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Chapter 1

Introduction

Replicated database systems (RDBS) provide two major advantages com-
pared to traditional client-server based databases. They increase the

availability of the data, since data items are stored on multiple nodes.
Even when node failures occur, the data can still be accessed. The sec-

ond advantage is the locality of data. In replicated database systems
the node closest to the user usually executes a query. This leads to

considerably shorter response times for read-only transactions. Updates,
however, must be performed at every node. To guarantee the consistency

and integrity while allowing transactions to run in parallel and spread
across several nodes, existing distributed DBS use locking-based concur-
rency control protocols to synchronize data access and two-phase locking

to guarantee a deterministic behavior of a transaction on all nodes.
However, up to now replication is not considered in update intensive ap-

plications.

The distributed systems community has proposed a certain number of
group communication primitives [ADM92], that allow a total order of

events in the entire system. The atomic broadcast [ChT93], for exam-
ple, guarantees the all-or-nothing property. This means that either all

correct nodes receive a message or none at all. In addition the atomic
broadcast imposes a total order on the messages it delivers.

It is not until recently, however, that research has tried to use these
primitives also in database systems.



12 CHAPTER 1. INTRODUCTION

In this work we have designed and implemented a simulation tool which
facilitates to study the performance of replication control protocols that

use atomic broadcast for synchronization. The simulation tool allows to
identify the bottlenecks in such a database and to understand the impli-
cations of the broadcast primitive onto database performance.

This paper is organized as follows. In the next chapter we outline the

objective of this project. Then we define a model for the atomic broad-
cast and the replicated database. Based on this model we explain the

serialization protocol which has been used in the simulation tool. Chap-
ter 6 then presents the conception of the replicated database simulation

tool. After the conception of the RDBS simulation tool, performance
measurements of the RDBS are shown. Then, chapter 8 explains some

implementation issues.
Finally, the paper closes with some conclusions to this project and sug-
gestions for further work.

The result tables of the performance measurements and the code are
contained in the appendices.

In this paper important words are emphasized, while names taken from
the code are written with font sans serif.

Diploma Project, Winter 1996/97



Chapter 2

Objective

The goal of this project is to design and implement a simulation tool in

order to test database replication protocols using broadcast primitives
for communication.

Since the broadcast primitives are usually studied by the distributed
systems community and the database issues by the database community,

this diploma project tries also to merge some aspects of these two com-
munities together.

We expect to get some indications about the realizability of such databases
as well as about their performance.

Our implementation is based on an atomic broadcast algorithm suggested

by Chandra/Toueg [ChT93] and a replication control protocol proposed
in [AAE96], that takes into account and relies on atomic broadcast. The

general architecture of such a replicated database system can be seen in
figure 2.1.

The resulting prototype should cope with the following requirements:

1. it has a modular design and implements the most important compo-
nents of a replicated database system. It should be easy to exchange
single components or add new components to the system. In partic-

ular it should be possible to take over some of the components and
incorporate them into a real system.

2. provides a highly parametrisied implementation in order to allow

exhaustively testing of a variety of configurations.
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Replication
Protocol

Replication
Protocol

Replication
Protocol

Database
Node

Database
Node

Database
Node

Figure 2.1: Distributed database relying on a replication protocol

3. finally, performance analysis of the system should be possible, for
the broadcast primitive as well as for the database system based on

the atomic broadcast.
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Chapter 3

Atomic Broadcast

This chapter provides a summary of the theory developed in [ChT93]. We

first present the model this chapter is based on in section 3.1. Then we
present a broadcast algorithm, called atomic broadcast, which has been

suggested by [ChT93]. It allows to broadcast messages to all processes
in a system and guarantees that all correct processes receive all these

messages in the same order. We will also see that the atomic broadcast
problem can be reduced to the consensus problem using failure detectors
(section 3.4).

3.1 The Model

The system we consider consists of a set of N nodes which communicate
with each other via message-passing across a communication network. A

communication channel allows to exchange messages between a pair of
nodes. We require that this communication channels are reliable. Re-

liable communication channels do not loose any messages, even in the
case when the message reception buffer of the destination node is full.
In the following, we will consider process, node and site as equivalent

notions.

In a synchronous model of computation the transmission delay of mes-

sages is borned by �T and we dispose of synchronized clocks. However
these requirements are very restrictive. Therefore we look at a asyn-

chronous computation model. An asynchronous computation model does
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not impose any bound on message delay, neither on computation time of
processes. In addition we can not rely on synchronized clocks.

In a real system, failures can occur and communication protocols should
be able to handle them. We can distinguish several failure types. In

a crash failure environment we suppose that a process stops all com-
putation and communication. This is the failure type handled by most

of fault-tolerant applications including the one described in this work.
It is also the easiest one to handle. In particular, we exclude the sit-
uation where the process has an accidental behavior, i.e. returns some

completely arbitrary results for instance (arbitrary-failure), neither do
we consider omission-failure or value-failure. An omission-failure occurs

when a process simply does not respond to requests, whereas in value-
failure it returns an incorrect output relatively to the specification. A

further failure type that is important to handle are net-crash-failures.
Ideally, at least one partition should be able to continue its work. How-
ever, since we assume reliable communication channels, we do not con-

sider this failure type either.

This project considers three different types of communication, called

broadcast, point-to-point and send-to-all communication. When broad-
casting a message m, m is sent to all nodes in the system. If not all
nodes are in the destination set of a message, we speak of a multi-cast.

We exhibit point-to-point communication when a message is sent from
a process pi to another process pj (j �= i). Send-to-all communication

is equivalent to a point-to-point communication from a process pi to all
processes in the system.

3.2 Required Properties

Informally the atomic broadcast primitive has to fulfill two properties,
namely:

1. the all-or-nothing property

2. the messages arrive in the same order at all correct nodes

Diploma Project, Winter 1996/97
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The first property states that either a message m is received by all correct
processes or by none at all. It may not occur that some processes receive

m whereas other do not.

The consensus algorithm is based on a reliable broadcast. A possible
algorithm for this broadcast is presented in the next section.

3.3 Reliable Broadcast

The basic communication primitive of our communication hierarchy is

the reliable broadcast. It guarantees that all messages broadcast by cor-
rect processes are delivered and that all correct processes deliver the

same messages. Spurious messages are thereby ignored. Therefore the
reliable broadcast fulfills the all-or-nothing property. The reliable broad-
cast is defined by the two primitives r-broadcast(m) and r-deliver(m) (see

figure 3.1).

protocol
Reliable broadcast

receive (m)send (m)

Application

r-broadcast (m) r_deliver (m)

Figure 3.1: R-broadcast protocol stack

Formally, the reliable broadcast protocol has the following properties:

RB1 Validity: If a correct process r-broadcasts a message m, then it
eventually r-delivers m.

RB2 Agreement: If a correct process r-delivers a message m, then all
correct processes eventually r-deliver m.

RB3 Uniform integrity: For any message m, every process r-delivers m

at most once, and only if m was previously r-broadcast by sender(m).

Stefan Pleisch



18 3.4 Consensus Problem

In the absence of property RB1 every communication protocol that never
delivers any messages would also comply with the definition of a reliable

broadcast.

Here is the outline of a possible implementation of the reliable broadcast:

In order to r-broadcast a message m, every process pi exe-
cutes the following:

send m to all pj, j ∈ {1.., i, ..N}

When a message m is received, the r-deliver(m) occurs as
follows:

if received m for the first time
if sender(m) �= pi then send m to all
r − deliver(m)

Figure 3.2: Reliable broadcast algorithm
[ChT93]

A drawback of the reliable broadcast algorithm is the number of mes-

sages sent. Every time a message m is broadcast to N processes, N2

messages are sent in fact. Depending on the underlying communication

facility, this could prove to be a serious bottleneck.

We can also understand now why we need reliable communication chan-
nels. Imagine a process p with a full message reception buffer. It will

discard all message which arrive during the time ∆t its buffer is still
full. If ∆t is great enough, p will discard every message belonging to the

reliable broadcast of a message m. Therefore process p does not receive
m, which is clearly a violation of the reliable broadcast properties.

3.4 Consensus Problem

It can be shown that there exists an equivalent problem to the atomic

broadcast, namely the consensus problem. This equivalence arises from

Diploma Project, Winter 1996/97
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the fact that each algorithm can be reduced to the other [ChT93], mean-
ing that the first algorithm is solvable when the second is and vice-versa.

In other words a solution for one problem also solves the other one.
Therefore, having solved the consensus problem allows also to find an
algorithm for the atomic broadcast.

The consensus is a well-known problem, whose properties are specified
in subsection 3.4.1. Its solution relies on the notion of failure detectors,

which will be presented in subsection 3.4.2.

3.4.1 Specification

The consensus problem is defined as follows:

• N processes ni that all propose one value vi

• the processes reach an agreement on a value v, vε{vi}

All correct processes propose a value vi and must reach an unanimous

and irrevocable decision on some value that is related to the proposed
values.

Formally the consensus problem is specified by the following 4 properties:

• Termination: every correct process eventually decides some value.

• Uniform integrity: every process decides at most once

• Agreement: No two correct processes decide differently

• Uniform validity: if a process decides v, then v was proposed by
some process

However, Fischer/Lynch/Paterson [FLP85] have shown in 1985 that there

exists no deterministic algorithm to solve the consensus in an asyn-
chronous system that is subject to even a single crash failure. This is

known in literature as the FLP-impossibility. Essentially the impossibil-
ity for the consensus and the atomic broadcast stem from the difficulty

of distinguishing an actually crashed process from a very slow one.

Stefan Pleisch



20 3.4 Consensus Problem

In 1991, Chandra and Toueg suggest therefore an extension to the asyn-
chronous model. They introduce the concept of failure detectors [ChT93],

which allows to circumvent the FLP-impossibility.

The following subsection outlines the properties of the failure detectors.

3.4.2 Failure Detectors

A failure detector is a model that is attached to every process. It can be
wrong. However, if the set of failure detectors satisfies certain properties,

the consensus problem can be solved. There are two completeness and
four accuracy properties. Each failure detector D fulfills one property of
each of the two classes.

Completeness:

- Strong completeness: Eventually every process that crashes is per-
manently suspected by every correct process

- Weak completeness: Eventually every process that crashes is per-
manently suspected by at least one correct process

These properties of completeness, however, are not sufficient by itself

to get useful information about failures. The trivial situation where
every process permanently suspects every process also satisfies strong

completeness, but is clearly not of any practical use.

A failure detector must therefore also satisfy some accuracy property
that restricts the mistakes that it can make.

Accuracy:

- Strong accuracy: No correct process is ever suspected

- Weak accuracy: at least one correct process (same for all) is never
suspected

- Eventual strong accuracy: there is a time after which no correct

process is ever suspected

Diploma Project, Winter 1996/97
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- Eventual weak accuracy: there is a time after which at least one
correct process (same for all) is never suspected

The combination of the different accuracy and completeness properties

lead to 8 classes of failure detectors. For the purposes of this project we
need only the failure detector �S, which satisfies strong completeness
and eventual weak accuracy.

Chandra/Toueg [ChT93] propose the algorithm displayed in figure 3.4 to

solve the consensus problem. They have shown that the �S failure de-
tector is enough to solve the consensus. The consensus algorithm makes

the assumption that not more than f processes fail, where f ¡ �N2 �.

3.5 Atomic Broadcast

Finally we discuss how the atomic broadcast can be reduced to consensus.

Formally the atomic broadcast is a reliable broadcast with the following
additional property:

TO4 (Total Order): If two correct processes pi and pj (i �= j) deliver two

messages m and m′, then they deliver them both in the same order.

All correct processes will therefore deliver the same sequence of messages.

Chandra/Toueg suggest to use three different tasks for the atomic broad-
cast presented in figure 3.3. The first one executes the a-broadcast, while
the second task waits for messages to be r-delivered. The third task fi-

nally periodically starts the consensus when the R delivered list is not
empty.

