callegecution atomicitythat must be ensured. This property

is crucial for any mobile agents performing dependent operations. Execution atomicity, however,
is not sufficient. Rather, the mobile agent execution needs to run as a transaction [GR93], and the
mobile agent is called ransactional mobile agentAgain, non-blocking is an important prop-

erty for transactional mobile agents and we show how it can be ensured by building transactional
mobile agent execution on top of FATOMAS. More specifically, we reuse the approach for fault-
tolerant mobile agent execution to ensure non-blocking transactional mobile agents. To validate
this approach, we have implemented a prototype system called TRANSUMA (for TRANsaction
SUpport for Mobile Agents) and evaluate its performance overhead relative to FATOMAS agents.

In the rest of this chapter, we will state the major contributions of this thesis and give a brief
summary of the content of the subsequent chapters.

1.2 Contributions

One contribution of this thesis is the introduction of a classification of existing approaches in
fault-tolerant and transactional mobile agent execution that aims at identifying the strengths and
weaknesses of these approaches in an algorithmic sense.

The major contributions of this thesis, however, can be grouped into the domains of fault-
tolerant mobile agent execution and transaction support for mobile agents.

1.2.1 Fault-Tolerant Mobile Agent Execution

Model This thesis presents a model for fault-tolerant mobile agent execution, which represents
fault-tolerant mobile agent execution as a sequence of agreement problems. The model ensures
non-blocking agent execution and enforces the exactly-once property without relying on correct
failure detection. Contrary to other models such as [RS98, ASPZ98], the presented model is much
simpler and as such easier to understand.



1.3. THESIS ROADMAP 5

Algorithm  The present algorithm provides fault-tolerant mobile agent execution corresponding
to the stated model. It consists of two building blocks: consensus and reliable broadcast. More
specifically, the algorithm is based on a variant of consensus, called DIV consensus (consensus
with deferred initial value) [DSS98]. This thesis shows how DIV consensus can be applied in
the context of mobile agent execution. In contrast to other approaches $aBPGO00], our
algorithm does not assume reliable failure detection.

Moreover, a discussion on the case of a replicated agent executing on a set of replicated places
and thus invoking a replicated service is provided. This case is similar to the more general one
of a replicated client invoking a replicated server in traditional client/server computing, which we
call replicated invocation. We present a novel approach that achieves the exactly-once execution
property in this context. This approach, at the same time, also solves the problem of exactly-once
execution and one important part of the problem of non-blocking in the context of mobile agents.

System We introduce FATOMAS, a fault-tolerant mobile agent system, which implements the
above algorithm. Contrary to existing work [JM$D, RS98, ASPZ98], FATOMAS uses the
agent-dependent approach to provide fault tolerant for mobile agents. With this approach, the
fault tolerance mechanisms travel with the agent. Performance evaluations show that the overhead
of FATOMAS compared to that of a non-fault-tolerant agent is reasonable.

1.2.2 Non-Blocking Transaction Support for Mobile Agents

This work shows how the present approach to fault-tolerant mobile agent execution can be used
to achieve non-blocking transactional mobile agent execution. The model for non-blocking trans-
actional mobile agents is based on closed nested transactions [Mos85] and encompasses both
fault-tolerant and transactional mobile agent execution. A specification for non-blocking atomic
commitment [GR93] in the context of transactional mobile agents is presented.

The system that implements the approach for non-blocking transactional mobile agents is
called TRANSUMA (TRANSsaction SUpport for Mobile Agents). It is built on top of FATOMAS
and adds transactional support to the FATOMAS agents. To our knowledge, TRANSUMA is the
first system to implement non-blocking transactional mobile agents.

Finally, we extend the model of non-blocking transactional mobile agent execution to open
nested transactions [WS92].

A considerable amount of the research on mobile agents is also valid in the context of the
client/server computing paradigm. This is also the case for the work presented in this thesis.
In this sense, we try to establish the links to traditional client/server computing whenever possible
and not to reinvent solutions already available in other computing paradigms.

1.3 Thesis Roadmap

The rest of the thesis’ nine chapters have the following content:

Chapter 2 This chapter first gives the background required for the understanding of the thesis.
It is divided into two parts: (1) mobile agents and (2) replication. Part (1) presents the
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mobile code computing paradigm and its advantages and briefly introduces the most im-
portant capabilities and services of the mobile agent platforms used for FATOMAS and
TRANSUMA. In part (2), we discuss replication and briefly summarize the most important
replication techniques by indicating their advantages and drawbacks.

Chapter 3 This chapter presents the model concerning the system, mobile agents, and failures.
An infrastructure failure occurs if a hardware or software component in the system crashes.
In contrast, a semantic failure occurs if a service is not provided although no crash may
have happened. For instance, requesting a seat reservation on a full airplane leads to a
semantic failure. Finally, a distinction is made between transactional and non-transactional
fault-tolerant mobile agents.

Chapter 4 This chapter specifies the properties for fault-tolerant mobile agent execution, i.e.,
non-blockingandexactly-onceexecution. Blocking occurs if a single infrastructure failure
(e.g., the failure of the place where the agent currently executes) prevents the mobile agent
from continuing its execution. Hence, a non-blocking mobile agent execution is able to
proceed despite a single failure. The exactly-once property prevents multiple executions
of the agent. Multiple executions are undesirable if the operations of the agent have side-
effects. For instance, withdrawing money from a bank account is an operation with side-
effects. We show why a violation of the exactly-once execution property can occur and
introduce a basic building block for fault-tolerant and transactional mobile agent execution,
calledlocal transaction

Chapter 5 This chapter presents a survey of the current state of the art in fault-tolerant and trans-
actional mobile agents. For this purpose, we introduce a classification based on when and
by whom redundant duplicate agents are identified and discarded, i.e., how a violation to
the exactly-once execution property is resolved.

Chapter 6 This chapter is the core of the thesis and presents the approach to achieve fault-tolerant
mobile agent execution. This approach is non-blocking and ensures that the agent is exe-
cuted exactly-once. We have validated the approach with the help of a prototype system,
called FATOMAS, whose architecture and implementation is discussed. Moreover, we give
the performance evaluation results of FATOMAS.

Chapter 7 In Chapter 6, we examine fault-tolerant mobile agent execution in the context of so-
called hetero-places. In this chapter, the discussion is extended to replicated and indepen-
dent iso-places, where the places that execute the agent replicas are also replicas among
themselves. Instead of immediately solving the problem of fault-tolerant agents execut-
ing on iso-places, we investigate the more general problem of a replicated client invoking a
replicated server. Finally, we discuss how this approach can be adapted to solve the problem
of iso-places.

Chapter 8 In this chapter, we show how the approach to fault-tolerant mobile agent execution can
also be used to achieve non-blocking transactional mobile agent execution. We first give the
specification of non-blocking atomic commitment in the context of transactional mobile
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agents, before discussing the algorithm and presenting the prototype system, called TRAN-
SUMA. We then evaluate the overhead of TRANSUMA and compare it to FATOMAS.

Chapter 9 This chapter concludes the thesis and identifies areas for future research.
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Chapter 2

Background: Mobile Agents and
Replication

The thesis combines elements of two research fields: mobile agents and replication. In this chapter,
we set the ground for the rest of the thesis by giving the background on these two research fields.

2.1 Mobile Agents

We begin with the definition of a mobile agent (Section 2.1.1) and give a brief history on mobile
code (Section 2.1.2). In Section 2.1.3, we present different variants of the mobile code computing
paradigm. Sections 2.1.4 and 2.1.5 argue on the usefulness of mobile agent technology by pointing
out some advantages and application areas for mobile agents. Then, we briefly discuss the most
important standards in Section 2.1.6. Finally, Section 2.1.7 presents the mobile agent platforms
used for our prototypes: Voyager and MOPROS.

2.1.1 Definition

So far, the research community has not agreed on a common definition for mobile agents. Various
sets of required capacities for mobile agents have been devised, but none of these sets is commonly
accepted as a minimal set to define a mobile agent. It is not the goal of the thesis to provide
a universally accepted agent definition. Rather, we adopt a definition that is adequate for our
purpose and that integrates the definitions given in [Mat98, Obj00]:

Definition 1 (Mobile Agent): A mobile agent is a computer program that acts autonomously on
behalf of a user and travels through a network of heterogeneous machines.

The term “autonomously” thereby means that we require the agent to exploit a certain degree
of autonomy. For instance, the agent can decide itself on the itinerary it takes, only based on its
current state.

Figure 2.1 illustrates an example agent execution spanning 4 machines (i.e., Machines 1 to 3
and again Machine 1). Here, the agent is configured and launched by the agent owner on Machine 1

9
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(see Figure 2.1 (1)), travels to Machine 2 and accesses Sér¢@ee (1) and (2), respectively).

After that, the agent travels to Machine 3, where it accesses Server 2 (see (3) and (4)). Finally, the
agent returns to Machine 1 and presents the result to the agent owner (see (5)). Note that the agent
execution can terminate on any machine, although in most applications it will generally return to
the machine it was configured and launched.

Machine 1 Machine 2 Machine 3
Agent Server Server
(1) owner 1 2
Network
.......................... »
Machine 1 Machine 2 Machine 3
Agent Server Server
(2) | owner 1 2
Machine 1 Machine 2 Machine 3
Agent ‘ Server ‘ Server
(3) owner 1 2
Machine 1 Machine 2 Machine 3
Agent Server Server
(4) owner 1 2
Machine 1 Machine 3
Agent Server
(5) owner 2
k@ Network

Figure 2.1: Mobile agent execution with three hops (i.e, from Machine 1 to Machine 2 to Ma-
chine 3 and back to Machine 1). The arrows denote the moving of the agent, while lines ending
with dots show an interaction that takes place.

2.1.2 Brief History

The idea of sending programs to and executing them at a remote site has been explored for some
time. The Postscript language can be considered a rudimentary form of this idea, as it involves

1By “server”, we do not mean the entire machine, but the process executing on Machine 2 that provides a particular
service.
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sending programs to a remote processor in a printer. In 1990, General Magic launched the first
commercially available mobile agent platform called Telescript [Gen95] and obtained & fuatent

its mobile agent technology in 1997. However, Telescript had never been a commercial success,
partly because it was not open to the public, and was soon abandoned. In the past few years,
several mobile agent platforms such as Agent Tcl [Gra96], Aglets [Agl], Mole [SBH97], Tacoma
[Tac], and Voyager [Obj99] have emerged.

Although some mobile agent platforms have been based on compiled languages such as C
[Tac] most of the existing platforms use interpreted languages such as Tcl, Perl, or Java. Inter-
preted languages have the advantage that they are highly portable and that the mobile agent system
can to some extent influence the execution of the agent code. In particular, system calls built dy-
namically during execution can be verified and illegal instructions potentially rejected. This is
generally not possible with binary code format. Platform-independent programming languages
such as Java (more specifically the Java byte code) are favored in heterogeneous execution envi-
ronments.

Recently, the influence of Java has grown rapidly and most of today’s newly created mobile
agent platforms are written in this language. Java provides a large set of standard libraries and
tools that solve certain problems related to mobile agents such as serialization, remote method
invocation, and the class-loading mechanism, which facilitates the migration of code [WPM99].

It is also straightforward to extend and modify the behavior of the virtual machine, for example
using the security manager or the class loading facility.

2.1.3 Mobile Code Paradigm

The client/server computing paradigm is today’s most prominent paradigm in distributed comput-
ing. In this computing paradigm, the server is defined as a computational entity that provides some
services. The client requests the execution of these services by interacting with the server. Having
executed the service, the server delivers the result back to the client. The server therefore provides
the knowledge of how to handle the request as well as the required resources. The computing
paradigm of mobile code generalizes this concept by performing changes along two orthogonal
axes:

1. Where is the know-how of the service located?

2. Who provides the computational resources?

Depending on the choices made on the client and server sides, the following variants of mobile
code computing paradigms, illustrated in Table 2.1, can be identified [FPV98]:

Remote Evaluation (REV). In the REV paradigm, componedt(e.g., a process or object) sends
instructions specifying how to perform a service to comporritepresented bgodein
Table 2.1). These instructions can, for instance, be expressed in Java byte code. Component

2Us patent no. 5603031: System and Method for Distributed Computation Based upon the Movement, Execution,
and Interaction of Processes in a Network.
3Seehttp://www.informatik.uni-stuttgart.de/ipvr/vs/projekte/mole/mal/mal.html for a list of mobile agent plat-
forms.



12 CHAPTER 2. BACKGROUND: MOBILE AGENTS AND REPLICATION

before the invocation after the invocation
machine 1|  machine 2 machine 1 | machine 2
Client/Server A code,resource, A code,resource,B
Remote Evaluation code,A resource,B A coderesource,B
Code on Demand || resource,Al code,B coderesource, A B
Mobile Agent code,A resource, B coderesourcéd, B

Table 2.1: Different variants of the mobile code computing paradigm [FPV98]. Code or compu-
tational entity transported between machines are indicated by italics. Compéecesses the
services provided by componeht

B then executes the request using its own resources, and returns the result, itanjava
Servleté are an example of remote evaluation [Cow01].

Code on Demand (CoD).In the CoD paradigm, the resources are collocated with compohent
but A lacks the knowledge of how to access and process these resources in order to obtain
the desired result. Rather, it gets this information from compofefrepresented bgode
in Table 2.1). As soon a4 has the necessary know-how (i.e., has downloaded the code from
B), it can start executing. Java apptetsl under this variant of the mobile code paradigm.

Mobile Agent. The mobile agent computing paradigm is an extension of the REV paradigm.
Whereas the latter focuses primarily on the transfer of code, the mobile agent paradigm
involves the mobility of an entire computational entity, along with its code, the state, and
potentially the resources required to perform the task. As developer-transparent capturing
and transfer of the execution state (i.e., runtime state, program counter, and frame stacks, if
applicable) requires global state models as well as functions to externalize and internalize
the agent state, only few systems (e.g., Agent Tcl [Gra96], Telescript [Gen95]) support
this strong mobilityscheme. In particular, Java-based mobile agent platforms are generally
unsuitable for this approach, because it is not possible to access an agent’s execution stack
without modifying the Java Virtual Machine.

Most systems thus settle for threeak mobilityscheme where only the data state is trans-
ferred along with the code. Although it does not implicitly transport the execution state of
the agent, the developer can explicitly store the execution state of the agent in its member
attributes. The values of these member attributes are transported to the next machine. The
responsibility for handling the execution state of an agent thereby resides with the devel-
oper. In contrary to REV, mobile agents can move to a sequence of machines, i.e., can make
multiple hops.

The next section elaborates on the advantages of the mobile agent computing paradigm over
the traditional client/server paradigm.

4See Sun’s Java servlet homepép://java.sun.com/products/servlet.
5See Sun’s Java applet homepéup://java.sun.com/applets/index.html
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2.1.4 Advantages of the Mobile Agent Paradigm

At the moment it is not yet clear whether mobile agent technology will establish itself as an in-
dependent computing paradigm for practical use in the long run. Chess et al. [CHK98] made an
attempt to estimate the benefit of mobile agent technology. They concluded that all the problems
considered as good examples for the use of mobile agents can also be solved using traditional
client/server solutions. However, mobile agents allow a general solution to all such problems.
Instead of having to create different, well-tailored solutions to every problem, mobile agents pro-
vide a generic solution to all these problems. The mobile agent computing paradigm has several
advantages over the traditional client/server model [LO99, WPM99, CHK98].

Communication latency and bandwidth. If the communication between two interacting com-
ponents (e.g. a client and a server) involves a considerable amount of data, it may be ben-
eficial to move the client close to the server instead of moving the data between them. The
locality of the client and the server allows them to decreaséatkacyand savebandwidth
in the communication, especially if the mobile agents act as filters and process only the data
that is really useful to the agent owner. Clearly the gain in latency and bandwidth must over-
come the cost of sending the agent to the server node. Fuggetta et al. introduce a model for
performance measurements in [FPV98]. They state that in the client/server paradigm, the
overhead of the interaction depends on the size of the database accessed by the application.
On the other hand, the overhead of the mobile agent paradigm is bound to the size of the
code and the data sent by the application. This leads to the conclusion that the application
of the mobile agent paradigm is only justified when the database size has surpassed a given
threshold.

To exploit locality it is necessary for the developer of mobile agent applications to associate
the notion of locality with every server. Based on the locality information, the agent may
decide to move to the server location instead of invoking the server functions remotely. This
is a contradiction to the general programming model in client/server distributed systems. In
such a model the client does not have to know where the server is located. This is taken
care of by the communication middleware (e.g., CORBA [OMG98a], Tuxedo [ACDF96]),
which transparently forwards the message to the machine that runs the server.

Off-line processing. In mobile computingroaming devices such as Personal Digital Assistants
(PDAS) or laptops are often disconnected from the fixed network. In addition, the emission
of messages from the mobile device over a wireless communication link is expensive in
terms of power consumption. Connections to the fixed network may also incur consider-
able financial costs. This presents an opportunity for mobile agent technology because the
mobile device delegates an agent to act on its behalf and to perform the required actions.
Hence, instead of sequentially invoking every ser§erw, Servy, ..., Servy, the PDA
sends the mobile agent Keru, and eventually retrieves the agent again fremvy. This
involves two accesses to fixed machines, whereas the client/server computing paradigm re-
quiresN. The next time the mobile device connects to the network it can collect the results.
Such a mobile agent can be used not only to query servers but also to act as a filter that
preconsolidates messages sent to the mobile device.
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Reaction time. Having mobile components allows an application to exploit localReaction
time is less significant for a local agent acting on behalf of a remote monitoring device
than for the device itself. In addition resources may under certain circumstances only be
accessible locally. Agents are a concept to provide external service in this situation.

Asynchronous behavior by request aggregationlinstead of interacting with a server in many
RPC-style communications, a client can bundle or aggregate the requests within a mobile
agent. Having reached the server the agent starts interacting with the services locally. This
also simplifies the recovery from communication failures, because either the entire agent,
i.e., all the requests, arrive at the server or none at all. For instance, in space communication
it is often appropriate, due to the communication latency, to use this type of interaction.

Dynamic adaptation. Mobile agents have the ability to adapt dynamically to changes in their
environment. They can, for instance, react autonomously to balance the load in the network
or move on to a replica of a current node that is failing.

Protocol encapsulation. Today’s networks consist of many legacy applications. As their proto-
cols evolve, legacy problems often occur. Mobile agents move to the remote legacy applica-
tion and encapsulate its protocol. Other applications communicate with this application via
an agent, using a proprietary protocol.

These advantages make mobile agents a suitable and beneficial technology for various appli-
cation domains. We elaborate on this in the next section.

2.1.5 Application Domains for Mobile Agents

Whereas the potential usefulness of the mobile agent computing paradigm has been widely ac-
cepted, the mobile agent technology has not yet found its way into today’s more prominent ap-

plications. The following use cases may represent domains where mobile agent technology can
make an impact and an important qualitative difference [LO99, CHK98], and has been used to a
certain extent:

e-commerce. The use of mobile agent technology has been proposed to provide some of the
services of e-commerce. More specifically, agents are sent out into the Internet by a user
and gather the required information. If necessary they can collaborate with other agents,
engaging in information sharing, exchanging, or buying [MGM99]. Schemes are devised to
create marketplaces where agents can deal and even take part in auctions. For this purpose an
agent is equipped with the mechanisms to deliver payment for purchased goods or services
on behalf of its authority.

Watchdog applications. An agent monitors a component, such as a device driver, an application,
or a switch. It is able to react locally to a certain behavioral pattern of the monitored com-
ponent. For instance a network management agent could monitor the network traffic until it
detects traffic congestion. It then sends an email to the administrator or autonomously takes
appropriate corrective actions.
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Itinerant actions. Transactions may involve several nodes. If the nodes have to be visited sequen-
tially rather than in parallel, an agent could be an alternative to performing a client/server
type of call to every host. This application area is related to e-commerce, e.g., comparison
shopping [DEW97, Kar00].

Information gathering. Information gathering can be left to an agent’s responsibility if multiple
sources have to be considered or if the sources are not exactly known beforehead. An agent
might accumulate some knowledge during its itinerary that allows it to make a decision
about its future itinerary.

System configuration. Agents can provide a more flexible mechanism for system configuration.
In particular, the dynamic dispatching of mobile code allows reconfiguration without shut-
ting down the whole system. Active networks [TW96], for instance, rely on instructions
sent with the communication packets. Dynamic system maintenance and software updates
are also supported by this mechanism.

Parallel processing. Mobile agents can clone themselves and split up the work among the clones.
This allows tasks to execute in parallel and distribute processing power among different
nodes. An application based on mobile agent technology is thus also more easily scalable
than applications consisting of monolithic blocks.

Before mobile agent applications begin to appear on a large scale, however, the mobile agent
platforms need to provide the infrastructure services to facilitate agent development. Among these
are security, management of agents, fault tolerance, and transaction support. Fault tolerance and
transaction support are the focus of this thesis. Moreover, aspects of agent technology have to be
standardized to allow different agent systems to interoperate. Although standardization efforts are
being devised or are already stable, they are not yet widely adopted.

2.1.6 Standards

Because of their relatively recent nature, today’s mobile agent systems differ widely in architecture
and implementation. These differences prevent interoperability and rapid development of agent
technology. To promote interoperability yet still permit system diversity, the Object Management
Group (OMG) [OMGDb] has defined a standard for mobile agent technologies callédathiée

Agent System Interoperability FramewdiMASIF or MAF) [ObjOo0, MBB"98]. This standard

does not consider programming language interoperability but only interoperability between agent
systems written in the same programming language by potentially different vendors. It relies on
basic CORBA facilities such as naming service, life cycle service, etc. [OMG98b]. The com-
plexity of the MASIF standard has been criticized as well as its focus on Java and its proximity
to the IBM Aglets [Agl, LO98] implementation. Tham et al. [TFWR97] claim that internal APls
have been too extensively specified and that the standard is weak in terms of interoperability and
conformance specification.

Besides OMG, the Foundation for Intelligent Physical Agents (FIPA) [Fip] has also standard-
ized aspects of mobile agent technology. This standard aims at maximizing the potential inter-
operability between different agent platforms. It addresses a variety of domains sagerds
managementgent securityandagent mobility
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2.1.7 Mobile Agent Platforms

In this section, we present the mobile agent platforms relevant to the thesis: Voyager, the primary
choice, and MOPROS.

Voyager

Our chosen platform is ObjectSpace’s Voyager v3.1 mobile agent platform [Obj99]. Voyager is
entirely written in the Java programming language and integrates fundamental distributed comput-
ing with agent technology. It considers a mobile agent as a special kind of object, that simply has
an additional property, namely mobility. Mobile agents can move between Voyager servers. Upon
arrival on the destination, the method passed as argument to the move command is invoked and the
mobile agent resumes its execution. Being a Java mobile agent platform, Voyager supports weak
mobility, i.e., the user needs to explicitly save all the state to be transferred into local variables of
the object/agent. Voyager uses standard Java serialization for the transfer of the agent and its state.
At the destination Voyager server, the state is regenerated and can again be accessed by the mobile
agent.

Voyager allows to send a Java message to a stationary or mobile agent, i.e., supports inter-agent
communication. To ensure that a message reaches a moving agent, Voyagefdeeastersat
the former Voyager server, which then route the messages to the agent’'s new destination. Different
modes of communication are supported:

e (Oneway)The message is sent and forgotten. The sender is not informed if the message
does not arrive at its destination.

e (SynchronousThe method invocation returns an exception if the destination is not available.
The sender can thus retry the method invocation at a later time. It is blocked until it receives
the result of the invocation, unless an exception is raised.

e (AsynchronousYhe method invocation returns an exception if the destination is not avail-
able. However, the sender does not block while the result of the invocation is computed.
Rather, the result is available at a later point in time and can then be collected by the sender.

Voyager provides a basic directory service (or repository), which runs locally on each Voyager
server, but can be remotely accessed. Our implementation makes use of this directory server;
however, this is just a simplification and the same functionality could be provided by the use of
agents.

MOPROS

MOPROS (MObile PROcesseS) is a proprietary experimental mobile agent platform that has been
implemented in the IBM Zurich Research Laboratory to study the problem of resource control in
the context of Java-based mobile agents. Its early stage of development and its focus on resource
control are manifest in its not yet optimized performance. Despite the performance issues, the pos-
sibility of discussions with MOPROS'’ developer and the availability of the source code have made
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MOPROS an ideal platform to port our prototype to. Unfortunately, MOPROS is not publically
available and its development has been discontinued in the meantime.

The notion of a process is the base entity in MOPROS. When launched, a process starts ex-
ecuting in itsmai n method. Using a particular move command, the process (i.e., the agent) can
be moved to another Java Virtual Machine (JVM). Before moving the agent, the developer must
explicitly store the state to be transferred with the agent. By default, MOPROS transfers the state
and the code of the agent, i.e., only supports weak mobility. Upon arrival at the destination JVM,
the agent resumes the execution again by restartingah@ method. Inter-agent communication
in MOPROS is based on Java Remote Method Invocation (RMI) [Sun], which is Java’s distributed
object model.

2.1.8 Summary

We have presented a brief overview on mobile agent technology. Today few large-scale applica-
tions are based on mobile agents. This is partly because no “killer” application exists that would
extend the use of mobile agents into many computation areas. However, in some domains the in-
fluence of mobile agent technology is growing. In active networks, for instance, packets carry code
which is executed in the switches and allows the switches to be configured dynamically. Another
application domain can be found in mobile computing. Here, the agents act on behalf of mobile
components and therefore minimize the connection time between the base station and the mobile
device. Mobile agent technology is also believed to have a significant impact on e-commerce.
Although the example applications used in the thesis are taken from the application domain of
e-commerce, the presented approaches are not limited to e-commerce and are also applicable to
the other domains.

2.2 Replication

This thesis discusses fault tolerance for mobile agents. Fault tolerance can only be achieved
through some form of replication. We discuss now the relevant replication mechanisms.

Fault tolerance aims at (1) transforming an unpredictable or undesired behavior into a pre-
dictable behavior, or (2) masking such an unpredictable or undesired behavior. Iltem (1) is usually
achieved through the use of atomic transactions [GR93], while (2) generally uses replication. In-
deed, fault tolerance can only be achieved by introducing redundancy into a system. While the use
of redundancy is obvious in (2), it is somewhat hidden in (1). For instance, the implementation of
atomic transactions often relies on redundant information, e.g., stored in log files.

Various forms of redundancy exist, such as data or execution redundancy. With data redun-
dancy, copies of the data are stored in different locations. If one copy becomes corrupted or is
lost, another copy can be accessed. As an example, consider the backup of a file system. If the
disk fails and the file system becomes unaccessible, then the backup is used to restore files and
directories. Execution redundancy, in contrast, duplicates the execution of a program. In case of
a failure of one replica of the program, the other(s) may still succeed. Examples can be found
in astronautical applications, where often hardware is replicated as well and the programs that
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are run on them [SG84].In distributed computing, often the server is replicated to achieve fault
tolerance. In the following, we discuss replication of the server in more detail and briefly present
existing replication techniques that allow to maintain consistency among the replicas.

2.2.1 Replicating the Server

LetT denote a server ar@ a client that sends requestsfto ServerT' executes the client requests

and sends the result back@b If T fails, it is not able to handle requests frarhany more until

it recovers. During this time, the service providedBys not available and the executiond@tis
blocked. HenceT is asingle point of failure Replication introduces redundancy and thus masks

the failure of a physical serveéf from the client. Instead of accessifig the client accesses a
replica group composed of tiserver replicasT°, T, T2, ... (see Figure 2.2), that generally are
located on different physical machines. These replicas collaborate in order to execute the client
request and send the result back to the client. In this context, it is generally assumed that crashed
server replicas do not recover any more; rather, they may join the group again later, with a new
identity (i.e., they behave like new replicas).

7 serverT

server

I /| replica \

/ /—\
server ||
replica

Tl

client C

~_

Figure 2.2: Interaction of a client with a replicated server.

2.2.2 Replica Consistency

Consistency is an important issue with replication. Indeed, the access of a client to the replica
group needs to provide a result that is consistent with the specification of the service. Generally,
the replicas are required to lstrictly consistenti.e., behave exactly as a single copy would.
Assume, for instance, that clietincrements data item on replicaZ*. Client D, on the other

hand, multiplies the value of data itemon7? by “3”. The replicas forward the operations to the

other replicas to maintain consistency. However, delayed messages may cause inconsistencies in

®Moreover, different versions of a program on different hardware may be executed to prevent that, for instance, the
same fault occurs on all replicas [Avi95].

"Throughout the thesis, we useperscriptedndices to distinguish among replicas. Subscripted indices have a
different meaning (e.g., see Section 3.2).
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the value ofz on the replicas. Whereashas the value “6” o™ andT?, z has the value “4” on
T3 (Figure 2.3).

c X:=x+1

T X1 N x=2 x=6 _

T2 _x1 ] x=6 _

T3 _Xx=1 _
x=4 o

D X:=3X

Figure 2.3: Violation of strict consistency.

To maintain consistency among the replicas, replication techniques suatdties passive
semi-active andsemi-passiveeplication have been proposed. In Section 2.2.3, we briefly sum-
marize these replication techniques.

2.2.3 Replication Techniques

In this section, we briefly outline the most popular replication techniques, i.e., active and passive
replication, which allow to maintain consistency among the server replicas. Moreover, we present
semi-passive replication, which will be instrumental in the context of fault-tolerant mobile agents.
Semi-active replication is only briefly mentioned; the reader is referred to {BEBPow91] for

an in-depth discussion.

Active Replication

With active replication, also called state-machine replication [Lam78, Sch93], the client request
rq is executed on all replicas of the group. Every replica returns the result to the client; the
client thus receives a reply from every server replitgsee Figure 2.4). It keeps the first reply

and discards the other replies. Active replication has two limitations: the processing redundancy
leads to increased resource usage, and the need for deterministic execution of the client request.
Indeed, the result of¢ must only depend on the initial state of a replica and on the sequence of
operations withinrg. Multiple threads, for instance, generally lead to non-determinism, as the
thread scheduling is not deterministic. We discuss the problem of determinism in more detail in
Section 7.1. Moreover, all replicas need to execute the requests in the same order to maintain
consistency. This order is ensured by a communication primitive ctdted order broadcasbor

atomic broadcasfSch93, CT96, CM84].

Passive Replication

In contrast to active replication, in passive replication (also cgbldchary-backup[BMST93])

only one replica, the@rimary, executes the client request. The update is then sent to the backup
replicasT" andT? and to the client (see Figure 2.5). The backup replicas do not directly com-
municate with the client; rather, they only communicate with the primary. As only the primary
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Figure 2.4: With active replication, the client requesaiemically broadcastedrepresented by
the dot) to all server replicdE’, which all execute the request and return the result.

executes the client request, deterministic execution is not needed. However, the passive replication
technique needs to handle failures of the primary.

T2
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F v
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\
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Figure 2.5: In passive replication, the client request is executed by the primary and the result is
reliably sent (represented by the circle) to the backups and to the client.

For this purpose, passive replication relies on the notiogrofip membership The group
membership evolves in a sequence of views [BJ87, MS95, GS96] (see Figure 2.6). Every member
has the same view and agrees on messages delivered within this view. We say that the primary
vs-caststhe updates to the backups, whies-deliverthem. If the primary fails, a new view is
installed, in which one of the backup replicas assumes the role of the primary. Compared to active
replication, the failure of the primary leads to an increased response time [SM96]. Indeed, if the
primary fails, clientC eventually time-outs. It then has to learn the identity of the new primary
(e.g.,T") and reissues its request. Hence, failure transparency from the perspedfivis abt
entirely achieved by passive replication.

Semi-Passive Replication

Similarly to passive replication, semi-passive replication [DSS00, DS00], processes the
client request on one server replica (called phienary), if no failures occur, and then updates the
backup replicas (see Figure 2.7). As the request is handled by a single server, determinism of the
server replicas is not required. In contrary to passive replication, semi-passive replication does not
rely on view synchrony. Rather, the selection of the primary is based awtiditéng coordinator
paradigm[CT96] of the underlying consensus problem. The particular consensus problem defined
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Figure 2.6: The group membership evolves in the sequence of viearsd v;, 1. View v;
excludes the failed primary®.

in semi-passive replication is callg@onsensus with Deferred Initial Val8g®IV consensus)
[DSS98, B¥f00, DS00]. The decision of DIV consensus is the update value obtained by processing
the client request and is eventually known toZll As the client request is sent to and replies are
received from all replicas, failure transparency from the perspective of the client is achieved.

-I-2 NV »
Tl

TO \

C B

Figure 2.7: Semi-passive replication is similar to passive replication, but does not rely on view
synchrony. ClientC reliably sends its request i, T, and T2 (denoted by the circle at the
message emission).

DIV Consensus: The classical consensus problem [CT96] is defined such that every process
p* (see Figure 2.8) starts with an initial valug and the processes agree on a common decision
valuev. The participants start consensus by calling the fungtioapose( 4) with their initial

value passed as argument. In the DIV consensus algorithm, on the other hand, a process is not
required to provide its initial value when starting the consensus algorithm. Rather it can compute
this value later when needed in the consensus algorithm. Instead of passing the initial value to
pr opose, the participants pass a hand&EV () (stands for “Get Initial Value”) to compute the

initial value. If no failure occurs, the decision is reachedsbwithin 2 rounds of messages (see
Figure 2.8 (a)). This decision is then reliably broadcasted to the other participantg,, pé.,

DIV consensus evolves in a sequence of phases, starting in the second phase of round 1. In this
phasep® computes its initial value and sends it to all other participants, which either send an

8In [D&ef00, DS00], the name has changed_szy Consensusin this work, we use the name originally given in
[DSS98], i.e.Consensus with Deferred Initial Value (DIV consensus)
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ACK or a NACK back in phase 3. i’ manages to collect a majority of ACKs, it can decide and
reliably broadcasts this decision in phase 4. Figure 2.8 (b) depicts the scenario injaiith
after having executedZV(). The other participants detect the failureghfandp! takes over the
role of p°.

phases , 2 (round1) .3 4 ; 2 (round 1) 3, 1(round 2) ;2,3 4

N AN AN P OVALA
ARG

P
} 1
EZ S Ez 5

(a) without failure | (b) with failure of p
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=

Figure 2.8: DIV consensus (a) without failure and (b) with the craghi.ofhe decision message
is reliably broadcasted (denoted by a dotted circle at the message emission).

Semi-Active Replication

Semi-active replication [BHB90, Pow91] attempts to combine the advantages of passive replica-
tion (i.e., handling of non-determinism) and active replication (fast response time despite failures,
i.e., fast fail-over). One of the replicas is tleader and the others are callddllowers Semi-

active replication splits the processing of the replicas into deterministic and non-deterministic
parts. While the deterministic parts are executed by all replicas, only the leader executes the non-
deterministic parts and informs the followers. However, [Pow91] assumes a synchronous system
model, i.e., relative process speeds and communication delays are bounded. This synchrony as-
sumption guarantees that the leader is always slightly ahead in the processing compared to the
followers. The approach in [Pow91] may be adapted to work also in an asynchronous system
model; however, this is beyond the scope of this thesis. Hence, semi-active replication is not
considered any further.

2.2.4 Summary

In this section, we have presented an introduction to replication. In the context of replication,
replication techniques address the problem of replica consistency. While active replication masks
failures from the client and provides fast service despite failures, it requires deterministic execu-
tion. This limitation is avoided with passive and semi-passive replication. However, failures lead

to increased response time with these techniques. Passive and semi-passive replication are distinct
in the way they select a new primary after the failure of the previous one. Semi-passive replication,
or rather DIV consensus, is an important building block for fault-tolerant mobile agent execution
(see Chapter 6). Passive and active replication are used in Chapter 7, where we discuss replicated
agents executing on replicated machines.



Chapter 3

Model

In this chapter, we present the model we use throughout the thesis. More specifically, Section 3.1
gives the general system model. The model of a mobile agent is presented in Section 3.2. Failures
may disrupt a mobile agent execution and Section 3.3 thus presents the failures we are address-
ing. Finally, Section 3.4 distinguishes between transactional and non-transactional fault-tolerant
mobile agents.

3.1 System

We assume an asynchronous distributed system, i.e., there are no bounds on message transmission
delays nor on relative processor speeds. An example of an asynchronous system is the Internet.
Processors communicate via message passing.

3.2 Mobile Agent

A mobile agent executes on a sequence of machines (see Figure 3.1), wotaré g; (0 < i <
n) provides the logical execution environment for the agent. Executing the agent at & jdace
called astages; of the agent execution. We call the places where the first and last stages of an
agent execute (i.epy andp,) the agentsourceand destination respectively. The sequence of
placespg, p1, ..., pn is called the itinerary of a mobile agent. Whereagadicitinerary is entirely
defined at the agent source and does not change during the agent exeadiwanécitinerary is
subject to modifications by the agent itself.

Logically, a mobile agent executes in a sequence of stage actions (see Figure 3.2). Each stage
action sg consists of potentially multiple operatiomgy,op;,.... Agenta; (0 < i < n) at
the corresponding stage represents the agentthat has executed the stage actions on places
po,...,p;—1 and is about to execute on plage The execution of; on placep; results in a
new internal state of the agent as well as potentially a new state of the place (if the operations of
the agent have side effectsNote that the agent generally does not access the state of the place

!Also calledlanding padin [JMS'99], agency{SBS00], orcomputational environmeffiEPV98].
2Interactions with remote places or other agents potentially also lead to modifications of the state of these agents or
places. The thesis does not explore these aspects further, as they are similar to the state modifications on the hosting

23



24 CHAPTER 3. MODEL

" Machine 2

Machine 0 Machine 4

" Agent

Source Destination

Figure 3.1: Example of the execution of an agent A.

directly. Rather, each place runs a set of services, which together define its state. For simplicity, we
say that the agent “accesses the state of the place”, although this access occurs through a service
running on the place. Assume, for instance, that the place runs a service that sells airline tickets.
The mobile agent accesses this service to buy a ticket and thus at the same time modifies the state
of the place (that comprises the state of all the services running on it). We denote the resulting
agenta; . Placep; forwardsa; 1 to p; 1 (for i < n).

Stage S Stage S | Stage S, Stage S , Stage S ,
@, o 2y .
Agent Agent
Source Destination

Figure 3.2: Model of a mobile agent execution with four stages.

In this thesis, we consider mobile agents that do not receive messages from other agents or
applications, which modify the state of the agent. Actually, the approach presented in the thesis
can generally also handle these mobile agents, but limiting the scope of the thesis in this way
considerably simplifies the presentation of our approach.

3.3 Failures

3.3.1 Infrastructure Failures

Machines, places, or agents can fail and can recover later. A component (machine, place, or agent)
that has failed but not yet recovered is calthmlvn whereas it iqup otherwise. We assume that

place.
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components are eventually up foréyere., aregood[ACTOO]. In contrary, components that are
eventually down forever or always alternate between up and down are batledhe assumption
of good components is only needed to achieve consistency on the level of the application that has
launched the mobile agent. For instance, crashed databases accessed by the mobile agent need to
properly terminate the transactions that have not yet committed or aborted. For this purpose, they
need to eventually recover. A component@rect if it does not crash during the execution of
the agent at a particular stage. A place that crashes at Stage recover and again participate
in the execution of the agent at a later st#g€k > 7). In this thesis, we focus on crash failures
(i.e., processes prematurely halt); malicious failures (i.e., Byzantine failures) are not discussed,
with the exception of a brief reference to [Sch97] in Section 5.2.1. The crash of a machine causes
any place and any agent running on this machine to crash as well (Figure 3.3 (d)). A crashing
place causes the crash of any agent on this place, but this generally does not affect the machine
(Figure 3.3 (c)). Similarly, a place and the machine survive the crash of an agent (Figure 3.3 (b)).
We do not consider catastrophic failures such as deterministic, repetitive programming errors (i.e.,
programming errors, that occur on all agent replicas or places) in the code as relevant failures in
this context’ Failures of machines, places, and agents are caifeastructure failures In the
following, when we speak about failures, we mean infrastructure failures, unless explicitly stated
otherwise.

Communication links do not create or duplicate messages, but they can drop single messages.
However, if a component sends a message to another good compodhant infinite number of
times, thend eventually receives messages freman infinite number of times [ACT00]. Note
that a communication link that drops messages can lead to a partitioning of the network. With
a partitioned network, only components in the same network partition can communicate among
themselves. Communication with components in other partitions is only possible if the partitions
are merged again, i.e., when the communication link stops dropping messages. In this respect,
communication links that drop messages are equivalent to communication links that can fail and
eventually recover. However, the distinction between communication links that fail and commu-
nication links that drop messages becomes important when we discuss blocking in Section 4.1.
Blocking occurs if a failed component prevents progress in the mobile agent execution. Using
this definition, a link that fails may cause blocking, however, we do not speak of blocking in the
case of a link that drops messages. Reasoning about blocking in this context requires to take into
account also the structure of the underlying network. Indeed, a failure of a link may not cause
a partition at all (if redundant links exist), or may lead to a singleton partition (a partition with
one component), or, in the worst case, partition the entire network into 2 partitions. As an in-
depth discussion of these issues is outside of the scope of the thesis, our definition of blocking
only addresses failures of agents, places, and machines. By allowing communication links to drop
messages, we take partitioning into account in our system model. Indeed, the approach presented
in the thesis can handle network partitions (i.e., allows progress in the execution) if a majority of
components participating in an algorithm is in the same patrtition. If no such partition exists, then
our approach must wait until partitions are merged such that a majority of components is again in
the same partition.

3Actually, components only need to be up sufficiently long to finish their tasks.
4Johansen et al. [JIM®9] introduce a so-calledhlly point. On detection of a catastrophic failure the agent is sent
to the rally point, where the agent owner can debug it.
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(a) no failure (b) agent only (c) place (d) machine

Figure 3.3: Failure model for mobile agents.

The detection of infrastructure failures is generally encapsulated into a failure detector module
[CT96]. Failure detectors are defined in terms of completeness and accuracy properties. Complete-
ness requires that failed processes are eventually suspected, while accuracy limits the number of
false suspicions, i.e., processes that are suspected but have not crashed. In [CT96], Chandra and
Toueg introduce several types of failure detectors defined by completeness and accuracy proper-
ties. Perfect failure detectors, which eventually detect all failures (strong completeness) and make
no false suspicions (strong accuracy) are unrealistic in the Internet. Moreover, the perfect failure
detector is defined in a model without recovery. A model with recovery is presented in [ACTOO],
which distinguishes between good and bad processes, where good processes are eventually up
forever. A perfect failure detector would require to know the future. Hence, assuming unreliable
failure detectors is a more realistic assumption.

The approach to fault-tolerant and non-blocking transactional mobile agent execution pre-
sented in this thesis only requires an unreliable failure detector of ¢I&sgECT96], which pro-
vides strong completenesand eventual weak accuracyStrong completeness ensures, that all
crashed components are suspected, while eventual weak accuracy guarantees that eventually some
correct component is not suspected any more.

3.3.2 Semantic Failures

A semantic failureis different from an infrastructure failure in the sense that neither machine,
place, nor agent initiating the request crash. Rather, it occurs when a requested service is not
delivered because of the application logic or because of service failure. For instance, a request
for an airline ticket is declined if no seats are available on a particular flight. Nevertheless in this
case, the agent’s operation, i.e., the request for a ticket, executes in its entirety. Actually, in this
example no real “failure” has occurred, as the result is a valid outcome of the service. However,
from the perspective of the agent (i.e., the client of the service), the outcome of the service request
is undesired. Hence, we call this outcome a “semantic failure”.

3.4 Transactionalvs. Non-Transactional Mobile Agents

The execution of two stage actiosg andsa; is atomig if and only if both stage actions succeed
or none at all. Atomicity addresses both infrastructure and semantic failures. Assume, for instance,
that stage actiosg books a flight, whilesg; reserves a hotel room at the flight destination. Clearly,
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the use of the hotel room is limited if no seat is available any more on any flight to the destination.
Hence,sg andsa; need to execute atomically, i.e., we want both to succeed. If one of the two
semantically fails (e.g., because no seats are available) then the other one needs to be aborted as
well. We call these mobile agenttmnsactional mobile agents

On the other hand, general fault-tolerant mobile agent executions do not require atomicity.
Rather, they address infrastructure failures only and ignore semantic failures. For instance, a
mobile agent execution that buys a book (is&,) and shoes (i.esa) acquires the book even if
no shoes are available, or vice versa. In this sesggndsg are independent.

Note that non-transactional fault-tolerant mobile agent executions can be implemented using
transactions (e.g., [ASPZ98, RS98]). However, the use of transactions still does not ensure atom-
icity in the entire mobile agent execution.

In the following, we first focus on non-transactional mobile agents, i.e., general fault-tolerant
mobile agent execution (see Chapter 6 and Chapter 7). When we refer to “fault-tolerant mobile
agents”, we mean non-transactional, fault-tolerant mobile agents, unless explicitly stated other-
wise. Transactional mobile agents are discussed in detail in Chapter 8. A brief discussion on
transactional mobile agents is already given in the survey of the current state of the art (see Sec-
tion 5).
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Chapter 4

The Problem of Fault-Tolerant and
Transactional Mobile Agent Execution

In this chapter we specify fault-tolerant mobile agent execution in terms of two properties: non-
blocking and exactly-once execution. We begin with the definition of a blocking mobile agent
and show how replication can overcome blocking. However, replication may lead to multiple
executions of the agent. Hence, a fault-tolerant mobile agent execution must be non-blocking
and execute exactly-once. For this purpose, we identify the notitwcaf transactionas a basic
building block for fault-tolerant as well as transactional mobile agent execution.

4.1 Failures and the Blocking Problem

While a mobile agent is executing on a plagean infrastructure failure gf; might interrupt the
execution ofa; and prevent any progress of the mobile agent execution (see Figure 4.1). During
the timep; is down, the execution af; and consequently the entire mobile agent execution cannot
proceed. We say that the executiorupfs blocked Provided the availability of suitable recovery
mechanisms [BHG87, GR93], the execution proceeds whescovers from the failure. Gener-

ally, a mobile agent execution is callbtbcking if a singlefailure renders progress in the mobile
agent execution impossible until the failed component (e.g., machine, place, or agent) recovers.
In contrast, anon-blockingmobile agent execution can continue the execution despite a single
failure. Generally, blocking mobile agent executions are undesired. In particular, if the failed
component does not recover, then the agent is lost and never returns to the agent owner. Moreover,
long downtimes of components lead to very slow response times and may be unacceptable for the
agent owner. Hence, mobile agent executions are preferably non-blocking. Note that semantic
failures do not lead to blocking in the mobile agent execution.

We use a weak definition of blocking, because any approach only needs to tolerate a single
failure to achieve non-blocking. This definition is appealing because of its simplicity. Moreover,
any approach able to cope with any single failure is generally already sophisticated enough to
address (or can easily be extended to handle) also multiple failures in the context of mobile agents.
Indeed, the approach presented in this thesis is hon-blocking even in the case of multiple failures
(see Section 6.3.1).

29



30 CHAPTER 4. FAULT-TOLERANT AND TRANSACTIONAL MOBILE AGENTS

Stage S Stage S | Stage S ,,
‘ \/

Agent

Source

Figure 4.1: Agent execution where plagecrashes while executing,. While py is down, the
execution ofa, is blocked.

4.2 Agent Replication and the Exactly-Once Execution Problem

4.2.1 Replication to Prevent Blocking

Blocking can only be overcome by introducing redundancy. Instead of sending the agent to only
one place at the next stage, replicas of the agent are sent to a set of places. We déntite by
agent replica of;; executing on placpg, but omit the superscripted index if the meaning is clear
from the context. Although a place may fail, another place can take over the execution to prevent
blocking of the mobile agent. However, redundancy of execution may result in multiple executions
of (parts of) the mobile agent. While this is not a problem for idempotent operations, it should
not occur for non-idempotent operations. Assume, for instance, an agent that withdraws money
from the agent owner’s bank account. This is clearly a non-idempotent operation and multiple
executions of this operation have the undesired effect of multiple money withdrawals. In general,
non-idempotent stage actions must be execatedtly-oncdRS98] from an application point of

view. Indeed, to achieve exactly-once execution, the stage action can be executed multiple times,
but all executions except one need to be undone. Hence, from the point of view of the application,
it appears as if the agent had executed exactly once. In contrast to non-idempotent operations,
idempotent operations such as reading an account balance allow multiple executions. Clearly,
blocking in a mobile agent execution consisting only of idempotent operations is easily prevented
by sending multiple agents.

The redundancy introduced by replication masks failures and ensures progress of the mobile
agent execution. Figure 4.2 illustrates the replication approach. At Staaset of places1; =
{p?,p},p?,..} executes the agemt. Even if placep) fails (see Figure 4.3) the ageat is not
lost, as the other places iy have also received, and can start executing it. Note that there is
no need to replicate the agent at the agent source and destination. At the agent source, the agent
is still under the control of the agent owner. The agent destination may be a mobile device, that
is only intermittently connected to the network. Hence, mechanisms need to be implemented to
store the agent until the mobile device connects again to the network. As the agent only presents
the results to the agent owner at the agent destination, which is generally an idempotent operation,
these mechanisms at the same time also address failures at the agent destination.

The group of places of a stagg is responsible for the fault-tolerant agent execution. To
prevent a machine crash from affecting multiple places in sfageach placey! (j = 0,1,...) is
generally located on a different machine (although this is not a requirement).



4.2. AGENT REPLICATION AND THE EXACTLY-ONCE EXECUTION PROBLEM 31

Stage S | Stage S , Stage S ,

Stage S Stage S ,

Source Destination

Figure 4.2: Agent execution spanning five staggs .., S4 with two redundant places at stages
S, S92, andSs (i.e., replication degree 3).

Stage S | Stage S , Stage S,

Stage S Stage S ,

Agent Agent
Source Destination

Figure 4.3: Agent execution with redundant plapeéM; = {p?, p},p?}), where place)} fails.
The redundant places mask the place failure.
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Ideally, the agent only executes on one place at a stage, unless a failure occurs. Only if this
place fails or is suspected to have failed, the other places may start executing the agent. Using this
lazy approach is less resource consuming than a priory executing the mobile agent on all places of
a stage.

Despite of agent replication, network partitions can still prevent the progress of the agent. More-
over, catastrophic failures may still cause the loss of the entire agent. A failure of all places in
M (see Figure 4.3), for instance, is such a catastrophic failure. As no caepysadvailable any

more, the agenis is lost and, obviously, the agent execution cannot proceed any more. In other
words, replication does not solve all problems. The non-blocking property only addresses single
failures, as they cover most of the failures that occur in a realistic environment. Increasing the
replication degree (i.e., the number of replica agents at a stage) generally prevents blocking even
in cases in which more than a single agent fails. This is also the case for the approach presented
in this thesis.

4.2.2 Properties of Places\;

In Section 4.2.1 we have introduced replication as a way to overcome the problem of blocking.
Replication occurs on the agent level: the agent replicas execute on different placed; at

a stageS;. Depending on the relation among these places, we distinguish two different classes of
places:hetero-placesandiso-places

Hetero-Places

Hetero-places correspond to a deff of places (see Figure 4.3) that all provide a similar service
such as selling airline tickets from Zurich to New York. However, the places are provided by
different airlines, e.g., Swiss Air Lines, Delta, or Lufthansa: they are not replicas of each other.

Hetero-places with witnesseare a generalization of hetero-places. While hetero-places all
provdfdide the particular service (i.e., airline tickets from Zurich to New York), in hetero-places
with witnesses only a subset of the places provides the service. The others (i.e., the witnesses),
although they can execute the agent, do not provide an airline ticket service to the agent and thus
the service request of the agent can only fail (semantic failure). However, the agent is not lost and
proceeds with the execution, while potentially reporting the failed ticket acquisition to the agent
owner.

Iso-Places

Iso-places correspond to the traditional case of server replication: thefsminsists of replica
places, where all places are provided by the same company. Revisiting our airline example, all
places are provided by Swiss Air Lines: modifications to one place are visible to the others as
well. Consequently, executing a fault-tolerant mobile agent on iso-places leads to two levels of
replication: server replication in the places (i.e., airline Swiss Air Lines’ servers) and client repli-
cation on the agent level.

!Also calledexception nodefSR98].
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Within the class of iso-places, we can further distinguish between pjﬁo&here the modi-
fications are propagated

1. by the places themselves, or

2. by the agent replicas.

In (1), that we callreplicated iso-placesthe places run a replication mechanism (e.g., using
one of the replication techniques presented in Section 2.2.3) that ensures consistency among the
place replicas. Note that executing the mobile aggoh two such iso-places iM; at stagesS;
may cause all iso-places i; to reflect the modifications twice.In contrast, in (2) the agent
replicas update the iso-places.M;. The mobile agent thus ensures consistency of the replicas.
However, this requires that an instance of the agent (i.e., an agent replica) (1) executes on all place
replicas and (2) should not fail as long as the service is up and running. We refer to this case as
independent iso-placgsindependent iso-places are assumed for instance in [Sch97].

Approaches to fault-tolerant mobile agent execution generally address hetero-places and hetero-
places with witnesses, and replicated iso-places. In this work, we first present our solution in the
context of hetero-places and hetero-places with witnesses (Section 6). The cases of replicated and
independent iso-places are discussed in Chapter 7.

4.2.3 Replication and the Exactly-Once Problem

As explained in Section 4.2.1, replication allows executions to be non-blocking, but may also lead
to multiple agent executions. Assume, for instance, thdails. Placep] starts executings,

which results in agent;.; and M, . In the meantimep? recovers and continues the execution

of a;. If p? andp! commit the agent's stage action, the agent is executed multiple times and
results in duplicate agents,; anda;_ ;. Although blocking of the agent execution because of a
failure top; is prevented, the mechanism to prevent blocking results in multiple agent executions.
Consequently, the problem of multiple agent executions and blocking are related problems in the
sense that preventing blocking may lead to multiple agent executions.

Our failure model (see Section 3.3) includes agent crashes. If only the agent fails, but the place
survives, modifications to the place state by the failed agent survive. As the agent is then executed
on placep}, modifications are (partially) applied twice (th andp!). Replication of the agent
thus leads to a violation of the exactly-once execution property of mobile agents. Consequently,
the replication protocol of agents has to undo the modifications taf the placep?. This is
fundamentally different from the traditional modeling approach for replication, where all the state
is supposed to be maintained in the server replica and is lost with the crash of the replica. The
computing environment thus automatically remains in a consistent state even when replicas fail.

2Unless a mechanism (e.g., request IDs) is provided that prevents iso-places to execute the same operation twice.
See Section 4.2.3 and Chapter 7 for a discussion on multiple executions of mobile agents.

3In [PS00] and [PS01b], replicated iso-places are calteutintegrated iso-placesvhile independent iso-places are
referred to asntegrated iso-places
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Another source for a violation of the exactly-once execution property is given by unreliable
failure detectiorf. In asynchronous systems such as the Internet, it is impossible to correctly detect
failures (see Section 3.3.1). Even if a placsuspects the failure of another placé.e., believes
that ¢ has failed),q may not have failed in reality. Indeed, slow communication or processor
speeds may have causedo erroneously suspegt When placej suspects the failure gf, it
starts executing; (see Figure 4.4). If the suspicion pf was erroneous, the execution gfat
stages; results in two agents;; anda;,, i.e., a violation to the exactly-once property.

Stage S ,;

Stage S Stage S Py’

pi+11
e pm(’

: »
ol

Figure 4.4: Replication potentially leads to a violation of the exactly-once property.

A violation of the exactly-once execution property can occur (1) in the agent replicas and (2)
at the places (or rather the services running on the places). Clearly, both instances are related in
that a violation of the exactly-once execution property at the places is a consequence of multiple
executions of the agent (e.g;,onp? anda; onp}).

In summary, we require that a fault-tolerant mobile agent execution satisfies the following liveness
and safety properties [AS85]:

Non-blocking A single failure must not prevent the termination of the agent exec(fi@ness)

Exactly-once The mobile agent’s stage actions are executed exactly{sadety)

“This is captured by the property afeak parsimonyn [DS00]. This property requires that if the same request is
processed by two replicasandg, then at least one gf andq is suspected by some replica.
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4.3 Basic Building Block: Local Transaction

In Section 4.2 we have specified the fault-tolerant mobile agent execution in terms of the non-
blocking and exactly-once properties. In this section, we define a basic building block that is
fundamental to enforce the exactly-once property and thus implicitly the non-blocking property:
thelocal transaction

4.3.1 Local Transaction

The stage actiosg of mobile agent;; encompasses a set of operatiops op1, - - ., that act on the

local services (see Figure 4.5). Locally, on the plg¢e¢he agent executes the set of operations,
thereby transforming a consistent state of the agent and the place into another consistent state
(consistency). The effects of executing need to be durable, i.e., reflected by the place (new
state of the place) as well as by the aggni, and not to be lost anymore (durability). Moreover,

we require thasa executes entirely or not at all (atomicity). Only whea has completed its
execution should the results (including the modifications to the place) be visible to other agents
(isolation). These four properties correspond to the specification of a transaction (ACID, see
[HR83, BHG87, GR93]). Hencesg, needs to run as lacal transaction The concept of a local
transaction is an important building block to fault-tolerant mobile agent execution.

Stage action sa; of a,

begin local
transaction
op,
op,
op,

end local
transaction

Figure 4.5: The stage action of ageptuns as a local transaction.

The local transaction consisting of operatiagg, op,, . . . terminates either by a commit or an
abort. If the decision is commit, the effects of executipg op1, . . . become durable, otherwise,
all the modifications are undone. When and by whom this commit/abort decision is made allows
to distinguish among various approaches for fault-tolerant mobile agent execution and leads to
different properties of the approaches. We discuss these properties in more detail in Section 5.1.

5The resulting agent is called ., (see Section 3.2).
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4.3.2 Enforcing the Exactly-Once Execution Property

Executing the stage actiasg as a local transaction allows to enforce the exactly-once property
for mobile agent executions. Actually, while the mobile agent is executed exactly-once at every
stagesS;, the local operationsp,, op;, . . . of a stage actiona’ are executedt-most-once

At-Most-Once Ensured On Placep;

Failures during the execution of an agent’s stage ad@potentially leave the execution in an
inconsistent state. More specifically, some of the operatignop,, . .. that correspond to the

stage action may have been executed, while others have not. Thesgagemnwell as the place

(rather, its services) are thus in an incorrect, transitory state. Exeagiag a local transaction

prevents such inconsistent states, as the operatignsp,, . .. are either executed in entirety or
none at all.

Exactly-Once for the Stages;

In Section 4.2 we have shown how replication can prevent blocking. Replication may lead to
multiple executions of a stage actisg on different placeg! andp?. To prevent a violation to

the exactly-once execution property, only one of the executions, i.e., the execution on the primary
™™, must be committed, while the other(s) needs to be aborted. In Figure 4.6, flamsas
primaries for all stages; (0 < 7 < n) and thus all commit the local transaction of the agent.
This is why stage actions are executed at-most-once. Consider the example given in Figure 4.4.
Here, the execution of; on placep) needs to be aborted, while the executionapbn p; is
committed. Running the stage executions on different plﬁcp§ as local transactions allows us,

by controlling the commit/abort decision, to enforce the exactly-once property at the stage level.

Stage S, Stage S , Stage S,

Stage S Stage S ,

Source Destination
Figure 4.6: Agent execution with redundant plagé:i;n which places are acting as the pri-

maries.

Note that terminating local transactions at staféi.e., issuing either abort or commit) re-
quires that the place running the local transaction eventually recovers after a failure.
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4.3.3 Handling Isolation of (Local) Transactions

Isolation can be achieved using concurrency control techniques. Concurrency control techniques
are classified into eithawptimistic or pessimisticapproaches. In the former, operations are ex-
ecuted and the results are immediately visible to other agents. Undoing operations potentially
requires to undo the operations of other agents that have used these results in their computations,
thus resulting in cascading undo operations. In practice, this generally is avoided. In the context
of transactions, optimistic techniques lead the local transaction to be immediately committed after
its execution. If at a later stage, this transaction needs to be undone, a soecalipdnsating
transaction[Gra81, KLS90, GMS87, RSS97] is run, whigemanticallyundoes the effects of
the corresponding local transaction. However, compensating transactions are not always possible.
For instance, operations that send a message, print a cheque, or launch a rocket generally cannot
be compensated. Moreover, if the local transaction launches another agent (i.e., a so-called child
agent), then this agent may already have moved off. Hence, another agent needs to be sent after
this child agent to compensate all its activities. This requires that the compensating child agent
knows the exact itinerary of the original agent, and that all actions of the child agent are also com-
pensatable. Note that sending an undo message to the child agent to trigger its rollback is also
not always successful. Indeed, a slow undo message may never reach a fast moving mobile agent,
causing the undo to be delayed and increasing depend@nciesimmary, optimistic execution
is only suited for particular applications in a mobile agent environment.

Pessimistic concurrency control is based on locking, which prevents that multiple agents ac-
cess the same data items, if their operations conflict. The results are only visible to other agents
when the stage action commits, i.e., when the locks are released.

4.3.4 Transactional Mobile Agent Execution

We have seen that a local transaction is the basic building block for fault-tolerant mobile agent
execution. Local transactions are also important in the context of transactional mobile agents
(see Section 3.4). Indeed, transactional mobile agents need to execute as a transaction, ensuring
the ACID properties (i.e., atomicity, consistency, isolation, durability) of traditional transactions
[HR83, BHG87, GR93] over the entire mobile agent execution. Hence, the stage operations also
need to be executed as a transaction. In particular, either all of the stage opergtiops . ..

need to be executed, or none at all. This corresponds exactly to the atomicity property achieved by
the local transactions. Figure 4.7 shows the case of (a) a non-transactional fault-tolerant mobile
agent execution and (b) a transactional mobile agent execution.

5Murphy and Picco [MP99] provide an approach to ensure eventual message delivery to an agent. However, their
approach only works in an environment without failures and has a considerable cost.
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global transaction
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(a) non-transactional fault-tolerant
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Figure 4.7. Comparison of (a) non-transactional fault-tolerant and (b) transactional mobile agent
execution. Both executions rely on local transactitinsinning on the places of a stage.



Chapter 5

State of the Art

In this chapter, we give a survey on the current state of the art in the fields of fault-tolerant and
transactional mobile agents. First, we classify fault-tolerant mobile agent approaches according to
when and by whom the commit decision for the local transaction is made (Section 5.1). Section 5.2
then discusses existing approaches for fault-tolerant mobile agent execution and relates them to
our classification. In Section 5.3, we discuss approaches for transactional mobile agent execution
and survey existing approaches in Section 5.4. We just provide enough information needed to
understand the difference among the existing approaches. An in-depth discussion of fault-tolerant
and transactional mobile agents is given in Chapters 6 and 8, respectively.

5.1 Classification of Fault-Tolerant Mobile Agent Approaches

In Section 4.3, we have identified the local transaction as the basic building block for fault-tolerant
mobile agent execution (i.e., for addressing infrastructure failur€bp stage actions of the mo-

bile agent are executed as local transactions. Once the operations of the stage action are executed,
the local transaction is either committed or aborted. We call this decision about which local trans-
action to commit and which to abort tliemmit decision In other words, the commit decision
ensures exactly-once execution by committing only one local transaction at a stage, and aborting
all others. It can happen at different moments in the execution of the mobile agent: (1) at the end
of the stage execution (calledmmit-after-stage or (2) at the end of the mobile agent execution,

i.e., at the agent destination (calledmmit-at-destinatiogn Whereas in case (2), this decision is

only made once for the entire mobile agent execution, case (1) requires one decision for every
intermediate stage. It is important to see that the commit decision does not ensure atomicity in the
entire mobile agent execution, as required by a transactional mobile agent execution. Although
in case (2), the commit decision may only happen at the agent destination, its purpose still is to
ensure exactly-once at the stages, at which more than one agent replica has executed. We dis-
cuss the commit-after-stage and commit-at-destination cases in detail in Sections 5.1.1 and 5.1.2,
respectively, and finally compare them in Section 5.1.3.

!Note that it is also the basic building block for transactional mobile agents, but this is not relevant for the following
discussion.
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5.1.1 Commit-After-Stage Approaches

The commit-after-stage approaches commit the stage actions at the end of every, stafyge

the agent moves to the next stage;. The commit is of particular importance if the mobile agent
execution is replicated at stage(see Figure 4.3). More specifically, the commit decision allows

to prevent multiple executions of the agent and thus ensures the exactly-once property. Indeed, by
only committing the execution on one place of a stage and aborting all others (if there are any), it
is ensured that the agent is executed only once. In this context, we need to distinguish two cases:
(1) the execution ofi; on a single place (i.e., a non-replicated agent execution) and (2) on a set of
placesM; (i.e., a replicated agent execution). Moreover, the commit decision can be made by a
single place or can be distributed, i.e., the decision can be made by multiple places. Finally, the
commit decision can be collocated with the executiom; alr not. Combinations of these three
criteria lead to eight solutions, which are denoted as follows: location of the agent execution -
location of the commit decision - collocated / distributed (see Figure 5.1).

commit decision
single(S) / Tultiple(M)

SMD MMD
MMC
SMC
collocated(C) / distributed(D)
SSD MSD
SsC MSC agent execution

single(S) / multiple(M)

Figure 5.1: Classification of fault-tolerant mobile agent approaches along three axes: (x) location
of the agent execution, (y) location of the commit decision, and (z) collocated or distributed.

In Chapter 4, we have shown how blocking can occur in the agent execution. Blocking also
occurs in the commit protocol. In particular, if the commit decision is only made by a single place
(i.e., solutionszSz?), then there is a risk of blocking or violation of the exactly-once execution
property to the mobile agent execution. For instance, in a 2PC protocol, blocking occurs if the
coordinator fails at a certain point in the protocol [BHG87]. We discuss now all the 8 solutions.

2The character. stands for any one character{i8,M,C,D}, such that the resulting combination is among the eight
solutions in Figure 5.1.
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Figure 5.2: The four solutions of collocated commifsandC specify the places involved in the
agent execution and the commit decision, respectively.

Single/Single/Collocated - SSC

The SSC solution encompasses the approaches where the stage action of an agent executes on a
single placep;, commits and then the agent moves to the next piace Figure 3.2 shows an
example of an SSC approach. Both the execution of the stage action and the commit decision
occur on the same place (see Figure 5.2 (a)). Actually, the outcome of the commit decision is
always commit; abort is never decided, as there is no reason to abort the agent execution from the
perspective op;.> As we have shown in Section 4.1, a failuregptauses blocking of the agent
execution (see Figure 4.1). Moreoverpjfdoes not recover, the agent (i.e., its code and state) is
lost. Interestingly, the loss of the agent also leads to blocking, as the agent owner awaits the return
of the agent. Checkpointing the state and code of the agent on the current place [GR93] prevents
the loss of the agent. However, it is still a blocking approach, as a failing place causes blocking of
the mobile agent execution. Progress of the agent execution is only possible again when the failed
place recovers. The recovering place thereby makes use of the latest local checkpoint to recover
the agent;.

A SSC approach is most suited in environments where failures are rare or where blocking is
not a problem, either because of the nature of the application or because failed components re-
cover fast. Moreover, the exactly-once execution property is ensured provided a suitable recovery
mechanism is used.

In SSC approaches based on logging and checkpointing, the loss of the agent generally is
prevented even in case of catastrophic failures. Both single and catastrophic failures prevent the
progress of the agent, but the agent’'s code and state is preserved.