However this could lead to rather difficult synchronization problems for

real implementations. If every process only disposes of one port for
the communication, the second and third task will sometimes access the

same port simultaneously. While the former just expects to receive r-
delivered messages from the reliable broadcast, the third task waits for

some consensus messages. At this point a real system has to guarantee

Stefan Pleisch



22 3.5 Atomic Broadcast

Every process pi executes the following:

R delivered ← {}
A delivered ← {}
k ← 0

To execute a− broadcast(m):

r − broadcast(m) {task 1}

A− deliver(−) occurs as follows:

when r − deliver(m) {task 2}
R delivered ← R delivered ∪ {m}

when R delivered −A delivered �= 0 {task 3}
k ← k + 1
A undelivered ← R delivered - A delivered
propose(k,A undelivered)
wait until decide(k,msgSetk)
A deliverk ← msgSetK - A delivered
atomically deliver all messages in A deliverk

in some deterministic order
A delivered← A delivered ∪A deliverk

Figure 3.3: Atomic broadcast algorithm
[ChT93]

that all the necessary consensus messages are received by the third task.
This is however not always very straightforward. A solution to this

problem would be to use two different ports, namely one for consensus
messages and one for r-delivered messages.

Diploma Project, Winter 1996/97



23

Every process p executes the following:

procedure propose(vp)
estimatep ← vp {estimatep is p′s estimate of the decision value}
statep ← undecided
rp ← 0 {rp is p′s current round number}
tsp ← 0 {tsp is the last round in which p updated estimatep, initially 0}

{rotate through coordinators until decision is reached}

while statep = undecided
rp ← rp + 1
cp ← (rp mod n) + 1 {current coordinator}

Phase 1: {All processes p send estimatep to the current coordinator}
send ( p, rp, estimatep, tsp ) to cp

Phase 2: {Current coordinator gathers � (n+1)
2 � estimates and proposes a new estimate}

if p = cp then
wait until [for � (n+1)

2 � processes q: received (q, rq, estimateq, tsq) from q]
msgsp[rp] ← {(q, rp, estimateq, tsq) | p received (q, rp, estimateq, tsq) from q}
t ← largest tsq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
estimatep ← select one estimateq such that (q, rp, estimateq, tsq) ∈ msgsp[rp]
send (p, rp, estimatep) to all

Phase 3: {All processes wait for the new estimate proposed by the current coordinator}
wait until | received (cp, rp, estimatecp) from cp or cp ∈ Dp {Query failure detector}
if [received (cp, rp, estimatecp) from cp] then

estimatep ← estimatecp

tsp ← rp

send (p, rp, ack) to cp

else send (p, rp, nack) to cp

Phase 4: {Current coordinator waits for � (n+1)
2 � replies. If they indicate that � (n+1)

2 �
processes adopted its estimate, the coordinator r-broadcasts a decide message}

if p = cp then
wait until [for � (n+1)

2 � processes q: received (q, rp, ack) or (q, rp, nack)]
if [for � (n+1)

2 � processes q: received (q, rp, ack)] then
r-broadcast(p, rp, estimatep, decide)

endwhile

{If p r-delivers a decide message, p decides accordingly}
when r-deliver(q, rq, estimateq, decide)

if statep = undecided then
decide(estimateq)
statep ← decided

Figure 3.4: Consensus algorithm using �S
[ChT93]
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Chapter 4

Transaction Management on
Replicated Database Systems

This chapter first introduces some notions of the formal model of dis-
tributed database systems (DDBS). In section 4.2 the transaction model
used in this project is presented, first in a centralized database system,

then for a replicated database system. Section 4.3 motivates the concur-
rency control. The notions presented so far will then be used to discuss

a particular serialization protocol taken from [AAE96].

This chapter only highlights the basic notions used in the following chap-

ters. For a more detailed presentation consider [CGM88, BHG87, San92,
AAE96].

4.1 Distributed and Replicated Database Model

A distributed database (DDB) is a collection of data items [CGM88] that
are distributed across several sites. Each data item is given a name, its

address in our case, and a value. The granularity of data items could be
a part of the disk, a record of a file or a field of a record. However we

will not consider the granularity further on.

A distributed database system (DDBS) is a collection of sites connected
by a communication network [BHG87]. Figure 4.1 shows such a DDBS.

Each site is a centralized database, which stores a portion of the database.
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Database Database Database Database.................

Communication Network

Centralized Centralized Centralized Centralized 

Figure 4.1: Distributed database

It is also referred to as a node.

Replication
Protocol

DB

Replication
Protocol

DB

Replication
Protocol

DB

....

Network

TM

Lock Manager

Data Manager

TM

Lock Manager

Data Manager

TM

Lock Manager

Data Manager

Figure 4.2: Database system architecture
[Alo96]

By a replicated database (RDB) we understand a distributed database

in which some data items exists on multiple sites. The main reasons to
replicate parts of the DB are to increase availability and performance of

the DBS. Despite of site failures replicated data items can be retrieved as
long as one copy is available on some node. In addition read operations

are always executed on the nearest available copy. This leads to better
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performance of the DBS.
An abstraction of the replication of data items can be achieved by con-

sidering the logical in contrary to the physical data items. Logical data
items x are represented by multiple physical data items x1, x2, ... that
are stored at different nodes.

Figure 4.2 illustrates a RDBS. Each node contains a centralized DBS,
which sits on top of a replication protocol. The transactions interact with
the DBS through the transaction manager (TM). The TM determines

which site of the DDBS should process the operations of the transactions.
Lock manager (LM) and data manager (DM) are responsible for actually

executing the transactions. We will refer to this model and also present
a more profound discussion of the different components of the RDBS in

the following sections.

4.2 Transaction Model

4.2.1 In Centralized DBSs

Informally, a transaction T is an execution of a program that accesses a
shared database [BHG87, CGM88]. It gets a consistent database state

as input and, provided atomic execution, its output leaves the database
again in a consistent state. A transaction is modeled as a set of oper-

ations, terminated with a delimiter operation, called commit or abort.
A transaction commits if it terminates normally and its effects on the

database are permanent. In contrary a transaction is aborted if it ter-
minates anomalously. In this case all its effects on the database should
be undone.

We distinguish two operations: read and write operations. The set of
read operations of a transaction is called the read-set, whereas the write

operations are called the write-set. The set of operations of a transac-
tion is partially ordered. In our model we assume any order of the write

operations while we impose a total order on reads. In addition all write
operations can be executed after the read operations.

Further we only consider transactions which contain at least one write
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operation.

4.2.2 In Replicated DBSs

A transaction Tj is issued at one node ni of the RDBS. We say that ni is
the initiating node of transaction Tj. The index j thereby specifies the

number of the transaction on that node. A read operation of Tj accessing
the logical data item x will be noted rj[x]. In a RDBS read operations

should be executed locally in order to improve the performance of the
DBS. On the other hand updates (write operations), called wj[x], are
done on every node of the RDBS. oj[x] addresses either a read or a write

operation of transaction Tj.

4.3 Concurrency Control

4.3.1 In Centralized DBSs

Because transactions Ti and Tj are executed concurrently on one node,

they might access the same data items at the same time. This problem
arises when operations of Ti and Tj conflict. Two operations issued by

different transactions conflict, if they access the same data item and one
of them is a write operation. Ti and Tj have to be executed atomically

by a DBS in such a case, which means that:

• each transaction accesses shared data without interfering with other
transactions

• if a transaction terminates normally, i.e. commits, its effects on the
database are permanent. Otherwise (the transaction is aborted) no
changes to the database are done at all.

In order to ensure atomicity of transaction execution, we need concur-
rency control and recovery. Concurrency control determines the order of

conflicting operations oi[x] and oj[x], thereby also imposing an order on
the corresponding transactions Ti and Tj. Recovery ensures that data is

not lost even in case of a failure of the entire database. It will not be
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subject of this work.

One way to ensure concurrency control is by using locks on data items.

In [ElN94] a lock is a variable associated with data items which describes
the status of that item with respect to possible operations that can be

applied to the item. Different types of locks can be distinguished, namely
exclusive and shared locks. If an operation holds an exclusive lock on a

data item, no other operation can access this item. On the other hand
a shared lock allows other operations to obtain also shared locks on the
corresponding data item.

Concurrency control provides a serialization order to the transactions.

Serializable execution order of transactions has been widely accepted as a
correctness criteria in the database community. Informally the schedule
of executing a set of concurrent transactions T is correct if it is equiv-

alent to some serial order of the same set of transactions T . In other
words there must exist a sequence of the transactions Ti ∈ T such that

executed one after the other, they are executed in the same order than
when executed concurrently. If such a sequence of Ti ∈ T exists we say

that the concurrent execution of T is correct.

4.3.2 In Replicated DBSs

An important issue in RDBS is preserving the consistency and integrity
not only on each centralized DBS, but also over the whole DDBS. Since

updates are performed on every node, we need to guarantee that all nodes
obey the same serialization order. Interleaved execution of transactions

on a RDBS therefore has to behave equivalently to a serial execution of
those transactions on a one-copy DBS. This is called a one-copy serial-

izable [BHG87] execution.
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4.4 A Serialization Protocol

4.4.1 Introduction

In this project we will focus on one particular serialization protocol pro-

posed in [AAE96]. This protocol relies on an atomic broadcast commu-
nication primitive with the properties specified in subsections 3.3 and 3.5

(RB1-3 and TO4) in order to guarantee the correctness of the replicated
database. It exhibits the advantage of reading one copy and writing all-

copies of replicated objects.

The considered database is supposed to be fully replicated [AAE96],

which means that every site stores a copy of all objects in the database.
In addition the serialization protocol makes the assumption of a crash-

failure (see section 3.1) environment.

4.4.2 Algorithm

A transaction, Ti, on node nA executes as follows:

1. A read operation ri[x] is executed locally by obtaining a read lock

on x.

2. A write operation wi[y] is deferred until Ti is ready to commit.

3. Before Ti commits, it broadcasts its deferred writes wi[x1, ..., xn] to
all sites:

(a) On receiving wi[x1, ..., xn], the lock manager on node n attempts
to grant the write locks to Ti. If there are any transactions Tj

with read locks on object xi, the lock manager checks if Tj had
already broadcast a commit. If the commit is indeed pending,

the lock manager blocks until the commit is delivered. Otherwise
Tj is aborted and Ti is granted the write lock.

(b) After obtaining atomically all its write locks at S, the write

operations at S are initiated and performed.
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Once all the writes are executed successfully, the node that initiated
Ti broadcasts Ti’s commit. All node execute Ti’s commit operation

only after its delivery.

A formal proof of correctness of this protocol is given in [AAE96].

4.4.3 Properties

In a RDBS using this serialization protocol, a transaction can be in 5
different states, displayed in figure 4.3. It is either running, waiting for a

lock, committed, being aborted or aborted. A transaction is committed if
it terminated normally at all the nodes in the DBS and all the changes

to the database are permanent.

Waiting

Aborted

Commited

Running

Being Aborted

a

b

c d

e
f

g

h

Figure 4.3: States of a Transaction

A transaction is in the being aborted state if it terminated anomalously.
All its effects to the database are undone while it is in this state. Then

it changes to the aborted state (edge g).

The committed state is a terminal state, which means that a transaction

will not leave it again. The other 4 states are transitional states (we
suppose that an aborted transaction will be restarted again). Three

actions might occur while a transaction Ti is in the waiting state:
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• either a lock an operation of Ti is waiting for is released by another
transaction Tj(j �= i) or the write-set of Ti has arrived at the node.

The transaction Ti changes to the running state. (edge b)

• the commit message Ti has been waiting for has arrived and the

transaction Ti commits. (edge e)

• the transaction has to be aborted because its execution interleaved
with another transaction’s execution. (edge d)

A transaction in the running state will become waiting if it is either

blocked on a lock request (edge a), totally executed and waiting for the
transaction’s commit or abort from the initiating node or waiting for

the write-set. In a DDBS a running transaction can be aborted when a
conflict arises on another node of the system. It passes therefore directly

from the running state to the being aborted state. The same reasoning
applies for the action c. A database node is still processing some write

operation of the transaction Ti when it already receives the commit mes-
sage for Ti.

In our implementation, a transaction T is committed on the initiating
node as soon as all its operations are done. The locks are released and

the lock manager sends the commit request for T to the transaction man-
ager. The transaction manager then broadcasts T ’s commit to all nodes
in the system. The user can be notified about T ’s commit only after

the commit of T has been broadcast and has been received on the initial
node again. Otherwise the user might get a incorrect response of the sys-

tem. This situation arises, when the node crashes after having notified
the user of T ’s commit, but before having broadcast the commit to all

nodes. After a certain time the other nodes will then abort T , leaving
the user with a committed transaction that, in fact, has been aborted in

the DBS.
The advantage of this approach is that the locks hold by T on the initi-
ating node are released as soon as possible.