SRecall that we are not considering semantic failures here. Moreover, we assume that the local transaction does not
abort spontaneously. More specifically, it can be aborted and redone during the execution of the stage action (e.g., to
resolve deadlocks if two-phase locking is not used [GR93]), but when it is ready to commit, it is not aborted any more.
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Single/Multiple/Collocated - SMC

Similar to the SSC solution, the stage action of the aggistexecuted on one plaggonly. The

commit decision, in contrast, is distributed over multiple places (see Figure 5.2 (b)). Consequently,
a failure ofp; leads to blocking of the mobile agent execution. On the other hand, the commit
decision is non-blocking, as it is distributed. It seems strange to distribute the commit decision,
while the execution happens on a single place and thus the SMC solution has not been discussed in
literature. The SMC solution may be applicable for scenarios, where a mobile agent has to execute
on very specific places. For example, the agent owner may want to fly only with Swiss Air Lines,
which only supports a non-replicated service.

Multiple/Single/Collocated - MSC

The stage action of agent is executed by multiple places, while the commit decision is made
by a single place? (see Figure 5.2 (c)). Revisiting Figure 44, p}, andp? execute the agent,
whereag;?, for instance, executes the commit protocol. In the MSC solution, the commit decision
determines the place that has executed the agent, i.e., the p;tﬁ’r‘fﬁ‘r.yRecall from Section 4.3.2
that the primary is the place at a stage that commits the local transactignwdfile all other
placesp! # p?""™ abort all the modifications of;. For instancep? decides thap} can commit
the agent's operations, whilg andp? must abort them (ifz; has started execution on these
particular places). This allows us to prevent multiple executions afid thus a violation to the
exactly-once property.

Although the execution of the stage action is non-blocking, blocking may occur in the commit
protocol. This is because a single place executes the commit protocol. If this place fails, the
commit decision blocks and thus the entire mobile agent execution.

Multiple/Multiple/Collocated - MMC

The MMC solution is a generalization of the approaches where the execution of the stage action
and the commit decision are collocated. In other words, both the execution and the commit deci-
sion are distributed on multiple places (see Figure 5.2 (d)). This distribution avoids blocking, but
leads to the danger of violating the exactly-once execution property. To preserve the exactly-once
property, the places that have executed the agent need to agree on the gfifiamho commits

the modifications done by the agent while all other places abort them. In other words, unless an
agreement is reached, i.e., a so-called agreement problem is solved, among these places, multiple
executions of the mobile agent cannot be prevented.

Single/Single/Distributed - SSD

The SSD solution corresponds to SSC, except that the execution of the agent and the commit
decision are distributed (see Figure 5.3 (a)). In other words, the place that executes the agent and
the place that makes the commit decision are not the same; rather, anypplzore make the

commit decision, which then needs to be communicateg. td his communication is prone to
failures such as loss of message. Moreover, the separation of the executi@amedthe commit
decision actually weakens the fault tolerance of the agent execution. Indeed, the probabijity that
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andp,; do not fail is smaller than the probability thatdoes not fail. Consequently, the probability
of blocking is higher, and this solution is less interesting than SSC.

Stage S |,
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Figure 5.3: The two solutions of distributed commits by plage £ and C' specify the places
involved in the agent execution and the commit decision, respectively.

To our knowledge, the SSD approach has not been implemented. However, we show later that
this solution is of considerable interest to transactional mobile agents (see Section 5.3).

Single/Multiple/Distributed - SMD

This solution is similar to SMC and is not discussed any further. It is depicted in Figure 5.4 (a).

Multiple/Single/Distributed - MSD

A set of places executes the stage action;pfvhereas the commit decision is located on any
single placep;, (see Figure 5.3 (b)). The execution of the stage action is non-blocking, but the
commit decision can block. Failures in the communication channel between the places that
execute the stage action @fmay also lead to blocking.

Multiple/Multiple/Distributed - MMD

To circumvent the problem of blocking, both the execution of the stage actignasfwell as

the commit decision are distributed to a disjoint set of places (see Figure 5.4 (b)). The main
difference to MMC is that MMC can exploit the locality of commit decision and the execution of
a;. Moreover, MMC does not suffer from communication failures between the places executing
the stage action (i.ep}) and the places executing the commit protocol (j.,

5.1.2 Commit-At-Destination Approaches

Contrary to commit-after-stage approaches, the stage actions of the mobile agent are only com-
mitted at the end of the agent execution. While in commit-after-stage approaches duplicate agents
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Figure 5.4: The two solutions of distributed commits by multiple placBsand C specify the
places involved in the agent execution and the commit decision, respectively.

are detected and discarded at the stage execution, duplicates continue their execution in commit-
at-destination approaches. Redundant duplicates can only be detected at a common place, where
they and the original agent meet. Generally, only the agent destination is such a common place,
because dynamic itineraries may be different for the original agent and among the duplicates.
Hence, the agent destination is the only place where a correct decision about which agent (origi-
nal or duplicates) to commit and which to discard is possible. Usually, the first arriving agent is
committed, while the later arriving redundant agent(s) are aborted and their stage actions undone
(see Figure 5.5). This allows us to ensure the exactly-once property for fault-tolerant mobile agent
execution.

Using pessimistic concurrency control, while the agent has not reached the agent destination,
the local transactions are not committed/aborted yet. Rather, they are kept unterminated until the
outcome of the agent execution is determined. Indeed, at the moment of executing stagezaction
of agentb it is not clear whetheb will be committed or whether a duplicate agent will arrive first
at the agent destination ahdhus needs to be aborted. Data items that are accessed by the mobile
agentb are thus locked until the corresponding local transaction is committed. During this time,
no other agent can access the same data items. Rathesits until the lock is released hy
Committing the agent’s stage actions only at the agent destination requires to hold all locks until
agenta arrives at the agent destination. As other agents have to wait before accessing the data
items untilb finishes its execution, the overall system throughput is seriously reduced. Moreover,
this approach requires sending additional messages to all places of the itinerary to either commit
or abort the stage actions, once the agent has arrived at its destination (see Figure 5.5).

Using optimistic concurrency control, the locks on data items are immediately released after
executing the local transaction. Undoing a redundant duplicate agent requires to run compensating
transactions on all places this agent has visited. Recall that compensating transactions are not
always possible (see Section 4.3.3).

We classify the approaches similarly to Section 5.1.1, but focus on the only two meaningful
classes: SSD and MSD.
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Figure 5.5: The local transactions are only committed when the agent arrives at the agent destina-
tion.

Single/Single/Distributed - SSD

This solution is similar to the SSD solution for commit-after-stage approaches, except that the
commit only occurs at the agent destination, for all stage actions (see Figure 5.5). Itis blocking, but
on the other hand also prevents duplicate agents. Clearly, the SSD commit-at-destination solution
is only of theoretical interest. As the commit decision is always commit, the local transactions
could be committed immediately after the stage execution (as in SSD commit-after-stage) instead
of waiting until the agent reaches the agent destination. We present this solution here because
it helps to understand the difference between non-transactional and transactional mobile agent
execution (Section 5.3.1).

Multiple/Single/Distributed - MSD

Contrary to the SSD approach, blocking is prevented by executing the agent on multiple places,
if necessary. Because previous places already have a copy of the agent, they generally take over
once the current place fails. More specifically, while the agent is executing ongpltctages;,

its execution is monitored by the previous plage,. Additionally, p;_; maintains a copy of the
agentq;. If a failure occurs at the current plapg p; 1 launches its copy of the agent and sends

it to another place), (see Figure 5.6). Sending to p}, however, may lead to duplicate agents,
especially in the presence of unreliable failure detection. Indeed, assumg drabneously
detects the failure gf; 1, whereagy.; actually has not failed (see Figure 5.7). In this case, two
replicas of agent,, are executed and lead to two ageais, anda;_,. Duplicates are only
detected at the agent destination, where the commit decision is made. This allows to enforce the
exactly-once property.

The degree of fault tolerance is determined by the number of copies stored on places where
the agent previously has executed. In other words, if the agent is currently executing op, place
placesp;_1,p;_2, ... may store their copy;, a;_1, . . ., respectively, of the agent. The higher this
number, the more concurrent failures can be handled. However, a high number also increases the
probability of duplicate agents.

Upon recovery of a failed agent, we need to distinguish two cases: the agent has (1) only
executed partially on this place, or (2) has executed the entire stage action and forwarded the
agent to the next place. In (1) the recovering agent can abort/undo the partial execution of the
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Figure 5.6: Upon detection g@f’s failure, p;_; sendss; to p;.

stage action. Case (2) is more complex, as the agent does not know whether the forwarding has
succeeded and whether it is part of the successful mobile agent execution. Hence, it has to wait
until it receives either a commit or abort message. This message may arrive from its successor, if
the agent has reached the agent destination, or from its predecessor, if the forwarding to the next
place has failed.

Stage S | Stage S Stage S |
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Figure 5.7: Duplicate agents caused by unreliable failure detection in the commit-at-destination
approach.

An important limitation when using compensating transactions is that running the compensat-
ing transactions must lead to the same agent as when the duplication agent occurred. Assume, for
instance, that the execution of agehheeds to be undone, i.e., compensating transactions must
be run orp;, ; andp; (see Figure 5.8). A compensating transaction generally modifies the state of
the place as well as the state of the agent. Having undameist result in the same agent as
agentq reflects the state af; in its final state (i.e.q; 12 at the agent destination). A more detailed
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discussion is given in the context of transactional mobile agent in Section 8.8.

Stage S ;. Stage S, Stage S ,,
Stage S', Stage S', Stage S ,,
Agent
Destination

Figure 5.8: The execution of agediton the placeg; andp]  ; must be compensated.

5.1.3 Comparison

The most important differences between committing at the agent destination and committing at the
stage execution are the lifetime of duplicate agents and the number of commit decisions. The life-
time is crucial as it influences the time data items need to remain locked in the case of pessimistic
concurrency control. The greater the lifetime, the longer data items remain locked. During this
time, other mobile agents cannot access the data items and block, which limits the overall sys-
tem throughput. If optimistic concurrency control is used, a greater lifetime leads to higher undo
cost. Indeed, the more stage actions must be undone, the more compensating transactions gener-
ally must be run. Committing at the stage execution generally detects duplicates on a stage level;
their lifetime is limited to a stage execution. In contrast, a commit at the agent destination using
pessimistic concurrency control generally needs to keep the locks on all data items until the end
of the agent execution. Clearly, this is a disadvantage of the commit-at-destination approach. At
the agent destination, the modifications of one agent are committed, while all duplicate agents are
detected and their effects undone. Undoing and committing agent stage actions requires additional
messages sent to all places of the itinerary.

Another disadvantage of commit-at-destination approaches is the need to store copies of the
agent’s state as well as code at multiple locations. This requires a considerable amount of storage.
While mobile agents are of generally small size, a large number of them still leads to considerable
storage requirements on the places. Generally, the copies of the mobile agent have to be maintained
until the mobile agent execution has terminated, i.e., the commit/abort message has been received.
In the commit-after-stage approach, copies of the agent are stored on the pla¢amiy during
the stages; and discarded afterwards.

On the other hand, committing at the agent destination is more efficient with respect to the
number of commit decisions. Whereas committing at the agent destination only requires one
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commit decision, committing at the stage execution requires2, i.e., one at all stages except
Sp and S,,. Moreover, agent replicas are only launched if a failure is (potentially erroneously)
detected. In contrast, commit-after-stage approaches using any solutioaevid multiple replica
agents to the next stage although no failure may have been detected.

5.2 Approaches to Fault-Tolerant Mobile Agent Execution

In this section, we present a survey of existing approaches to fault-tolerant mobile agents. Each
approach is presented according to the classification defined in Section 5.1. First, we present
commit-after-stage approaches (Section 5.2.1). Commit-at-destination approaches are discussed
in Section 5.2.2. The results of our classification are summarized in Table 5.1.

\ | commit-after-stage | commit-at-destination
SSC || Vogler's approach [VKM97a, VKM97b] -
MSC Rothermel’s approach [RS98] -
MMC FATOMAS (Chapter 6), -

NAP [JMS'99],
Schneider’s approach [Sch97]
MSD - NetPebbles [MPTO0O]
James [SBSO00]
MMD Fantomas [PPGO00], -

Assis’ approach [ASPZ98]
James [SBSO00]

Table 5.1: Classification of the existing approaches.

5.2.1 Commit-After-Stage Approaches

We consider the following commit-after-stage approaches: Byzantine failures approach [Sch97],
FANTOMAS [PPGO00], FATOMAS [PS00, PS01b] (see Chapter 6), NAP [J919, transac-

tion and leader-election based approaches [RS98, ASPZ98], and Vogler's approach [VKM97a,
VKM97hb].

Byzantine Failures Approach

Minsky et al. [MVRSS96] and Schneider [Sch97] proposes multiple executions of the mobile agent
as a fundamental approach to provide invulnerability against Byzantine failures, more specifically
against attacks from malicious hosts on the mobile agent. In this context, all placest; of a

stages; executaz; and commit the modifications. Although an adversary may corrupt a number of
agents at a stage, if enough uncorrupted agents are left, it still allows to safely deduce the true result
of the stage execution. Hence, the exactly-once execution property is not desired in this protocol.
The places inM; are independent iso-places as defined in Section 4.2.2: Schneider assumes
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replica places without replica update mechanisms to maintain consistency and prevent stale data.
Actually, an accurate level of consistency is maintained by executing the agent on all places.
Schneider’s approach can be classified as an MMC approach, where the places always unilaterally
decide to commit the agent replica’s modifications. We do not further discuss approaches that
address Byzantine failures.

FANTOMAS

FANTOMAS [PPGO00] is an MMD approach that addresses transparent fault tolerance for dis-
tributed and parallel applications in cluster systems. It's fault tolerance mechanisms can be acti-
vated on request, according to the needs of the agent’s task. FANTOMAS assumes only one place
failure at a time. Associated with each agent is a so-cddigger agenta that follows the agent at
distanced. For example, if the agent executespand the logger agent is gn_», thend equals

2 (see Figure 5.9). The logger agent stores checkpoints of the agent it is associated with. For this
purpose, the agent periodically captures its state and sends it to the logger agent. The agent and
its logger agent monitor each other and upon a failure of one of them, the other can be restored
from the information stored in the surviving one. Unless more than one place fails simultaneously
non-blocking is achieved. Unfortunately, unreliable failure detection may lead to a violation of
the exactly-once execution property. Indeed, assume that the logger agent erroneously detects the
failure of the agent and recovers it. This results in two agents and thus in multiple executions
of the agent’s code. However, FANTOMAS addresses cluster systems, where erroneous failure
suspicions can be assumed to be very rare.

Stage S |, Stage S |, Stage S

Figure 5.9: Agenti; with logger agenta; and distancel = 2.
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The approach in [PPGOQ] is efficient and can be dynamically switched on and off, without
interference of the agent owner. Moreover, the fault tolerance mechanisms are transparent to the
agent owner.

FATOMAS

The approach we present in this thesis is a MMC commit-after-stage approach (see Chapter 6).
The redundancy illustrated in Figure 4.3 enables the mobile agent execution to proceed despite
failures, i.e., prevents blocking. However, the algorithm that prevents blocking while ensuring a
consistent execution is not as easy as one might guess. This is related to the fact that we assume a
system model in which failure detection is unreliable. The solution presented in Chapter 6 consists,
for all agent replicas at stagg, to solve anagreement problemin an agreement problem, the
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participants (in our case the agent replicas) decide on a common value. The fault-tolerant mobile
agent execution then leads to a sequence of agreement problems.

JAMES

JAMES [SBSO00] is a system that belongs to MMD. However, it also has elements of a commit-at-
destination approach and will be discussed in more detail in Section 5.2.2.

NAP

NAP [JMS™99] uses the MMC approach to fault-tolerant mobile agent execution. It assumes

a fail-stop model, which implies a perfect failure detector [SM94]. Blocking is prevented by
the nature of the MMC approach, whereas the exactly-once execution property is ensured by the
assumption of perfect failure detector. Hence, no agreement as proposed in our approach (see
Chapter 6) is required. Rather, perfect failure detectors allow to reliably detect process crashes. In
particular, no process is suspected unless it has crashed, which eliminates one source for a violation
of the exactly-once execution property. Unfortunately, perfect failure detectors are impossible in
the Internet and therefore NAP is only applicable in systems where perfect failure detectors can
be assumed. Moreover, the NAP approach does not handle link failures nor consider recovery of
places (see also Section 3.3.1). Assuming no recovery eliminates another source for a violation of
exactly-once. Still, local transactions are required to ensure isolation of the stage actions. Indeed,
the local transaction prevents that other agents can access partial results of the stage execution.

Transaction And Leader Election Based Approaches

The following two approaches use a model based on transactions and leader election.

Rothermel’'s Approach: Rothermel and Strasser’s approach [RS98] corresponds to MSC, which

is blocking. Indeed, a failure of the single commit place blocks the commit decision and thus also
the mobile agent execution. In [RS98], Rothermel and Strasser suggest an approach based on
transactions [GR93] and leader election. Informally, the problem of leader election consists of
electing a leader among a group of processes, such that there is only one leader and all processes
of this group agree on this leader [GM82]. The agent is forwarded between two consecutive stages
S, and ;11 using transactional message queues. More specifically, ajjlpoés the agent;

into the input message queuerfif, as part of a global transaction. This global transaction corre-
sponds to the entire stage executiorband encompasses (1) getting the ageffitom the input
message queue, (2) executing the agent’s stage action, and (3) putting the resulting ageat

the message queue of the placeaJf), ;. Multiple places inM; potentially execute this transac-

tion, but only the leader, elected by a leader election protocol, commits. All other places abort the
agent’s stage actions. Coupled with the use of local transactions this approach ensures exactly-
once execution of the mobile agent, but is unfortunately vulnerable to blocking. This vulnerability

is caused by the use of a 2-phase-commit (2PC) protocol [BHG87] to atomically commit the trans-
actions. The 2PC protocol is known to be blocking on a single failure [BHG87]. The reader may
argue that the use of a 3PC [BHG87] alleviates the blocking problem. Unfortunately, blocking
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stems from the combination of leader election and transactions as well as the nature of MSC, and
thus cannot be prevented by the use of a 3PC.

Assis’ Approach: Assis and Popescu [ASPZ98] improve Rothermel’s algorithm by overcom-

ing some of its limitations. In particular, to prevent the blocking problem in [RS98], they use a
different leader election protocol and commit the local transaction using a 3-phase commit (3PC)
protocol [BHG87]. However, this particular combination of leader election and transaction model
may lead to a violation of the exactly-once property. Hence, [ASPZ98] relies on a so-dled
tributed context databader synchronization to prevent more than one concurrent leader and thus

to enforce the exactly-once property. In summary, the commit decision is done in collaboration
with the distributed context database, a leader election protocol, and the 3PC. Moreover, the dis-
tributed context database is running on the places of the stagwever, to our understanding,

the context database will generally be run by (an)other process(es) than the execution of the agent.
Moreover, it can be implemented as a separate service. Consequently, we consider [ASPZ98] as a
MMD approach.

Similar to [RS98], the approach in [ASPZ98] uses transactions and leader election to model
fault-tolerant mobile agent execution. Combining the two models makes it more difficult to un-
derstand the approach and may thus give rise to additional errors. Another disadvantage of this
approach are the rather high maintainance cost for the distributed context database, which needs
to be replicated (to provide fault tolerance).

Vogler's Approach

Vogler et al. [VKM97a, VKM97b] use the SSC approach. Their main focus is to ensure exactly-
once semantics for the transfer of the agent between two consecutive placekp;, 1. To

achieve thisp; starts a transaction, which encompasses sending the agent, storing the agent at
pi+1, initiating the agent ap; 1, and deleting the copy of the agentzatA 2PC protocol is used

to ensure the ACID properties of this transaction. To our understanding, failures of the agent while
executing the stage action at the place are not addressed. However, the fact that a copy of the agent
is stored at the destination allows to recover from a place failure and redo the local transaction (see
Section 4.3) from the beginning. This corresponds to a checkpointing approach (see Section 5.1.1),
where a checkpoint is taken before executing the stage as#iorClearly, Vogler's approach

is blocking, but ensures exactly-once mobile agent execution properties provided that the stage
actions run as local transactions.

5.2.2 Commit-At-Destination Approaches

The most prominent example of commit-at-destination approaches is a system called NetPebbles
[MPTOQ]. It belongs to the class of commit-at-destination MSD approaches. The James system

[SBS00] can also be classified into this category, although it has some elements of the commit-

after-stage MMD approach.
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NetPebbles

The NetPebbles environment defines an agent as a script, that moves among places. This script
contains the code to be executed at any place. Fault tolerance is based on the observation that
choices exist in the task to execute (i.e., the stage actions) as well as in the location where to
execute a task (i.e., the itinerary). Based on this choices, the script can route around failures
of both the network and the places. Fault tolerance is achieved by the following mechanism in
NetPebbles: As shown in Figure 5.6, plage, keeps a copy of;. When it detects a failure of
agenta; on placep;, this copy is sent to another plage Monitoring the current agent execution

a; by placep; 1 of the previous stage allows to tolerate any number of sequentially occurring
failures top;, pl, p!, ... . Indeed, assume thgt also fails. The failure of, is eventually detected

by p;—1 and a copy ofz; is also sent to another plagi. However, a simultaneous failure pf

andp;_; results in the loss of the agent and thus in a blocking execution. NetPebbles overcomes
this problem by setting up a monitoring scheme where places of previous stages monitor their
successor places. Every place sends heartbeat messages to the previous places within a certain
distanced. The distance is defined as the difference between the indices; kek, of two

placesp, andp;, (j > k). The heartbeat frequency decreases with increasing distance. In other
words, the greater the difference betwgeand#k, the lower is the frequency thatuses to send
heartbeats tg;. Placep, sends the ageni,; to another place), ., if and only if it suspects

that all successor places have failed, i.e., if it stops receiving heartbeat messages. This allows
NetPebbles to handle a number of concurrent failures that is equivalent to the distance value.

As the places within this distance do not solve any agreement problem, they cannot prevent
agent duplicates. NetPebbles, however, assumes that the agent destination is the same as the agent
source. Hence, all surviving duplicate agents (including the original agent) eventually arrive at
the agent destination. At this point, the first arriving agent (either the original or any duplicate)
is committed, while the actions of all others must be aborted. The problem of how to commit or
abort the actions of the agents is not developed in more detail and left open in [MPTOO].

Using pessimistic concurrency control, data items need to remain locked until the end of the
agent execution, even if the agent does not fail. Indeed, assume that the agent executes at stage
S; (see Figure 5.7). Due to a network partition or slow communication links, pjace longer
receives heartbeat messages from gngk + d > j > k) and thus suspects the failure of all
successor places. It sends a copy of the agentto a placep , ,, resulting in a duplicate agent
a5, although the original agent execution has long ago passed §tagel currently executes
onp; (i > k + 2). Hence, locks can only be released at the agent destination.

JAMES

JAMES [SBSO00], a Java-based mobile agent infrastructure, is a platform that provides a running
environment for mobile agent, with enhanced support for network management. An agency of
the JAMES platform corresponds to a place in our model. JAMES defines agent managers which
act as agent source and allow to manage and monitor running agents. It provides fault tolerance
support for mobile agents, but does not ensure exactly-once agent execution. Rather, it uses at-
most-once or at-least-once execution semantics. This semantics are weaker than the exactly-once
property (exactly-once stage action is equivalent to a stage action that is executed at-leasdonce
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at-most-once). In addition, the mobile agent either executes on all places of its itinerary (called
atomig or on the maximum possibldé¢st-efforf. The occurrence of duplicate agents is justified

for certain execution semantics, such as best-effort agent execution and at-least-once execution
of the agent’s stage actions. These execution semantics seem to address the aspects of network
management considered in [SBSO00], although no explicit examples are given.

When the failure of the agent currently executing, kg.is detected, the place with the most
recent copy of the agent starts executing the agent. This place is elected using an election protocol
and generally defaults to the predecessor place(see Figure 5.5). With this approach, blocking
is prevented but agent duplicates may occur (see Section 5.1.2). In JAMES a fault-tolerant lookup
directory prevents agent duplicates that are not caused by network partitions. Network partitions
may disrupt the communication between places and the lookup directory and thus either cause
blocking or duplicate agents. The lookup directory is replicated and provides exclusive access to
its methods. Every agemt, once it has executed the stage action, inserts a corresponding entry
into the lookup directory. If such an entry exists already, then another agent has already executed
the actions of this stage and the current agent rolls back its stage actions and commits suicide.
Otherwiseg; sets the corresponding entry in the lookup directory to reflect the fact that the stage
action ofa; has terminated. The replicated, fault-tolerant lookup directory can be viewed as the
distributed commit decision in MMD, which decides on which agent to commit .}, .. .).

This, together with the execution ef on potentially multiple places (i.ep;, pi, . . .), shows that
JAMES has some elements of a commit-after-stage MMD approach.

However, the lookup directory is not sufficient to ensure the exactly-once semantics. Assume
that the agent currently executes on placg. Hence, the corresponding entry in the lookup
directory indicates that the execution @fhas finished. Assume further thatand p;, are
suspected by the previous places. A run of the election protocol identifieas the place with
the latest available state of the agent (i&.;). To our understanding, the entry in the lookup
directory is of limited use in such a case. When; sends ageni; to p/, the placep, has two
choices: (1) take into consideration the information in the lookup directory and digcaith the
risk of blocking if suspecting; andp;,; was accurate, or (2) ignore the status entry and execute
a;. The latter choice leads to a duplicate agempt &ndp;, ; have been erroneously suspected.

Such a fault-tolerant, replicated lookup directory violates to some extent the autonomy as-
sumption of mobile agent execution. Moreover, frequent updates to the lookup directory, such as
in JAMES, are costly, as all replicas need to remain consistent.

Locking of the data items that have been accessed by the agent seriously limits the overall
system throughput. In addition, it requires sending additional messages to all places of the itinerary
to either commit or abort the stage actions, once the agent has arrived at its destination. This
problem does not seem to be addressed in [SBS00].

5.3 Transactional Mobile Agents

In this section, we present approaches, calttadsactional mobile agentghat address infras-
tructure and semantic failures. We start by a comparison with non-transactional, fault-tolerant
mobile agents, before presenting a model for transactional mobile agents based on (open) nested
transactions.
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5.3.1 Commit in Non-Transactional, Fault-Tolerant Mobile Agentsvs. Commit in
Transactional Mobile Agents

In Section 5.1 we have classified non-transactional, fault-tolerant mobile agent approaches accord-
ing to when and by whom the commit decision of the stage action is performed. In the context of
non-transactional mobile agents, the commit decision helps to ensure the exactly-once execution
property of the mobile agent. For instance, only the stage action on the primary of$tage
committed in the commit-after-stage approach, while the stage actions on other pladearm
aborted. In commit-at-destination approaches, the commit decision selects the duplicate agents
arriving at the agent destination that have to be undone. Assume, for instance, that the execution
of an agent leads to two agents that arrive at the agent destination, namely the originalkiagent
and a duplicate agemt (see Section 5.2.2). To ensure exactly-once execution, the commit deci-
sion at the agent destination must only commit one of these agents, whereas the other is aborted.
This abort occurs although the agent may have successfully executed at all stages. In contrast,
transactional mobile agents use the commit to ensure atomicity in the execution of one mobile
agent.

Consider, for instance, a hon-transactional mobile agent using the commit-at-destination ap-
proach? The difference between a commit-at-destination approach and a transactional mobile
agent is best shown in the case where no failures and no false suspicions occur. In this context, a
commit-at-destination approach always successfully executes the agent and commits the agent’s
stage operations. On the other hand, even with no failures and no false suspicions, transactional
mobile agents might decide to abort the agent’'s stage operations; the success of the agent exe-
cution does not depend exclusively on the fact that the agent has reached the agent destination.
Rather, it also depends whether the stage operations were semantically successful. Revisiting the
first example in Section 3.4, commit-at-destination approaches commit (i.e., book a hotel room)
the agent’s stage operation although no flight is available. In contrast, transactional mobile agents
either commit both operations or abort them both. In other words, if no flight is available, all
agent operations will be aborted. While a commit-at-destination approach eventually commits,
transactional mobile agents can also abort. This is because commit-at-destination approaches only
need the commit to prevent agent duplicates, whereas transactional mobile agents use it to address
semantic failures.

Because transactional mobile agent executions also address semantic failures, they have ad-
ditional requirements. Indeed t@nsactional mobile agerdgxecution is specified in terms of the
atomicity, consistency, isolation, and durability (ACID) [HR83, BHG87, GR93] properties. While
in Section 4.3.1 we require ACID properties for local transactions, transactional mobile agents
need to guarantee that the ACID properties encompass the entire mobile agent execution, i.e., that
s&,...,S$d, run as a transaction (see Section 4.3.4).

5.3.2 Nested Transaction Model

A transactional mobile agent execution can be modelatkated transactiongvios85]. A nested
transaction is a transaction that is (recursively) decomposedirittstansactionsEvery subtrans-
action forms a logically related subtask. A successful subtransaction only becomes permanent, i.e.,

4A similar reasoning also applies for commit-after-stage approaches.
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commits, if all its parent transactions commit as well. In contrast, a parent transaction can commit
(provided that its parent transactions all commit) although some of its subtransactions may have
failed. In a transactional mobile agent execution, the top-level transaction (i.e., the transaction
that has no parent) corresponds to the entire mobile agent execution. The first level of subtrans-
actions is composed of the stage actisgs If replication is applied, each stage action, in turn,
can be modeled by yet another level of subtransactions, which correspond to the agent replicas
a?,...,a™ running on the places iiM; and executing the set of operatioog,, op;,.... Note
that subtransactions may be aborted, but the parent transaction still commits. Indeed, if a service
request fails on one place, the subtransact@nan be aborted and retried on another place, with-
out aborting the top-level transaction. Assume, for instance, that an agetempts to book a
flight with airline X, but no seat is left. We do not consider replication at the moment and assume
that no failures nor false suspicions occur. Consequently, the corresponding subtransaction
fails semantically and will be aborted. However, the agent may move on to the server of Hirline
and attempt to book a flight with airliné. When this subtransacti®®, ; is successful, the agent
continues and the top-level transaction can still commit. Note that this is fundamentally different
to commit-after-stage approaches, where these servers are usually visited concurrently at the same
stage. Transactional mobile agents are a simplification of nested transactions as the subtransac-
tions never conflict and never deadlock among themselves. Indeed, the subtranghetienste
on different places and thus run in complete isolation from each other. The parent transaction (i.e.,
sg) only commits if exactly one of its subtransactions has committed. More specifically, it issues
a commit only to one of its subtransactions (i.e., the one executed by the primary), and aborts all
others. The top-level transaction only commits if all the subtransactignthat must succeed,
are ready to commit (i.e., have not aborted).

To simplify our discussion, we assume that all stage acsar a transactional mobile agent
execution must succeed for the transaction to commit. Our observations remain valid also for the
general case, where only a subset of the stage actions needs to succeed.

5.3.3 Execution Atomicity

In this section we show how the ACID properties, in particular atomicity and durability (consis-
tency and isolation are discussed in Section 5.3.6), can be ensured for a transactional mobile agent
execution. Among the ACID properties of the top-level transaction, atomicity and duPaitity

the hardest to achieve. Atomicity encompasses semantic failures (see Section 3.4), by ensuring
that either all stage actions are executed successfully or none of them. To achieve atomicity, the
mobile agent execution decides whether to commit all local transactions or whether to abort all of
them. As a consequence to the sequential execution of the subtransaetitms outcome of all

stage actions is only known (and thus this decision only possible) at the agent de8tifkien

the agent destination sends a message (or another agent) that contains the commit/abort decision

SAtomicity and durability are tightly coupled. Assume a transaction that exeeutese[ x] andwri te[y] .
Assume further that the transaction commits, but a crash causes the modificatitmiie lost, whereas the operation
to x is made permanent. It is difficult to say whether atomicity or durability have been violated.

SActually, the decision could be made gn_; (see Section 8.1.2), as the agent source and destination contain
by assumption only idempotent operations and may only be intermittently connected to the network, if it is a mobile
device. For simplicity, we assume in this chapter that the agent destination does not fail and is always connected.
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to all previous places (see Figure 5.5). On reception of this message, the place commits or aborts
the local transaction.

If one subtransactiosg (: < n — 1) fails semantically, the global transaction is immediately
aborted (see Figure 5.10). In particular, the local transactans, . . . ,sa, 1 and the stage action
sa, are not yet executed. On the other hand, if no semantic failure occurs then the transactional
mobile agent is committed at the agent destination.

Stage S Stage S | Stage S ,
Agent abort
Source

Figure 5.10: Abort is immediately communicated to all predecessor places in the transactional
mobile agent execution.

5.3.4 Addressing Infrastructure Failures

Infrastructure failures do not lead to the abort of the mobile agent execution, but may cause block-
ing (while the place currently executing the mobile agent fails, the transactional mobile agent exe-
cution is blocked). Aborting the transaction if infrastructure failures occur (i.ep) omay lead to

a violation of the atomicity property. Assume that the previous ptacemonitors the execution

of the agent on placg. Incorrect failure detection may cauge to suspecp; and thus to abort

the transactional mobile agefi}. However,a; continues executing op;, and is forwarded to

pi+1. If the agent destination decides commit, then all plages. , p,, commit the agent’s stage
actions, while the places, ..., p;_1 have already previously aborted the stage actions. Clearly,
this is a violation to the atomicity property. Consequently, transactional mobile agent approaches
generally either are blocking or employ fault tolerance techniques (see Section 5.1) to prevent
blocking.

5.3.5 A Simple Approach to Ensure Atomicity

The simplest approach to ensure atomicity is to reuse the SSD commit-at-destination approach
(see Section 5.1.2), which is based on checkpointing. At every place, the agent’s state and code
is checkpointed. Upon recovery from a failure, the agent’s execution is continued from the last
checkpoint. The local transactions are only committed when the agent reaches the agent destina-
tion. Messages are sent to all previous plages. ., p, 1 to commit the local transactions. Note

that the stage actioss does not need to be committed, as we assume that it only consists of idem-
potent operations. The transactional mobile agent execution is immediately aborted if a semantic
failure occurs that renders obsolete any further execution. For instance, if the agent owner only
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flies with Swiss Air Lines, but Swiss Air Lines does not have any seats available for the required
destination, the agent execution can be immediately aborted.