The cost of one transaction execution is at least equal to the cost of two

atomic broadcast operations. The first one is the transaction’s write-
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set that is broadcast to all nodes whereas the second atomic broadcast
incurs from the global commit message. Every abort of a transaction

T potentially increases the cost by two atomic broadcasts. If the abort
of T occurs after node ni has broadcast T ’s write-set, the transaction
must be restarted leading to at least two more broadcasts. This implies

a significantly higher transaction execution cost.
An advantage of this protocol is that deadlocks between write operations

of different transactions do not occur. No global deadlock detection al-
gorithm is therefore needed.

On the other hand conflicts between read and write operations are de-
tected locally for all transactions. In such a case always the read op-

erations are aborted. Since reads are done locally, the cost of redoing
them do in general not include the cost of an atomic broadcast. These
additional cost occur only if the write-set has already been sent, as seen

before.

When the write-set of a transaction T arrives, the locks for these write
operations are granted using strict two-phase locking [San92, BHG87].

All the locks are acquired in a single atomic step and are released only
after the reception of a commit or abort message.

In the current project we use the serialization protocol in combination

with the atomic broadcast protocol presented in the previous chapter.
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Chapter 5

CSIM17

This chapter discusses some of the most important features of the simu-
lation package CSIM. Since the current work is implemented using this

package, CSIM’s properties have influenced the conception of the sim-
ulator to a certain degree. It is therefore necessary to know the basic

concepts of CSIM in order to understand certain design choices.
We start with a presentation of CSIM in the first section, thereby con-

sidering all the primitives which are important for this project. In the
second part we look at the way a simulation can be started.

5.1 The CSIM Library

CSIM is a process-oriented discrete-event simulation package, copyrighted

by Microelectronics and Computer Technology, Inc. 1985-1994. Its ver-
sion CSIM17 can be used with both C and C++ code. It provides a

library of routines that allows to build simulation tools very efficiently.
A CSIM program is based on a collection of processes that interact with
each other. The CSIM library provides all the necessary synchronization

facilities. In addition, a set of tools for performance measurements is
already implemented and can be switched on.

Another important feature of CSIM is the notion of simulated time. The
simulation can let time pass artificially. This allows the precise modeling

of real systems.
In the following subsections CSIM’s most important features for this

project are briefly discussed.
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5.1.1 Process

Processes are the active entities in a CSIM model. They seem to be

executed in parallel, even though their code is processed sequentially on
a single processor. Each process has its own runtime environment and
access to global data. In addition every process can be assigned a prior-

ity.
Because the processes are processed sequentially it never occurs that two

processes access simultaneously one variable. In this sense every process
behaves like a coroutine. Using this knowledge would considerably sim-

plify the simulation tool. However it would not allow to adapt the same
conception for a real system. This is the reason why the RDBS simulator
in general has been designed as if it would be running on a real system

with multiple sites. There are certain shared simulation parameters that
are not protected by any semaphores or locks. They are specific to the

simulation, however, and would not enter into consideration in a real
system. This and efficiency reasons were responsible for not protecting

these shared variables.

In all graphics a process p will be represented as shown in figure 5.1.

p

Figure 5.1: Representation of process p

5.1.2 Mailbox

Mailboxes are entities used for synchronization between two processes.

A process sends a message m to process p by dropping m into p’s mail-
box. Process p might be blocked while waiting on a message to arrive in

its mailbox. When m finally arrives, p is resumed and continues its exe-
cution. A mailbox therefore models a communication with non-blocking

send and blocking receive.
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A timed receive operation is also available. After a certain time specified
as argument the blocked process resumes its activities.

In the following chapters a mailbox mb will be represented in graphs like:

mb

Figure 5.2: Representation of mailbox mb

A problem with mailboxes arises from the fact that a process is suspended
when accessing an empty mailbox. Only when a message is dropped in

the corresponding mailbox, the blocked process is activated and contin-
ues execution. Suppose that a process p receives messages from several
mailboxes. If p checks periodically the mailboxes, it blocks on every

empty mailbox. During the time p is suspended the messages in the
other mailboxes can not be treated. This is clearly a situation which can

not be accepted. A first solution provides the CSIM primitive msg cnt,
which allows to check the number of messages in a mailbox, without the

risk of getting suspended. However, periodically check the mailboxes for
their number of messages consumes a considerable amount of real CPU

time, especially when the simulation is voluminous. Tests have shown
that this solution is not applicable to this project. We will discuss a
better solution in the following subsection.

5.1.3 Event

Events are other means for synchronization. They can be set (signaled)
or cleared. A process waits on a cleared event and can resume processing
as soon as the event is set (signaled). CSIM offers the possibility to test

simultaneously a set of events. The signaled event with the lowest index
is then selected first.

Using events in combination with mailboxes provides a neat solution to
the problem of synchronizing access to multiple mailboxes. Every time a

message is dropped in a mailbox, the corresponding event in the event-
set is signaled and the process retrieves the messages from this mailbox.

If all the mailboxes are empty, the process is suspended while waiting on

Stefan Pleisch



38 5.2 Starting a Simulation

any of the events to be signaled. On one hand this consumes much less
CPU time than periodically checking the message count, on the other

hand the process can handle messages dropped in any mailbox.

5.1.4 Facility

A facility can be used to model a resource, for example a CPU, accessed
by a process. It basically consists of a critical section, where only one

process can be at a time. Processes are queued before accessing the
facility in the order of process priority and of arrival time. In addition

some basic primitives for performance measurements are provided by
CSIM when using a facility. In particular, the facility utilization rate

and the maximal, mean or minimal length of the facility’s waiting queue
can be retrieved.

5.1.5 Table

A table can be used to collect data and produce some statistics. In this
context a table contains a statistical summary of all values which have
been recorded.

5.2 Starting a Simulation

The CSIM library provides a special primitive called sim. This primitive

can be used to start all the processes. By calling sim from the function
main, command line parameters can be considered by the simulation.

Simulation time can pass by two statements. First, when a process uses
a facility for a certain time. Second, a process can call a hold statement.

It is then suspended for the time specified as argument to this statement.
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Chapter 6

Conception Of The Replicated
Database System Simulator

This chapter discusses the conception of the replicated database system

(RDBS) simulation tool. The implementation will be based on the sim-
ulation package CSIM presented in chapter 5.

After defining the basic assumptions about the considered database, we
focus on general issues of the architecture of the simulation tool. Whereas

section 6.1 considers only the architecture on one node, we extent the
simulation tool to model the whole RDBS on N nodes in section 6.2. We
then proceed with a more detailed explanation of every component in this

architecture. We begin with the simulation of the network in section 6.3
and then discuss the communication module in section 6.4. In a further

step we proceed to the conception of the database system, beginning
with the transaction manager followed by the interface adapter, the lock

manager, the data manager, and the physical database.

6.1 Architecture on one Node

This section focuses on the architecture of the replicated database simula-

tor on one node. The next section will then consider the entire simulator,
i.e. the generalization to N nodes.

The architecture of the RDBS simulator has to fulfill the following con-

straints:
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1. be the most adequate for the implementation of the selected serial-
ization protocol

2. allow the exchange of one or more modules of the simulation tool
with modules supporting other serialization or broadcast protocols

The second constraint addresses the fact that this simulation tool might
be used for performance measures of various serialization protocols. It
is therefore important that parts of the simulator can quite easily be

replaced. However the more general an architecture is, the less efficient
it might become for a particular protocol. In order to comply with both

constraints we decided to use an object-oriented approach to this prob-
lem. By specifying a well-defined interface for every part of the system,

the implementation of a part can be replaced with another implementa-
tion, provided that the interfaces are equivalent.

This considerations lead to the architecture depicted in figure 6.1.

Each white box in figure 6.1 specifies a component of the simulation
tool. In order to simplify the representation, the communication module
groups some other components together. It will be divided up into these

components later.
While the communication module is responsible for the implementation

of the atomic broadcast, the transaction manager starts the execution of
the transactions and decides whether the operations are executed on the

local node (read operations) or broadcast to all nodes (write operations).
The interface adapter extracts the content of the broadcast messages and

hands it over to the lock manager. The lock manager schedules the ex-
ecution of the operations by the data managers. Each data manager
accesses its own database.

Due to the object-oriented approach, every component is modeled by an
object. These objects all export the primitive loop. When the simula-

tion is started, a process initializes an object and calls its loop function.
As the name of the function indicates, loop basically contains an infinite

loop. In this sense the component gets its own thread of control. In the
further discussion when we refer to components as processes we implic-

itly mean the objects, whose primitive loop has been called by a process.
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Figure 6.1: Architecture of the RDBS simulator on one node
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Processes communicate by exchanging messages. The message exchange

takes place at well defined interfaces, also called mailboxes, by simple
send and receive primitives.

The name conventions for the mailboxes are the following. A mailbox
which ends with ’in’ is a receiving mailbox of the component it belongs
to, whereas ’out’ indicates a sending mailbox into which the output of

the corresponding component is dropped. The names of the communi-
cation module’s mailboxes are slightly different. U Comm, where the U
stands for upper, is the receiving mailbox, while the mailbox U ABcast
is the output mailbox of the communication module.

The ellipsoids in figure 6.1 specify the locations where simulation time

passes. This happens for every disk access, for the CPU of the data
managers, for the CPU used for sending and receiving messages and for

the network, which models the delivery time of a message.

Most of the components of the RDBS simulation tool have been designed
in order to run also on a real distributed system. Exceptions are most of

the parameters used for performance measurements and the simulation
of the network, which would not be needed in a real system anyway.

6.2 General Architecture of the RDBS Simulator

While the previous section dealt with architecture issues on one database

node, this section provides a more general view of the simulator.

Figure 6.1 presents the components of the database simulator on one

node. This architecture is the same for all nodes in the system. Since
the simulation tool will be realized on one machine by using different

processes, we can only speak of virtual nodes in this context. This vir-
tual nodes simulate the database nodes in real RDBSs. In the following

the term node will be used instead of virtual node.
In order to distinguish the components of one node from the others, ev-

ery node is identified with a unique node ID. Upon initialization of the
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system, every component gets the ID of its node. It then only communi-
cates with components having the same node identifier. An exception is

the network, which exists in a unique version and is accessed by all the
nodes. Special treatment is also required for the data manager processes.
Since every node has multiple data manager processes, they need to be

identified differently. Section 8.7 addresses this subject.

6.3 Network

The nodes in a RDBS can communicate with each other through a net-
work, which links all the nodes together. This project focuses on one

particular type of network presented in subsection 6.3.1. Subsection 6.3.2
then explains how such a network could be simulated.

6.3.1 The Ethernet and the TCP/IP Protocol Family

As already discussed in section 3 the protocol for the atomic broadcast
requires reliable communication channels. We therefore distinguish be-

tween the model of the network and the model of the communication
protocol used on this network.

In a first step we now consider only the physical network. We decided
to model the local area network (LAN) called Ethernet. It consists of a

central communication bus. Every node is linked to this bus and inspects
the messages in transit on the bus. The access to the bus is controlled in

the following way: when a node is emitting a message, it checks whether
there is a collision with another message. If two messages are emitted at
about the same time, then both nodes detect the collision, stop emission,

wait for an arbitrary delay and retry to send the message. Otherwise the
node continues to send its message, which can then be received by all

the nodes it was sent to.

The Ethernet itself, however, does not provide reliable communication,
because it is not guaranteed that processes read all messages. For in-

stance, they could discard messages from the internal buffer because of
lack of buffer space. An additional communication protocol is needed to

ensure this property. The only way to get these reliable channels on an
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Ethernet is to use the TCP protocol. TCP defines the notion of virtual
channels between two nodes and provides error checking and flow control

on this channels.

These assumptions on the underlying network define the parameters of
our simulation tool.

6.3.2 Network Model

As we have seen in the previous section we need to simulate the facilities
provided by TCP running on an Ethernet. Our network layer therefore

must define a primitive which exhibits reliable communication between
two nodes, thereby at the same time respecting the access constraints to
the communication bus.

The network is modeled by an object, which simply receives messages
from the communication modules and sends them to the destination

nodes. It does not know anything about the nature of the messages,
except their destination node.

Every message is delayed for an exponentially distributed delay in order
to model the time a message needs to be delivered from the sender to

the receiver. In addition, before sending a message, the sending process
waits for an exponentially distributed delay. This delay simulates the

time needed to pack a message, to access the network and to emit the
message. The necessary flow control is also taken into account in this
parameter.

The receiving node also incurs a certain delay for error checking and flow
control. This delay is also exponentially distributed.