5.3.6 Multiple Concurrent Transactional Mobile Agents

In our discussion so far we focus on enforcing the atomicity property of a transactional agent ex-
ecution. In a real system, however, a transactional mobile agent does not execute in an isolated
environment. Rather, it executes concurrently with other transactional mobile agents. Generally,
transactional mobile agents use standard techniques [BHG87, GR93] to enforce the ACID proper-
ties: compensatable transactions [ASK97, SAEQ1, SR00] or locking (e.g., the approach suggested
in Chapter 8) for isolation and consistency, and the local transaction infrastructure for durability.

The isolation property limits the possible level of concurrency. As a remedy, services decide
themselves whether they allow concurrent access to their data. For this purpose, they design a
so-called commutativity matrix [Rak94], which shows potential conflicts among operations of this
service and only allow operations that do not conflict to be executed concurrently.

The use of locking and in particular the sequential acquisition of locks may lead to deadlocks.
Deadlocks are resolved when transactions wait for a lock only for a limited time. After this time
they assume the occurrence of a deadlock and back off. If other places with similar services are
available, they may try those, or otherwise retry the same service again. Although this approach
does not completely rule out livelocks, their probability may be sufficiently small.

5.3.7 Open Nested Transaction Model

With nested transactions the locks on the data items are only released at the end of the transactional
mobile agent execution. As other transactional mobile agents can only access the locked data items
when the locks are released, they have to wait until the transactional mobile agent holding the locks
is done. The use of compensating transactions allows to reduce the time locks must be held and
thus increases overall system throughput. In this case, the stage actions of a transactional mobile
agent are immediately committed and their results visible to other transactions. If the transactional
mobile agent is aborted at a later stage, the stage actions are semantically undone by running
the compensation transactions in the reverse order on the places that have committed the stage
actions. For this purpose, the agent returns along the same itinerary and executes the compensating
transaction at each stage. Assume, for instance, that the agent has committed the stage actions
sag,...,sap_1 onplaceyy,...,pr_1 andis currently executingg,, which is aborted. The agent
ay thus visits the sequence of plaggs 1, . .., pp and executes the compensating transaction on
each place.

However, compensating transactions are not always possible (see Section 4.3.3). Moreover,
between executing the stage acti®gp and its compensating transaction, another mobile agent
b can access data items modified $. Executing the compensating transaction semantically
undoes the modifications performed bg. Agentb may have now read an inconsistent value.
Consequently]; also needs to be aborted, leading to cascading aborts. For this purpose, another
agent or an undo message have to be sent after agenotify b of the abort. Unfortunately, a slow
undo message or agent may never reach a fast moving mobile agent, causing the undo to be delayed
and increasing dependencies. Hence, compensatable transactions work best in an environment,
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where compensation transactions can be run without causing cascading aborts. Compensation may
also be unsuitable although it is feasible, because it has an unacceptable run-time costs. This is
especially true in environments with frequent aborts. The use of compensation transactions makes
an abort very expensive. Moreover, all the compensation transactions must eventually commit.
Consequently, failures during the compensation transactions lead to blocking. In contrast, an
abort with closed nested transactions is as expensive as a commit in the sense that the message
sent to all places contains the directive to abort instead of commit.

To encompass also the use of compensating transactions, we extend the model of transactional
mobile agents t@pen nested transactiofg/S92]. Open nested transactions can consistpan
andclosedsubtransactions. An open subtransaction makes its results visible to other transactions
as soon as its computation is terminated, independent of the outcome of its parent transaction. In
contrast, a closed subtransaction isolates its updates from other transactions until its parent trans-
action commits and it is able to commit as well. If all subtransactions are closed subtransactions,
then the case of (closed) nested transactions as presented in [Mos85] and discussed in Section 5.3.2
applies. Onthe other hand, the model of (extended) sagas assumes that all subtransactions are open
[GMS87, GMGK™91].

Depending on whether closed or open subtransactions are used, compensating transactions or
transaction aborts are used. An ideal approach supports both techniques.

5.4 Approaches to Transactional Mobile Agents

In this section, we present a survey of approaches to transactional mobile agent executions. We
classify the approaches into blocking and non-blocking solutions.

5.4.1 Blocking Solutions

Assis and Krause [ASK97] provide a model of transactional mobile agents, that corresponds es-
sentially to the checkpointing approach discussed in Section 5.3.5. However, stage actions can be
compensatable or non-compensatable.

In [SAEOQ1], Sher et al. present an approach to transactional mobile agents. It is based on the
commit-at-destination SSD approach and ensures the ACID properties on the entire mobile agent
execution. However, blocking is an inherent property of any SSD approach and [SAEQ1] suffers
from this problem. The probability of blocking is relaxed by allowing parallel transactions to run
over different parts of the itinerary that are combined again using so-aakeliators which gov-

ern how the parallel transactions are processed further. For instance, with the manlijtoi n,

all parallel transactions have to arrive, or WKBRj oi n, only one has to arrive. Figure 5.11 de-
picts the example of akORj oi n mediator. The transactional mobile agent executioa splits

into two parallel transactions represented by ageatsdc. For instancel_; tries to book a flight

with Swiss Air Lines, whilec;_; books a flight with Delta. At stags;, the mediatoiXORj oi n

only keeps one of the subtransactions (representagdndb;), while the other is aborted. The
agenta then continues to reserve a hotel room at st§ge. The places that run a join mediator

(i.e., p;) must be visited by the partial mobile agents executing in parallel. This generally limits
the itinerary to a (partially) static itinerary. Moreover, failures of non-parallel transactions and
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mediators result in blocking of the execution. Eliminating non-parallel transactions thus prevents

blocking, i.e., a split mediator resides at the agent source and a join mediator at the agent desti-
nation. The entire mobile agent execution then runs as parallel transactions. However, executing
parallel transactions from which only one is committed at the end, even if no failures occur, causes
a considerable overhead.

Stage S , Stage S | Stage S | Stage S ,,
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Figure 5.11: Mediators (rectangles) allow to execute parallel transactions.

In their work, Strasser and Rothermel [SR00] address the issue of partial rollbacks to a save-
point in a mobile agent execution. If a savepoint is locate) ahen the mechanism they present
ensures atomicity on the entire mobile agent execution. Their mechanism is built on top of the ap-
proach for fault-tolerant mobile agent execution given in [RS98]. Hence, the transactional mobile
agent execution may block if the coordinator fails during the forward execution of the transac-
tional mobile agent (see Section 5.2.1). However, as compensating transactions are used, only the
resources of a stage execution are locked. Resources of other stages are still available to other
transactional mobile agents. The use of compensation transactions, as suggested in this mecha-
nism, limits the applicability but improves the performance by releasing the locks immediately
after the stage execution. The issue of closed subtransactions is not addressed in [SR00]. More-
over, blocking may occur in the execution of the compensating transactions. As a consequence,
partial rollback involving the rollback of more than the current stage execution may block and thus
the entire mobile agent execution may block.

5.4.2 Non-Blocking Solutions

The approach presented by Assis Silva and Popescu [ASPZ00] also builds transaction support on
top of fault-tolerant mobile agent execution. For this purpose, [ASPZ00] reuses the approach in
[ASPZ98]. Recall that the approach in [ASPZ98] is based on a complex model of leader election
and transactions (see Section 5.2.1). Our model of fault-tolerant mobile agent execution (see
Chapter 6), on the other hand, only relies on an agreement problem. This allows us to present
a model for transactional mobile agent execution that integrates fault-tolerant mobile agents into
a common model of (open) nested transactions. We also provide a specification of non-blocking
atomic commitment in the context of transactional mobile agents.
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Assis Silva and Popescu [AS99, ASPZ00] do not describe any implementation. In contrast,
our approach has been implemented and quantitatively evaluated.

Finally, [ASPZ00Q] relies on compensatable transactions [Gra81, GMS87]. This seriously lim-
its the applicability of [ASPZ00]. To our knowledge, the use of compensatable transactions is a
consequence of the particular approach used for fault tolerance [ASPZ98]. The approach for fault
tolerance is based on transactions, that have to commit before the agent execution can proceed.
Consequently, if the agent execution is aborted at a later stage, compensation transactions have to
run in order to undo the effects of the stage transactions. In contrast, with pessimistic concurrency
control, subtransactiorsg are only committed or aborted once the outcome of the top-level trans-
action is known.

The approach in [MPTOO] (see Section 5.2.2) can be directly extended into a transactional mobile
agent approach, although this is not done by the authors. This can be done by hd@Rgica n
mediator (see Section 5.4.1) running at the agent destination. The approach in [MPTO0O] uses the
MSD commit-at-destination solution, and thus is non-blocking unless the agent destination fails.
Instead of a priori executing parallel transactions to avoid blocking [SAEQ1], parallel transactions
are only started if a failure is detected. Hence, if no failures occur nor are detected, no parallel
transactions occur.

In this thesis, we suggest an approach, called TRANSUMA (see Chapter 8), to non-blocking
transactional mobile agents based on our approach to fault-tolerant mobile agents. Instead of im-
mediately committing the operations on the primary of stggthe local transaction is kept unter-
minated. If a subsequent stage actsapaborts, all the predecessing local transactemg < k)

are also aborted. On the other hand, if all stage actions succeed, then the local transactions are
only committed when the agent reaches the destination. On the primary at every stage, the agent
leaves a so-callestationary agenfi.e., an agent that does not move), which awaits either an abort

or a commit message. Upon reception of such a message, the stationary agent either aborts or
commits the operations of the local transaction according to the content of the message. The other
ACID properties are achieved using the usual mechanisms [BHG87, GR93]. Moreover, we show
how TRANSUMA can be extended to also address open subtransactions.

5.5 Summary

We have started this chapter with a classification of fault-tolerant mobile agent approaches. In
this classification, we first distinguish between commit-after-stage approaches (stage actions are
committed immediately after the stage execution) and commit-at-destination approaches (stage
actions are only committed at the agent destination). Within these approaches, we have further
classified solutions according to the following characteristics: (1) whether the agent is executed
by a single or multiple places, (2) at which point in time the modifications of the mobile agent are
committed, and (3) whether commit decision and stage execution are collocated or not. This leads
to various solutions, which have been discussed in terms of their advantages and usability.

We have also shown how commit-at-destination approaches can be extended to transactional
mobile agents. Besides infrastructure failures, transactional mobile agents also address semantic
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failures. Finally, we have also presented a survey of transactional mobile agents.
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Chapter 6

Fault Tolerance for Mobile Agents

This chapter presents our approach for fault-tolerant mobile agent execution. For simplicity, we
limit our discussion to the case of hetero-places and thus first discuss the exactly-once property
in the context of hetero-places (Section 6.1). Fault tolerance of mobile agents in the context of
iso-places is discussed in Chapter 7. Section 6.2 is central to this chapter; it models fault-tolerant
mobile agent execution as a sequence of agreement problems. In Section 6.3, we show our algo-
rithm and present our prototype (called FATOMAS) in Section 6.4, followed by its performance
evaluation.

According to the classification presented in Section 5, our approach is a commit-after-stage
approach. In other words, the modifications of the mobile agent are committed immediately af-
ter the stage execution. Moreover, multiple places execute the agent and also participate in the
commit, which makes our approach an MMC solution.

6.1 Exactly-Once in the Context of Hetero-Places

Hetero-places run no replication mechanism among themselves (see Section 4.2.2). Indeed, hetero-
places generally are competitors that have no interest in sharing any information (i.e., communi-
cating) among each other. The hetero-placegvinneed not all execute the agent request; in
contrary, the exactly-once execution property of the agent request needs to be enforced. Hence, if
no failure and no false suspicions occur, only one hetero-place at a stage reflects the execution of
the mobile agent at this stage and only its services have been invoked. However, although no repli-
cation occurs among hetero-places, the state of the agent is replicated among the agent replicas:
all agent replicas know the place that has executed the agent replica.

Failures and false suspicions can lead to the execution of agent replicas on multiple hetero-
places ofM; (see Section 4.2.3); multiple hetero-places thus reflect the modifications ofiagent
As the exactly-once property requires that only one place has executed the agent, the modifica-
tions on all but one place need to be undone (see Section 4.3.3). Because of the lack of interaction,
hetero-places cannot prevent multiple executions of the agent request themselves; they generally
have no means to detect that another hetero-place has already executed the same request. Hence,
the exactly-once property needs to be ensured by the agent replicas. More specifically, the agent
replicas need to guarantee that at the end of the agent execution only one agent replica has exe-
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cuted the local transaction, while all others undo potential executions. In our model, all agents,
places, and machines are good, i.e., eventually are up forever (see Section 3.3.1). Recovering
agent replicas; have to retrieve the identity of the place that has executed the agent replica at
stages;. If this identity denotes a place other than the one running the recovering agent replica,
all modifications by this agent replica prior to the crash are undone.

6.1.1 Handling Witnesses

Executing an agent replica on a witness does not modify the state of the witness (see Section 4.2.2).
Hence, a witness behaves similarly to a stateless server and no modification on the place state
by partial executions of the agent replica need to be undone. In this respect, the exactly-once
execution property of the agent replicas can be violated on witnesses. However, potential accesses
to third parties such as messages to the agent owner or spawning child agents need to be undoable.
Hence, failures of a witness or an agent running on a witness are thus generally handled much
more efficiently than on a hetero-place.

6.2 Fault-Tolerant Mobile Agent Execution as a Sequence of Agree-
ment Problems

We have shown in Chapter 4 that replication of agents prevents blocking without depending on re-
liable failure detection. However, replication may lead to a violation of the exactly-once property.
Informally, to ensure exactly-once, the agent replicas of stageed to agree on a place that has
executed the agent &}. This place is called thprimary and denotegt”"". All places that are
not the primary undo possible partial executions of the agent replica. This approach guarantees
that only the primary has eventually executed the agent and reflects the modifications caused by
this execution.

More formally, the places of a stage have to solve an agreement problem. We specify this
agreement problem in the following section.

6.2.1 Basic Agreement Problem

Despite the differences of hetero-places and hetero-places with withesses, we give a specification
of the problem that encompasses the two cases. The idea is to model the execution of edth stage
as amagreement problenBy Agr Pb; we denote the agreement problem of st4gérhe problem

AgrPb; is to be solved by the agent repliéag running on the places iM;, and the solution is

the decision on which all agent replicas running on the placgégingree. We denote hiec; the

decision (i.e., the solution) adgr Pb;, with the following properties:

¢ (Uniform AgreementNo two agent replicas of stagg decide differently.

¢ (Uniform validity) If an agent replica of stagé decidesdec;, thendec; was proposed by
some agent replica of S; and is the result of executing on placep].

!In the place-dependent architecture mentioned in Section 6.4.1, the agreement is actually solved by the places.
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¢ (Uniform integrity) Every agent replica of stagg decides at most once.

¢ (Termination) Every correct agent replica of stagedecides eventually.

The decisiondec; is as follows for hetero-places and hetero-places with withesses (see Sec-
tion 4.2.2):

Hetero-places. The decisioniec; has three parts:

1. the single placpf”m € M;, called primary (see Section 4.3.2), that has executed the
agent in stags;,

2. the resulting agent;;, and
3. the places\;, 1 for a; ;.

Hetero-places with witnesses Similar to the previous case, plaﬁéim can potentially be a wit-
ness.

The agreement problem is fundamental to enforce the exactly-once property of an agent exe-
cution. Indeed, the decision on the primafy"” implements the commit decision presented in
Section 5.1.

6.2.2 Sequence of Agreement Problems

Having defined the basic agreement probldmyv Pb;, we now define the entire mobile agent
execution as a sequence of agreement problems. This is done as follows:

e The initial problemAgr Pby of stageS) is solved byq, only. This can be seen as a trivial
agreement problem (only one agent replica has to decide). The decisiomiq®) )1, and
(3) the placesM;. The agent; is then sent to the place®t;. In practice, the agreement
problem is reduced to a configuration problem. The agent owner configures the agent before
sending it off to stage; .

e The problemAgrPb; of stageS; is solved bya] running on the places] € M;. The
decision isp}"""™, a2, and the places iM,. The agents is then sent to the placests.

e The problemAgeri of stages; is solved bya{ running on the placepg € M;. The
decision isp!""™, a;;1, and the places\; ;. The agenis;;; is then sent to the places
M.

e Similar to the problemdgr Pby, Agr Pb,, of stages, is solved by only one agent replica.
At this stage, the agent’s results are presented to the agent owner or to another designated
destination.
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Note that our model of fault-tolerant mobile agent execution makes no assumption about the
number of failures that can be handled. Rather, the failure resilience depends on the selected
algorithms to solve this problem. In the algorithm we propose in the next section, only a minority
of the agent replicas per stage is allowed to fail.

6.3 Two Building Blocks Towards Fault-Tolerant Mobile Agents

The previous section has shown that fault-tolerant mobile agent execution can be expressed as a
sequence of agreement problems. In this section we identify two building blocks for fault-tolerant
mobile agent execution: (onsensusnd (2)reliable broadcast Building block (1) is used to

solve the agreement problem at sta§yewhile (2) allows to reliably forward the agent between
consecutive stages. Our approach encompasses various system models such as process recovery
and unreliable communication, depending on the implementation of consensus and of the reliable
forwarding of agents.

Figure 6.1 depicts a fault-tolerant mobile agent execution. The execution at.$tegesists
of (1) one (or, in case of a failure or false suspicions, multiple) place(s) executing the agent, (2)
the places inM; reaching an agreement on the computation result, and (3) the reliable forwarding
of the resulia; ; to the next stag®;, ;. The computational result contains the new agentand
the set of places executing the agent at stgge as well as the placg”*™ that has executed the
agent. Note that the latter relates to st&fjavhereas the former two results provide information
about the next stag§ ;.

Stage 2 in Figure 6.1 illustrates the case of a place failure. Wheletects the failure of
pJ, which has attempted an execution mffirst, it executes the agent and tries to impose its
computation as the decision value of the agreement protocol th allM,. Upon recoveryp)
learns the outcome of the agreement (ideg). If p) = p5™™ the modifications ofi, on pY
become permanent, otherwise (iz&. # p’;”m) they are undone/aborted.

In the following, we present the Consensus with Deferred Initial Value (DIV consensus) as
building block 1 (Section 6.3.1) as well as a protocol to reliably forward the agent to the next stage
(building block 2) in Section 6.3.2.

6.3.1 Building Block 1: Solving the Agreement Problem Using DIV Consensus
DIV Consensus Problem

The consensus problem is a well-specified and studied problem in distributed systems research. It
is defined in terms of the primitiveropose(v). Every procesgy in a set of processés calls this
primitive with an initial valuey, as an argument. Informally, the consensus allows an agreement
on a certain value to be reached among the correct procesQesormally, consensus is specified

as follows [CT96%:

2Actually, this is the definition of uniform consensus. However, as shown in [Gue95], in some system models, each
algorithm that solves consensus also solves uniform consensus. For this reason, we do not make a distinction between
consensus and uniform consensus.
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Figure 6.1: Fault-tolerant mobile agent execution witffailing. An erroneously suspected place
pJ leads to the same situation. The notatiom; 1, M; 1 > prim MEANS thap!""" has executed
agenta; (which leads ta; 1 and M, 4).

Termination Every correct process i eventually decides some value.

Uniform integrity. Every process ifi} decides at most once.

Uniform agreementNo two processes ift decide differently.

Uniform validity. If a process in2 decides some value, thenv was proposed by some
process i.

[CT96] solves the consensus problem with the unreliable failure detéctoand a majority
of correct processes. DIV consensus [DSS98] modifies the consensus problem such that all pro-
cesses need not have an initial value (see Section 2.2.3). The initial value is computed during the
execution of the consensus algorithm, whenever needed. Specifically, in the absence of failures,
only one process computes the initial value. For this purpose, the participants do not invoke the
consensus by passing their initial value as an argument. Rather, they pass a function (or handler)
GZV() that allows the protocol to compute the initial value only when needed.

Applying DIV Consensus

At each stage;, an instance of DIV consensus is solved and determines the outcome of the stage
execution. Using DIV consensus requires the following transformations:

Initial function GZV(). The initial functionGZV () passed as an argument to the funcponpose
is the agent;, or, more precisely, a method of. It is executed only when needed during



68 CHAPTER 6. FAULT TOLERANCE FOR MOBILE AGENTS

the execution of DIV consensus. In particular, in the absence of failures, it is executed only
once.

Decision valuedec. The execution of consensus decides on the tiple=< a;y1, M1 > prim,
1
where:

Prim

e p, " isthe primary of the current stage execution
e g, is the resulting agent
e M, is the set of places for stagk, |

DIV consensus ensures that allrunning onp! € M, agree on the?”"" that has executed
a;, on the new agent;, 1, as well as on the places of the next st&ge .

DIV consensus as given in [DSS98] assumes reliable communication channels. As stated in
[DSS98], the algorithm can easily be extended to handle also unreliable communication channels
by using an approach along the lines of [ACT97]. Moreover, it makes the assumption that a ma-
jority of ag does not fall, i.e., is correct. In our system model, agents, places, and machines are
good (see Section 3.3). However, this assumption is not needed for the agent replicas. In other
words, the termination of the agreement does not depend on the recovery of the agents. Rather, we
assume that a majority of them does not fail. When they recover, they do not participate in con-
sensus any more. But they undo their modifications (if needed) to ensure exactly-once. Assuming
good agents maintains consistency from the point of view of the agent owner (or application) who
has launched the mobile agent, by bringing all accessed places to a consistent state (see also Sec-
tion 3.3.1).

However, the protocol presented could easily be extended to also encompass recovery by using
a corresponding version of consensus along the lines of [ACT00, OGS97, HMR98]. Indeed, we
argue in the next section that recovery needs to be supported to a certain degree because of asyn-
chronous agent propagation.

Note that the order of the places.M; determines the order in which the places attempt to execute
the agent replicas. For instance f; contains the set of places), p!, p?}, the agent execution

is first performed o). If p is suspected, thep} starts executing its agent replica. Hence, the
places given first in the sett; have a higher probability of executing the agent replica than the
ones given later. Witnesses always appear lagtjn

Asynchronous Agent Propagation

We have assumed (see Section 3) an asynchronous system, where there is no bound on the trans-
mission delay of messages. This has an impact on the different instances of the agreement protocol
(i.e., DIV consensus) that run at each sta&gef an agent execution. Because of the asynchrony,

the agent; may not arrive simultaneously at the different plagesf stageS;. Assume for in-

stance that the agent replicd5a}, a? are sent respectively i, p},p? € M; (see Figure 6.1),

and assume thaf arrives late ap?. DIV consensus may have already started executing for agent
replicasa) anda} whena? arrives. The execution of DIV consensus may even have terminated
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whena? arrives. In theory, the late arrival of atp? is indistinguishable ta{ anda! from the

crash ofa? beforea? has received any messages frahor o}, followed by the recovery of?.

Indeed, the late arrival is a special case of general recovery, whéagds and recovers again
preserving the same state as before its failure, and receiving all messages sent to it in the mean-
time. To handle general recovery a mechanism is required that stores the actual gthtfat

its failure and retrieves this state again upon recovery. Moreover, DIV consensus messages need
to be sent reliably in this context. In our approach, we support the latter, but not the former and
thus distinguish between the late arrivalpfand a crash of! followed by recovery. Indeed, late
arriving agent replicas can still participate in DIV consensus, while recovered agent replicas do
not. Late arrivals are handled correctly if all messages are ensured to eventually arrive at the agent
replica, although the latter may not have reached the place yet.

6.3.2 Building Block 2: Reliably Forwarding the Agent BetweenS; and S; ;1

Having solved the problem of executing the agent at a stage, we must address the issue of reliably
forwarding the agent to the next stage. A naive approach leads to a protocol, where every place in
M, broadcasts the resuléc; to every place inM; 1. However, this incurs significant overhead in
terms of message number as well as number of communicatio,stepsnding on the protocol
selected. Our approach reduces this overhead considerably. For this purpose, only a majority of
the places inM; broadcast to all places if;, ;. As DIV Consensus assumes that a majority of
places inM; do not fall, it is ensured that at least one place actually broadcasts the agent.

6.3.3 Optimization: Pipelined Mode

In our discussion so far, we have assumed tat ; and M; are a disjoint set of places. However,
this is not a requirement. On the contrary, reusing places of $tagas withesses fa$; (see Sec-
tion 4.2.2) improves the performance of the protocol and prevents high messaging costs [SR98].
Generalizing this idea, every stagemerely adds another place fof;, _;, while removing the
oldest from the setM; ;. More specifically, at stagés, agentay executes on the hetero-place
p2 and on the witnessas andpy. If no failures or false suspicions occur, the agent executes on
po. Itis then forwarded to the places M, i.e.,p1, p2, andps. Placeps is the only place to still
receiveas, asp, andp; have been participants to the agreemerf,aind thus already knowy
as part ofdec,. We call this modeipelined[RS98]. In the pipelined mode, forwarding costs are
minimized and limited to forwarding the agent to the new place (see Figure 6.2). Note that for
setM; we assume the existence of one place that acts as a witness for the stage ekeTion
execution at stag#) is not replicated (see Section 4.2.1) and no witnesses are needgd.for

Note that generally any other place can act as witness. Indeed, Johansen et al99JMS
suggest to reuse th@destplaces inM; as witnesses inV;, 1, because these places have not
failed for the longest period of time. To push this reasoning even further, one could suggest to
have multiple dedicated witness machines in the network, that can take on the role of a witness.

3A communication step is identified as the sending of a message that is in the critical path of the protocol, i.e., the
protocol cannot proceed until it has received this message.
4If po is only intermittingly connected to the networ, is replaced by some other witness.
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Figure 6.2: Pipelined mode without failures.

At any stages;, a set of this withess machines is.m;. However, this approach violates the
autonomy property of a mobile agent to a certain extent and may introduce bottlenecks.

6.4 FATOMAS

In this section, we present an implementation of the algorithm introduced in Section 6.3, called
FATOMAS (FAult TOlerant Mobile Agent System). We first give the architecture (Section 6.4.1),
before discussing some implementation issues (Section 6.4.2). Our implementation is written in
Java and builds on ObjectSpace’s Voyager mobile agent platform (see Section 2.1.7). In Sec-
tion 6.4.3, we show the results of the performance evaluation of FATOMAS. To validate our de-
sign, we have also implemented FATOMAS on MOPROS (see Section 2.1.7) and briefly present
these results in Section 6.4.4. To improve readability in this section, method names are written
with aspeci al font.

6.4.1 Architecture
Isolation of the Fault Tolerance Mechanisms

Conceptually, a mobile agent executes in three phases: (h)jtatization phase (2) stage oper-
ation phasesand (3) aermination phaseThe initialization phase takes place on the agent source
Sp, while the termination phase is executed on the agent destingtiddetween the agent source
and destination, the stage operation phase is run at each$t@ge i < n). Hence, this phase

is executed multiple times.

Ideally, fault tolerance should be orthogonal to mobile agents and its mechanisms transparent
to the agent owner. Unfortunately, complete transparency is difficult to achieve and the user-
defined agent, i.e., the part that defines the application-specific operations of the agent, needs to
interact with the fault tolerance mechanisms. While in single-agent execution, for instance, an
agent just needs to specify the next place it moves to, our fault-tolerant agent execution generally

SExcept in the particular case of the pipelined mode (see Section 6.3.3).
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requires a set of destination places for the next stagg {). Clearly, the agent is aware of the
replication and complete transparency is no more possible. Moreover, ensuring fault tolerance
adds another phase to the agent execution:ctimmit/abort phaseln Section 4.2, we mention

that imperfect failure detection may lead to a violation of the exactly-once property of mobile agent
execution. Solving an agreement problem prevents multiple executions of the agent by deciding
on a primaryp?”™. Only the primary commits the operations, while all other places that have
executed the agent as well must abort/undo the agent operations. Hence we need a commit/abort
phase, which follows every stage operation phase. The semantics of this phase depends on the
agent operations. For instance, database transactions need to be committed or aborted (or rolled
back, depending on the database), while idempotent operations generally do not require any further
action.

phase

Move to the next
stage
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User-defined Fault tolerance
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Figure 6.3: Phases of a fault-tolerant mobile agent execution and interaction with the FTE.

We propose an architecture that isolates the fault tolerance mechanisms in a component called
Fault Tolerance Enable(FTE). Figure 6.3 shows the flow of interaction between the FTE and
the user-defined agent. This interaction occurs during the stage operation and the commit/abort
phase. The FTE groups the fault tolerance mechanisms, while the user-defined agent contains the
application-specific part. At each sta§e(0 < i < n), the FTE solves the agreement problem
specified in Section 6.2.1. Depending on the outcome of the agreement, the operations performed
in the stage operation phase (see Figure 6.3, arrows 1 and 2) are either committed or aborted
(arrows 3 and 4). Finally, the FTE moves the agent to the set of placet.in (arrow 5), which
are computed by the user-defined agent and returned as the result of the stage operation phase (see
Section 6.3).

We can identify two approaches related to the location of the FTEagkat-dependenFTE
with the agent) and thplace-dependenapproach (FTE with the places). Our system uses the
agent-dependent approach, which is presented in more detail in the next section. We only briefly
discuss the place-dependent approach.
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Agent-Dependent Approach

In the agent-dependent approach, the FTE is integrated into the agent and travels with it. Only
one instance of the FTE exists per agent, but it is replicated when the agent is replicated. The
FTE is initialized by the user-defined agent at the agent source, and triggers the termination phase
of the user-defined agent at the agent destination. The interaction of a user-defined agent with
the FTE creates a fault-tolerant mobile agent. Hence, the replication mechanisms are transparent
to the places; the agent appears to the place as a normal agent. Consequently, existing mobile
agent platforms do not need to be modified. However, we redefine the way agents are created and
moved. Instead of programming the agent against the proprietary mobile agent platform API, the
agent uses the functionality of the FTE-API (see Figure 6.4). The FTE then addresses issues such
as fault tolerance and mobility. For instance, in ObjectSpace’s Voyager mobile agent platform
[Obj99], an agent moves with a call to tmove method. Beside the destination, theve

method also accepts the name of the method to be called upon arrival on the destination place. In
our approach, the callback methddSt ageQper at i on in the FTE-API is invoked whenever

the agent arrives at a new destination. The next destination places are returned as a result of
the execution of methodoSt ageOper at i on. These changes are straightforward and, in our
opinion, simplify the notion of an agent.

Place p/
Mobile Agent a;
Repository . FTE
- |5 | Reliable
deS.erd % communication
efinea |u with another

K Agreement |
Agent 18 agent replica

| Recovery )
"/

Figure 6.4: Agent-dependent approach: architecture of the fault-tolerant mobile agent framework.

Figure 6.4 shows the architecture of the agent-dependent approach. The FTE is composed of
anagreementomponent (implementing consensusjelable forwardingcomponent (responsi-
ble for the agent forwarding to the next stage), amdaverycomponent. The latter handles the
recovery in case the agent fails or arrives at a place when the decision has already been made.
Finally, therepositoryis a location where place specific fault tolerance information can be stored
temporarily. This location is agent platform dependent, but typically corresponds to some sort of
local repository, such as the Voyager directory. For convenience, we require that such repositories
allow other agents at plage to remotely access some information at another pladé # 7). If
this is not the case, an agent needs to be defined that acts as a proxy between the local directory
and the fault-tolerant agents.

Place-Dependent Approach

In the place-dependent approach, the FTE is provided by the mobile agent platform, e.g., [MPTOO,
SBSO00] (see Figure 6.5). Here, fault tolerance is built into the places, and a new instance of
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the FTE is created and executes at every stage of the agent execution. A disadvantage of the
place-dependent approach is the need to modify existing proprietary mobile agent platforms. In
particular, the installed base of mobile agent platforms needs to be replaced by platforms that all
use the same fault tolerance mechanisms, which is problematic. Moreover, providing the fault
tolerance mechanisms locally on a place may lead to versioning problems.

On the other hand, the FTE can be reused if two agerasd b execute on a similar set of
places (M) at stageS;. However, the performance gain is small, as we believe that the\dets
for an agent and M; for an agenb are generally not identical. Another advantage of the place-
dependent approach is that it allows the places to selectively instantiate the agent ff#wm:;
needed. Indeed, only agent replicas are instantiated whose stage operation phase is really executed.
Nevertheless, each place runs an instance of the FTE per agent réplibather the agent replica
a{ itself is instantiated or not, in order to participate in the stage fault tolerance protoeg(ifer,
the consensus algorithm). Since the FTE is located at the places, it does not need to be transported
with the agents, thus limiting the size of the agent and improving transmission performance.

Place pj

Mobile Agent a;

communication
with another
place

User-defined
orwarding ] Agent

Agreement

Repository

Figure 6.5: Place-dependent approach: architecture of the fault-tolerant mobile agent framework.

Moreover, the place-dependent approach can reduce the number of messages compared to the
agent-dependent approach. Indeed, implementing the FTE as part of the mobile agent platform
allows to integrate parts of building block 1 (i.e., DIV consensus) with building block 2 (i.e., re-
liable forwarding). For this purpose, we take advantage of the reliable broadcast used as part of
the DIV consensus algorithm (see Section 2.2.3) to send the dedisido all participants of the
consensus. Instead of reliably broadcastiag only tOpg € M;, we broadcast it tom; U M, 1.

This ensures that the agent ; is not lost. The changes to the DIV consensus algorithm are small.

Despite these advantages of the place-dependent approach, we weighted the need to modify ex-
isting agent platforms as a serious limitation and consequently have chosen the agent-dependent
approach.
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6.4.2 Implementation on Voyager

This section describes the implementation of FATOMAS. As indicated in the agent-dependent
approach in Section 6.4.1, we build fault tolerance on top of an existing mobile agent platform,
without modifying existing code. We use ObjectSpace’s Voyager v3.1.2 [Obj99] as the Java mo-
bile agent platform. In the following, we first discuss the implementation of the FTE, then explain

the problem of deadlock and show a way to prevent it.