Evidently there exists more precise simulations of real networks. One cri-
tique of the current simulation is that it does not precisely simulate what

happens when the network is busy. In a real Ethernet the communica-
tion process waits and then retries after some time. The communication

module tries to model this behavior with an exponentially distributed
delay before sending the message.

The current model could also be extended to simulate the behavior of
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the communication on a wide area network (WAN). A major difference
to the current system would then be that multiple messages might be

sent at the same time, due to efficient routing.
Another extension would be to integrate a way to delay messages for
different time intervals.

6.4 Communication Module

The purpose of the communication module is to provide an atomic broad-

cast operation to the upper layers of the replicated database system,
thereby using the network defined in the previous section. This includes

on one hand the reliable broadcast communication primitive and on the
other hand an ordered delivery of the messages respecting the all-or-

nothing property. For the purpose of this project we have selected the
atomic broadcast suggested in [ChT93] and explained in chapter 3. First

subsection 6.4.1 looks at the general architecture of the communication
module, before we proceed with discussing the conception of every layer
in detail.

6.4.1 Architecture

The communication module is divided into 2 layers, the communication

layer and the ABcast layer. The former provides the facilities for the
reliable broadcast, whereas the latter contains the consensus algorithm

and the atomic broadcast communication primitive.

In general, a major challenge for the architecture of any communica-
tion protocol stack is that each layer should be able to send and receive

messages to and from its neighbor layers at any time. Since this ideal
situation hardly ever occurs in a real system, due to resource and time

constraints, the time the system is ready for sending and receiving mes-
sages should be as great as possible. This means that the system should

never block when receiving a message. A possible solution for this prob-
lem is to implement every layer as a process. Each process disposes of

two mailboxes, one for the communication with the upper layer and the
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ABcast Layer

Consensus

L_Comm

U_Comm

U_ABcast

L_ABcast

Communication Layer

r-broadcast

a-broadcast a-deliver

send, send-to-all

deliver

r-broadcast r-deliver

Figure 6.2: Architecture of the Communication Module

other for communicating with the lower layer.

The atomic broadcast is described by two processes, one for atomically
broadcasting messages and one for receiving messages from the commu-

nication layer. The need for two processes incurs from the fact that the
ABcast layer blocks when waiting for some consensus messages. There-
fore it is necessary to have two independent processes for the sending and

receiving of messages. However, since the sending process does nothing
else than forwarding every message from the upper layer to the commu-

nication layer, it has been merged with the communication layer. This
allows to save process-switches and therefore to increase the efficiency of

the communication module.

Figure 6.2 shows the architecture of the communication module. Every

message that has to be atomically broadcast is dropped into the mailbox
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U Comm, where it is retrieved by the communication layer and sent via
r-broadcast over the network using the TCP simulation. The network

drops the messages into the mailbox L Comm of the receiving nodes.
The communication layer then r-delivers them to the mailbox L ABcast.
Finally the messages are a-delivered in mailbox U ABcast according to

the properties of the atomic broadcast. The ABcast layer uses commu-
nication layer primitives for the consensus. The user interface of the

communication module is defined by the input mailbox U Comm as well
as the output mailbox API out.

Note that the consensus is part of the ABcast layer. Since it is tightly
linked to the atomic broadcast, this architecture is reasonable.

6.4.2 Communication Layer

This layer basically implements five communication primitives: r-broadcast

and r-deliver, send, send-to-all and deliver. R-broadcast and r-deliver de-
fine the reliable broadcast, send, send-to-all and deliver are used by the

ABcast layer for additional messages needed to achieve the consensus.
Send sends a point-to-point message, send-to-all sends a message to all

nodes and deliver delivers the message to the upper layer.

Conceptually, the communication layer is implemented as follows:

- the upper layer has called a communication primitive (dropped a
message in U Comm):

for every message currently in mailbox U$\_$Comm do

if message type is ’r-broadcast’

for every node in the DBS

send message to it

end for;

else if message type is ’send’

send message to the destination node

else if message type is ’send-to-all’
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for every node in the DBS

send message to it

end for;

end if;

end for;

wait for a new call to occur;

- the network has dropped a message in L Comm:

for every message m in L$\_$Comm do

if message m is a ’r-broadcast’ message

if m received for the first time

if n was not initiator of m

for every node in the DBS

send m to it;

end for;

end if;

drop m in L$\_$ABcast

end if;

else if message type is ’send’ or ’send-to-all’

drop the message in L$\_$ABcast

end if;

end for;

wait for a new event to occur;

6.4.3 ABcast Layer

The ABcast layer implements the atomic broadcast protocol presented
in chapter 3. The primitive a-deliver basically defines the behavior of

this layer. The facilities of the ABcast layer are ensured by two objects.
The first object implements the consensus. Its principal primitive is the

function propose which allows to reach a consensus decision among all
correct nodes. The second object implements the reception part of the

atomic broadcast algorithm. It starts the consensus when necessary and,
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once the consensus has reached a decision on a group of messages, it a-
delivers this group to the upper layer in a deterministic order. Figure 6.3

illustrates the activities of the ABcast layer.

R-delivered
list is
empty

Start consensus 
with contents of
R-delivered as 

initial value

Wait for new
r-delivered messages

Deliver decided 
messages to
upper layer

Figure 6.3: Flow chart of activities of the ABcast layer

Both objects access the lower mailbox L ABcast. An adequate message
handling procedure guarantees the correct delivery of the messages to

one of the two processes.

For the realization of a-deliver it is suggested in [ChT93] to use two tasks
(see section 3.5). In the current architecture of the simulator, only one

task is assigned for this purpose. There are multiple reasons for this
architectural choice. First of all, since the two processes would access
shared variables, those variables would need to be protected. In par-

ticular, concurrent access to the R delivered list (see algorithm in figure
3.3) would have to be excluded with semaphores or some other synchro-

nization facility. Another drawback of the use of two processes is that
they would need two different ports (mailboxes) for their communication.

This implies that every consensus message needs to be tagged such that
the communication layer is able to deliver it to the correct mailbox. This

violates the layered architecture, because the lower layer needs knowledge
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about the type of messages (consensus messages or others) it delivers. In
order to avoid this problem, a third process could be introduced, which

would then charge itself with the task of delivering the messages to the
corresponding processes.
Since all the messages are sent over the same network, the only gain

we get from using two different tasks is the parallel processing of the
received messages. The time needed for message handling is very short,

however, and therefore neglected in the simulation.

6.5 Transaction Manager

The transaction manager (TM) is responsible for handling the execution

of the transactions. The transactions are supposed to have the charac-
teristics presented in section 4.2.

According to the serialization protocol discussed in section 4.4, read op-
erations are executed sequentially and only on the local node. Write

operations of a transaction, on the other hand, are all broadcast in one
message to all nodes in the system, once all read operations have been
performed.

A parameter, set by the user, determines how many transactions are

processed at the same time by the TM. At the start of the execution,
this amount of transactions is started. Then, only when a transaction

commits, a new one is started.

In addition, some mechanism has to be provided in order to distinguish

operations of an aborted transaction from the operations that are sent
when the transaction is restarted. There are several approaches possi-

ble. For instance every time a transaction is restarted, a new number is
assigned to this transaction. Another possibility is the introduction of

round numbers. This round number is increased every time a transaction
is aborted.
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Figure 6.4 illustrates the activities of the transaction manager. For each
read operation of a transaction the TM sends a read request to the

lock manager. Once all reads are executed, the transaction’s write-set is
broadcast by sending it to the communication module.

The replies from the lock manager can either be commits or aborts. If a
commit has been received, it is broadcast to all other nodes. Then the
transaction is removed from the list of transactions and a new one is read

from the input file.
If a transaction has been aborted then different measures have to be

taken according to the state the transaction processing is in:

• if the transaction’s write-set has already been broadcast, then an
abort message for this transaction is also broadcast. In addition,
the transaction’s round number is incremented and the transaction

is restarted by sending the first read operation again to the local
lock manager. If the transaction had contained no read operations,

it would not have been aborted.

• if the transaction’s write-set has not yet been broadcast, increment
the round number of the transaction. Then restart the transaction

processing by sending the first read operation to the local lock man-
ager again.

The transaction manager will never receive an abort for the write-set of

a transaction. This is due to the fact that only read operations of local
transactions are aborted. Once the write-set has acquired its locks on its
initiating node and the transaction has not been aborted before, it will

commit.

6.6 Interface Adaptor

The only purpose of this layer is to receive the a-delivered messages from

the communication module and to convert them to another object which
is then understood by the transaction manager. A-delivered messages

can be write-sets, commits or aborts of transactions.
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6.7 Lock Manager

The lock manager (LM) is responsible for the scheduling of the operation
execution. It decides whether a transaction has to be aborted or is ready

to commit. In addition, it distributes the operations to the data manager
processes.

First the general structure of the LM is presented. Then a subsection is
devoted for the discussion of every object in this component.

6.7.1 General Structure

The lock manager basically consists of three objects: lock manager ob-

ject, lock table and transaction handler (see figure 6.5). The lock table
is used to manage the lock requests while the transaction handler stores

all transactions whose operations are in process. These two objects are
accessed by the lock manager object.

6.7.2 Transaction Handler

Implemented as an object the transaction handler provides the necessary

primitives for keeping track of the transactions currently in process in
the LM. In addition it can be queried about the status of a transaction,

i.e. whether a transaction already committed or aborted.

6.7.3 Lock Table

The lock table is implemented as a hash table of size n. Each entry in
the hash table points to a list of lock entries. Each lock entry is iden-

tified by the address of the data item whose lock requests it handles.
It contains two lists, one linking all operations that got a lock granted

and the other one linking all waiting operations. If these two lists are
empty, the lock entry is removed. Figure 6.6 illustrates such a lock table.

Table 6.1 shows when a lock on a certain data item can be granted.

A lock is granted when a ’Y’ stands at the corresponding position in
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the table. It cannot be granted with a ’N’. The columns contain the
locks currently granted while the rows show the type of incoming lock

requests. The label Done indicates that the execution of an operation has
been finished. Write-set arrived refers to the write-set of the transaction
whose operation currently holds a lock on the data item.

A read lock is a shared lock, it can be granted to multiple read operations
simultaneously. On the other hand, write locks are exclusive locks. There

can only be one write lock at a time on a data item.

Read Lock Write Lock
Request for a Done Not Done

Write-set arrived !(Write-set arrived)
Read Lock Y Y Y N
Write Lock N Y N N

Table 6.1: Which lock can be granted at which moment

When a read lock is requested for a data item x that holds already a

shared lock, it can be granted. If this data item holds an exclusive lock,
however, the lock request has to wait. The situation is more complicated

when an exclusive lock is requested by operation wj[x]. If the correspond-
ing data item x already holds an exclusive lock, the new lock request has

to wait. Otherwise suppose that a read operation ri[x](i �= j) holds a
shared lock on x. It depends now on the status of the transaction Ti

whether the lock can be granted. We distinguish two cases:

• The write-set of the transaction Ti has arrived before the write-
set of Tj. Therefore all the conflicting write operations of Ti will
be processed before the ones of Tj and Ti will be before Tj in the

serialization order. It is therefore not necessary to abort Ti. As
soon as all the operations of Ti are processed and have released their

locks, wj[x] will be granted the exclusive lock on x (provided it was
not aborted in the meantime and it is the next operation waiting for

the lock).

• The write-set of Ti is still pending. In this case no serial order of the

corresponding transactions exists and Ti has to be aborted. Since
no write operations of Ti are concerned, the lock manager does not

have to undo updates to the database. It has to wait for the data
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manager to finish processing of ri[x] though. Provided that Tj has
not been aborted in the meantime, wj[x] gets the exclusive lock on

x as soon as the shared lock has been released and if it is the next
operation waiting for the lock.

An improvement of the lock handling can be achieved when waiting write

locks overtake waiting read locks. Suppose that an exclusive lock is hold
on data item x and that read operation ri[x] is waiting. When the write

operation wj[x] tries to get an exclusive lock on x, it also has to wait.
When the current exclusive lock on x is released, ri[x] gets its shared lock.

However, since a write operation is also waiting for the lock, transaction
Ti gets aborted. This is clearly not a satisfactory situation. In order
to avoid Ti’s abort, we allow that wj[x] overtakes ri[x]. Then the write

operation is executed before the read operation and there is no need for
aborting Ti (at least not in this isolated view). The disadvantage of this

approach is, however, that read operations can be delayed for a very long
time.

6.7.4 Lock Manager

The entire concurrency control mechanism is controlled by the lock man-
ager. We will describe the behavior of the lock manager by the actions

that take place when communicating with other components.

Synchronization With The Data Managers

For the purpose of this discussion we abstract from the different data
manager processes and consider them as one logical object, called data

manager.

Every time a processed operation is received from the DM, the lock

manager has to check first whether the transaction has been aborted in
the meantime. If this is the case write operations have to be undone

while read operations simply release their locks.

A flow chart of the actions to be taken when an operation commit is

received from a data manager process are depicted in figure 6.7.
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If the transaction T has not been aborted yet, then the operation is
marked as done. If its write-set has already arrived, we check if all the

operations of the current transaction are done now. In the other case
the operation, since it has to be a read, is committed to the transaction
manager. When all the operations are done, the lock manager has to

distinguish locally initiated transactions from remote ones. The former
will namely be committed to the TM, while the latter still might have to

wait for their commit to be broadcast by their initiating nodes. However,
if it already arrived, the locks of T are released and T is removed from

the transaction list. Committed transactions delete all their locks and
are removed from the transaction handler.

If T has been aborted in the meantime, the lock hold by the operation
is released. For write operations, the updates are undone.

The lock manager has the control over the execution of the operations.
It keeps track of all currently executable operations. Every time a data
manager potentially gets available to process an operation, it is handed

over the next executable operation. In particular, this is the case when
the lock manager gets back a processed operation from one of the data

manager processes. Also when the lock manager gets a write-set or a
single read operation from another process, it tries to execute the next

operation. Only if a data manager is available and some operation is
executable, it will succeed.

Synchronization With The Interface Adaptor

The actions on receiving a request from the interface adaptor are shown
in figure 6.8.

When the write-set of transaction T is received, the LM first checks,

whether the transaction T is already in the transaction list. If it is
not, the write locks for T are atomically requested. Then all transac-

tions, whose operations conflict with T ’s operations, are aborted and T
is stored in the transaction list.

On the other hand, if T is already in the transaction list, the LM checks
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whether T has been aborted in the meantime. If the transaction has
been aborted, the write-set is ignored. Otherwise the write locks for T

are requested, the transactions of conflicting operations aborted and T
stored in the transaction list.

Finally the lock manager executes the next operation, if one is executable

and a data manager process is available.

Synchronization With The Transaction Manager

The lock manager receives read requests of transaction T from the trans-
action manager. It requests a shared lock for the read operation and adds

a new entry for T to the transaction list. Then, if a data manager process
is available and an operation is executable, this operation is processed.

Coordinating Interactions

Whereas the previous subsubsections discussed each interaction with an-
other components separately, we focus now on the coordination of these

interactions.

The lock manager schedules requests of other components by priority.

Highest priority have messages from the interface adaptor. Therefore,
write-sets will request their locks before read operations. This again
avoids potential conflicts. In addition the lock manager can react quickly

on an eventual abort message, before wasting any more resources onto
processing the operations of the aborted transaction. The second highest

priority have the read requests. The lowest priority is assigned to events
indicating the arrival of a processed operation from a DM processes.

Whether another scheduling would be better in terms of performance
has not been tested.
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6.8 Data Manager

This section first explains the conception of a data manager process. In a
second subsection we discuss the simulation parameters selected in order

to model the behavior of real data managers.

6.8.1 Behavior of a Data Manager

The data manager (DM) consists of several processes, each having access

to the entire database. Every data manager accepts requests to execute
operations from the lock manager. Depending on whether it is a read or

a write operations, the appropriate actions are taken. Write operations
access the corresponding data item and assign some random value to it.

Read operations get the value of their data item. After having processed
an operation, the data manager returns the response to the lock manager.

6.8.2 Simulation Parameters

A data manager process contains three simulation parameters: the disk
access time, the CPU time and the disk access rate. These three param-

eters will be explained in the following.

Disk Access Time

In order to compute the disk access time, we need the following param-

eters [ElN94]:

1. Seek time (Tseek): Specifies the time needed to position the read/write
head on the correct track of the disk. We assume in this context that

our database is stored on movable-head disks. This time varies ac-
cording to the distance between the current and the new track on

the disk. The typical range of average seek time is 10 to 60 ms.

2. Rotational delay (Trot): This parameter specifies the time needed
for the block on the track to rotate under the write head. This

depends on the rotational speed of the disk as well as on the length
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of the track. Elmasri/Navathe [ElN94] propose a value of Trot = 8.33
msec.

3. Block transfer time (Tbt): Time to read a block of data from the

disk. This parameter depends on the block size and the rotational
speed.

According to [ElN94] the disk access time is computed in the following
way:

Tda = Tseek + Trot + Tbt

Obviously this values just provide an approximation of the real situation.

However they are sufficient to get a general impression on the cost of disk
accesses in our database system.

CPU Time

This parameter specifies the time needed to access the data item in main

memory and to execute the update or the read operation.

Disk Access Rate

The current version of the RDBS simulation tool does not simulate the
interaction between main memory and disk. Since in a real DBS a data

item does not have to be fetched from the disk if it is already in main
memory, not every access to it incurs the cost of a disk access. The

rate at which the disk has to be accessed is called disk access rate. This
parameter allows to model the interaction between the main memory

and the disk in a real DBS to some extent. The data manager process
accesses the disk at the rate specified with this parameter.

6.9 Physical Database

The databases on each node are simulated as arrays of integers. Since

we just want to model the accesses on databases, this is sufficient for our
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purposes.
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Chapter 7

Performance Measurements

The performance measurements in this chapter give some indications
about the behavior of a real RDBS.

The simulator has been tested when working in normal conditions. This
means that node failures are not simulated.

We perform the testing in two steps: First we only measure the perfor-
mance of the atomic broadcast primitive (section 7.1). In this case it is

necessary to add additional features to the system in order to retrieve
the corresponding measurements. Then we try to analyze the influence

of the atomic broadcast on the performance of the RDBS and vice-versa.
The perception of eventual bottlenecks in this system is also a goal in
this second step.

7.1 Atomic Broadcast

We first build an environment which allows to measure the performance

of the communication module, i.e. of the atomic broadcast algorithm.
Then this section presents the values that are assigned to the different

simulation parameters. These values can be specified in an input file.
Subsection 7.1.3 finally illustrates the results of the atomic broadcast’s

simulation and gives a brief discussion of these results.
We will refer to the atomic broadcast simply as broadcast in the follow-

ing.
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7.1.1 Additional Features for Testing

Since we want to measure the performance of the broadcast isolated
from the other components of the RDBS, some additional features have

to be added to the system. In particular, a sending and a receiving
process on every node, called sender and receiver, now interface with
the communication module. The sender invokes the broadcasts at a

certain rate, whereas the receiver receives the messages and discards
them. We call this broadcast simulator simply simulator, since it can

not be mixed up with the RDBS simulator in this section. Figure 7.1
shows the architecture of this testing environment.

Communication
Module

Sender Receiver

U_Comm API_out

 M:     P reads from mailbox M

M:     P writes into mailbox MP

P

Figure 7.1: Architecture of the testing environment

Since the senders do not all start at the same time, they generally do
not execute their statements simultaneously.

7.1.2 Simulation Parameters

From chapter 6 we know that the atomic broadcast simulation tool con-
sumes simulated time at 3 places:

• sim Message Delivery Time: message delivery time, which is the time

needed by the message to travel from the sender node ni to the
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receiving node nj. It is set to 0.1ms.

• sim Send Preparation Time: CPU time used by the communication

layer for packing and sending a message m and for executing the
necessary flow control. Its value is 0.2ms.

• sim Receive Preparation Time: CPU time needed to retrieve m from
the network, compute the checksum and provide flow control. For

our simulation measurements it is set to the same value as sim Send Preparation Time

The values for sim Network Delivery Delay, sim Send Preparation Time and
sim Receive Prepara- tion Time have been taken from [Str95] and seem
reasonable in our context.

The rate with which the sender sends messages can be specified by using
two parameters: sim Msg Delay and sim Delay Var. The sender of every

node broadcasts a message every t ms, where t is uniformally distributed
in the interval [sim Msg Delay - ∆t, sim Msg Delay + ∆t]. ∆t is the

sim Msg Delay multiplied with sim Delay Var. We will call the average
size of the interval 0 to t, during which one broadcast is performed mes-
sage sending delay.

For the following tests, the other simulation parameters have the follow-
ing values:

sim Number Of Nodes variable
sim Simulation Time 50000.0
sim Timeout Value variable
sim Network Delivery Delay 0.1
sim Send Preparation Time 0.2
sim Receive Preparation Time 0.2
sim Msg Delay variable
sim Delay Var 0.1

Table 7.1: Simulation parameter values for the atomic broadcast

A value called variable specifies that these parameters have been changed

during the tests. Especially it might be necessary to adapt the timeout
value in the consensus (sim Timeout Value), depending on the number of

nodes in the system and the message sending delay.
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We simulate the behavior of the system during 50000ms. Measurements
are only extracted after a certain time (500ms), allowing the system to

pass from the startup phase into normal working performance. This
prevents that the startup phase of the simulation influences the mea-
surements.

7.1.3 Discussion of the Simulation Results

The measurements presented are generally averages from sets of 5 sim-

ulation runs. It was not possible to run more tests because of time
constraints. However, our results still allow to derive some conclusions.

Tests have shown that the broadcast algorithm runs only for a limited
number of nodes. If the system contains too many nodes and the broad-
cast rate is too high, the system does not deliver any messages at all.

This is due to message contention in the network. We therefore had to
adapt the simulation domain to a number of nodes between 2 and 15 in

order to get reasonable results. In addition the message sending delay
also had to be selected in order to obtain a reasonable behavior of the

system. It varies in the interval from 100ms to 5000ms.

Figure 7.2 illustrates the results of a first set of simulation results re-
specting these constraints. It represents the message response time of

the atomic broadcast primitive depending on the message sending delay.
The response time of a message m thereby specifies the time from broad-

casting m until m’s delivery to the layer on top of the communication
module. The values displayed in the graphs are average values.

Note that no messages are delivered in a system with 10 or 15 nodes at
a message sending delay of 100ms. The broadcast algorithm is not able

to handle the broadcasts of systems with such a number of nodes. This
is the reason why the corresponding graphs start at a message sending

delay of 500ms.

The graph for 15 nodes shows the general behavior of the simulator in

terms of message response time. For a low message sending delay, the
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Figure 7.2: Average response time of atomic broadcast on TCP

response time is high. As already mentioned, this is due to network
contention. On the other hand the response time also increases for mes-

sage sending delays greater than a certain threshold. This time, however,
there is a different reason to this behavior. Since two broadcasts executed

on the same node are separated by a considerable delay, the consensus
occurs over a small set of messages. This leads to a higher average re-

sponse time. Table 7.2 allows to verify that the number of messages
delivered per decision made by the consensus actually decreases with
increasing message sending delay. The average number of messages de-

livered together can be retrieved from the 9th column.
This table further displays the utilization of the network and the uti-

lization of the CPU for sending and receiving messages. The 6th column
shows the average utilization of this CPU while the next column indi-

cates the utilization on node 1. Note that the CPU utilization on node
1 is slightly higher. We will explain this behavior in the following sub-

section. The final two columns in the table show the average number of
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messages sent per node and the average number of messages a-delivered
per node.

The same behavior as for the system with 15 nodes is also illustrated by
the graphs for systems of 6,8 and 10 nodes. A system with 4 nodes would
probably behave in the same way for message sending delays less than

100ms. However, these tests have not been performed yet. The result
tables for these configurations are depicted in appendix A.

It is reasonable to suspect that the broadcast protocol used in this im-
plementation has a certain bandwidth in message sending delays, where

it runs in an optimal configuration. Outside this bandwidth, its perfor-
mance decreases considerably.
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500 26.3 760.6 283.6 0.9738 0.255 0.2828 14.8 4.6108 1505.2 1497
1000 18.7 934.9 163.9 0.756 0.1964 0.2382 15 1.639 757.2 755.8
1500 19.1 1139.9 149.3 0.5366 0.1396 0.1724 12 1.4612 508 507.2
2000 17.8 1548.9 155.8 0.4216 0.1098 0.1356 11.4 1.3298 380.6 380.4
5000 20.0 3343.6 192.9 0.1906 0.049 0.0616 6.4 1.1294 156.8 156

Table 7.2: Performance Measurements for 15 Nodes on TCP

We now consider the network load for the same set of simulations. The

results are depicted in figure 7.3. As expected, the net load decreases with
increasing message sending delay for a particular system. In addition,

the smaller the number of nodes in the system is, the less the network is
used. Note the degenerate case where the network load is equal to one.