FTE

The interface of the FTE to the user-defined agent, i.e., the FTE-API (see Figure 6.4), consists of a
single method, calledt ar t . Invoking this method causes the FTE to take over the responsibility

for executing the agent. As shown in Section 6.4.1, the FTE interacts with the user-defined agents
in the stage operation phase and in the commit/abort phase. For this purpose, the user-defined
agent implements the callback methddSt ageOper at i on, which represents the stage op-
eration phase and returns the set of destination places at the next stage. The callback methods
commi t andabort implement the commit/abort phase. The next subsection discusses in more
details how a stage execution works.

Stage Execution: A stage execution works as follows (see Figure 6.6): On arrival on @jace
the agent replical (more specifically the FTE) immediately starts executing consensus.

The communication among the agent repli@ésis currently based on the communication
means of Voyager, more specifically VoyagerSpaces for broadcasts, and Voyager remote method
invocation for point-to-point communication [Obj99]. Remote method invocations are synchronous
calls in FATOMAS and return an exception if the communication link is broken or the receiver
is not available. These exceptions are caught and the message is confided to a dedicated sender
thread that keeps on resending the message until it is successfully delivered or the stage execution
has terminated. Replica agents that arrive when the other replica agents are already done with the
stage execution run the recovery protocol.

When the consensus algorithm decides, the FTE stores the decision value in a local repository
(see Figure 6.4). Actually, only part of the decision is stored, i.e., the primaryi"tB. This
information must be kept until all participants in a stage execution, A,,are aware of the
result. In particular, participants that have crashed during consensus and are assumed to recover
again need to learn about the primary to decide whether to commit or abort the agent’s operation
on their place. However, it is not necessary to forward the agent to the next stage, as the agent
execution may well have terminated in the meantime. After a certain time, the decision value
is discarded. Selecting a timeout value that is sufficiently large, the probability of erroneously
discarding an entry becomes very small and thus negligible.

Having stored the decision value in the repository, the FTE eithercalisri t orabort on
the user-defined agent, depending on the decision value, more specifically, ri"thealue of
the decision (see Section 6.3). Finally, the FTE forwards the agent to the next stage as described
in the next section.

In our implementation, the decision value contains the entire state of the mobile agent. This
state is captured using the Java serialization mechanisms [Fla97]. Actually, it is sufficient to agree
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only on the modifications to the state. This significantly reduces the size of messages exchanged

among the agent replicas during DIV consensus. However, this requires support from the agent

developer. Indeed, the user-defined agent must specify the state that has changed. Hence, fault-
tolerance becomes less transparent for the agent developer. This optimization is not implemented

in the actual version of FATOMAS.

1: Stage action ofa? on intermediate placep?:

2: Initialisation:
decision < L {contains the decision of DIV Consenus

w

decision = DIV Consensus.propose(a!)
LocalRepository.a; < decision.primary {store the primary in the local repositofy
if primary = p} then

commit local transaction {p? is the primary}
else

abort local transaction

. reliably multicastdecision.a; 1 to places irdecision. M ;11

O ©XNOoOR

Figure 6.6: Pseudo code of the stage execution of the afjanplacep’.

Reliably Forwarding the Agent: Having solved consensus at stagethe agent needs to be
forwarded reliably to member®/; ,; of the next stage. To assure reliable forwarding, each partic-
ipant of stages; sends a clone of the agent to the participantdin; \ M;.

Stage S, Stage S |,

Figure 6.7: Reliably forwarding the agent fra$hto S; ;.

If M;11NM; =10, i.e., the places at two consecutive stag§emnd.S; ;| form disjoint sets, the
simplest solution to reliable forwarding consists in sendikg| x| M, 1| agents (see Figure 6.7).
However, to reduce the communication overhead, we chose the following optimistic approach:
the agent; 1 is sent to each places ik;; only by the agent; at the place!”"™. The other
agentsa! # a?""™ simply verify whether the agent ., has arrived at the places i, by

i
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remotely accessing the corresponding value in the repository on the plagds inIf an entry

for the agem‘agJrl already exists, the ageni+1 has successfully arrived, otherwise, the agent

a{H is cloned and sent to this place. In other words, instead of a priori always sending the entire
agent, a small message is sent to check the need for sending the entire agent. This approach is
optimistic, since it assumes that in most cases the agents arrive at their destinations. Although the
performance gain for a single agent is not great, the communication overhead is reduced for large
agents, as discussed in Section 6.4.3. If an agent fails to arrive at its destination, because either
(1) the sender place failed or (2) the agent was lost during transmission, agent forwarding leads to
additional latency.

Recovery: Although recovery and non-simultaneous agent arrival can be handled in the same
way (see Section 6.3.1), our prototype distinguishes between the two cases: a delayed agent takes
part in the running instance of consensus (except if consensus has finished already), whereas a
recovering agent does not. A recovering ag@fntequests the decision value of the consensus,
more specificall;pf”m, once it is available. Based cpﬁ”m a¥ either commits or aborts its stage
operations and can thus recover into a consistent state.

A recovering place that failed in stagetakes again part in the mobile agent execution at any
stageS;(I > i) (if itis in M;) as well as in the execution of any other agent. For this case, no
particular recovery algorithm is needed.

Interaction of FTE and User-Defined Agent: The Deadlock Problem

A deadlock may occur between two different ageptandby, if they happen to share the same
places. This deadlock is a consequence of the interaction between the DIV consensus algorithm
and the stage action. Consider for example the two replftasg of agents; and the two replicas

bY, bi of agentb,, werea?, b} share the placg) anda}, b; the placep! (Figure 6.8 Assume

further that agent; performs stage actiosw; (either onp{ or onp!), andb,. performs stage action

say (either onp? or onp}), and that the two stage actiosg andsay, access the same data item.
Accessing the data item requires locking of the data, and the data must remain locked until the
decision of the consensus of stagjéfor agenta) or Sy (agentb) is known.

Stage S ; (agent a), S, (agent b)

Y

Figure 6.8: Deadlock between the ageintndb at stageS; and Sy, respectively.

6Actually, to be accurate, we should have three replicas in our example. However, for simplicity, we consider only
two replicas. Anyone familiar with the consensus algorithms based on the rotating coordinator paradigshsiraadiid
mentally replace everywhere “two” by “three”.
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Let us assume first the solution where we have one single thread peraégdenoted by
Thr(a{), for (1) executing the consensus on plai;emd (2) performing stage actica; onp{.
This can lead to the following wait-for dependencies:
e Because of the distributed consensus algorithm, we canfiawé&f) — Thr(a}), where
— stands for “waits-for”,
e For the same reason, we can have-(b,) — Thr(b?).
e Because of the data locking, we can ha¥er () — Thr(ad) (if Thr(a?) locks the data
item of placep! beforeThr(b)).
e For the same reason, we can haVe-(a}) — Thr(b}.).
We have here a cycle in the wait-for-graph, i.e., a deadlock, as shown in Figure 6.9 (a). Dead-
locks can be prevented by having two threads per agepne thread, denoted WyonsThr(a)),
for executing the consensus on plq;g:eand another thread, denoted(ﬁyThr(aZ) for executing
the stage action on pIa@é. The above wait-for dependencies become:
ConsThr(aY) — ConsThr(a}).
ConsThr (b)) — ConsThr(b)).
OpThr(b)) — OpThr(a).
e OpThr(a}) — OpThr(b}).
Obviously the cycle in the wait-for-graph, and the deadlock, have disappeared. The modifica-
tions to DIV consensus are shown in Algorithm 1 (Appendix A.1). While this approach prevents

deadlocks, timed locRsn data accesses allow us to detect them. The advantage of timed locks is
that they only require one thread for executing consensyp amd performing stage actiom on

pl.

ConsThr(a ?) OpThr(a ?)

Thr(@a %) «<——Thr(b ) pThr(b °) ConsThr(b %)
T _»OpThr(b ') ConsThr(b %)
Thr@a ') — Thr(b,})| | ConsThr(a ) OpThr(a })

(a) deadlock (b) no deadlock

Figure 6.9: Wait-for-graphs for (a) the single thread and (b) the double thread case.

6.4.3 Performance Measurements on Voyager

This section evaluates the performance of FATOMAS on Voyager. Our evaluation uses the exam-
ple agent presented in the next section. The results first show the costs of the replication mech-
anisms. In a second evaluation suite we identify the influence of the size of the agent. For this

"a?, the coordinator of the first round has been suspectedgaisthe coordinator of the second round.
8A timed lockis a lock where a thread is blocked until either it is granted the lock, or a timeout value is reached.
The thread can then take the corresponding actions and potentially retry to acquire the lock.
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purpose, we compare the costs of a replicated agent with the costs of a single, non-replicated
agent. Finally, we show the benefits of some optimization techniques, such as the pipelined mode
and the agent forwarding optimization presented in Section 6.4.2.

Example: A Fault-Tolerant Mobile Agent Accessing Counters

To measure the performance of FATOMAS, we use a simple service running on every place:
a counter. Accesses to this counter are performed as local transactions, via the three methods:
i ncrenment (to increment the value of the countecymri t (to commit the modifications), and

abor t (if the modifications need to be undone). A call to methodr enent locks the counter;

the lock is only released after a call to eitloaymmi t orabort.

Figure 6.10 shows a simplified version of our agent, which increments the value of the counter
at each stage of its execution. It implements the methods defined in the inteFaégent :
methoddoSt ageOper at i on corresponds to the stage operation phase in Figure 6.3, methods
comni t andabort implement the commit/abort phase.

Our test consists in sending a number of agents that increment the value of the counter at each
stage of the execution. Each agent starts at the agent source and returns to the agent source, which
allows to measure its round-trip time. Between two agents, the places are not restarted. Conse-
qguently, the first agent needs considerably longer for its execution, as all classes need to be loaded
into the cache of the virtual machines. Consecutive agents benefit from already cached classes and
thus execute much faster. We do not consider the first agent execution in our measurement results.
For a fair comparison, we used the same approach for the single agent case (no replication).

Moreover, we assume that the Java class files are locally available on each place. Clearly, this
is a simplification, as the class files do not need to be transported with the agent. Remote class
loading adds additional costs because the classes need to be transported with the agent and then
loaded into the virtual machine. The size of the class files for a single agent is about 8KBytes, for
the replicated agent 50KBytes (including the classes for the FTE). An upper bound on these costs
is modeled in our experiments by increasing the size of our agent. However, these experiments
also contain the additional costs of executing consensus for an agent of the corresponding size.
These are costs that are not relevant in the case of remote class loading. The class files are only
transported once between the places of consecutive stages, but not between places of the same
stage. Unfortunately, Voyager does not support remote class loading properly in our test setup,
and thus our tests assume that the classes are available locally.

Experimental Setup

Our performance tests are run on seven AlX machines (PowerPC 233 MHz processor, 256 MBytes
of RAM). The machines are connected by either 100Mbps Ethernet or 16Mbps Tokenring; they
are on 3 different subnets. As the maximal size of our test agents is 100KBytes and our evaluation
results are in the area of hundreds of milliseconds or more, the difference in network bandwidth is
negligible. The influence of the different subnets does not turn out to be significant either.

Each stageS; (0 < i < n) is composed of three places. In the experiment with two interme-
diate stages, andS,, each intermediate stage uses three AIX machines, while another machine
hosts the agent source and destination. If the number of stages exceeds tmuresponds to
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public class Repl Agent
i mpl ements | Ft Agent, Serializable {
public Repl Agent (int nyld,
bool ean initial Agent) ({
if (initial Agent) {
FTE fte = new FTE() ;
fte.start(_nyld,
this,
_itinerary.elenentAt(1)) ;
YoILOif
Y I <init> ()

public String[] doStageQperation(int stage) {
if (stage+l == _itinerary.size()) {
/1 Agent destination: report to user
_testControl er.report() ;
return | Ft Agent. NO_NEXT_STACES ;
} else {
/'l Lookup the counter
_counter = (I Counter)Nanespace. | ookup(count er Nane) ;
_counter.increnent() ;
return (String[])_itinerary.el enent At (stage+l)
YoILOif
} I/ doStageOperation ()

public void comit (int stage) {
if (stage+l < _itinerary.size()) {
_counter.commit() ;
YILOif
} /1 commt ()

public void abort (int stage) {

if (_counter !'=null) {
_counter.abort() ;
YILOif

} I/ abort ()
} // END CLASS Repl Agent

Figure 6.10: A user-defined agent that increments the value of a counter at each stage.
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all odd intermediate stages, i.€;41 (2k +1 < n — 1) andS, to the even intermediate stages
5219 (2k S n — 1)

Costs of Replication

We measure two aspects of the replication costs: (1) the overhead of the replication mechanism,
by considering replication degree 1, and (2) the costs of replication degree 3. The replication
degree denotes the number of places at a stage and is an indicator of the number of failures the
algorithm tolerates at a stage. Because of the assumption for our consensus algorithm, i.e., a
majority of agent replicas do not fail (see Section 6.3.1), replication degree 3 handles one failure,
and replication degree 5 would handle 2 failures. The results of these measurements are given in
Table 6.1. They represent the arithmetic average of 10 runs, with the highest and lowest values
discarded to eliminate outliers. The coefficient of variations is in most cases much lower than 5%.
However, for very few results, it went up to 15%. As a mobile agent execution combines agent
forwarding and consensus, minor variations on network load and load on the AlX machines have
a considerable influence on the execution time of a mobile agent.

| Type of Agent I 3 stages | 4 stages | 5 stages |
Single agent (666 bytes) 793 100% 1089 100% 1546 100%
Single FTE-agent, degree 1 (1440 bytes) 939 118% 1427 131% 2004 130%
Replicated FTE-agent, degree 3 2369 290% 4375 402% 6470 418%
Replicated FTE-agent, 10000 + 10000 + 10000 +
degree 3, with failure (timeout = 10000 2445 1569% | 4631 1344%| 6299 1054%

Table 6.1: Costs of replication degree 1 and 3 in milliseconds compared to the single agent.

The first line in Table 6.1 shows the costs for a single agent, i.e., a traditional Voyager agent,
that performs exactly the same task as the replicated agent. The single FTE-agent (line 2 in
Table 6.1) uses the replicated agent’s code to execute in a single agent mode. Compared with the
previous line, the second line shows the overhead of the replication mechanism (increased agent
state adding to the communication costs, increased computing time). The results show that the
replication mechanisms add about a 30% overhead compared to a single agent. The overhead is
lower (18%) in the case of three stages, as no communication between intermediate stages occurs.

A replicated agent that is able to tolerate one failure at a stage is three to four times more
expensive than a single agent (line 3). The increase in the agent execution time is mainly caused
by the additional communication costs of agent forwarding and consensus. Indeed, consider for
instance the single agent execution on 4 stages: there are here 3 messages in the critical path. On
the other hand, with replication there are 11 messages in the critical path in the most favorable
scenario. We suspect Voyager communication to be rather inefficient. Nevertheless, the overhead
of the fault tolerance mechanisms seems reasonable, considering the guarantees the fault tolerance
mechanisms provide: non-blocking and exactly-once mobile agent execution. Moreover, in our
experiment the execution time of the agent’s stage action is less than 5ms and therefore not signif-
icant. Clearly, the larger the execution time of the agent’s stage action is, the smaller the ratio of
the overhead between the single agent and the replicated agent becomes.

Finally, the last line shows the execution costs when the coordinator fails. For this purpose, we
force agent replica! to crash in exactly the situation presented in Figure 6.1 (stage 2). The main
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part of the costs stems from the selected timeout value in the failure detection mechanisms for
consensus (timeout = 10000ms). In other words, the failure detection mechansgacts agent
replicaa}, if it has received no message fraghfor a certain time, that corresponds to this timeout
value. A more aggressive timeout value allows to considerably speed up the agent execution, but
increases the risk of false suspicions.

Table 6.2 indicates an upper bound on the costs that can be attributed to consensus. It shows
the costs of instantiating the consensus objects and of running the consensus algorithm. The test
measures the costs of consensus at the intermediate stage of a mobile agent execution with three
stages. The agent source sends the agent sequentially to the three places of the intermediate stage.
As in agent forwarding between intermediate stages one can assume some degree of concurrency
these results show an upper bound value. They highlight a significant difference of the costs among
the agent replicas, caused by asynchronous agent arrival as discussed in Section 6.3.1 and by the
intrinsic properties of our consensus algorithm. Indeed, agent reglisathe first coordinator
and also generally arrives first on its placeMMy. As shown in Table 6.2 it also decides first (if no
failures or suspicions arise). Hence, its performance is better than the performaheadf?.

The results confirm the obvious expectation that the size of the agent has an impact on the
costs of consensus. We discuss this impact in more detail in the next subsection.

| agent size in bytd] agent replica; | agent replicai; | agent replica; |

1440 30718 570 1264
11440 4949 3237 6156
51440 25846 15819 26446

101440 49855 31127 51222

Table 6.2: Costs of consensus in milliseconds for a replicated FTE-agent of degree 3.

A particular case arises for small agents (first line in Table 6.2). Because of asynchronous agent
propagationa} anda? solve consensus and are forwarded to the next stage héfestablishes
the communication with them. Therefor@l uses the recovery mechanisms to learn about the
result of consensus. This explains the high valuedforwhich is mainly caused by timeouts.
These timeouts encompass the timeout for the failure detection mechanism and the timeout in the
recovery mechanism, that checks for a value in the repositorigsanidp?.

Influence of the Size of the Agent

As already indicated in the previous section, the size of the agent has a considerable impact on the
performance of the fault-tolerant mobile agent execution. To measure this impact, the agent carries

a Byte array of variable length, that is used to increase the size of the agent state. As the results

in Figure 6.11 show, the execution time of the agent increases linearly with increasing size of the
agent. Compared to the single agent, the slope of the curve for the replicated agent is steeper.
Table 6.2 indicates the part of the costs that can be attributed to consensus. For instance, with the
agent size of 11440 bytes, consensus needs 3.2 seconds at each intermediate stage (see Table 6.2).
Figure 6.11 indicates that the costs for the entire agent execution is 13.4 seconds. From this we
conclude that the communication overhead is about 7 seconds.

®We have chosen a very basic implementation of a failure detector. See [CTA02] for a more elaborate discussion.
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Influence of the agent size on the execution time (4 Stages)
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Figure 6.11: The costs of single and replicated agent execution with increasing agent size (4
stages).

Optimizations

We present now two optimizations: pipelined mode and forwarding optimization.

Pipelined Mode: We have briefly introduced the pipelined mode in Section 6.3.3. It results in a
reduced number of messages (i.e., forwarded agents), as the agent only needs to be forwarded to
one new place of the next stage. This reduced number of messages does not entirely show in the
performance gain, because our approach waits only for the reception of the first message/agent.
Reducing the number of messages, however, has a great impact on the underlying communication
infrastructure.

Nevertheless, Figures 6.12 and 6.13 show that the pipelined mode has a lower execution time
than the normal replicated agent. While Figure 6.12 shows the performance gain with an increas-
ing number of stages, Figure 6.13 indicates that the performance gain increases with increasing
agent size, as one would expect. In this test, we have used an agent that visits 8 stages, including
agent source and destination.

Forwarding Optimization:  Similar to the pipelined mode, this optimization addresses also the
communication overhead (Section 6.4.2). Although the number of bytes transfered is reduced with
this approach, in particular for large agents, the performance gain for the agent execution itself is
small (see Figure 6.14), as our algorithm waits only for the arrival of the first copy of the agent.

6.4.4 Implementation and Performance Measurements on MOPROS

To validate our architecture, we have ported FATOMAS to MOPROS (see Section 2.1.7). Porting
FATOMAS to MOPROS is easy and shows that no modifications are needed to the mobile agent
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Optimization: pipelined FATOMAS agent
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Figure 6.12: Performance of the pipelined mode with increasing number of stages.

Optimizations by the pipelined mode for 8 stages
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Figure 6.13: Performance gain with the pipelined mode for 8 stages with increasing agent size.
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Influence of the forwarding optimization on the execution time using increasing agent size (4 stages)
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Figure 6.14: The costs of a replicated agent execution with forwarding optimization for increasing
agent sizes (4 stages).

platform and has thus verified our claim of Section 6.4.1. We start with a brief description of our
FATOMAS implementation on MOPROS, before presenting our performance evaluation.

FATOMAS on MOPROS

In contrary to our implementation on Voyager, the Java classes are not locally available on the
places any more. Rather, they are loaded from a central location. Consequently, the performance
of the two implementations is not really comparable. The purpose of the implementation on MO-
PROS was to validate our architecture and our claim that porting FATOMAS to another mobile
agent platform is straightforward.

The execution of the fault-tolerant mobile agent is not as transparent as in Voyager any more.
Upon arrival on a new place, MOPROS always callsrtaé n method in the user-defined agent.
Consequently, it is the user-defined agent’s responsibility to call the corresponding method in the
FTE. Recall that Voyager allows us to specify the function to be called upon arrival on a new place.
This allows the FTE to take over the execution of the agent (see Section 6.4.2). In MOPROS, the
user-defined agent must implement a dispatcher within its main method, that dispatches the thread
of control to the corresponding function in the FTE.

As MOPROS is targeted towards Linux, we have used this platform to measure the perfor-
mance of the FATOMAS implementation on MOPROS.

Performance Measurements

Our prototype implements an example agent similar to the one presented in Section 6.4.3. All
classes of the agent are loaded remotely, through a central web server.

Our performance tests are run on three PL300 machines (Pentium Il 400MHz, 128MByte
RAM), one Thinkpad T21 (Pentium Il 800MHz, 400MByte RAM), and one machine with a 1GHz
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processor and 768MByte of RAM. All of them are running Linux. The machines are connected

by 100Mbps Ethernet. These machines are grouped into two sets of three machines each, with
machinem participating in both sets and acting as the agent source and destination. The machines
are arranged within the set such that the agreement is generally reached among the places that run
on the machines other than1° This allows us to include the communication overhead among
distributed machines in our measurements.

The results of the performance evaluation are shown in Figure 6.15. They represent the average
for ten runs, whereby the highest and lowest results have been ignored to eliminate outliers. The
coefficient of variation is generally below 5%. Recall that MOPROS is a prototype system in a
very early stage of development and thus its performance is not optimized. However, it allows us
to validate FATOMAS' architecture and to test our approach on a system that provides support for
remotely loaded class files.

Performance measurements of a Mopros agent
600 T T T T
single agent (classes locally available) o -
single agent with remotely loaded classes —+=
500 replicated agent with remotely loaded classes-~=— |

/Z/

400 | :

time [s]

300 | |
200

100

number of stages

Figure 6.15: The costs of single and replicated agent execution with increasing number of stages.

The results show the overhead of the replication mechanism compared to the execution of a
single agent. For illustration, we also show the overhead of a single agent whose Java classes
are locally available on the places. The performance difference between this agent and the single
agent with remotely loaded classes thus stems from the overhead of remote class loading. This
overhead indicates an upper bound, as each class is loaded separately. Assembling all classes into
a Jar file allows to load them all at the same time and is thus more efficient. In the execution
of a replicated agent with 5 stages, Figure 6.15 shows a significant increase of the overhead.
This increase is caused by the agent’s return to the machines of predecessor stages, while these
machines still have not completely cleaned up all the leftovers from previous stage executions.
The cleaning-up at stage (7 > 0) thus interferes with the execution of the agent at stggg,,
wherew = 0,1,2,3,... and(n > i + 2w).

%0nly a majority of places in\; is needed to reach an agreement. Depending on the ordef; jithis majority
can be achieved without (see Section 6.3.1).
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6.5 Child Agents

So far, we have not discussed the case of spawning a child agent. A child agent is spawn when
agentq; creates a new agent during its stage execution. In other wgtuks;omes an agent owner.
This case is more difficult to handle than the normal case of a linear mobile agent execution.

6.5.1 Spawning Child Agents

The agentz; at stageS; can spawn a new ageht which causes two agents to move off stage
S a;41 resulting from executing; on S andb; (see Figure 6.16). If; crashes, then all its
modifications have to be undone. In particular, the spawn agéas to be terminated as well
and its operations undone. #f has been immediately sent off, undoing its operations is not a
simple task. Indeed, the undoing message may trace agéorever, never catching up with it
(see Section 4.3.3). Thereforecan only start execution when the current stgydas decided

on the result. This requires thiatand its set of executing placqfse M?$ are part of the decision
valuedec; =< a1, M, < bl,M1 >> prrim- The places me only receiveb, when the
decision is reliably broadcast to the concerned places. At this point, the execution of the spawn
child agent can proceed. Consequently, only when the placég'in receivedec;, they send off

the agenb;.

Stage S ?2 Stage S ,,®

@
m
A0S0 7o)

Figure 6.16: Agent; spawns a new agent at stages'.
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6.5.2 Agent Coordination

In the previous section, we have discussed the case of a spawn agent. In this section, we address
the issue of coordinating two agents. For instance, the dggrawn by agent may rejoin agent

a again at a later stage iris execution, sayy.. As agents is replicated at stagé, a replica of

agentb needs to run on every place i} as well. This way, it is ensured that no replica agent

a;, waits forever for the arrival of ageit Clearly, agents andb need to agree on their meeting

point, i.e., M.

6.6 Summary

In this chapter, we have presented our approach to fault-tolerant mobile agent execution. In con-
trast to existing approaches, which are either blocking [RS98, VKM97a], assume reliable failure
detection [JMS99, PPGO0OQ], or are based on complex models of transactions and leader elec-
tion [ASPZ98, RS98], we model fault-tolerant mobile agent execution as a sequence of agreement
problems. In other words, at each stage an agreement problem is solved among the agent replicas at
this stage. Together with replication, these agreements achieve the non-blocking and exactly-once
property specified for fault-tolerant mobile agent execution. Our approach uses two well-studied
and proven building blocks: consensus and reliable broadcast. To validate our results, we have
implemented our approach in a system called FATOMAS and evaluated its performance.
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Chapter 7

Fault-Tolerant Mobile Agent Execution
In The Context of Iso-Places

In Section 4.2.2 we have briefly introduced replicated and independent iso-places, but in Chapter 6
we have limited the discussion to hetero-places and hetero-places with witnesses. In this chapter,
we present fault-tolerant mobile agent execution in the context of iso-places. In particular, we
identify the modifications that are required to our approach in order to also handle iso-places.
We start with an overview on the notion déterminisimin the execution (Section 7.1); execution
determinism is an important property in the context of iso-places. In Section 7.2, we discuss the
problem of locality and transparency of an agent executing on a replicated iso-place. Similarly
to hetero-places, ensuring non-blocking and the exactly-once property is not easy. To show how
the exactly-once property can be achieved in the context of iso-places, we first address a related,
but more general problem: the problem of a replicated client invoking (by sending a request to)
a replicated server (Section 7.3). This latter problem, which we call the problespli¢ated
invocation is of interest also in traditional distributed client/server systems. We show that solving
this problem in the context of traditional client/server systems solves at the same time the problem
of replicated iso-places in the context of mobile agents (Section 7.4). Section 7.5 presents the case
of independent iso-places, which are a special case of replicated iso-places. Finally, Section 7.6
discusses the combinations of hetero-places and iso-places that are meaningful in the set of places
M,.

7.1 Deterministic Execution

The execution of the agent replicgsrunning on the places iM; is deterministicif all ! in M;,

given the same input and initial state, execute the same steps and return the same results. More-
over, these results must be reproducible. Multiple threads, for instance, lead to non-deterministic
execution as the thread scheduling is somewhat arbitrary. Further sources for non-determinism
are, for instance [Pol94]:

¢ Non-deterministic system calls (local time reading, randomized numbers)

e Asynchronous events (software interrupts, system exceptions)

89



90 CHAPTER 7. FAULT TOLERANCE IN THE CONTEXT OF ISO-PLACES

e Non-deterministic program constructs. For instancesthileect statement in Ada [Bar95]
arbitrarily chooses among a set of pending service calls (see Figure 7.1) and is thus a source
of non-determinism.

The same input to the agent replicas can only be achieved if requests of the agent replicas
to the places (or rather to the services running on the places) are also executed deterministically
on the places. Hence, in addition to the deterministic execution of the agent we implicitly also
require deterministic execution of the places. Indeed, assume that agent repéinds? both
send requestq to pz’ andpf, respectively. Both invocations need to produce the same result to pre-
vent different outcomes of the executionSag')fandaf. Clearly, the requirement of deterministic
execution limits the applicability of agent replication.

task my_task is
entry a(...);
entry b(...);
entry c(...);
end;

task body my_task is
begin
select
accepta(...) do ... end;
or
acceptb(...) do ... end;
or
acceptc(...) do ... end,;
end select;
end my_task ;

Figure 7.1: In Ada, a task can be used to provide a number of alternative services( e.g.,) ,
b(...),andc(...). Requests to this services are queued until the task has the resources to
service them. The choice of the queue from which the next request is serviced iarhadeily

by thesel ect statement [Bar95].

Note that deterministic execution of the replicas can be enforced: The simplest approach con-
sists of not using any source of non-determinism at all. For instance, calls to the local clock and
to random number generators need to be avoided. Although multiple threads may be possible,
Narasimhan [Nar99] proposes an approach that ensures that only a single logical thread of control
is active at a time and that the thread scheduling is the same for all replicas. However, it may
be impossible to eliminate all sources of non-determinism and to enforce determinism in the ex-
ecution of the client replicas. For instance, enforcing deterministic thread scheduling generally
requires access to the underlying platform, which is not usually given. Hence, we need to address
the issue of non-deterministic agent replicas. Moreover, in the context of iso-places, we have to
consider the issue of exactly-once execution.
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7.2 Replicated Iso-Places

In contrary to hetero-places, replicated iso-places run a replication mechanism among themselves
(see Figure 7.2). Consequently, executing the replicated agent on replicated iso-places leads to
two levels of replication: replication running (1) among the iso-plaaed (2) among the agent
replicas. The replication technique used for (2) is based on DIV consensus (i.e., is similar to
semi-passive replication, see Section 6.3), while (1) can use either active, passive, or semi-passive
replication (see Section 2.2.3).

Replication mechanism

Figure 7.2: Agent; at stageS; executes on replicated iso-placés. represents the replica of the
service that is running on plagé and provides access to the statgjofsee also Section 3.2). In
this example, the iso-places use passive replication.

Note that agent replicas need not run on all replicated iso-places; rather, they can only run on
a subset of these places. Indeed, the replication mechanism among replicated iso-places ensures
that all iso-places will eventually reflect the changes, whether they run a replica agent or not.
Revisiting the example in Section 4.2.2, although Swiss Air Lines may provide five replicated
iso-places M; may only contain three of them.

One advantage of agent mobility is that the agent can move to the places hosting the services
and access these services locally. With replicated iso-places, local access is not always given any
more, although the agent replied is collocated withU7 on placep!. Assume, for instance,
that the replicated iso-places use passive replication (see Figure 7.2). In the passive replication
technique, all accesses to the service go topthprimary, e.g.,I°. Actually, the prprimary is
usually calledprimary [BMST93]. However, to avoid confusion with the primary used in agent
replication (see Section 6.2.1) we use the ternpimary, whereby “pr” stands for “place repli-
cation”. To exploit locality, it is desirable that the primary and thepgmary are collocated, e.g.,
onp!? in Figure 7.2. However, even if the agent replica on primargxecutes, it still accesses the
pr_primary U° running onp? in the case of passively replicated iso-places (uniéssas failed).

Hence, locality is not given any more in this example. Similarly, in the case of actively (semi-
passively) replicated iso-places, the requests are atomically (reliably) broadcast to all replicated

‘ Lstrictly speaking, the replication mechanism occurs among the services running on the replicated iso-places (i.e.,
U’ in Figure 7.2). For simplicity, we do not make this distinction in our discussion (see also Section 3.2).



92 CHAPTER 7. FAULT TOLERANCE IN THE CONTEXT OF ISO-PLACES

iso-places. Consequently, local accesses are not always given any more and the agent needs to
know the replication technique used on the places. To isolate the replication technique used by
the replicated iso-places from the agent replicas (i.e., to achieve transparency) and to provide the
illusion of local accesses to the agent, the agent replicas access the service on the iso-place through
a local proxy [Maz96, MGG95a, MGG95b]. This proxy then forwards the request to the service.
With passively replicated iso-places, for instance, the proxy forwards the request toatieary.
Although local accesses to the service may not be given any more, replicated iso-places would gen-
erally be located in the same LAN, or have fast communication links among themselves in order
to minimize the time to update the other replicas. Hence, communication latency is small even if
locality (in the sense that primary and primary are collocated) is not given.

Similarly to the case of hetero-places, ensuring exactly-once is not easy. Indeed, a violation
to the exactly-once execution property can occur in the case of false suspicions or failures of the
primary (see Section 4.2.3).

7.3 The General Case: the Problem of Exactly-Once in Replicated
Invocation in a Traditional Client/Server System

Interestingly, ensuring exactly-once in the context of mobile agents is related to the more general
problem of ensuring exactly-once in the context of a replicated client invoking a replicated server
in traditional distributed client/server systems. Indeed, assume that replicatedzagetutes

on replicated iso-placeg. More specificallya] executes op! and accesses local servicesppn

Clearly, this corresponds to the situation in client/server distributed computing, where a replicated
client R accesses a replicated serid®r We call this latter interaction eeplicated invocation
Replicated invocation is the general interaction paradigm that encompasses the case of replicated
agents executing on replicated iso-places. In this respect, replicated invocation is an important
issue for our work on fault-tolerant mobile agents. In this section, we study the more general
problem of replicated invocations and show how the exactly-once property can be achieved. As a
consequence, we do not consider mobile agents in this section; rather, we consider the traditional
client/server computing paradigm. However, based on the results of this section, we then show how
exactly-once can be achieved with replicated mobile agents executing on replicated iso-places in
Section 7.4.