In this situation, the network is used all the time.
It has to be the goal of a RDBS designer to let the system run in its

optimal bandwidth.
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Figure 7.3: Average buffer length in the network using TCP

7.1.4 Stability of the Atomic Broadcast

While performing the simulations we noted that for certain configura-
tions the system performance degenerates. This happens especially for

message sending delays less than 500ms.
As an example we represent a system with 6 nodes (figure 7.4). On the

x-axis we represent the elapsed simulation time, while the y-axis shows
the total number of consensi performed on one node up to this point.
In order to elucidate the results, the consensus time-out has been set to

20000ms. In one simulation run, node 1 is selected as initial coordinator
every time a consensus is started (according to the atomic broadcast al-

gorithm in figure 3.3. In the other case, the initial coordinator changes
every time the consensus is started. Since every node in the system still

needs to know the initial coordinator, the coordinator is selected as the
node, whose ID is equal to the consensus number modulo the number of

nodes.
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The resulting graphs show that for the first case the consensus does not

succeed to reach a decision between 25000ms and 45000ms. After this
period the other nodes suspect node 1 and a new coordinator is selected.

This coordinator (node 2) then succeeds to reach a decision. However,
during this time no message has been delivered, which leaves the system

in a very poor performance with respect to average message response
time. One reason why node 1 could not reach a decision might be that it
simply got too many messages. Since in the consensus all messages are

sent to the coordinator or from the coordinator to all nodes, the corre-
sponding node might get overwhelmed with messages. When we inspect

the tables with the performance measurements we indeed note that the
CPU utilization at node 1 is higher than the average utilization.

On the other hand the second graph is more regular. Rotating the ini-
tial coordinator seems prevent one node from getting too many messages.

The performance in this system is therefore better. However further tests
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have shown that even a rotation of the initial coordinator for the con-
sensus does not prevent the system from degenerating in some particular

cases.

Atomic Broadcast on UDP

At this point it might be interesting to compare the performance of the
atomic broadcast using TCP with the same broadcast algorithm, but

using UDP communication instead. Even though the atomic broadcast
might not be correct any more in a theoretical context, we get an indi-
cation of the cost of reliable communication channels.

There are some differences between communication on TCP and commu-
nicating using UDP. In particular, UDP provides a broadcast primitive,

which allows to broadcast a message to all nodes at the same cost as a
point-to-point message to the node which is furthermost from the send-

ing node.

We have performed the same simulation for a system with 15 nodes as
for the atomic broadcast running on TCP. Figure 7.5 shows the results.

We believe that the UDP broadcast response time graph has the same
general shape as the TCP broadcast graphs. They are simply shifted

towards the origin. An indication for this assumption is given by the
graph of the system with 15 nodes. It reaches its optimal configuration
at a message sending delay of about 500ms. The response time at this

point is on the average about 70ms. In contrary, the broadcast on TCP
has an average message response time for this configuration of about

280ms. This is 4 times higher. Therefore the second system can handle
broadcasts which arrive in small intervals more efficiently then a system

built on TCP.
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7.2 Replicated Database System

Having measured the performance of the communication module, we

would like to asses the impact of the communication module to the whole
RDBS system. We try to illustrate the behavior of the RDBS simulation

tool, referred to as simulator in the following, and give indications about
its performance in some general cases.

As in the previous section we start with a presentation of the simulation

parameters and their values and finally discuss the simulation results.

7.2.1 Simulation Parameters

In addition to the simulation parameters already discussed in subsec-
tion 7.1.2, which let simulation time pass, the RDBS simulator allows to

model elapsed time with the following parameters:

• sim Data Access: average access time to the disk (section 6.8). A

value of 40ms [ElN94] seemed reasonable for our purpose.

• sim DM Operation Time: the time needed to perform an operation

in main memory including the lock overhead. It has been set to
0.7ms.

Table 7.3 defines the values that have been taken for the different simula-
tion parameters. The purpose of the first 8 parameters has already been

explained before. The number of nodes in the system has been fixed to
10 for the following performance measurements. sim Max Size Database
allows to specify the size of a physical database. It is kept small to be

able to analyze lock contention. There exists as many databases in the
RDBS as data managers (DM). The number of DM processes is defined

by sim Number DM Processes. It has been selected such that the system
has a reasonable disk utilization rate. In a real system, the disk uti-

lization can be decreased by simply adding more disks to the DBS. It is
basically a question of cost. In addition the RDBS simulation tool allows

to set the size of the lock table in the lock manager (sim Lock Table Size).
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Finally, the user can also specify the number of operations in a transac-
tion (sim Number Ops Per Transaction) and the number of transactions

processed in parallel by each transaction manager (sim Nb Trans Proc).

sim Number Of Nodes 5
sim Simulation Time 200000.0
sim Timeout Value variable
sim Network Delivery Delay 0.1
sim Send Preparation Time 0.2
sim Receive Preparation Time 0.2
sim Data Access 40
sim DM Operation Time 0.7
sim Max Size Database 2000
sim Number DM Processes 5
sim Lock Table Size 200
sim Number Ops Per Transaction 12
sim Nb Trans Proc variable

Table 7.3: Simulation parameter values for the RDBS simulation tool

In addition to these parameters, the disk access rate has been set to 20%.
This means that every fifth time a data manager has to access the disk,

thereby incuring the additional cost of sim Data Accessms.

7.2.2 Simulation Results

The results presented in this subsection give a first impression of the
behavior and the performance of the RDBS simulation tool. We realize,

however, that the set of tests performed is not exhaustive at all and that
there still exists interesting cases which need to be simulated.

Table 7.5 gives an overview of the results of our simulations of a system
with 5 nodes. An explanation of the simulation parameters is given in

table 7.4. We made several simulation runs with different values for the
number of transactions processed in parallel by the transaction manager

of one node. A higher value for ‘Nb trans in’ implies that more transac-
tions are processed in parallel in the RDBS. In particular, by increasing

this parameter by 5, the total number of transactions in the system at any
moment increases by (5*N). This leads to more conflicts between oper-

ations of different transactions, which increases on one hand the number
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Nb trans in // Number of transactions per node, processed in parallel by
the transaction manager

Resp t ABcast Time needed by a message from the A-broadcast to its A-
delivery

Net utilization Utilization of the network. A network used all the time has
a value of 1 in this place

CPU utilization Utilization of the communication coprocessor
Resp t DB Response time of a transaction. This is the time from start-

ing the transaction until it commits on the initiating node,
including restarts due to aborts.

DM CPU utilization Utilization of the CPU in a DM process.
Disk utilization Utilization of the disk attached to a DM process.
T waited for lock Time an operation waits after requesting a lock until it gets

this lock granted.
T waited for exec Time an operation waits after requesting a lock until it gets

actually executed by a DM process.
Nb aborts per trans Number of times a transaction gets aborted.
Avg nb trans aborted Average number of transactions per node that got aborted.
Avg nb trans proc Average number of transactions per node processed.
Throughput Number of transactions processed per second.

Table 7.4: Explanation of simulated parameters

of aborted transactions, and on the other hand the time an operation has
to wait for a lock. Both consequences increase the transaction response

time. This behavior can be verified in table 7.5.

By inspecting the results for 2, 5, 10 and 15 transaction processed in

parallel on each node we can note that the network utilization increases,
as well as the data manager’s CPU and the disk utilization. The average

message response time of the atomic broadcast also increases. However,
the net utilization remains stable when the number of transactions pro-
cessed in parallel is increased from 20 to 25 and the average message

response time even decreases. In contrary, the utilization of the DMs’
CPUs and the disk are increasing. Since the number of aborted trans-

actions is increasing, a lot of transactions are aborted while their read
operations are executed. This leads to the conclusion that in this case

the serialization protocol becomes the bottleneck. The operations have
to wait a longer time for their locks and also for an available DM process.

However, the reason for this bottleneck could be the high response times
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of the atomic broadcast. When read locks have to be hold for a long
time while waiting for the write-set to arrive, the probability of conflicts

with other transactions increases.

Another scenario is shown in table 7.6. It illustrates the results of the
same measurements in a system with 10 nodes. We note that this time

the network is the bottleneck. Its utilization is almost 1, which means
that it is sending messages all the time. On the other hand, the utiliza-

tion of the data managers CPUs and the disks is low and remains stable
for 10,15 and 20 transactions processed in parallel on each node. These

resources could handle more requests.

Figure 7.6 illustrates the response times of a system with 5 nodes for

5 and 10 transactions processed in parallel on each node. It displays
the average transaction response time as well as the average message re-

sponse time. The transaction response time is the time that has elapsed
between starting a transaction and committing it on the initiating node,

including restarts due to aborts.
We first consider only the two graphs for 5 transactions processed in par-
allel. Up to 20000ms the system is in its startup phase. After 20000ms it

remains stable with respect to its response times. The average response
time for the atomic broadcast is 50ms, whereas a transaction needs on

an average about 300ms until it commits. The additional overhead for
transactions comes from the fact, that all read operations are first ex-

ecuted sequentially. Even though they are processed locally, they still
might get blocked on a data item holding already an exclusive lock. In

addition, transactions might get aborted, which again increases the cost
considerably.
For a system processing 10 transactions in parallel on each node, the

average message response times as well as the transaction response time
increase. However, the transaction response time increases to a greater

extent than the time needed for an atomic broadcast. Since there are
more operations in the system, the conflict rate in the lock manager

increases. This leads to operations getting delayed longer as well as a
higher number of transaction aborts. However, longer operation delays

rather decrease network traffic, since write-sets are sent later. On the
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other hand the number of broadcasts increases with an increasing num-
ber of transaction aborts. This could lead to higher response times for

atomic broadcast messages. By inspecting figure 7.6 we suppose that the
impact of an increased operation delay on the system is greater than the
the influence of the aborts of transactions.
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Figure 7.6: Average response time measured periodically during the simulation for a system
with 5 nodes

Stefan Pleisch



80 7.2 Replicated Database System

Nb trans in //

Resp t ABcast min [ms]

Resp t ABcast max [ms]

Resp t ABcast mean [ms]

Net utilization

CPU utilization

Resp t DB min [ms]

Resp t DB max [ms]

Resp t DB mean [ms]

DM CPU utilization

Disk utilization

T waited for lock max [ms]

T waited for lock mean [ms]

T waited for exec max [ms]

T waited for exec mean [ms]

Nb aborts per trans max

Nb aborts per trans mean

Avg nb trans aborted

Avg nb trans proc

2
4

92
32

0.
78

7
0.

60
2

18
86

8
14

1
0.

06
1

0.
69

6
29

1
1

34
4

9
3

0.
05

8
11

5
14

15

5
3

13
4

44
0.

81
1

0.
62

4
26

24
63

29
8

0.
07

3
0.

83
7

48
4

2
53

1
40

6
0.

14
5

30
6

16
76

10
3

21
0

62
0.

81
2

0.
62

7
48

83
60

59
5

0.
07

5
0.

85
9

99
5

6
12

28
84

11
0.

29
7

51
5

16
79

15
4

28
5

84
0.

81
5

0.
63

2
11

3
10

74
9

91
4

0.
07

6
0.

86
0

13
49

9
13

49
11

4
14

0.
47

6
60

4
16

73

20
4

36
0

95
0.

81
7

0.
63

4
92

17
27

7
12

28
0.

07
7

0.
87

0
15

92
13

16
11

13
7

19
0.

61
3

79
2

16
29

25
3

38
8

85
0.

81
7

0.
63

4
12

4
22

21
3

14
96

0.
07

8
0.

89
4

17
52

14
20

19
15

1
23

0.
70

9
86

6
16

67

T
ab

le
7.

5:
Si

m
ul

at
io

n
re

su
lt
s

fo
r

th
e

R
D

B
S

si
m

ul
at

io
n

to
ol

fo
r

a
si

m
ul

at
io

n
ti
m

e
of

10
00

00
m

s
in

a
sy

st
em

w
it
h

5
no

de
s

Diploma Project, Winter 1996/97



7.2.2 Simulation Results 81

Nb trans in //

Resp t ABcast min [ms]

Resp t ABcast max [ms]

Resp t ABcast mean [ms]

Net utilization

CPU utilization

Resp t DB min [ms]

Resp t DB max [ms]

Resp t DB mean [ms]

DM CPU utilization

Disk utilization

T waited for lock max [ms]

T waited for lock mean [ms]

T waited for exec max [ms]

T waited for exec mean [ms]

Nb aborts per trans max

Nb aborts per trans mean

Avg nb trans aborted

g p

2
17

50
5

25
8

0.
99

3
0.

39
2

65
39

25
54

2
0.

03
3

0.
38

1
12

80
6

12
86

39
6

0.
13

9
53

3

5
28

83
9

45
8

0.
99

6
0.

39
5

23
8

15
14

7
13

81
0.

03
7

0.
42

4
30

27
24

31
89

11
5

14
0.

34
5

10
0

3

10
11

13
93

66
3

0.
99

5
0.

39
7

31
5

44
15

8
30

35
0.

03
8

0.
43

6
52

62
64

63
73

22
4

23
0.

67
0

13
2

3

15
11

14
57

80
8

0.
99

1
0.

39
5

42
8

75
69

9
48

45
0.

03
8

0.
43

4
99

43
10

8
10

73
6

31
7

29
0.

91
4

15
0

3

20
7

16
48

95
1

0.
98

3
0.

39
2

42
6

77
89

8
69

13
0.

03
8

0.
43

5
12

77
8

15
6

12
77

8
40

6
26

1.
19

4
15

5
2

T
ab

le
7.

6:
Si

m
ul

at
io

n
re

su
lt
s

fo
r

th
e

R
D

B
S

si
m

ul
at

io
n

to
ol

ru
nn

in
g

fo
r

10
00

00
m

s
in

a
sy

st
em

w
it
h

10
no

de
s

Stefan Pleisch



82 7.2 Replicated Database System

Diploma Project, Winter 1996/97



Chapter 8

Implementation of the Replicated
Database System Simulator

This chapter looks at some of the implementation issues in this project.
Since the code is fairly well documented, the discussion is rather general.

Even though not all the coding details are explained, the most important
implementation features will be highlighted and discussed. For all the
details refer to the code given in appendix C.

We start with some general issues of the implementation. One section
is then devoted to the implementation of every component of the RDBS

simulation tool. Finally, section 8.9 explains how the system is set up
and section 8.10 indicates the limitations of the simulation tool.

8.1 General Issues

As already mentioned in chapter 6 the replicated database system sim-
ulation tool has been implemented using an object-oriented approach.

Every component in the system is defined as an object with a well-
specified interface.

Figure 8.1 illustrates the file dependencies in this RDBS simulation tool.
In general every component is implemented in two files. One of them

contains the interface, while the others consists of the implementation of
the primitives defined in the interface.
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interfAdapt.cpp lock_Table.cpplock_Table.h

transactMgr.cpp

atomicBcast.cpp

lockMgr.h lockMgr.cpp

dataMgr.h dataMgr.cpp

dbs_sim.cpp

simulation_Globals.h

communication.h

consensus.h

atomicBcast.h

transactMgr.h

interfAdapt.h

consensus.cpp

communication.cpp

f1 f2:   f1 includes file f2

Figure 8.1: File dependencies of the RDBS simulation tool

Due to the limited duration of this project, the termination problem of
the database simulator has not been addressed yet. This does not prove

to be a problem though. Since simulations are usually performed during
a certain period of time when the system is running in normal conditions,

the termination protocol does not influence the results. In contrary it
could even falsify the simulation results and lead to incorrect performance

measures. Therefore the simulator is stopped when the simulation time
has elapsed without terminating properly every CSIM process running.

They are terminated when the main program stops.
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8.2 Network

One process simulates the network. It interfaces with the other parts

of the system by means of mailboxes. In particular the N nodes of the
RDBS exchange messages through N + 1 mailboxes. There is one input
mailbox for all RDBS nodes, called network input mailbox (Net MB). It

is the same for all nodes and is used by the nodes to send a message.
The communication from the network to the different nodes is also man-

aged by mailboxes. Every node ni has its own receiving mailbox, called
L Comm, where the network drops all messages sent to ni. This situation

is illustrated by figure 8.2.

Communication
Module

Communication
Module

Communication
Module

Communication
Module

L_Comm L_Comm L_CommL_Comm

Net_MB

Node 1 Node 2 Node 3 Node n
.................

Network Layer

Communication from the nodes to the network
Communication from the network to the nodes

Figure 8.2: Integration of the Network Layer

When a node ni wants to send a message m to node nj, ni puts m into
the mailbox Net MB (We suppose in this context that a node can also

send a message to itself). Net MB therefore contains a list of messages,
ordered by emission time. The network process extracts the messages

one by one from the mailbox. It then delays them for a certain time
Tdel in order to simulate the time the message needs to travel from the

sending node to the receiving node. During this time, the network can
not be used for sending other messages.

Therefore, as soon as m is at the front of the list of messages queued in
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Net MB, the network process waits for time Tdel and then drops m into
nj’s L Comm mailbox.

Since in reality Tdel depends on the distance between the nodes n1 and
n2, it is in our simulation exponentially distributed with some medium
value specified by the user.

The access to the Ethernet is simulated by the unique network input
mailbox and by a delay imposed in the communication module. The

message delivery time is modeled by Tdel. In order to comply also to the
TCP protocol, the network layer does not provide a broadcast primitive.

In contrary, only point-to-point communication is supported, thereby
simulating the notion of virtual channels.
It is important to see that the network, in this conception, does not now

anything about the type of the messages. It simply sends a message from
one node to the other.

The implementation, however, violates this abstraction from the point
of view of the network. This violation is due to the fact that broadcast
messages are not entirely copied, but only their pointers. Not copying

the entire messages saves a lot of memory.
A broadcast message m therefore consists of N pointers to m, referred to

as ptm1, ptm2, .... The network then receives N messages, i.e. pointers
to m. It has to distribute them to all the nodes in the system. Usu-

ally this is done by inspecting the destination entry in a message, which
identifies the destination node of this message. However, a broadcast

message ptmi can not use this entry to specify its destination, since all
ptmis would then be sent to the same destination.
In order to solve this problem the network needs to know about the type

of messages sent. Every time it detects a broadcast message m, it will
end up receiving N copies of this message. It therefore maintains a cir-

cular counter, which counts to (N − 1) and then restarts again at 0. A
broadcast message is sent to the node, whose ID is equal to the counter

value. Then the counter is increased by one. Since one node sends all the
broadcast message copies atomically, every node will receive the message.

The network maintains such a counter for every node in the system.
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Send-to-all messages are treated in the same way.

The network is implemented in the files communication.h, communica-
tion.cpp.

8.3 Communication Module

This section discusses the implementation of the atomic broadcast al-
gorithm. First some general problems are considered before discussing

each layer of the communication module.

8.3.1 Message Structure

Until now not much has been said about the structure of a message. Ev-

ery message sent by the communication module is inherited from the base
class Cl Message. Conceptually, this is the only class known to the net-

work layer. It includes some basic information about the message, as for
instance the identifier of the sending process. The communication layer
has to deal with two different types of messages: broadcast and point-to-

point messages. Both message types (Cl Bcast Msg and Cl PtP Msg) are
subclasses of the base class Cl Message. To distinguish these two classes,

the base type Cl Message contains a tag.
Every layer on top of the communication layer can inherit new message

types from the existing ones and redefine or add additional members.
The consensus defines its own broadcast primitive (Cl Cons Bcast Msg)

and also Cl Cons PtP Msg and Cl Cons StA Msg. The last two primitives
are used for point-to-point communication and for send-to-all commu-
nication. All three primitives contain, compared to their superclasses,

additional information specific to the consensus. In particular they are all
tagged with the consensus round number and the current consensus num-

ber. The atomic broadcast has its own message type (Cl ABcast Msg),
too. It is this message type which is exported to the users of the com-

munication module. The inheritance structure of the different message
classes is illustrated in figure 8.3. An edge from class cl2 to class cl1 sig-

nifies that cl2 inherits from cl1. In contrary to usual representations, the
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base class Cl Message is at the bottom of the figure. This choice has been
made in order to show the correspondence to the layered architecture of

the communication module.

Cl_Message

Cl_PtP_MsgCl_Bcast_Msg

Cl_Cons_StA_MsgCl_Cons_PtP_Msg
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Figure 8.3: Inheritance structure for atomic broadcast messages

Since in upper layers messages have to be copied, every message furnishes
its own virtual function make copy. This functions returns with an exact

copy of the corresponding message. With this primitive the advantages
of real object-oriented design can be exhibited.

8.3.2 Message Destruction

An important problem that has to be addressed in the communication
module is the destruction of unused messages. Since a huge number

of messages are created during a simulation, it is necessary to free all
storage once the messages are not used any more. In order to keep the

number of messages in the system small, we decided not to copy the
entire message N times in a broadcast, but only the pointer to the mes-

sage. This approach reduces storage requirements for broadcasts almost
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by a factor of N . However it requires a rigorous handling of messages
in terms of changes to message parameters and destruction of messages.

The latter implies the introduction of some garbage collection scheme.
Every broadcast message m is therefore tagged with a reference counter
which keeps track of the number of pointers referencing m. Every time

a message is copied (i.e. its pointer is copied), the reference count is
increased by one. On the other, hand upon every attempt to delete the

message, the same counter is decreased by one. Once it is equal to 0, the
message is deleted. A major problem to the garbage collection scheme

using reference counters is that circular lists are never detected as un-
used, since their reference count is not equal to 0. This case, however,

does not occur in the current project. In the following, when we speak
about the destruction of a broadcast message, we actually mean these
activities.

The same approach holds also for the destruction of send-to-all messages.

Evidently, the a-delivered messages are referenced only once and can

be deleted by the user of the communication module the moment it is
necessary.

8.3.3 Communication Layer

The communication layer is also implemented as a class, called Cl Communication.
Like the network, it basically provides the function loop, which handles
all activities of the current layer. In every pass through the loop, it waits

on an event-set. Every time an event is set, the call to wait any returns
the number of the event. It is important that the event is cleared at

this point. Otherwise a message could already have been dropped into
the mailbox before we clear the event. The signal on the event would

then get lost and the process would not know that there is a message in
this mailbox. All the messages in the corresponding mailbox are then

retrieved and processed:

• every message from the upper layer is forwarded to the network.
Broadcast and send-to-all messages are converted into N point-to-

point messages, one for every destination node.
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• if a broadcast message m has been received, we first check whether
it has already been received. If it is the first time we received m,

it is delivered to the upper layer by dropping it into the mailbox
L ABcast. In order to notify the upper layer of m’s arrival, the event
ABcast Evts is set. In addition m is sent to all other nodes. In order

to prevent the protocol from entering an infinite loop, this action is
only performed if the current node has not been the initiator of m.

If the broadcast has already been received, no actions are taken. In
any case the message is deleted if we hold the last reference on it.

Point-to-point messages are simply delivered to the upper layer.
They are not deleted at this point since the upper layer now holds

a reference on them.

A point that is worth to be mentioned is how we determine that a broad-
cast message has been received the first time. In the current version a

very simple approach has been chosen. A counter simply tags every
broadcast with a unique number. This number increases with every

broadcast message sent on the same node. Every node stores the num-
ber bk of the last broadcast message received from node k. When node

ni receives broadcast message m from node nj the following actions are
taken:

• if the number b of the broadcast message m is less than or equal to
the number bj, m has not been received the first time. Therefore

ignore it.

• otherwise update the number to bj := b and process the message

according to the algorithm presented above.

This approach relies on two assumptions. First, the communication chan-

nels have to be first-in-first-out (FIFO), meaning that the order in which
messages are emitted into a channel is preserved. This is guaranteed by

TCP. The second assumption states that the total number of messages
sent at one node is limited to a parameter, called BCAST NBR INTERVAL.

By adding some sort of sliding window protocol to this approach, the
number of messages a node can broadcast would become infinite. Such

a number of messages, however, is not needed at the current stage of the
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simulator, since simulations are not made over such a long period of time.

In fact all communication, whether it is send, send-to-all or r-broadcast
is done using the function send. This function simply drops all the mes-
sages into the network mailbox. The fact that every message is finally

sent by this function allows to extract measurements about the number
of messages sent by the system and about some other system parameters.

The communication layer is implemented in files communication.h and

communication.cpp.

8.3.4 Consensus

Cl Consensus exports the primitive propose that is called every time the
atomic broadcast wants to reach a decision over a set of messages. It

returns the decided set of messages. The current consensus number and
the proposed estimate are thereby the input parameters.