Most work on replication considers the case of a non-replicated client that invokes (i.e., sends
arequest to) a replicated server. This corresponds to the invocation betwee'diethserverr,
consisting of replicag’, R', andR?, in Figure 7.3. However, to servicg’s request, serveR in a
component-based (or object-based such as CORBA [OMGa, OH98]) system often invokes another
serverT'. In a fault-tolerant configuration, both andT may be replicated, leading to a replicated
server invoking a service on another replicated server (see Figure 7.3). To simplify our discussion,
we assume reliable communication betwdemnd T, i.e., n0 messages are altered, garbled or
lost. In the following, we focus on serve#® and 7', and denoteR asclient andT" as server
Furthermore, when we refer t8 (respectivelyT’) we implicitly mean the clien? (respectively
serverT) consisting of replicag?®’, R', and R? (respectively?®, T!, andT?), unless explicitly
stated otherwise. [I' uses optimistic (or pessimistic) concurrency control (see Section 4.3.3), we
say thatl" is anoptimistic(pessimistir server Finally, we denote byR| the replication degree of
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R.

replica replica

RZ T2
client replica replica
replica replica

RO TO
replicated replicated

{ ‘client" R | _ server" T

Figure 7.3: ClienC invokes replicated servét that, in turn, invokes another replicated seryer
The invocation betwee® andT involves three replicas that call three other replicas and thus is
more complex than the invocation betweg@rand R.

The problem of replicated invocations has already been addressed in various contexts. Most
of this work, however, assumes deterministic execution of the client replicas [Maz96, Nar99]
or explicitly enforces determinism [Nar99]. Enforcing determinism is particularly important in
real-time applications [Pol94]; real-time guarantees cannot be ensured in the presence of non-
determinism. In [FGOOb, FGO1b], #lund and Guerraoui propose a correctness criterion for
exactly-once in the context of replication, that addresses also non-determinism in the execution
and external side-effects such as requests to other servers. Furthermore, they introduce a repli-
cation technique, calledsynchronous replicatiofFG00a, FG01l1a]. This replication technique is
targeted towards the classical three-tier architecture with slim clients, stateless application servers,
and databases [LD98]. In contrary, our approach is more general in that it also addresses statefull
components. Indeed, our approach does not make a clear distinction between client and server.
Rather, any client can at the same time act as a server for another client. Having statefull com-
ponents requires that our replication protocol ensures that all replicas are updated. Moreover, our
approach, which is based on passive or semi-passive replication, does not require two runs of con-
sensus per client request; rather, we only require one run of consensus. Termination of the client
request in the sense of [FG0O1b] is ensured even with failure detectors ofxc$d€3T96], whereas
[FGOOb] needs a failure detector from the stronger cfaBs On the other hand, our response time
is generally higher, as consistency of the replica state needs to be maintained.

In the following, we first address the issue of exactly-once in replicated invocation (Sec-
tion 7.3.1). We distinguish between deterministic (Section 7.3.2) and non-deterministic execution
of the client replicas (Section 7.3.3), both supported by passive and semi-passive replication. The
reader is referred to [Nar99, Maz96] for a discussion on active replication (i.e., solely deterministic
execution).

7.3.1 Exactly-Once Execution

The exactly-once property is violateddf's requestrq leads to a state ak andT, that reflects
the execution of¢ multiple times. To be fault-toleranf, andT" can execute the request multi-



94 CHAPTER 7. FAULT TOLERANCE IN THE CONTEXT OF ISO-PLACES

ple times, but must have exactly-once semantics relative to their environment [FGOOb, FGO01b].
Similar to the violation of the exactly-once property in the case of replicated mobile agents (see
Section 4.2.3), the violation of exactly-once is caused by unreliable failure detection and partial
execution of requests on the replicas. The execution on multiple reffiaasy lead to multiple
invocations to servel’ and thus potentially to multiple executions @h To return into a con-
sistent state, the redundant executions of the request on the repliGasesfd to be undone (see
Section 4.3.3).

Exactly-once execution withirk is enforced by the replication technique used Ryi.e.,
passive or semi-passive replication in our case. More specifically, the replicagree on the
primary, i.e., the replica that has executed the request. The other replicas, that have (partially)
executed the request, need to undo the modifications. This may also require to undo modifications
to other servers, such 8 Unfortunately, this is more difficult, especially if some replicas of
R have failed. The replication technique used®yogether with an undo mechanism enforces
exactly-once withirl"2 Duplicate messages sent from replicated sefvéw replicated client?
can easily be discarded hfy, as they all have the same ID. This is ensured by the replication
technique used if' and is independent of deterministic or non-deterministic executidh. dh
the following, we investigate mechanisms to prevent redundant invocations to other servers such as
T and, if they still occur, to undo the modifications caused by these invocations. For this purpose,
we need to distinguish between deterministic and non-deterministic executi®n of

7.3.2 Deterministic Execution of ClientR Achieves Exactly-Once

Generally, redundant invocations dfare prevented by attaching an identifier (ID) to every re-
guest. Multiple requests to servErcan easily be detected lyif these requests are exact dupli-
cates, i.e., use identical request IDs. Indeed, the use of request IDs Allmrdetect whether the
same request has already been processed [MGG95hb, Nar99]. If this is th& chegly returns
the previously computed result; otherwise, the client’s request is executed. However, this requires
that the client replicas use identical request IDs when generating the same request. Assume, for
instance, that client replicB® sends request, to server replicd® (see Figure 7.4, step (1)), that
executesq,. Because of the replication mechanism among the replicZs alf other replicag’
reflect the result of this execution (Figure 7.4, step (2)). Before the resudf &f communicated
to client replicak?, R° fails. Another client replica (e.gR') takes over the execution and sends
requestrq; to server replicd. If the request IDs ofqy andrq; are equal, then server repligd
detects the duplicate request and simply returns the previously computed result. Even if the client
requestrq; is directed tol'! (step (3) in Figure 7.4), it is identified as a duplicate request;'as
will have been updated in the meantime. Identical request IDs on different client replicas are in
general only possible if the client replicas exeatgéterministically(see Section 7.1).

Unfortunately, deterministic execution is not always given. In the next section, we therefore
discuss the case of non-deterministic executioRzoMWe show that in this case achieving exactly-
once is more difficult and requires undoing the execution of requests on the servers.

Note that with active replicatiorall 77 executeR’’s request. Exactly-once in this context requires thaffall
execute the requeskactly-onceleading to|T'| executions of the request.
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Figure 7.4: Client replicak’ fails before updating the other client replicas, but after sending a
request td™ (1). Hence R' takes over the execution and accesEedf T is passively replicated,

R' also accesseR’ unlessT has been excluded from the view in the meantime (3). Assume that

TY has already updated the other replicas using the passive replication technique (2). Because the
R’ execute deterministically" identifies the duplicate request and simply returns the previously
computed result. A similar example can be constructed using semi-passive replicatian for

7.3.3 Non-Deterministic ClientR

Assume, that client replicaB’ are executing non-deterministically. Non-deterministic execution
of R’ is supported by passive or semi-passive replication (see Section 2.2.3). Executing two
replicasR* and R may lead to different requests, in the sense that the requests either

1. have a different content,

2. are sent to different servers (e.g., see Figure 7.5), or
3. one of the requests is not sent at all, or

4. any combination of (1), (2), or (3).

In the context of passive and semi-passive replication, two replicas are executed if the primary
replica fails or is suspected and another replica (a backup replica in case of passive replication)
takes over the execution. Non-identical requests may lead to an inconsistent state. Indeed, non-
identical requests from two replicd® andR' cannot be distinguished I from the requests of
two different clientst/ andW. Hence, in the following, we focus on how to maintain consistency
despite redundant requests.

Actually, the fact thafl" is replicated has no influence on the particular exactly-once problem
we address. Clearly, a failure to non-replicated seiveenders its services unavailable but the
replication ofT" does not lead to a violation of the exactly-once property (see Section 7.3.1). For
simplicity, but without loss of generality, servéris thus represented as a non-replicated server in
the figures.

To restore the consistent state of the system, the modifications caused by redundant (dupli-
cate) requests have to be undone. However, undoing the request of a failed replica is not easy; it
requires knowledge about the particular request. Generally, only the sender of the request has this
knowledge. In this context, we need to distinguish between optimistic and pessimistic Berver
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C
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Figure 7.5: Replicak' accesses another server thihafter detecting the failure a®. In this
example,R uses passive replication.

If T is an optimistic server, requesf is undone by sendingndo requestq. Similarly to com-
pensating transactions (see Section 4.F@semantically undoes the modifications causeddy
Assume, for instance, that reserves a ticket on a flight, thep simply cancels this reservation.
Note that in this case, an undo message is only needed in case of duplicate requests. Moreover,
the sequence of requests,, rq,,7q, is a valid sequence and is semantically equivalent to the
sequence that consists onlysaf,. On the other hand, iI" is a pessimistic server, unterminated
transactions off’ need to be terminated, either by committing or aborting them. Hence, although
no duplicate requests may have occurred, an additiGo&M T message is needed. Figure 7.6
shows a scenario without failures or false suspicions, in whfcbommits its request. Duplicate
requests lead to duplicate transactionsTgrwhich are aborted by sending &BORT message.

We call theCOVM T and ABORT messagesermination requestsMoreover, we assume that the
execution of termination requests is idempotent.
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Figure 7.6: Pessimistic execution on the sefferR uses the passive replication technique. The
requestupdate[z] updates data itemmonT'.

Generally, two approaches can be identified according to who sends these undo or termination
requests. Indeed, assume that repfenas send duplicate request

1. ReplicaR* itself sends g or COMM T/ ABORT in the case of optimistic or pessimistit,
respectively.
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2. Another replicaR’ (I # k) sends this undo or termination request.

The first approach (Section 7.3.4) assumes eventual recovety, ofhile the second makes
no such assumption and is presented in Section 7.3.5.

7.3.4 Non-Deterministic ClientR - With Recovery

Assume that all failed replicas eventually recover. Hence, failed replicaventually recovers

again. Upon recoveny?* finds out (e.g., by using a logging mechanism [GR93]) (1) whether it

has sent any unterminated requests before failing, and if this is the case, (2) whether the result of
these requests have been accepted by the other replicas. Item (2) is important in the context of
passive and semi-passive replication, as the other replicas may have adopted the result of a failed
former primary (see Section 2.2.3). Indeéi,may have already communicated the result to other
replicas before failing. Based on this information and depending on the isolation stratégy of

RF takes the actions presented in Table 7.1.

| | requestq adopted byR7 (j # k) | requestrq not adopted byR7 (j # k) |
optimistic servefl’ - Tq
pessimistic server COW T message ABORT message

Table 7.1: Type of message sent upon recovery of failed prifargssuming thak* has previ-
ously sent a request B.

Note that pessimistic serv@rmust offer the possibility to terminate transactions from another
process than the one that has started the transaction. To our knowledge, this is not generally im-
plemented in today’s databases. This must especially be ensured in the case no proper handshake
occurs between these two processes. Indeed, assumi thatessed’, fails, and eventually re-
covers. GenerallyR* will recover with a different process ID. Furthermore, it may be desirable to
terminate the transaction from another client replica, as discussed in more detail in the following
section.

Assuming FIFO order on the communication charhalsado and termination requests are
ignored byT if no corresponding request has been received previously. This behavior is easily
implemented by keeping track of the list of request IDs. If no such support is providdd by
then the actual request is sent together with the termination or undo request. ‘Begverres
the request if it has already been processed. With this approach, the undo or termination request
is never executed without prior execution of the corresponding request. If FIFO order is not
implemented by the communication channels, or if the sender of the request is different from
the sender of the corresponding undo or termination request (see Section 7.3.5), the server needs
to keep track of all unsolicited undo or termination requests. Storing these undo or termination
requests allows to reuse them in case the actual request arrives at the server later.

Moreover, an optimistic server needs to support the undoing mechanism to a certain degree.
Assume, for instance, that client repliB sends the request for a ticketfo ServerT can either
grant the request and return a (virtual) ticket, or reject itHIfhas failed in the meantime, no

3This can be implemented along the lines of [BCBT96].
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other replica knows how to properly undo the request. Indeed, cancelling the ticket is different
from undoing the rejected ticket request; in the latter, no undo action is needed at all. Unless
the server sends the result back to all client replicas, they do not know how to properly undo
the request. To reduce the number of messages betResn T, T stores a history of requests

and the corresponding results. Upon reception of an undo or termination refjuastioes the
corresponding request based on the information in the history.

Potential of Blocking With Pessimistic ServerT’

Pessimistic execution ¢ may lead to blocking in the execution of the client repli¢asindeed,
pessimistic execution makes modificationsivavailable to other clients only if they are commit-
ted (see Section 4.3.3). More specifically, after sending a requéstraplica R must terminate
the transaction this request has started by either an abort or commit. Blocking occurs if another
replica R’ (or another client) attempts to access the same data items before the failed Replica
has terminated its open transaction. Assume, for instanceRtHails immediately after sending
requestrqy (see Figure 7.7). Eventually, another replica, eRj, takes over the execution and
sends requesty; to T'. If r¢g; attempts to acquire the same locksrgsalready holds, blocking

of R' occurs. Worse yet, eventualli®? suspectsk! and sends its request, which may also block.
Hence, the entire clierR is blocked. Blocking ofR is undesirable, as it acts itself as a server for
other applications (see Figure 7.3).
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Figure 7.7: Pessimistic execution on the sefflenay lead to blocking.

Blocking can be resolved ff is allowed to spontaneously abort the transaction causeg by
i.e., unilaterally decide the outcome. However, this may lead to inconsistencies. Assuri® that
is very slow, has invoked’, has updated the other replicRS and then fails. Hence, the state of
R reflects the fact that the service @hhas been invoked, b itself does not. Clearly, this is
inconsistent, and must be avoided.

Another approach consists of a timeout mechanism in the replcag\fter having sent a
request tasS, they wait for a certain time and then send an abort unless they have received a reply
in the meantime. Revisiting the above exampie,and R, simply timeout and proceed with
their execution, potentially reporting the failed request to the user. However, this approach has the
drawback that serve$ is no longer available, despite its replicated nature. Although blocking in
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the clients ofS is preventedS basically becomes unavailable with this approach.

As a consequencd; will remain blocked untilR® recovers and undoes its request. This is
unacceptable in any practical system. Hence, in the case of blocking, recovery does not entirely
solve the problem. In other words, recovery prevents infinite blocking, i.e., ensures that eventually
the blocking situation is resolved. However, blocking is undesirable and a mechanism needs to be
devised that resolves the blocking situation without depending on the recovery of a failed replica.
This mechanism is similar to the one proposed in a model without recovery and is discussed in the
following section.

7.3.5 Non-Deterministic ClientR? - No Recovery

Without recovery, the failed primary cannot itself undo its modification® toather, these modi-
fications need to be undone by some other replic&,ipreferably the new primary. This requires
thatundo information which allows to undo a particular request, is made available to the other
replicas ofR prior to invokingT'. For this purpose, the undo information is reliably sent to the
other replicas. Actually, the primary has to make sure that a sufficiently large set of replicas has
received the undo message, before sending the requEstHor this purpose, it can either use (1)
an? reliable broadcast [HT94] to the replicas i) or (2) an approach with a higher latency, but
less messages. In approach (2), the prinf&rgends the undo message to the replicaB imtil

it gets an acknowledgment from a subset of them. For instance, using failure de€t&chGiT96]

a majority of processes need to receive the undo informatioi? féils, then all other replicas

have to agree whether its results are accepted or whether the new primary redoes the computation.

Note that the replica’s processing must not depend on the arrival of the undo information,
as this may lead to blocking if the primary fails before sending the undo information. Rather,
they must be able to process the undo information at any time. For instance, the replicas must
also handle delayed undo information. Trivially, if the primary fails before sending the undo
information to the other replicas, the stateihand T is still consistent and no undo ¢h is
required.

In the following, we first discuss the case of a passively replicated diiebefore addressing
semi-passive replication.

Passively Replicated Client

In this section, we address the issue of ensuring exactly-once with a passively replicated client
R. Recall that failed replicas do not recover aRtl execute non-deterministically. Ensuring
exactly-once in this context is not easy; it requires that all redundant invocations to the server(s)
are undone. Consequently, all replicBs must agree on the invocation that is not undone. In
passive replication based on group membership and view synchronous broadcast (vs-cast) (see
Section 2.2.3), an update is accepted yif it is vs-delivered. If this is the case, then any
potential invocation to servar must not be undone. In contrast, the effects of any other requests
that are sent t@” but do not lead to an adopted update @nmust be undone. In the following,

we first discuss the case of optimistic ser¥etefore addressing the case of pessimistic sefver
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Optimistic Server T: With an optimistic servefl’, an undo requesty is sent toT" in order to
undo requestq. Executingrg onT' semantically undoes all the effects of the prior execution of
rq.

Consider first the case where no undo request is required (see Figure 7.8). In this case, the
primary (i.e.,R) executes’s request, which requires the sending of a requegt,tes-casts the
update, and crashes. The backups (R&andR?) vs-deliver the update before the new view;
is installed and thus adopt it. Wh&hresends its request, the new primaysimply returns the
result previously computed b§?.

resend

C request request >
undo
0 <: info 0o vs-cast crash .
R N X >
R1 N >
p \ / vs-deliver > result
R2 % X >
p vs-deliver >
Vi i+1
optimistic T >

result

Figure 7.8: The primangi’ fails after invoking optimistic servef and updating the backug®
andR?.

However, if R" fails and its update is not vs-delivered, the effects causetytyn 7" need to
be undone (see Figure 7.9). The undo is performed by semdjrig 7". Eventually,C resends its
request to the new primarg', which recomputes the result. Note that the ordefggfandrq; is
not significant; ratherrg, can be send at any time after the new view, is installed. This is a
consequence of the properties of the undo request (see Section 7.3.3).

resend

request request .
undo
R 0 4 info g, vs-cast crash \ >
N ~N undo
Rl (/ (\ rd, info rq, o
R2-% Y >

result

optimistic T

Figure 7.9: The primang® fails after invoking optimistic serveF and updating the backug@
and R?, but the updates are not vs-delivered.

A particular case arises R fails after having sent the undo information to the backup repli-



7.3. EXACTLY-ONCE IN REPLICATED INVOCATIONS 101

cas, but before sending the requesfitoAs the backup replicas have received the undo informa-
tion, they will use this undo information to send an undo reque§t.téssume tharg arrives
at 7" without the previousrqy. 7' must handle this case: g has not been received, themg,

is not executed, but stored to be reused in eggeventually arrives (if it does at all). Note that
such early undo messages, iy, arrives atl’ afterrg,, occur even ifR" fails after sending .
Indeed,rqy may take longer thang, sent from another replica. I does not provide support for
handling early undo messages, the undo message can compsel7q, (see Section 7.3.4). If
rqo has already been executed Bnit will be ignored and onlyg, is executed; otherwise, first
rqo and therrg, are executed.

Pessimistic ServerT: If T executes pessimistically, a termination message is always required.
Indeed, assume that the primaR fails after vs-casting the update to the backups, which vs-
deliver it (see Figure 7.10). To terminate the transactiof’pa COVM T message is sent by the

new primaryR' to 7. Note that afterR’ has sentrqy and received the result froffi, it sends

a prepare message Ta T replies affirmative to this message if it is ready to commit. Actually,

this message is not really needed, as we assume that the databases do not spontaneously abort
transactions. However, legacy databases may still require it.

resend
request request

undo
info rq,  prepare vscast  cragh

RO % / >
pl NI TIN o /|
RTINSV

2
R 3 vs-deliver Y
Vi V\+1

pessimistic T
result  vES

Y

Figure 7.10: The primang? fails after invoking pessimistic servdt and updating the backups
R' andR?.

In contrary, anABORT message is sent t6 by R' if R”’s update is not vs-delivered (see
Figure 7.11). Wher® resends its request, this request is execute' by

Depending on the broadcast strategy for the undo information, the undo information may arrive
late at the backup replicas (see Figure 7.12R!I$ requestrq; is sent before the undo message of
RO has arrived andg, accesses the same data itemsgasrq; may have to wait untitq releases
its locks. These locks will be released as soon a®\BERT message arrives @t Hence, waiting
for locks does not require the recovery®f and blocking does not occur.

Consider again the particular case Bf's failure after sending the undo information, but
before sending the requestTo In the case of pessimistic servEr no special mechanisms are
needed. Indeed, termination messages not related to an actual request are (stored and eventually)
simply ignored byT'.
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Figure 7.11: The primang® fails after invoking pessimistic servét and updating the backups
R' andR?, but the update is not vs-delivered.
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Figure 7.12: The primany®' fails after invoking pessimistic servét and updating the backups,
but the update is not vs-delivered. As the undo message is delayed, the regfrest R; waits
until the locks ofrqy are released.
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Semi-Passively Replicated Clients

In the previous section, we have addressed exactly-once execution with a passively replicated
client. In this section, we discuss the case of a semi-passively replicatedRJiagain with non-
deterministic execution ai and no recovery. In particular, we indicate the minor differences to
the case of passive replication and show that the same mechanisms can be used to ensure exactly-
once.

With semi-passive replication, agreement on the update is achieved by running DIV consen-
sus among the replica®’. At the end of DIV consensus, alt’ agree on this update (see Sec-
tion 2.2.3). However, to ensure exactly-once, they now also need to agree on the primary, i.e., the
process having executed the functigf)() that has lead to the current update value. Using this
information, the processes that are not primary can undo their modifications, while the primary
commits them in the case of pessimistic seffer

Similarly to the case of passively replicatét] blocking can still occur with a pessimistic
serverT. Assume, for instance, that repli# fails after having sent reques, to 7', but before it
manages to send the new estimate (i.e., the result of the executidngj) to the other replicas in
phase 2 (see Figure 7.13 and also Line 27 in Algorithm 2, Appendix A.2). Eventialiigtects
the failure of R® and itself sends request;. However, ifT is a pessimistic servef,q waits
until the locks held byq are released. Hencegy needs to be aborted before, is executed.
To prevent infinite blocking, the termination message needs to be sent by another féplica
preferably the new primary. Again, we apply the same idea as in passive replication and reliably
send undo information to the other replicas prior to sending a requébt(see Figure 7.13).
Hence, when the new primary is in phase 2, has passed the wait statement and the estimate is
the coordinator starts executing the funct@n)’(). Before executingyZV (), however, it needs
to abort previous executions in order to avoid blocking (Line 23 in Algorithm 2).

phases: 2 (round 0) 3 i1 (round 1) 2 3 4

undo

R(l)_info Glv () crash - / /
. ﬁ 7 w e

estimate
rq,

Figure 7.13: R, fails after invoking pessimistic servét, but before reaching an agreement on
the results with the other replicd¥. Eventually,R’(; # 0) detect the failure of2° and another
replica (e.g.,R') executesgyiv(). However,R! first needs to abort the transaction caused-dy
onT.

\

\

\/

pessimistic T

Actually, the functionGZV() is only evaluated more than once, if a majority of processes has
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notreceived the suggestion message of the process that has exgcuted If at least one process
receives the suggestion and participates in the next round, then this estimate is also accepted as the
estimate of the next round and thus the functsf)() is not executed any more. Interestingly,

the outcome of DIV consensus could be a value, that has been computed by a process that has
crashed in the meantime.

7.3.6 Practical Considerations

The approach presented for replicated invocations in the case of non-deterministic execution has
two limitations, that are, however, not caused by our approach but are rather a consequence of the
replicated invocation problem:

e The first drawback is that pessimistic servers are not allowed to spontaneously abort unter-
minated transactions. Hence, a transaction can be left unterminated by the client for a long
time, thus effectively preventing other clients from accessing the resources. As the server
cannot terminate transactions any more, it has to rely on the clients to behave accordingly
and terminate all transactions they have started.

e Pessimistic servel’ needs to support aborts/commit of a transaction by another process
than the one that has started the transaction (see Section 7.3.4). To our knowledge, although
a mechanism to pass on the responsibility for a transaction to another process is foreseen in
the XA Specification [ISO96] for distributed transaction processing, this mechanism seems
not to encompass the situation where processes fail; rather, in this case, the unterminated
transaction is simply aborted.

7.3.7 Summary on Replicated Invocations

Table 7.2 summarizes Sections 7.3.3 to 7.3.5. It assumesithiaas sent a request to sergr

before failing. The simplest situation occurs in a model with recovery and optiristia this

case, the modifications are undone by the failed regitapon recovery. A pessimistic server

T, on the other hand, always requires that the modifications are undone by other replicas to ensure
consistency and to prevent blocking. Finally, in a model without recov@rpeeds to undo the
request in the case of optimistic serér

non-deterministic pessimisticl’ optimisticT
execution ofR
no recovery blocking, inconsistency inconsistency|
R (j #£k) R (j £ k)
recovery blocking, inconsistency inconsistency|
RJ (j # k) to prevent blockingR* (andR7) R¥
to resolve inconsistencies

Table 7.2: Summary of the problems (in italics) that occur in replicated invocation with a non-
deterministic client? and of which replica(s) send(s) the undo or termination request.
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7.4 Exactly-Once in the Context of Replicated Iso-Places

In the previous section, we have discussed the case of replicated invocation. A replicated agent
executing on replicated iso-places is a special case of replicated invocation. Here, the agent acts as
the client and accesses the server running on the replicated iso-place. Thereby, the stage execution
of the mobile agent corresponds to a semi-passively replicated client. Indeed, similarly to semi-
passive replication, agent replication also uses DIV consensus to achieve an agreement. In this
section, we thus present the particularities of agent execution with respect to replicated invocation
with a semi-passively replicated client and show how exactly-once is achieved in this context.

7.4.1 Exactly-Once and Determinism

In the context of agent replication and iso-places, determinism as defined in Section 7.1 is not
sufficient to ensure the property of exactly-once. Indeed, a fundamental difference between repli-
cated invocations and agent replication on replicated iso-places is the fact that in the former client
replicasR’ all start from the same initial state and always maintain the same state after executing
the same requests. With mobile agent replication, this is different. Indeed, another mobile agent
b may execute on replicated iso-plagebeforea?, but not onp!, wherea! executes. Conse-
guently, when the replicated iso-places execute the mobile agent replicas, they do not start from
the same initial state and thus may not return the same results to the requests of the agent replicas
any more. However, the agent replicas still have the same initial state. The replicated iso-places
abstraction assumes that all replicated iso-places are exact replicas. Hence, the state of replicated
iso-places can only be accessed by the agent replicas through a replicated server; identical initial
state is always ensured and the case of agent replication is thus similar to the case of replicated
invocations.

As shown in Section 4.2.3, replication can lead to multiple executions of the agent's code
and thus multiple generations of agent requests to the place. However, multiple executions of
the agent replica’s requests on the place can easily be prevented if the agent replicas execute
deterministically. Indeed, the use of request IDs allows replicated iso-places to detect whether
the same request has already been processed. If this is the case, then iso-places simply return
the result; otherwise, the agent replica’s request is executed. Similar to replicated invocation (see
Section 7.3), this requires that the agent replicas use identical request IDs when executing the same
request. Figure 7.14 shows the example with agent replicas corresponding to the one illustrated in
Figure 7.4. Here, the agent replica executingibeends requesty to the servicd/® onp? (see
Figure 7.14 (b), step (1)). The servit® executes ¢y and, because of the replication mechanism
among the replicated iso-places, all other iso-places reflect the result of this execution (step (2)).
Before the result of-qy is communicated to the agent repligd, fails. Another agent replica
(e.g., the one executing gn) takes over the execution and sends requgsto serviceU' (step
(3)). If the request IDs ofq andrg, are identical, then the service phdetects the duplicate
request and simply returns the previously computed result. Recall that identical request IDs on
different agent replicas are generally only possible if the agent replicas execute deterministically
(see Section 7.3.2).

With deterministic execution of the agent replicas the stage agreement (see Section 6.2.1) may
not be needed any more. Indeed, if the agamly performs invocations to replicated iso-places
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and receives no messages from other agents or applications (as assumed in Section 3.2), then no
agreement is required among the agent replicas; rather, the exactly-once execution is ensured by
the replicated iso-places and the execution determinism.

In contrast, if the agent accepts messages from other agents or applications, then the agent
replicas generally need to agree on the messages that are processed and the order in which these
messages are processed. Although the agent replicas may execute deterministically, a different
order of processed messages may lead to a different result in the execution of the replica. Hence,
the agent replicas either have to (1) agree on the order of processing the messages, or (2) support
non-deterministic execution. Case (2) is discussed in Section 7.4.2, while (1) can be achieved if
messages are atomically broadcast (total order) to the agent replicas. In the following, we will not
further consider agents that receive messages.

Stage S .

. Replication mechanism |

. Replication mechanism

(a) replicated iso-places (b) replicated iso-places
with a failure of p °

Figure 7.14: Agent replicas execute on replicated iso-platf,ésrepresents the replica of the
service that is running on plage and provides access to the statejofsee Section 3.2). The
failure of p? in the case of replicated iso-places is shown in (b).

Note that no deadlocks as discussed in Section 6.4.2 occur in this case. Recall that these
deadlocks are caused by the combination of agreement problem and pessimistic server execution.
As no agreement is needed for deterministically executing agent replicas on replicated iso-places,
the cause of deadlocks has disappeared. The reason for this is that the replicated iso-places (or
rather the replicated servers running on them) implicitly process all requests from agent replicas
in the same order. However, this requires that the replicated iso-places hold back any duplicate
request to a not yet processed request until the result to the request has been computed.

7.4.2 The Problem of Non-Determinism

Non-determinism in the execution of the agent replicas may lead to inconsistent system states (see
Section 7.3.3). Indeed, assume that the request IRg,aindrq; are not equal (see Figure 7.14

(b)). Althoughp! already reflects the execution af, on placep? (through the replication mech-

anism among the replicated iso-places), it still executgsBecause of the different request IDs,
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p} considers-q; as a new request. Actually} anda; act like two different clients from the view
of the iso-places, and not as the replicas they are. This leads to a violation of the exactly-once
execution property, as the iso-places reflect the result of executing the agent request twice.

As our model assumes that agent replicas are good (i.e., are eventually always up), the case
of non-deterministie:! corresponds to the second row in Table 7.2. Hence, ensuring exactly-once
is possible under the assumptions presented in Section 7.3.4. Despite eventual recovery, we have
shown that the use of pessimistic servers may lead to blocking. Consequently, we use the approach
to semi-passive replication proposed in Section 7.3.5 to prevent blocking in the agent replicas and
the replicated iso-places. The modified DIV consensus algorithm is given in Appendix A.2.

7.4.3 Agreement

With the exception of the blocking problem, non-deterministic agent replicas are similar to the
case of hetero-places. As a consequence, the decisipin the basic agreement problem for
replicated iso-places is similar to the one presented in Section 6.2.1:

1. the primary placgf”m € M;, that has executed the agent at stdge
2. the resulting agent;

3. the places\;; for a;;q

Because of this similarity, FATOMAS (see Section 6.4) also handles the execution of the
agent on replicated iso-places. However, it does not yet implement the undo mechanism given in
Algorithm 2 (Appendix A.2).

In the following section, we discuss the case of independent iso-places, which is a special case
of replicated iso-places.

7.5 Exactly-Once in the Context of Independent Iso-Places

Independent iso-places can be viewed as a special case of replicated iso-places, where the two
levels of replication are integrated into one. More specifically, although independent iso-places
are exact replicas, no replication mechanism runs among them (see Section 4.2.2). Instead, the
agent replicas ensure that all places\fy learn about the agent replica’s request and about the
new state of the replica iso-place (see Figure 7.15). This can be done by either

1. executing the agent on all places, or

2. executing the agent on one place and sending the state update information of the place to
the other agent replicas, which then update their local iso-place.

In approach (1), agreement (i.e., DIV consensus) between the agent replicas is not required.
However, approach (1) requires deterministic execution of the agent replicas. Indeed, to ensure
that all iso-placeg, have the same state after the executiom,;pthe agent replicas! need to
execute the same sequence of steps. Clearly, the execution of the agent replicas on qfl places
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leads to a higher computation overhead. Moreover, the replicas of two mobile agantsh;

need to be executed in the same order on all independent iso-places the execution of agent
replicas needs to be totally ordered. Hence, reliable broadcast is not sufficient to forward the agent
between two stages; rather, the agent is atomically broadcasted (total ordér),tby the places

in M;.
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Figure 7.15: Agent replicas execute on independent iso-pla@éeepresents the replica of the
service that is running on plagg and provides access to the state/ofsee Section 3.2).

Similarly, approach (2) also requires atomic broadcast to forward the agent between two con-
secutive stages. However, it is more generic in that it also addresses non-deterministic execution
of the agent replicas. For this purpose, the basic agreement problem (see Section 6.2.1) is used
to decide on the iso-place that has executed the agent replica. Consequently, approach (1) has a
lower computation overhead if no failures and false suspicions occur. Indeed, in this case only one
agent replica executes and sends the state update information to the other agent replicas. However,
this state update information might be large or difficult to obtain. In Section 6.2.1, we have given
the specification of fault-tolerant mobile agent execution in the context of hetero-places. With
independent iso-places, the decision valae at stages; is different:

1. the state update information for all the placesvify
2. the resulting agent;
3. the places\;, 1 for a;

Instead of the primaryof”m the decision now contains the new state of the place replicas in
M;. The place replicas then install this new state and thus all of them are in a consistent state.
The difference in the decision value requires that the mobile agent knows beforehand whether it
is executing on independent iso-places or not. Hence, the execution on the places of a stage is not
completely transparent for the agent any more. Recall that replicated iso-places and hetero-places
can be handled by an identical mechanism.

While executing the agent replicas on independent iso-places prevents blocking, failures of
the agent replicas may lead to inconsistencies in the state of the independent iso-places. Indeed,
assume that agent replie@ at stages; fails. As it has not received the state update information,
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placep? is not aware of the latest agent replica request, while placesdp? have already
updated their state. To avoid inconsistency, plgcean only execute another agent replita
whena! has recovered and successfully executed.

Note that with independent iso-places, the exactly-once property of agent execution is, in a
strict sense, not required any more; rather, all agent replicas are executed, i.e., we have multiple
executions of agent; at stageS;. However, we still need to ensure that agent replicaxecutes
exactly-once. In other words, the exactly-once property now refers to the execution of rﬁplica
and not to the execution of agemtas with hetero-places and replicated iso-places.

7.6 ComposingM; out of Hetero-Places and Iso-Places

In this section, we discuss the caseMf that is at the same time composed of hetero-places and
iso-places. We argue, that it makes no sense to comp@ssich that it consists of independent
iso-places and any places from hetero-places or replicated iso-places (Section 7.6.1). While our
discussion seems to be of only theoretical interest, we show that it may have an interest in a
practical setting as well (Section 7.6.2). Table 7.3 summarizes the discussion in the form of a
compatibility matrix.

hetero-places| witnesses| replicated| independent
place properties (no witnesses iso-places| iso-places
hetero-places (no witnesses) Vv Vv Vv -
witnesses Vv Vv Vv Vv
replicated iso-places Vv v N -
independent iso-places - Vv - Vv

Table 7.3: Compatibility matrix of hetero-places, replicated and independent iso-places with re-
spect toM;.

7.6.1 M, with a Subset of Independent Iso-Places

A set of places containing independent iso-places and any replicated iso-place(s) or hetero-place(s)
is generally impossible. Indeed, recall that in the case of independent iso-places, the decision
value of the agreement at the stage is different. More specifically, it contains the new state of the
independent iso-places. HenceM; contains at least one independent iso-place, then the agent
replica running on this place needs to be executed. Otherwise, the new state of the independent
iso-place cannot be extracted from the information available in the decision value. This makes it
generally impossible to compoge; such that it contains independent iso-places with any other
places. A particular case arises if the places that are not independent iso-places are all witnesses.
If the agent executes on a witness, the state of independent iso-places does not change.
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7.6.2 M,; With a Subset of Replicated Iso-Places and Hetero-Places (with Wit-
nesses)

A non-uniform M; only makes sense if it is composed of replicated iso-places and hetero-places.
For instance M; may contain three replicated iso-places and two witnesses. Notd¢thateds

to contain an odd number of places; an even number actually increases the probability of blocking
among the agent replicas [RS98]. However, among the odd number of pladdsniray be any
number (possibly also a pair number) of replicated iso-places. Figure 7.16 shows the example with
only one replicated iso-plagg. Howeverp? may be part of a larger set of replicated iso-places.
Consequently, whea’ executes op?, the entire set including the replicated iso-places natn

(i.e.,q andr) are updated and reflect the modifications.

1,/‘
[
g
1))
o
@ Replication |
[ | mechanism /

I
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Stage S

Figure 7.16: The places iM; consist of replicated iso-plagé runningU? and hetero-places (or
witnesses)? andp}, runningi andV respectively. The places running the other replicag?of
(i.e.,q andr) are not part ofM;.

7.7 Summary

In this chapter, we have discussed the case of a replicated agent executing on iso-places. First, we
have introduced the more general problem of replicated invocations and presented a solution to this
case. We have then shown how the solution can be adapted to agent replication. A summary of this
discussion is given in Table 7.4. Here, we identify the building blocks required to achieve fault-
tolerant mobile agent execution in the context of independent and replicated iso-places. Table 7.4
also presents the case of hetero-places. Note that deterministic execution of agents and places is
not meaningful with hetero-places, as hetero-places are generally provided by different companies
and thus produce different results (see Chapter 6).
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place properties

agent/place
deterministic

agent/place
non-deterministic

hetero-places

DIV consensus
Reliable Broadcast

independent iso-place

\!

5 Atomic Broadcast

DIV consensus
Atomic Broadcast

replicated iso-places

Reliable Broadcas

DIV consensus
Reliable Broadcast

execution.

111

Table 7.4: Summary of the required building blocks needed to achieve fault-tolerant mobile agent
The building blocks are given with respect to the place properties and determin-
ism in the agent/place execution. The case of hetero-places with deterministic execution of the
agent/place is not meaningful, as no replication mechanism runs among hetero-places.
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Chapter 8

Transactional Mobile Agents

In this chapter, we present an approach that achieves non-blocking transactional mobile agent ex-
ecution. We first assume that the transactional mobile agents rely on pessimistic concurrency con-
trol and start with a discussion on the problem of execution atomicity in Section 8.1. Section 8.2
then generalizes the discussion to non-linear itineraries and Section 8.3 explains the difficulties of
handling failures. After presenting the specification of non-blocking atomic commitment in the
context of transactional mobile agents in Section 8.4, we give an algorithm that complies with this
specification (see Section 8.5). Section 8.6 briefly discusses our approach in an environment with
multiple concurrent transactional mobile agents. In Section 8.7, we describe our prototype im-
plementation, called TRANSUMA (TRANsaction SUpport for Mobile Agents), and evaluate its
performance with respect to FATOMAS. The last section of this chapter is devoted to open nested
transactions. More specifically, it shows how our approach can use also optimistic concurrency
control by relying on compensating transactions.

8.1 The Problem of Execution Atomicity

An atomicmobile agent execution ensures that either all stage operations succeed or none at all
(see Section 3.4). Assume, for instance, a mobile agent that books a flight to New York, books
a hotel room there, and rents a car. In this context, the use of the hotel room and the car in New
York is limited if no flight to New York is available any more. On the other hand, the flight is
not of great use if neither a hotel room nor a rental car are available. This example illustrates that
either all three operations (i.e., flight ticket purchase, hotel room booking, and car rental) need to
succeed or none at all, i.e., the operations have to be exeatdedcally Execution atomicity
ensures that all operations execute as an atomic action, i.e., either in their entirety or none at all.
Both infrastructure and semantic failures may lead to a violation of the atomicity property. In the
following, we focus on semantic failures only; infrastructure failures are discussed in Section 8.3.

8.1.1 Traditional Distributed Transactional Systems: Background

In traditional distributed transactional systemaspmic commitmenprotocols such as 2PC and
3PC [BHG87, GR93] address the issues of execution atomicity. In the 2PC, for instance, a des-

113
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ignated coordinator (also called transaction manager) queries all the participants in the execution
of the distributed transaction (called the resource managers) on the state of the corresponding op-
erations. The participants return eitheYS- VOTE or aNO- VOTE, depending on whether their
operations have succeeded or not. If all operations have been successful, i.e., all returned votes are
YES- VOTEs, the coordinator decid€3OVM T, otherwiseABORT. The decision is propagated to

the participants, which then either commit or abort their operations.

8.1.2 Transactional Mobile Agent Execution

The operations of the participants of traditional distributed transactions can run in parallel. In a
transactional mobile agent executi@l the operations of mobile ageatare executedequen-
tially in a sequence of stages (0 < 7 < n). The execution of agent at stageS; depends on
the outcome of the previous stage ; and implies that agent has successfully executed on all
previous stages; (j < i), i.e., alla; have implicitly issued &ES- VOTE. Consequently, the vote
of a; unilaterally determines whether the agent execution is continued (in cas=8F &/OTE) or
aborted NO- VOTE); the agent; only returns aNO- VOTE if a semantic failure has occurrédic-
tually, the transactioff, spans only over stagé, . .., S,_1: the agent sourcg, and destination
py, are executing the agent outside of the transaction cofftexdn these places, the interaction
with the agent owner (i.e., initialization of the agent and presentation of the results) takes place
and a transaction context is not needed. Moreover, mobile users are often disconnected from the
network and hence stagf may be temporarily unreachable. Consequently, execstingithin
the context ofl;, may lead to blocking of the mobile agent execution until the mobile user recon-
nects to the network. Unless compensating transactions can beTgsadintains its locks on
data items while it is blocked, thus reducing overall system throughput. Terminating transaction
T, already at stagé,,_; prevents blocking due to disconnections of mobile devices. The agent
ay, 1S then kept at placg, 1 until p,, reconnects and is able to collect the result. At stdge,
the agent,, ; unilaterally decides eitheEOVM T (if the execution ofa, | has succeeded), or
ABORT (in case of a semantic failure).

In the case of a dynamic itinerary, any plagenay become the final place @f (i.e.,p,_1),
based on the outcome of the executionuof In this case, the vote af; immediately becomes
the outcome of the transactidfy. In other words,a; unilaterally decides the outcome of the
transaction. This is different from traditional distributed transactions. Moreover, in traditional
distributed transactions, a participant can only unilateraligrt a transaction, namely by issuing
aNO- VOTE. In contrast,q; can also unilaterally decide to contindg, in addition to the abort
decision.

To summarize, the outcome @f at.S; solely depends on the result of the stage operations of
a; on S; and on the value af.

e At {S;|i < n—1}: the agents; casts either &ES- VOTE or NO- VOTE. A NO- VOTE
immediately results in an abort of the transactional mobile agent execijti(see Fig-
ure 5.10). ANO- VOTE is cast when the stage action operations semantically fail. Suc-
cessful operations lead to¥&eS- VOTE and allow the agent to proceed with the transaction
execution. Only thé\BORT decision is communicated to all the participaptd < j < 7).

!Remember that we are only addressing semantic failures at this point.



8.2. GENERALIZATION OF THE ITINERARY 115

e At S, 1: the agenta,, ; decides eitheABORT or COVM T, depending on whether the
operations at stags, | have failed or succeeded. A successful execution of the operations
at S,,_1 implies that all operations of the agemthave successfully executed (i.e., voted
YES- VOTE) and the transaction is thus ready to commit. Figure 8.1 illustrates a successful
transactional mobile agent execution, where plaadecidesCOVM T.

Stage S Stage S Stage S Stage S, Stage S ,
o8 -\I) g\l) b 25y 55
Agent COMMIT COMMIT Agent
Source Destination

Figure 8.1: An agent execution that commits.

8.2 Generalization of the Itinerary

8.2.1 ltinerary Choices

A transactional mobile agent execution permits itinerary choices. For example, the agent owner
may specify that the agent should sequentially visit car rental companies Herz and Avis. As soon
as it receives the desired car from any one of them, the agent terminates. Failed requests for a car
rental are ignored and the execution on this place locally aborted. The commitment only spans
places that have successfully executed the service requests. Figure 8.2 illustrates the example,
where the agent first books a flight from Swiss Air Lines and then attempts to rent a car from Herz.
As Herz does not have any more rental cars available, ag@mt, ) moves to Avis’ server. The

stage actions of; on p, can be locally aborted without aborting the entire transactional mobile
agent execution. The outcome of the mobile agent execution, i.e., the dec@vh T or ABORT,

will not be sent tqs,.

Stage S Stage S , Stage S, Stage S, Stage S ,
Swiss Air
r' Lines Herz
o I8 1R I
Agent COMMIT Agent
Source Destination

Figure 8.2: A committing agent execution with choices. Herz does not have a rental car available
and thus is not part of the global commitment.
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8.2.2 Generalization To Non-Linear Itineraries

So far, we have only considered mobile agent executions with linear itineraries (see (a) in Fig-
ure 8.3). An agent, however, can spawn transactional child gevtich lead to non-linear
itineraries: itineraries that terminate in a single place (see Figure 8.3 (b)), and itineraries that ter-
minate in several endpoints (see Figure 8.3 (c)). Case (b) contains itineraries where all parent and
child agents meet again on a common place (e.gy gt Figure 8.3 (b)). Assume, for instance,

that transaction of agefl}, acquires clothes, whil& buys books. Both transactional agents can

run in parallel, and their results are collected at plac In contrast, parent and child agents
finish the execution at different agent destinations in (c) (e.gs, &f, andp)). An example of

(c) is a transaction that reconfigures routers in different subnets. At the occurrence of a subnet, a
new transactional child agent is spawn recursively.

Figure 8.3: Classification of mobile agent executions.

Atomicity is more difficult to ensure in cases (b) and (c) than in case (a). Assume, for instance,
that transactional child ageff aborts orp;. Transactional agefTj, continues the execution until
it reacheg, and there waits foff}, which never arrives. The simplest approach is to wait for a
certain time and then abort. However, this may lead to a prematurely unnecessary @pisrt if
just slow (but has not aborted). Another approach is to @jorimediately, but still forward the
agent topy, where it notifiesT;, of the abort. T}, thus always waits for the agent to arrive. This

2Note that in Section 6.5.1, we have discussed the problem of spawning child agents in the context of replicated
mobile agents. Here, we consider a non-replicated agent, as we assume that no infrastructure failures occur.

®Note that the approach depicted in Figure 4.2 is different from case (b) in Figure 8.3. While the former uses agent
replication to provide fault tolerance, the latter starts a new child transaEfio@hild transactiori}, is generally not
identical toTy; rather it executes different operations. Sher et al. [SAEO1] use this approach. See Chapter 5 for an
in-depth comparison with our approach.



8.3. THE PROBLEM OF INFRASTRUCTURE FAILURES 117

has the drawback that additional communications are required, but the transactional mobile agent
never prematurely aborts.

Case (c) is handled by applying the following transformation: instead of terminating the trans-
actional child agents opl, andp/], these agents report back to their parent agent on pladéis
transformation converts case (c) into case (b) and allows to reuse the approaches discussed before.

For simplicity, we only address linear itineraries in the rest of this thesis. However, all pre-
sented concepts can easily be extended to itineraries of classes (b) and (c).

8.3 The Problem of Infrastructure Failures

So far, we have not considered infrastructure failures. Failing components in the system may lead
to blocking or to a violation of the atomic execution of the transactional mobile agent. Figure 8.4
illustrates a crash at stagg. In an asynchronous system, where no bounds on communication
delays nor on relative processor speed exisih:, andp, are left with the uncertainty of whether

p3 has actually failed or is just slow [FLP83]. In addition, it is impossible g, andp, to

detect the exact point whepe has failed in its execution. More specifically, p1, andp, cannot
detect whetheps; has succeeded in forwarding the agent to the next stage or not. Assume, for
instance, that agent; (i.e., as in Figure 8.4) issues &ES- VOTE but then crashes. If; has

not succeeded to forward the agents}q,, the agent execution is blocked. During this time, all
locks acquired by transactidf}, at the previous placgs; (j < ¢) remain with7;, and another
transactioril; has to wait. This dramatically reduces overall system throughput.

Stage S Stage S | Stage S , Stage S , J}
- P N7 S
LS B )Y SIEY K
Agent 4
Source

Figure 8.4: An agent execution crashes at stgge

To prevent blocking, another place suchpas could monitor place;. If it detects the failure
of p;, it could then issue AIO- VOTE, which causes the transaction to abort. However, unreliable
failure detection potentially leads to a violation of the atomicity property. Indeed, assumg that
detects the failure of;. Placep; thus assumes the responsibility for the decision and decides to
abort transactiofi;,. However, because of unreliable failure detectjgrmay erroneously suspect
p;. Actually, even ifp; has failed, it may have succeeded in forwarding the agemt toresulting
in potentially conflicting decisions on the outcome of the transaction: whitiecides to abort
the transactiony; ; may decideCOW T if a;11 = a,—1, Or cast &YES- VOTE otherwise. This
conflicting outcome clearly violates the atomic execution property of the transaction’s operations,
as certain operations are aborted, whereas others are committed or may be committed later.

The approach we advocate uses replication to prevent blocking of the transactional mobile agent
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execution. At any time, the places know that the agent is still progressing and thus it is worth
to wait for the result. This alleviates the need to monitor the execution and prevents potentially
conflicting outcomes to the atomic execution of the transactional mobile agents.

8.4 Specification

In this section, we specify the properties of the transactional mobile agent exeguaissociated
with a mobile agenti. The entire executio, is specified in terms of the ACID properties
[GR93]:

¢ (Atomicity The stage executions @f, are executed atomically, i.e., all of them or none are
executed.

e (ConsistencyA correct execution of, on a consistent state of the system (encompassing
the places, the services running on them, and the agents) must result in another consistent
system state.

¢ (Isolation) Updates of a stage executionffon a placep; are not visible to another trans-
actional mobile agerif; until T, has committed in its entirety.

e (Durability) Committed changes bf}, are reflected in the system and are not lost any more.

Specifying the transactional mobile agefitin terms of the ACID properties implies that
the sequence of stage actics®, . ..,sa,_1 IS executed as a transaction. Every stage action is
itself composed of a set of operatioogy, op,, ... and has to run as a transaction as well. This
transaction is calletbcal transaction(see Section 4.3.1). Consequenfly,can be modeled as
nested transactioAgMos85]. Recall that a nested transaction is a transaction that is (recursively)
decomposed into subtransactions (see Section 5.3.2). In atransactional mobile agent execution, the
top-level transaction (i.e., the transaction that has no parent) corresponds to the entire mobile agent
executionT,. Stage actionsa; compose the first level of subtransactions, which are executed
sequentially. According to the definition of nested transactions, these subtransactions may be
aborted, but the parent transaction can still commit. In other words, if a service request fails
on one place, the subtransactisa can be aborted and retried s (k > i) at another place.

There is no need to abort the top-level transaction, which corresponds to our itinerary choices (see
Section 8.2.1).

In the context of transactional mobile agents, consistency is ensured by the application com-
posed of the mobile agent and the services running on the places. Isolation is discussed in Sec-
tion 8.6. The properties we are mainly concerned with are atomicity and duPabibtgnsure the
atomicity property, all the places patrticipating in the execution of the transactional mobile agent
T, need to solve an instance of the atomic commitment (AC) problem. We first give a blocking
specification of the atomic commitment (AC) problem (Section 8.4.2). InformBllgpmmits if
all stage actionsg (0 < 7 < n) have executed successfully. Non-blocking atomic commitment

4See also [CR94] for a formal description of nested transactions.
®The distinction whether atomicity or durability has been violated is difficult for the reason already mentioned in
Footnote 5 on page 55.
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(NB-AC)® is considered in Section 8.4.3. Before giving the specifications of AC and NB-AC, we
highlight an important difference between AC and NB-AC (see Section 8.4.1).

8.4.1 Correct and Faulty Machines, Places, or Agents

In our model, we assume that machines, places, and agents are good, i.e., are eventually always
up (see Section 3.3). This assumption is instrumental in the atomic commitment problem (Sec-
tion 8.4.2), as it allows the termination property to require #haryplace eventually decides.

In other words, AC can only terminate if failed processes eventually recover. AC thus requires a
modelwith recovery. For the decision, it might be necessary to wait for the recovery of a crashed
place. This shows the blocking aspect.

On the contrary, the termination property of the non-blocking atomic commitment problem
(Section 8.4.3) does not require recovery. Hence, an algorithm implementing NB-AC does not
wait for the recovery of failed agents, places, or machines to reach a decision. For this reason, the
termination property requires only correct places to decide, although other places might be down.
This shows the non-blocking aspect.

8.4.2 Atomic Commitment Problem for Transactional Mobile Agents

The atomic commitment (AC) problem related to the execution of the transactional mobile agent
T, (assuming correct machines, places, and agents) is defined by the following préperties:

¢ (Uniform agreementlf two placesp; andp; participating in the execution df, decide,
they decide the same value (commit or abort).

¢ (Uniform validity) Placep; (0 < i < n — 1) can decideABORT. Placep,_; decides ei-
ther ABORT or COMM T. DecisionCOVM T is only possible after successful execution of
the agent up to stag8, ; and successful execution of stage actiap _1; otherwise the
decision ofp,, 1 is ABORT.

¢ (Uniform Integrity) Every placep; (0 < j < i) decides at most once.

e (Uniform® Terminatior) Every place eventually decides.

It should be noted that decidirABORT because of infrastructure failures is not admissible, as
it potentially causes a violation of the atomicity property. Such a violation occurs if the agent has
already moved to the next stage while the execution at the previous stages is aborted. Clearly, this
could result in conflicting outcomes of the transaction (see Section 8.3). Consequently, an infras-
tructure failure blocks the transactional mobile agent execution. However, blocking is undesirable,
as it dramatically limits overall system throughput (see Section 8.3).

5A specification for NB-AC in the context of traditional distributed systems (i.e., without mobile agents) is given
for instance in [GHM 00].

For simplicity, this specification is given with respect to the primary places participating in the agent execution.
We will see in Section 8.5.1, that the AC actually runs among the so-called stage termination agents.

8Remember that all machines, places, and agents are assumed to be good.
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8.4.3 Non-Blocking Atomic Commitment Problem for Transactional Mobile Agents

Blocking in the AC occurs if a decision on commit or abort is impossible until a failed place
recovers. In the transactional mobile agent execution, this decision is made unilaterally by the
agent (see Section 8.1.2). Indeed, the agent can decide whether to cdjtipoe; (0 < i <
n — 1)), commit p,,_1), or abort p; (0 < 7 < n — 1)). If p; fails before the agent; has decided,
then blocking occurs. At the same time, progress of the transactional mobile agent execution
T, is interrupted untip; recovers (see Section 8.3). Blocking in the AC is thus a consequence of
blocking in the mobile agent execution. Hence, non-blocking atomic commitment can be achieved
by ensuring the non-blocking property in the execution of the mobile agent. In other words, it is
sufficient to ensure that the decision in the AC algorithm is always possible.

Non-blocking adds another level of subtransactions to a transactional mobile agent execution.
To prevent blocking, the agent at stafles not executed on one place, but replicas of the agent
are potentially executed on multiple placgs Consequently, subtransactiea, in turn, can
be modeled by yet another level of subtransactie@swhich correspond to the agent replicas
al,...,a™ running on places?, ... ,p;" and executing the set of operatioog,op, ... (see
Figure 8.5). Of the subtransactioe&i at stages;, only one, caIIeds#’”m and executing on the
primarypf”m, is allowed to commit (if all its parent transactions commit): all others have to abort.
This way it is ensured that the stage actganis not executed multiple times. We recall thet;
is the set of placeg, . .., p™.

Ta (top-level transaction)

atomic
commitment
sao sal Sa2 sa3 - e
non-blocking atomic
commitment

sa sallsal 2 sa2 Sa2 533 3 3

Z NI\

0p ...0p Op...0p Op ...0p op ...op op ...op op ...0p

Figure 8.5: Scope of the AC and NB-AC specifications. NB-AC adds an additional layer of
subtransactionsd, that execute the operatiom;b,.opl, .... In AC, subtransactiosg directly
executes these operations without subtransactgns

The non-blocking atomic commitment (NB-AC) problem in the context of transactional mo-
bile agents addresses correct and faulty machines, places, or agents and consists of two levels of
agreement problems: (1) tletage agreement problerand (2) theglobal agreement problem
Agreement problem (2) corresponds to the atomic commitment problem of Section 8.4.2: it en-
sures atomicity in the top-level transaction. On the other hand, (1) specifies the agreement problem
among the places that execute the stage acgn$) < j < m), where they decide which sub-
transaction may potentially commit. We begin by specifying the stage agreement problem (1) at
each stagé;:
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Stage agreement problem:

. (Uniform agreementNo two placeSpf € M, at stageS; decide on a different primary
pﬁ)?"lm.

» (Validity) The decision valug!” " is in the setM; andp?” "™ has executed stage actiemn
(more specificallysg™"™).

¢ (Uniform integrity) Every placqﬁ of stagesS; decides at most once.
e (Termination) Every correct placg? of stagesS; eventually decides.

The decision op?”"" in the stage level agreement causes all other plgcgsy” ™™ to abort
the subtransactiorsg. Consequently, the decision gfi ™ is implicitly also a decisiofABORT
for all placeSpZ % pf”m. However, this is only related to the decision about the primary, not on
ABORT or COMM T. Indeed, subtransactioss{ # s&”"" abort, whilesg”" only aborts if its
parent transaction aborts. However, this decision is again part of another agreement problem that
is to be solved and is only taken lay ; at the end of the agent execution, and specified in the
global agreement problem as follows (compare with Section 8.4.2):

Global agreement problem:

¢ (Uniform agreementNo two primarie?p’f’"im andp’,;”m participating in the execution &f,
decide differently.

e (Uniform validity) Primary Z-”m (0 < i < n—1) can decidABORT. Primarypfl’"_i’i” decides
either ABORT or COW T. DecisionCOMM T is a consequence of successfully executing
the agent up to stag®, ; and successfully executirg, ; at stageS, ;. In all the other
cases the decision ABORT. Placep] # p!""™ always decide#BORT (see stage agreement
problem).

¢ (Uniform Integrity) Every place decides at most once.
¢ (Terminatior) Every correct place eventually decides.

An infrastructure failure does not allow to immediately deckBORT. Rather, infrastructure
failures cause the agent to execute on another place at the same stage. If this place provides the
same service, the agent execution can proceed. Otherwise, a semantic failure occurs that, contrary
to infrastructure failures, immediately results in ABORT decision. Assume, for instance, that
the agent;; at stageS; is entrusted with buying an airline ticket from Zurich to New York. Assume
further that it executes on plagg, that sells such tickets. A failure @f does not immediately
abort subtransactiosg. Rathera; can be executed on another plaf:e{k # j) at stageS;. If pf
provides the same service pls i.e., also sells the same airline tickets, tlsansucceedsT,, can
proceed and no reason for abort is given (see Section 8.2.1). In other words, infrastructure failures
are masked by the redundancy of the agent at a stage (see the specification of the stage agreement
problem).
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8.5 Non-Blocking Transactional Mobile Agents

In this section, we show how our work in fault-tolerant mobile agent execution (see Chapter 6) can
help to provide non-blocking transactional mobile agents. Indeed, fault tolerance in the context of
mobile agents prevents that the execution of a mobile agent blocks because of the failure of a single
component (e.g., an agent, place, or machine). Hence, it solves a problem similar to the stage
agreement problem of NB-AC (see Section 8.4.3). However, fault-tolerant mobile agent execution
generally only addresses infrastructure failures: semantic failures are not handled. In other words,
it does not solve the global agreement problem of NB-AC. Revisiting the example in Section 3.4,
fault-tolerant mobile agent execution prevents that the agent fails, but allows it to book a hotel
room although no seat is available on a flight to New York. Hence, the approach in Chapter 6 is
not sufficient to ensure atomicity of a mobile agent execution. Indeed, both infrastructure as well
as semantic failures need to be covered. However, building on top of the approach in Chapter 6
allows us to easily solve the stage agreement and the global agreement problem (see Section 8.4.3)
and provide non-blocking transactional mobile agent execution.

Informally, we execute the mobile agent in a non-blocking manner until it reacheszplace
At p,, 1, an atomic commitment protocol is launched, which terminates (i.e., commits or aborts)
the local transactions on the primaries. This protocol is also non-blocking. Eventually, all pri-
maries must learn the outcome of the decision. Although some places may have failed in the
NB-AC, the agent owner can continue using the result delivered by the mobile agent.

8.5.1 Solving the Stage Agreement Problem: From Fault-Tolerant to Transactional
Mobile Agent Execution

An important property of our fault tolerance algorithm is non-blocking. This property is also
desired for transactional mobile agent executions. Indeed, a transactional agent execution that
blocks because of a failure on plagehas probably acquired a large amount of locks on previous
placesp; (j < ). Holding these locks prevents other agents from accessing these data items and
thus dramatically reduces overall system throughput. Non-blocking transactional mobile agent
execution does not suffer from this problem. Progress is assured even in case of failures. This
ensures that locks are released earlier and overall system throughput improves. Consequently, we
reuse our work on non-blocking fault-tolerant mobile agents to prevent blocking in a transactional
mobile agent execution. More specifically, we use the approach described in Chapter 6 to solve
the stage agreement problem and thus build transactional mobile agents on top of it. The solution
presented in Chapter 6 consists, for all agent replicas at ageagree on (1) the plagé™™

that has executed the agent, (2) the resulting agentand (3) the set of places of the next stage
M;1. In the context of fault-tolerant mobile agent execution, (1), (2), and (3) are important to
prevent multiple executions of the agent, i.e. ensure the exactly-once property. All the places that
have potentially started executing exceptp!”"", abort. Onlyp?"™ commits the modifications

of a;. This corresponds to the stage acticn#éin Figure 8.5. However, in fault-tolerant mobile

agent executionsg decides unilaterally which subtransaction to commit. More specifically, the
decision is taken independently of the parent transaction, as no such transaction exists. Actually,
the agreement on item (1) corresponds to the stage agreement problem of NB-AC and is reused by
NB-AC. On the other hand, (2) and (3) are not relevant for NB-AC. In summary, we use our work
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on fault-tolerant mobile agent execution to solve the stage agreement problem of the NB-AC.

8.5.2 Solving the Global Agreement Problem

To solve NB-AC (see Section 8.4.3), the modifications;@in the primanyp?™™ # p£™" (i.e., the
subtransactiorsi”m) are not immediately committed after the stage execution. In other words,
stage actiorséj”m + saﬁ’fT cannot unilaterally decid€OVMM T. This is fundamentally different
from the fault-tolerant mobile agent execution approach. The decisiGONMM T rather depends
on the outcome of the top-level transaction (i.e., the result of the global agreement problem).
Figure 8.6 shows an example transactional mobile agent that is aborted, although no infrastructure
failures occur. Abort occurs, because the executia@ bés semantically failed qm% In contrary,
the transactional mobile agent execution in Figure 8.7 is committed despite the faifirélefe,
a commit occurs becausehas successfully executed all the stage actipfis= 0, ... ,2).

To terminate a pending transactional mobile agent execution, each primary place runs a sta-
tionary (i.e., not mobileptage action termination (SA&pent (see Figure 8.8). While agepnt;
moves t; 1, the SAT agensat waits for the outcome of the entire transactional agent execution,
either (1) a commit message frag_; or (2) an abort message from (1 < 5 < n —1). Upon
reception of an abort messagat aborts the pending transactisef”m, otherwise commits it.
Hence, SAT agersat can be viewed as the transaction manager [GR93] of the local transaction
represented by stage actieg. While the outcome of the transaction is undetermined, all data
items accessed hy on placep!™ (i.e., the place that has executsgl) remain locked and are
not accessible by other agents.

To improve the performance, the plagdtself can offer the SAT service. The agentegis-
ters subtransactiosd” """ that needs to be aborted or committed, and receives an ID. Using this
ID, the agent can later contact the SAT serviceppand initiate either a commit or an abort on
the transaction. This service approach prevents the overhead of instantiating a SAT agent.

8.5.3 Terminating 7,

During its execution, agent maintains aSAT listof all the SAT agents that it needs to contact
in order to commit or abort the transaction. At every primary plg¢€" ready to commit, a
new entry is appended to this list. Unless the agent execution has failed on a previous stage, the
execution at stags,_; decides whether to commit or abort the agent transaction. This decision
is based on the outcome of the executiompf; on placep"7". If successful, the decision is
COW T, otherwiseABORT. It is then communicated teut;(1 < i < n — 1), based on the SAT
list. It is important that this decision eventually arrives at all destinations. Indeed, a destination
sat; that does not receive the decision message does not learn the outcome of the transaction
T, and still retains all locks on the data items. Hence, the decision message is distributed using
a reliable broadcast mechanism [BGO0O0] that ensures the eventual arrival of the message at all
destinations. All correct places iM,,_; participate in the reliable broadcast to prevent that a
failure of p?™"|" causes the loss of the decision message. Figure 8.8 depicts a successful example
transactional mobile agent execution with 5 stages.

Clearly, our approach requires that aborts can be done by another process than the one that has

started the transaction, even in the face of failures (see also Section 7.3.6).
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Figure 8.6: Transactional mobile agent execution, in which the top-level transaction is aborted at
stageS,. The local transactions off = pI™*™ are only aborted (represented in italic font and
with a shaded box) when the abort decision for the top-level transaction is known.
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Figure 8.8: Committing the transactional execution of a mobile agent with 5 stages. The commit
message is reliably broadcasted.

8.6 Multiple Concurrent Transactions

In our discussion so far we have focused on enforcing the atomicity property of a transactional
mobile agent execution. In a real system, however, a transactional mobile agent does not exe-
cute in an isolated environment. Rather, it executes concurrently with other transactional mobile
agents. Multiple transactions accessing concurrently the same data items may lead to a violation
of the isolation property. Isolation is enforced locally by locking all accessed data items until
the outcome of the transactional mobile agent execution @M T or ABORT, is determined.
Clearly, the isolation property limits the possible level of concurrency. As a remedy, services de-
cide themselves whether they allow concurrent access to their data. For this purpose, they design
a so-called commutativity matrix [Rak94], which shows potential conflicts among operations of
this service and only allow operations that do not conflict to be executed concurrently.

Isolation also needs to be ensured on a global level, i.e., among places. Here, isolation is more
difficult to achieve. One approach is to require that the stage actions on different places
pj(j # i) are independent with respect to the execution order of stage actions. This approach is
also used in Sagas, in which Garcia-Molina and Salem [GMS87] define the notiosaghaA
saga is a long lived transaction that can be broken up into a collection of subtransactions. This
collection of subtransaction can be interleaved in any way with other transactions. Revisiting the
example agent execution in Section 3.4, two transactional mobile ageatsl 7}, can execute
the airline ticket purchase and the hotel room booking in any order, i.e., not necessarily in a se-
rializable order, without violating the isolation property. Consequently, because the two services
are independent, no global serializibility is required to preserve isolation. This improves the con-
currency of the transactional mobile agent and hence overall system performance. Clearly, service
independence is a property of the application as well as the services. In the Internet, independence
among services of different service providers is usually given. We use the standard approaches
[GR93] to enforce the other ACID properties.
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8.6.1 The Problem of Deadlocks

With concurrent transactional mobile agents using pessimistic concurrency control, deadlocks may
occur.

Example Deadlock With Three Transactional Mobile Agents

Assume, for instance, the example execution presented in Figure 8.9, which shows a deadlock
among three transactional mobile agent executifng’y,, and7,.. For simplicity, we assume
transactional mobile agents whose execution may block (i.e., they do not use FATOMAS to pro-
vide non-blocking mobile agent execution). In this examfilehas executed op;, po and at-

tempts to access a resource @n whose lock is held byl;. After acquiring the lock of the
resource ors, T, executes om, andps. At the latter, it also waits for the lock of a resource to

be released b¥.. T,, in turn, is waiting on the lock of a resource acquiredpyn p3. Hence,

a deadlock has occured amoifig T}, andT.. This deadlock can only be resolved if one of the
transactional mobile agents aborts or at least backs off, i.e., locally aborts the execution of the
latest stage action (see Section 8.2.1).

Figure 8.9: Deadlock among three transactional mobile agents:waits for b; to release its
locks, bj o for ¢;, andc;o for a;.

In contrary to general nested transactions, where deadlocks within nested transactions can
occur and need to be detected [Ruk91], deadlocks within a transactional mobile agent do not
occur. Indeed, subtransactiosg generally execute strictly sequentially and on the local place.
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Timeout-Based Deadlock Detection Algorithm

The timeout-based deadlock detection approach [GR93] is generally best suited in the context
of transactional mobile agents. In the timeout-based algorithm, the transactional mobile agent
attempts to acquire a particular lock. If the lock is not granted after a certain time, the trans-
actional mobile agent assumes that a deadlock has occurred and backs off. Unfortunately, the
timeout-based approach may lead to erroneously detected deadlocks which cause unnecessary
aborts. However, correct deadlock detection is generally impossible in an environment with het-
erogeneous databases. With heterogeneous databases, one cannot assume that all the databases
make information about their concurrency control available to the public [BGMS@2]nse-

quently, a deadlock detection algorithm [Kna87, LM93, dMFBG] may still erroneously detect

a deadlock, although no deadlock has happened in the system. Assume, for instance, that transac-
tion T} accesses data itedq, while T5, waits to accesd;. In the meantime]3 accessed, and

so blocksT,. Without knowing the details of the concurrency control, an outsider does not know
whetherT; waits forT; or T5. Consequently, deadlocks involvirfg and73 may be erroneously
detected, when, in fact, no deadlock involving these two transactions has occurred. This may
cause unnecessary aborts of transactions.

Existing deadlock detection algorithms [Kna87, LM93, dMF®8] usually build a so-called
wait-for graph. The wait-for graph represents (sub)transactions as vertices. An edge between
two (sub)transactions represents a dependency between these two (sub)transactions. Even if we
assume that databases make information about the concurrency control mechanisms available, the
wait-for graph for transactional mobile agents involved in e-commerce in the Internet becomes of a
size that is not manageable any more. Actually, detecting a deadlock becomes even more complex
in the case of non-blocking transactional mobile agents. Indeed, each replicajagestage
S; needs to start deadlock detection. Only if all of them detect a deadlock, then the transactional
mobile agent execution is involved in a deadlock.

Interestingly, replication decreases the probability of a deadlock among transactional mobile
agents. Indeed, a deadlock only occurs if all replica agéhts, anda? of T, at stageS; are
involved in a deadlock. If one replica agent is not involved in a deadlock, then this replica agent
can execute and the transactional mobile agent execution can proceed. Actually, to achieve a
deadlock among transactional mobile agents with replication degveeen no failures occur, a
minimum of four transactional mobile agents are needed. To see this, consider the transactional
mobile agentd,, Ty, T., andTy in Figure 8.10. Assume that the transactional mobile agents all
access the same set of placet,, M;, M,, M,, but in a different order. EacM; consists of
three places. Then, a transactional mobile agent execution can only proceed the execution on a
set of places, if less than three other transactional mobile agents have acquired the locks on these
places.

Clearly, for certain applications in well-defined environments, other deadlock detection algo-
rithms [Kna87] may be suitable. But generally, the timeout-based approach has the advantage of
its simplicity and ease of implementation.

To our knowledge, there is currently no widely accepted standard available.
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Figure 8.10: Deadlock occurring among four non-blocking transactional mobile agents. The
itinerary of the transactional mobile agents is represented with arrows. For insfandsits

M., M, and M, and participates in the deadlock &f,. A dot at the line end indicates that the
transactional mobile agent execution cannot proceed at this stage.

8.7 TRANSUMA

This section introduces TRANSUMA (TRANsaction SUpport for Mobile Agents), a prototype
system that implements the approach developed in Section 8.5. We first present the architecture
of TRANSUMA (Section 8.7.1), before discussing performance evaluation results (Section 8.7.2).
To improve readability in this section, method names are written witheci al f ont .

8.7.1 Architecture

TRANSUMA is based on the agent-dependent approach (see Section 6.4.1), in which the trans-
action support mechanisms travel with the mobile agent. This has the important advantage, that
underlying mobile agent platforms do not need to be modified. On the other hand, the agent-based
approach results in an increased communication overhead because of a larger agent size.
TRANSUMA is based on FATOMAS, the fault-tolerant mobile agent system presented in Sec-
tion 6.4. This dependency is also reflected in the architecture of TRANSUMA (see Figure 8.11).
Here, a mobile agent; is composed of a TRANSUMA user-defined agent, i.e., the agent de-
veloped by the agent owner, and tinansaction support module (TSMjhe TSM provides the
mechanisms for transactional mobile agent execution. It is based dautdolerance enabler
(FTE) of FATOMAS . Indeed, from the viewpoint of the FTE, the TSM and the TRANSUMA
user-defined agent are just another FATOMAS user-defined agent. This has the advantage that the
FTE can be reused without modifications. The TSM adds the SAT list to the decision value, which
enables the implementation of the reliable broadcast to terminate the transactional mobile agent
execution.
The TRANSUMA user-defined agent either interacts with the TSM (through@&\é API ) or
with the services local to the place. The latter act as resource managers (RM) [GR93] (e.qg., export-
ing an XA interface [ISO96] with the modifications presented in Section 7.3.6). TEM API
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Figure 8.11: Architecture of TRANSUMA .

provides functions to begin a subtransaction (i.e., the local transaction), to abort the subtransaction
(i.e., abort), and to commit (i.e., comit Current Transaction) or abort (i.e.,
abort Current Transacti on) the current transactional mobile agent execution. From the
view point of the user-defined agent, the TSM assumes the role of a transaction manager. How-
ever, the TSM does not really act as the transaction manager; rather, it forwards the calls of the
user-defined agent &at, which then sends the commit or abort to the local RM(s).

Typically, a stage actiora of the user-defined agent i} consists of (1) a call to begin the
local transaction and (2) potentially multiple requests to local services, and (3) the end of stage.
The stage may end with a call &bor t Cur r ent Tr ansact i on, upon which the entire trans-
actional mobile agent execution is terminated. The metdoadlr t Cur r ent Tr ansacti onis
called, for instance, if a service request has terminated unsuccessfully and hence the transactional
mobile agent execution cannot succeed any more. Note that the unsuccessful service request may
not trigger the abort of the entire transactional mobile agent execution (see Section 8.2.1); rather,
only the service requests of this stage action are aborted. This is achieved by calling the method
abort intheTSM API .

A call to methodconmi t Cur r ent Tr ansacti on (or abort Current Transacti on)
triggers the commit (abort) of all unterminated subtransactions of the current transactional mobile
agent. As shown in Section 8.5.3, transaction termination is achieved using reliable broadcast. We
use a reliable broadcast with linear message cost [SGS84], which has the advantage of a lower
number of messages compared to other strategies. Hence, the TSM first commits (aborts) the
local transaction and then contastst ;. The SAT agentat_; recursively does the same, i.e.,
commits (aborts) the local transaction and contaals.

8.7.2 Performance Evaluation

To measure the performance of TRANSUMA, we have implemented a prototype based on Ob-
jectSpace’s Voyager platform [Obj99]. Each place provides the simple counter service that has al-
ready been used for the performance evaluation of FATOMAS and that offers the method
i ncr ement to increment the value of the counter, in addition to the standard methods to commit
and abort/rollback the modifications.
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Our performance tests consist in sending a number of agents that atomically increment a set of
counters, one at each stafie Each agent starts at the agent source and returns to the agent source
(i.e., the agent source is identical to the agent destination). This allows to measure the round trip
time of the agent. Between two agents, the places are not restarted. Consequently, the first agent
needs considerably longer for its execution, as all classes need to be loaded into the cache of the
virtual machines. Consecutive agents benefit from already cached classes and thus execute much
faster. We do not consider the first agent execution in our measurement results. Again, we assume
that the Java class files are locally available on each place (see also Section 6.4.3).

The test environment is the same as for FATOMAS and the machines are also arranged in the
same way. Our results represent the arithmetic average of 10 runs, with the highest and lowest
values discarded to eliminate outliers. The coefficient of variations is in most cases lower than
5%. However, for few results, it went up to 15% because of variations in the network and machine
loads.

We measure the costs of TRANSUMA compared to FATOMAS . The results in Figure 8.12
show that TRANSUMA adds an overhead of 6 to 20% compared to a FATOMAS agent. This
overhead is caused by the transaction support mechanisms such as the communication with the
local SAT agent and the commitment when the agent has reachedStagdresults are similar
for pipelined (see Section 6.3.3) FATOMAS and TRANSUMA agents.

Overhead of the TranSuMA transaction mechanisms

30000 . : . . . .
Transuma agent ——
Fatomas agent -—+—--

25000 Fatomas agent (pipelined) & |

Tansuma agent (pipelined) -

20000

15000

round trip time [ms]

10000

5000

3 4 5 6 7 8 9 10
number of stages

Figure 8.12: Round trip time [ms] of a TRANSUMA agent compared to a FATOMAS agent for
itineraries between 3 and 10 stages.

Note that the costs for an abort of a transactional mobile agent executtpn are the same
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as for commit. Indeed, the only difference between abort and commit is the content of the message
reliably broadcasted to all SAT agents.

Clearly, the relative overhead decreases if the execution time of the stage action increases. In-
deed, the time needed to increment the counter is negligible. If this time becomes more important,
the relative overhead of TRANSUMA compared to FATOMAS decreases considerably.

Infrastructure failures during the execution of stage actig@imave a negative impact on the
performance of the transactional mobile agent. However, they mainly influence the performance
of FATOMAS (see Section 6.4.3). With respect to the overhead of the transaction support mecha-
nisms, they result in a greater number of messages in the reliable broadcast mechanism. Moreover,
the roundtrip time as measured in Figure 8.12 may increase. Indeed, with the linear strategy for
reliable broadcast, the senders wait for acknowledgments from the receivers. Unless this acknowl-
edgment arrives within a certain time, they assume a failure and take adequate actions. This may
increase the roundtrip time.

8.8 Supporting Compensating Transactions

In this chapter so far, we have considered the model of nested transactions presented in [Mos85].
This also corresponds to a modelaésednested transactions [WS92]. In this section, we relax

the model to also accommodate compensating transactions. The use of compensating transactions
has the advantage that the corresponding stage action can be immediately committed, without
waiting for the outcome of the transactional mobile agent execution. In case the transactional
mobile agent execution is aborted, the stage action is compensated by executing the compensat-
ing transaction. However, compensating transactions are not always feasible (see Sections 4.3.3
and 5.3.7). Extending the model of closed nested transactions to also incorporate compensating
transactions leads to the modelagen nested transactiofi$/S92].

This section is inspired by the work in [SR00, AS99, ASPZ00]. The advantage of our approach
is that it can handle both compensatable and non-compensatable transactions at the same time, i.e.,
pessimistic and optimistic concurrency control. In contrary, Strasser and Rothermel [SR00] and
[ASPZ00] assume compensatable transactions. In [AS99], Assis briefly mentions that it is possible
to extend his approach to incorporate non-compensatable transactions, but no detailed discussion
is provided.

Similarly to Sagas [GMS87], we assume that the sequence of stage actions of a transac-
tional mobile agent can be interleaved in any way with other transactional mobile agents (see
Section 8.6).

A large body of related work exists in traditional client/server computing. Closest to the work
of this section, together with Sagas, is the ConTract model proposed by Reuter et al. [RSS97]. This
model provides a conceptual framework for the reliable execution of long-lived computations in a
distributed environment. However, the scripts (i.e., the control flow descriptions) are not mobile.

8.8.1 Open Nested Transactions

Open nested transactions [WS92] are a generalization of (closed) nested transactions as presented
in [Mos85]. They allow subtransactions to bpen i.e., to commit prematurely without knowing
the outcome of the top-level transaction. At this point, the modifications of the subtransaction
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are visible to other mobile agerfs.|f the top-level transaction is aborted, then open transac-
tions are compensated by running compensation transactions (see Section 4.3.3). Recall that in
closed nested transactions, subtransactions only commit if the parent transaction commits (see
Section 8.4). Hence, the results of the subtransactions are not visible to other transactions until the
entire transaction commits, i.e., the parent transaction keeps the locks of its subtransactions.

Note that in the case of open nested transactions the atomicity property is achieved if the
modifications of all stage actions are reflected [WS92] or none at all. The latter case occurs if the
modifications have been compensated for. Hence, the atomicity property is achieved on a more
abstract level as in the case of closed nested transactions.

8.8.2 Transactional Mobile Agents Modeled As Open Nested Transactions

A transactional mobile agent can be modeled as open nested transactions: the top-level transaction
corresponds to the transactional mobile agent execution and the first level of subtransactions is
again composed of the stage acti@as(see also Figure 8.5). They, in turn, are composed of
subtransactions that run on all the placesMf, i.e., sg. The subtransactionsd”™"" that are

running on the primary place can be either closed or open. The subtransa‘éi@sé prim)

are immediately aborted at the stage execution and it is thus not important whether they are open
or closed. The first level of subtransactions (i.e., the stage actigrigherit the property of their
subtransaction. In other words, if the subtransaction is open, they are also open, otherwise, they
are closed subtransactions.

Note that with open nested transactions, the open subtransactions optimistically decide com-
mit. Based on the outcome of the entire transactional mobile agent execution, the open subtransac-
tions then make the “real” decision. Considering that the specifications of AC and NB-AC reflect
this “real” decision, they are still valid in the case of open nested transactions. However, whereas
a commit decision requires no further activities, the abort decision is more complex to handle and
involves running compensation transactions.

In the following, we show how a transactional mobile agent execution can be compensated. For
simplicity, we first assume that all stage actica8 ™ are open, before considering the general
case where subtransactions can be either open or closed.

Supporting Only Open Subtransactions

We reuse the approaches presented in [SR00, AS99] to achieve a compensation of transactions in
case the top-level transactidp is aborted. For simplicity, we assume that all stage actions can

be compensated, i.e., we assume the model of sagas [GMS87, G8AEKence, no deadlocks

among transactional mobile agents occur. As indicated in [SR00], compensating a transactional
mobile agent involves compensating the transactions that have lead to modifications in the state
of the placeand in the agent state. The reason for this is that it is not always possible to simply
return to the state the agent had before executing the stage action. Indeed, assume a transaction
that buys a book from a book shop and pays with e-coins [SR00]. The compensating transaction
returns the book and receives the money in return. However, it is very unlikely that it will again

%Note that in the context of open nested transactions, the isolation property in the specification in Section 8.4 needs
to be relaxed. Indeed, intermediate results also become visible [RSS97].
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receive exactly the same e-coins; rather, it will receive the same amount of e-coins (unless some
compensation fee is deduced). Hence, the state of the agent before executing stagezaction

and after executing stage acties and its compensating transactiesy; is not identical. This

state is calledveakly reversibld§SR00]. In contrarystrongly reversiblestate contains data that

can be compensated by retrieving its state before having executed the stage action from the log.
Weakly reversible agent state requires that compensating transactions have to be defined on both
the agent state and the place state. In contrary, strongly reversible agent state only requires that the
compensating transaction acts on the place state. The agent state corresponds to the state before
executing the corresponding stage action [SR00] and can be restored from the log, to which it
is written before executing the stage action. The agent state may consist of strongly and weakly
reversible parts.

Clearly, the compensating transactions can only run on the prinyﬁﬁ@sof the transactional
mobile agent execution. If the places visited by agermre all independent and agentonly
consists of strongly reversible state, we can use the mechanisms presented in Section 8.5.3. Indeed,
instead of aborting the subtransactions, the SAT ageritsun a compensation transactiosy;.
The independence between the places causes the order to be irrelevant.

Generally, however, the compensating transactigasmust be run in the inverse sequence
of their corresponding stage actiong (see Figure 8.13). For this purpose, the primary place
that decides abort launches a compensating mobile agemhat travels back along the sequence
of primaries of transactional mobile agenti.e., &b, p!""™, py) and runs the corresponding
compensating stage action at each place. Notedhat a3 because the last stage action
is aborted immediately and not committed. Hence, it does not need to be compensated. The
compensating stage action modifies both the agent stage and the state of the place.

The compensating mobile ageatneeds to run successfully to its completion. In other words,

it must be ensured that all compensating transactions execute successfully. This requires, that the
compensating mobile agent survives failures of the place. Hence, the state and code of the agent
need to be logged. Checkpoints are made first when the agent arrives at a new place; only then is
the execution of the compensating transaction started. If the place fails before the compensating
transaction is committed, the compensating transaction is restarted when the place recovers. The
compensating agemt; is reliably forwarded to the next stagg ; by repeatedly sending it to

S;_1 until it is checkpointed a$; 1 and an acknowledgment is receivedsat

Clearly, the execution of the compensating agent is prone to blocking. Indeed, assume that
primaryp} """ has failed while or before executing,. Before the stage actions ofi"", (I < k)
can be compensated, the compensating agent needs to waijﬂfﬁtilrecovers. If blocking
occurs in the execution a@fi, the agent owner will only learn about the unsuccessful outcome of
the transactional mobile agent whenwill have recovered and finished its execution. However,
the outcome of the transactional mobile agent is known at the $jateat decides the abort.
Hence, the places M, reliably send the abort information to the agent owner. At this point, the
agent owner knows the outcome of the transactional mobile agent execution and can launch a new
transactional mobile agent, if needed. Note that the ageat stageS; may also change after
running the compensating agent. The agent owner needs to be aware of this when sending another
(duplicate) agen.



134 CHAPTER 8. TRANSACTIONAL MOBILE AGENTS

Stage S , Stage S, Stage S,

Agent
Source

Figure 8.13: Execution of the compensating agent

Supporting Open And Closed Subtransactions

A transactional mobile agent that supports both open and closed subtransactions may need to
run compensating transactions for the agent state even on places where it has executed a closed
subtransaction. Indeed, assume that agehas executed a closed subtransaction at stagké

a;'s state consists of weakly reversible state and has been changed by running stagegaction

and the corresponding compensating stage actign(k > i), the state ofa;_; is different from

the state ofi;. Hence, it is not sufficient to simply retrieve agepnfrom the log file; rather, the
compensating stage action needs to be rueupto obtainca; 1, that corresponds tg. However,

the unterminated closed subtransactions on the place can simply be aborted.

Aborting the closed subtransactions only when the compensating agent runs on the corre-
sponding places results in poor performance. Indeed, as the execution of the compensating agent
may block, the unterminated closed transactions keep their locks and no other mobile agents can
access the locked resources. The execution of the compensating agent can only continue once
the failed place has recovered again. As a remedy, the closed subtransactions are terminated as
described in Section 8.5.3. But the compensating agent may still need to run on these places to
compensate the state of the agent.

We have shown that modeling transactional mobile agents as open nested transactions is more
generic than using the model of closed nested transactions. However, this model results in an
increased complexity and difficulties for the developer to create mobile agents. Indeed, the de-
veloper needs to be aware and foresee all the compensating transactions along the execution of
the transactional mobile agent. Moreover, deadlocks may again occur among transactional mobile
agents with open and closed subtransactions.
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8.9 Summary

In this section, we have introduced the problem of transactional mobile agent execution. As this
problem is similar to transactional execution in the client/server paradigm, we have reused nested
transactions to model transactional mobile agents. Because the approach in [SR00] builds on the
approach in [RS98], it suffers from the same blocking problem (see Section 5.2.1). Based on
our approach to fault-tolerant mobile agent execution, we show how non-blocking transactional
mobile agent execution can be achieved. To our knowledge, we are the first to provide a specifica-
tion of non-blocking atomic commitment in the context of mobile agents, that ensures termination
of the atomic commitment even in the case of failures. Similarily to fault-tolerant mobile agent
execution, we have validated our approach in a prototype system called TRANSUMA. Our perfor-
mance analysis shows that the overhead is reasonable compared to a non-transactional FATOMAS
agent. Finally, we have shown that our approach can also handle compensating transactions.
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Chapter 9

Conclusion

This chapter assesses the research performed in the context of the thesis and presents issues for
further research.

9.1 Research Assessment

This work has addressed the following issues in the context of mobile agents: (1) how to achieve
fault tolerance and (2) how to achieve execution atomicity in general transactional mobile agents.
Both issues are related because non-blocking execution is crucial for both. We have given a clas-
sification of existing approaches and have seen how the present approaches are positioned within
this classification. This classification facilitates an understanding of the strengths and drawbacks
of existing approaches from an algorithmic point of view. In the following, we first highlight the
contributions of our approach for fault-tolerant mobile agent execution, before assessing our work
on transactional mobile agents.

9.1.1 Fault-Tolerant Mobile Agent Execution

To achieve fault tolerance in the context of mobile agents, we first have specified fault-tolerant
mobile agent execution in terms of two properties: non-blocking and exactly-once execution. A
mobile agent execution is blocking if a failure of either agent, place, or machine prevents the agent
from continuing in its execution. The exactly-once problem is related to non-blocking in the sense
that solutions to the latter (i.e., replication) may lead to multiple executions of the mobile agent.
Hence, a solution to fault-tolerant mobile agent execution needs to ensure both the non-blocking
and exactly-once properties. In contrast to existing approaches, which are either blocking [RS98],
use a very complex model of transactions and leader election [ASPZ98, RS98], or assume reliable
failure detection [JM$99, PPGO00], we model fault-tolerant mobile agent execution as a sequence
of agreement problems. At each stage of the execution, the agent replicas solve an agreement
problem. Thereby, replication overcomes the blocking problem, whereas the agreement ensures
the exactly-once property.

We have identified two basic building blocks to implement the present approach: (1) DIV con-
sensus and (2) reliable broadcast. Building block (1) solves the agreement problem at a stage of
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the mobile agent execution. Building block (2), on the other hand, ensures that the mobile agent is
reliably forwarded to the next stage. By selecting an adequate implementation for these building
blocks consistent with the system model, the present approach is also applicable to other system
models.

We have implemented a system called FATOMAS and measured its performance. We have
seen that the fault tolerance mechanisms incurs an overhead. Consequently, fault-tolerant mobile
agents should only be used for critical applications with non-idempotent operations, in which
inconsistent state is to be avoided. Such applications generally include financial operations (e.g.,
money withdrawal or acquisition of goods). Agents that execute only idempotent operations do
not need to use the fault tolerance mechanisms proposed in the thesis. Instead, they can send
another agent when the previous agent is suspected to have failed (even if this suspicion is wrong).

Clearly, the performance of FATOMAS can be improved by tuning its parameters, but also by
improving the performance of the underlying mobile agent platform.

Although the current research was performed in the context of mobile agents, some results are
valid in the context of the traditional client/server paradigm. In particular, this thesis argues that
the case of a replicated agent executing on replicated iso-places is a special case of replicated
invocation (i.e., a replicated client invoking a replicated server) in traditional client/server com-
puting. Ensuring non-blocking and the exactly-once execution property in this context is a diffi-
cult problem and its solution depends on execution determinism/non-determinism and the applied
concurrency control technique. While this problem is solved if the client replicas execute deter-
ministically [Maz96, Nar99], this thesis proposes a solution in the case of non-deterministic client
replicas. This solution is based on the idea of sharing sufficient undo information to enable the
replicas to undo multiple executions caused by the failure of a replica. At the same time, it also
prevents blocking and ensures exactly-once in the context of replicated iso-places.

9.1.2 Transactional Mobile Agent Execution

We have shown that the presented approach to fault-tolerant mobile agent execution can be used to
achieve non-blocking transactional mobile agent execution. The non-blocking property is very im-
portant if pessimistic concurrency control is applied. Indeed, blocked transactional mobile agents
keep all the locks on accessed data items and thus prevent other transactional mobile agents to
access these data items until the failed agent recovers. In this context, the thesis has started with
a discussion on the reasons for a violation of the atomicity property within a single transactional
mobile agent. Then, it models a transactional mobile agent as a simple form of nested trans-
actions. The specification for non-blocking atomic commitment in the context of transactional
mobile agents is novel, to our knowledge, and shows that the non-blocking property of atomic
commitment is related to the non-blocking property of the mobile agent execution. More specif-
ically, non-blocking atomic commitment can only be achieved with non-blocking mobile agent
execution. The reason for this is that the decision is made unilaterally by the agent itself. We have
implemented a prototype system, called TRANSUMA, using the agent-dependent approach, and
have measured its performance.

The model of closed nested transactions has the inconvenience that the locks on data items are
only released when the outcome of the transactional mobile agent execution is known. For certain
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applications, it may be possible to release these locks earlier, i.e., use optimistic concurrency
control based on compensating transactions. This thesis also shows how our approach can be
extended to handle compensating transactions. As compensating transactions may block, the agent
owner must be reliably notified about the outcome of the transactional mobile agent execution.

9.2 Open Research Issues

The following open issues, among others, remain in the area of fault-tolerant and transactional
mobile agent execution and need to be further investigated:

Inter-agent communication: The communication between two mobile agents is called inter-
agent communication. Inter-agent communication between fault-tolerant or transactional
mobile agents becomes more difficult than the communication between two agents that are
not fault-tolerant. Indeed, instead of communicating with one copy of the receiving agent,
the sending agent needs to send the message to all replicas of the receiving agent. This
requires that a directory service be set up, which allows replicas and their location to be
identified [MLC98]. Although this problem appears to have similarities with replicated
invocations (see Chapter 7), it needs to be studied in more detail.

Performance Measurements:The focus on the performance measurements in this thesis has
been on a single mobile agent execution. Additional performance measurements are re-
quired to determine the throughput of a system with multiple concurrently running fault-
tolerant or transactional mobile agents. In particular, it would be useful to achieve an un-
derstanding on the probability for deadlock and the cost of resulting aborts in the context of
transactional mobile agents.

Performance Improvement: In order to become a viable product, the two prototypes presented
in the thesis need to be improved considerably. In particular, their communication mecha-
nisms need to be made more efficient. Moreover, they need to be ported to a mobile agent
platform that is still supported and where development is going on, such as the open-source
platform Aglets [Agl, LO98]. Indeed, a first attempt to port FATOMAS to Aglets has been
made, but was stopped because of a bug in Aglets, which prevented its use for FATOMAS.
However, this bug may have been corrected in later releases of Aglets. In general, the mo-
bile agent platforms used here do not appear to have yet reached the same degree of maturity
as client/server middleware generally has.

Deadlock Detection: An interesting field for further research is deadlock detection in the context
of non-blocking transactional mobile agents as presented in Section 8.5. In particular, one
could investigate whether and under what conditions and assumptions a deadlock detection
mechanism may be more suitable than the timeout-based approach.

Reliable Multicast: In the present work, we have used reliable multicast as a building block for
fault-tolerant and transactional mobile agent execution. In practical agent based applica-
tions, it may be useful to specify reliable multicast in such a way that the specification gives
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certain guarantees about when and to whom a message is delivered. For instance, if a pro-
cess does not fail for a certain period of time, it will receive the message. Clearly, this
requires adding timing assumptions to the model. Which timing assumptions are the most
realistic and adequate in this context is an interesting avenue for further research.

Unified Model for Fault-Tolerant and Transactional Mobile Agents: In the present work, we
use agreement problems and the notion of a transaction to model fault-tolerant and transac-
tional mobile agent execution. These are important concepts usually used in different fields
of research. Indeed, transactions are important in the context of databases, whereas agree-
ment problems are a fundamental building block in the field of replication. Exploring the
potential for unification of these two concepts in the context of mobile agents could lead to
a single model. Having such a model would considerably simplify the presentation of the
problem of fault-tolerant and transactional mobile agent execution. Moreover, this research
could lead to a model that is also important in a larger context and could help bring the fields
of transactions and replication closer.
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Appendix A

DIV Consensus

A.1 Deadlock-Free DIV Consensus

Algorithm 1 presents DIV consensus using the approach discussed in Section 6.4.2 in order to
prevent deadlocks. The modifications compared to the original DIV Consensus [DS@]D”

are highlighted using-". Note that we have always assumed thais the first coordinator

in DIV consensus. This has simplified the discussion. In Algorithm} Is acting as the first
coordinator, as in this case the replica ID (e.g., 1d9rof the coordinator corresponds to the
round number in DIV consensus.

A.2 Blocking-Free DIV Consensus

In this section, we present a version of DIV consensus (see Algorithm 2) that sends undo infor-
mation to the other replicas in order to prevent the blocking situation discussed in Section 7.3.4.
In Algorithm 2 we have only highlighted using-$" the important modifications compared to

DIV consensus given in [DS00,4900].
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Algorithm 1 DIV Consensus (code of proceggDef00]: the danger of deadlocks when executing
the functionGgZV() is avoided by the use of an additional thread (see Lines 16 and 27).

1: procedure LazyConsensus ( function GZV : 0 — v)
2: esty«+ L {p’s estimate of the decision valpe
3. statep <+ undecided
4: rp, 0 {rp is p’s current round numbeér
5. tsp« 0 {tsp is the last round in whiclp updated esty initially 0}
— 6. evalStarted, + false {true if evaluation of the functiogZV() is running}
while state, = undecided do {rotate through coordinators until decision reached
¢p < (rp mod n) + 1 {¢p is the current coordinatdr
rp—Tp+1
Phase 1: {all processep send estyto the current coordinatdr
if r, > 1then
send(p, rp, est\p, tsp) t0 ¢p
Phase 2: {coordinator gather§ ”T“] estimates and proposes new estinjate
if p=cpthen
if r, = 1then
— fork: estV, « eval giv() {p proposes valug
— evalStarted, <+ true
— wait until [est\, # L or timeout]
— if est\, # L then {execution ofjZV() has succeedgd
— evalStartedy < false
else

wait until [for [ 2EL] processes : received(q, rp, estVy, tsq) from g]
msgs,[rp] < {(q,7p, €51\, ts¢) | p received(q, rp, est\y, tsq) fromq}
t < largesttsy such thai(q, p, est\Vy, tsq) € msgs,[rp]

if esty, = L and V(q,7p,est\y,tsq) € msgs,[rp] : est\y = L then

— if mevalStarted, then
— fork: estV, < eval giv() {p proposes valug
— evalStarted, < true
— wait until [estV, # L or timeout]
— if est\, # L then {execution ofjZV() has succeedgd
— evalStarted, < false
else
est\, < select onesty, # L s.t.(q,7p, €51V, t) € msgs, [rp]
— if est\, # L then
— send(p, rp, est\},) to all {Only send suggestion if ndt}
Phase 3: {all processes wait for new estimate proposed by current coordihator
wait until [received(cp,rp,est\., ) from e, or ¢, € Dy {query failure detectoD, }
if [received(cp, rp, est\,,) from ¢;] then {p received esty, fromc,}
est\, < est\.,
tsp < Tp
send(p, 7p, ack) to cp
else {p suspects that, crashed

7
8
9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25:

26:

27:

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

send(p, rp, nack) to ¢,

44: Phase 4: {the current coordinator waits for£ | replies. If they indicate that”+! ] processes adopted its
estimate, the coordinator R-broadcasts a decide megsage

45: if p=cpthen

46: wait until [for [”T“] processes : received(q, rp, ack) or (g, rp, nack)]

47: if [for ["T“} processesg : received(q, p, ack)] then

48: R-broadcas(p, rp, est\,, decide)

49: when R-deliver(g, ¢, est\, decide) {if p R-delivers a decide mesge,p decides accordingly

50: if statep = undecided then

51: decide(estV,)

52: statep < decided
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Algorithm 2 DIV Consensus (code of procegs [Def00]: invocations to servers by failed pri-
maries are undone when needed.

CoNe aRrwdbE

: procedure LazyConsensus ( function GZV : ) +— v)

esty + L {p’s estimate of the decision valpe
statep < undecided
rp <0 {rp is p’s current round number
tsp < 0 {ts, is the last round in whiclp updated esty, initially 0}
while state, = undecided do {rotate through coordinators until decision reached
cp < (rp mod n) + 1 {¢p is the current coordinatdr
rp—Tp+1
Phase 1: {all processe® send estyto the current coordinatdr
if r, > 1then
send(p, rp, est\,, tsp) to cp
Phase 2: {coordinator gather§ ”T“] estimates and proposes new estinjate
if p = cpthen
if r, = 1then
esty, < evalgiv() {p proposes value. No undo information needed as first time to evalgai¥() }
else

wait until [for [2EL] processes : received(q, rp, estV,, tsq) from g]
msgs,[rp] < {(q,7p, €51\, ts¢) | p received(q, rp, est\y, tsq) fromq}
t < largesttsq such thai(q, p, est\Vy, tsq) € msgs,[rp]
if est, = L and V(q,7p,est\y,tsq) € msgs,[rp] : est\y = L then
if [received undo information message from procegd¢isen
send termination request to dllinvoked by processag

send undo information to all processes {p sends its undo information to all proces}es
est\, < eval giv() {p proposes valu¢g
else

est\, « select onesty, # L s.t.(q,7p, €51\, t) € msgs,[rp]
send(p, rp, est\,) to all

Phase 3: {all processes wait for new estimate proposed by current coordihator
wait until [received(cp,rp,est\., ) from e, or ¢, € Dy {query failure detectoD, }
if [received(cp, rp, est\,,) from ¢, ] then {p received esty, fromc,}
est\, < est\.,
tsp < 1Tp
send(p, rp, ack) to ¢p
else {p suspects that, crashed

send(p, rp, nack) to ¢p
Phase 4: {the current coordinator waits fof 41 ] replies. If they indicate that$!] processes adopted its
estimate, the coordinator R-broadcasts a decide megsage
if p=cpthen
wait until [for [2EL] processes : received(q, rp, ack) or (q,p, nack)]
if [for [2+1] processeg : received(q, 7, ack)] then
R-broadcas(p, rp, est\,, decide)

: whenR-deliver (g, rq, est\,, decide) {if p R-delivers a decide mesge,p decides accordingly
if statep = undecided then

decide(estV,)
statep <+ decided
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