The implementation of the function propose follows exactly the algorithm
given in figure 3.4. However, since the a-deliver is only implemented us-

ing one process, messages received while executing this function might
not belong to the consensus. Upon reception they are passed to a mes-

sage handler installed in the consensus object at initialization. This
message handler then treats the messages accordingly. In this approach

the consensus does not have to know anything about messages that do
not concern it, apart from actually identify them as messages not be-
longing to the consensus.

It is important to distinguish messages of different consensi and within
one consensus, messages of different rounds. Every message of a previous

round or even of a previous consensus is deleted following the deletion
procedure explained in subsection 8.3.2.

The time-out value of the timed receive statement in phase 3 has been
made an user input parameter. It has been noted that this parameter

has a considerable influence onto performance of the atomic broadcast
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protocol and therefore of the whole RDBS simulator.

As mentioned before, the consensus defines its own message types. All
this new message types are derived from the classes implemented in the

communication layer. They contain some additional information com-
pared to their superclasses. The class Cl Cons StA Msg is a special case of

a point-to-point message. It differs only by its value in the message des-
tination member. While point-to-point message indicate their receiver

at this place, the send-to-all message puts the negative value To All into
it. It is by this value that the communication layer can distinguish the

two message types.

The files consensus.h and consensus.cpp implement the consensus.

8.3.5 ABcast Layer

The atomic broadcast layer defines the object Cl Atomic Broadcast which
is initialized with the total number of nodes in the system and a node ID.

It also exports the well-known primitive loop. In addition the message
class Cl ABcast Msg and a type Cl ABcast Msg Handler are specified at
this place. The latter is a subclass of the message handler defined in

the consensus. It is initiated with a pointer to the R delivered list, which
contains all the messages received from the lower layers but which have

not been decided yet.

Cl ABcast Msg is a subclass of the type Cl Bcast Msg. It only adds ad-
ditional members which allow to measure the response time of the com-

munication module.

The class Cl Atomic Broadcast, finally, installs an object of the message
handler class in the consensus object. When its primitive loop is called,

it enters an infinite loop. In every pass it first checks whether the
R delivered list is empty. If there is no message in this list, it waits

for incoming messages. When a message is received, the message type is
determined and the message is treated accordingly. Any consensus mes-

sage is ignored (deleted if reference counter is equal to 0) while a copy
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of the A-broadcast messages is appended to the R delivered list. The
received message then is deleted. The fact that we store a copy of the

received message in the R delivered makes upper layers independent from
whether copies of messages are sent or simply copies of pointers.

The function propose of the consensus is then called with a copy of the
messages in the R delivered list as initial estimate. The estimate is an

object of type Cl Decision Value. It defines a list of messages, ordered by
increasing initiating node ID and message number. It is important to

see that every message in the R delivered list is only referenced once and
belongs to the atomic broadcast object on the corresponding node. When

this function returns with a decision, all the messages in this decision
list are deleted from the R delivered list and written into the U ABcast
mailbox. Since all the messages in the decision list are ordered, they are
also delivered at every node in the same order.

The atomic broadcast is implemented in the files atomicBcast.h and atom-
icBcast.cpp.

8.4 Transaction Manager

The classes Cl Commit Abort Msg, Cl DB Msg, Cl Commit Abort, Cl Transaction,

Cl Trans- action Mgmt and Cl Op are defined in the transaction manager.
The transaction manager is implemented in the class Cl Transaction Mgr.
We will briefly look at the purpose of these classes.

In addition a record defines an operation. The first field distinguishes

read from write operations, while the second field determines the address
of the accessed data item. The last field then is assigned for the update

value of the corresponding data item in case of a write operations. In
order to simplify the implementation, write operations do not specify an

update value. This value is randomly determined in the data managers
at the moment it is written to the DB.

Every transaction has a unique identifier, composed of the identifier (pro-

cess ID) of the initiating node and a number that is unique on this node.
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It will be called transaction identifier in the following. In addition, each
transaction holds a round number. When a transaction is aborted, it

is restarted by the transaction manager with a new round number. If
operations of the previous round are still in the system, they can be
distinguished from the operations of the new execution and treated ac-

cordingly. This round number has nothing to do with the round number
in the consensus.

Cl Commit Abort Message

This class is an immediate subclass of the message type exported by the

atomic broadcast. It is used by the transaction manager to broadcast
commits or aborts for a transaction. In order to identify the transaction

the commit or abort belongs to, a transaction identifier in the class. A
tag allows to distinguish commits, aborts and write-sets of transactions.

In addition, the current round number is indicated.

Cl DB Msg

Cl DB Msg, an immediate subclass of the previous class, is used to broad-
cast transaction’s write-sets to all nodes. Upon initialization it sets the

tag of its superclass to normal, thereby indicating a write-set of a mes-
sage. An array is used to store the operations of the transaction.

Cl Op

Objects of this type circulate from the transaction manager to the lock
manager and between the lock manager and the data manager. Every

such object specifies one particular operation. While the communication
between transaction and lock manager only consists of objects for read

operations, the lock manager and the data manager exchange objects of
both operation types.

Every operation is identified by the transaction identifier. In order to
recognize out-of-date objects the round number is sent with every ob-

ject. In addition an object of class Cl Op also contains the data item’s
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address and the type of the operation. Further, some flags indicate the
state of the operation execution. In particular the Done Flag is set when

the operation has been processed, the Exec Flag becomes true when the
operation is executable and finally the Undo Flag indicates whether an
operation execution is in the undo mode, after its transaction has been

aborted.

Cl Commit Abort

In order to make abstraction of the broadcasting operation in the lock

manager, all the commit or abort messages received by the interface
adaptor are converted into objects of type CL Commit Abort. Besides

the transaction identifier and the operation ID it also contains the round
number. The parameter specifying the operation ID indicates the num-

ber of the considered operation within a transaction in the case of read
operations. For write-sets it is set to WRITE SET ID. All commits or

aborts sent from the lock manager to the transaction manager also have
this type.

Cl Transaction

Objects of type Cl Transaction are stored in the transaction lists of the
TM and the LM and are sent from the interface adaptor to the lock man-
ager. Cl Transaction is an immediate subtype of class Cl Commit Abort.
In addition it contains an array of the operations and a done flag at-
tached to all operations. Two flags, Committed and Aborted, indicate

the state of the transaction. If both flags are unset, the transaction is
either running or waiting (see figure 4.3).

Cl Transaction Mgmt

This class is used to keep track of the transaction currently in process
in the transaction manager. It provides primitives to add, remove, find

and count transactions that are objects of type Cl Transaction. All the
transactions are stored in a list. A certain number of queries can be

invoked on the list of transactions. In particular we can query whether a
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transaction has been aborted, committed or whether all operations of a
transaction are done. Since this list contains only transactions initiated

on the current node, any transaction can be identified using simply its
number. This transaction number is given as a parameter to the query
functions. These functions then call get Particular Trans in order to get

a pointer to the corresponding transaction. However the transaction
still remains in the list. Its storage is only deleted when the function

remove Trans is called with the corresponding transaction number as a
parameter.

The function process Next Read sends the next read operation to the lock
manager. If they are all processed, it returns NO READ OP LEFT. Write-

sets are processed by the function process Write Ops, which a-broadcasts
the write operations of a transaction in the same message. Finally, the
primitive sent Write Set returns true if the write-set of the transaction

has already been a-broadcast.

Cl Transaction Mgr

Containing the implementation of the transaction manager, Cl Transaction Mgr
also defines a primitive loop. This function is responsible for processing

the transactions. Thereby, always sim Number Trans Proc transactions
are processed in parallel. This parameter is defined in a simulation pa-

rameter input file.
If the number of transactions currently in process is less than this input

parameter, new transactions are read from the transaction input file.
Their execution is immediately started. A special case occurs if a trans-

action in the input file contains only read operations. Since we explicitly
excluded this case, the last read operation is changed to a write opera-
tion in the function get Ops. This simplifies the generation of an input

file considerably and provides a certain degree of input data verification.
If sim Number Trans Proc transactions are in the transaction list, the

transaction manager waits for any incoming message from the lock man-
ager. If it receives a commit for a read operation, the next read operation

is sent to the lock manager. If no read operations are left, the write-set
is a-broadcast. A commit message for a transaction’s write-set implies

the a-broadcasting of the commit as well as a call to remove Trans of the
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transaction management.
Since abort messages only occur for read operations, the TM checks

whether the write-set of the corresponding operation has already been
sent. This is the case when all the read operations are tagged as done.
The TM then a-broadcasts the abort message to all other nodes, incre-

ments the round number and resets all done flags of the transaction.
After this activities the first read operation is sent again to the lock

manager.

All the data structures presented in this section are implemented in the
files transactMgr.h and transactMgr.cpp.

8.5 Interface Adaption Layer

The interface adaptor is implemented by an object called Cl Interf Adapt.
Every interface adaptor is identified by its node ID. Like all components
the interface adaptor also exports the function loop. Once the inter-

face adaptor is started, it blocks on a message reception event. When
a signal occurs on this event the interface adaptor resumes its execu-

tion and receives messages in the communication module’s output mail-
box U ABcast. A message is either a commit message, an abort mes-

sage or a transaction’s write-set message. The interface adaptor then
converts them to objects of type Cl Commit Abort or descendant type

Cl Transaction. After having dropped them in its output mailbox Int out,
it signals the corresponding event in the lock manager.

Files: interfAdapt.h, interfAdapt.cpp

8.6 Lock Manager

In all the explanations in this section it is important to note the differ-

ence between an operation that is executable and an operation that is
executed. In the former case the meaning is that the operation is ready

to be executed, i.e. there is no other conflicting operation waiting for the
lock. However no data manager process has started the execution of the

operation yet. In the second case, a DM process is charged to execute
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the operation.

8.6.1 Transaction Handler

The transaction handler is implemented in class Cl Trans Handling. It

stores all the transactions, whose operations are currently executed on
this node, in a list. Primitives allow to insert, remove or consult the

transactions in this list. Transactions are thereby identified with the
transaction number.

One might imagine data structures with faster retrieval than a simple

list in order to speed up the DBS. For instance, instead of a list, a hash
table could be used.

8.6.2 Lock Table

The implementation of the lock table is based onto two classes: Cl Lock Table
and Cl Lock- Table Entry. In addition to these two classes, another class,
Cl Abort List is defined. It consists of a list of records, containing fields

for the transaction identifier, the operation ID and round number. These
information is needed in order to store all the transactions to be aborted
in this list while processing a write-lock request.

Another important data structure in the lock table is the list called
Exec Op List. It contains pointers to the executable operations. These
pointers are actually the addresses of the data items accessed by the

executable operations. They allow to find the corresponding lock table
entry. The executable operation is then the next operation waiting for

the corresponding lock.

Cl Lock Table Entry

As implies already its name, Cl Lock Table Entry models the lock onto a
single data item. The data item address is used to identify the lock. Ev-

ery lock object contains two lists, Op List Granted and Op list Wait. The
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former links all the operations to whom the lock has been granted and
that are currently in process or are already done but not yet committed

or aborted. On the other hand, the Op List Wait contains the operations
still waiting on the lock, either because of a conflict or because no data
manager process is available. A predefined list structure has been used

for the implementation of these two classes.
Upon creation of an object of type Cl Lock Table Entry, the address of

the data item to protect is passed in the argument as well as a pointer to
the executable operations list. Every lock which contains an operation

that is executable, i.e. that does not conflict with another operation, has
its data item address written into this list. The operations will then be

executed in the order they are stored in the list. Even though the order
of operation execution (non-conflicting operations) in the lock manager
is not important, this approach prevents starvation of a operation. A

challenging task is thereby to keep the consistency of this list also in
case of conflicting operations and aborts.

In addition, other features are provided by Cl Lock Table Entry. We will
discuss the most important ones:

• request Read Lock This function is called every time a read lock
is requested. It first verifies if the corresponding operation really is a

read operation. When the Op List Wait is empty and the Op List Granted
only contains read operations, then the operation is appended to
the waiting list and its executable flag is set. In addition the data

item’s address the current lock is protecting is appended to the
Exec Op List, since it is ready to be executed. Note that the ex-

ecutable flag is set whenever the data item address is inserted into
the executable operations list Exec Op List.
If the waiting list is not empty, the read operation is simply ap-
pended to this list.

• request Write Lock Takes a pointer to a write operation op and
a pointer to an object called Cl Abort List as parameters. The latter

contains at the end of the write-lock request the identification of
transactions whose read operations conflict with op and have to be

aborted.
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Write operations overtake read operations in the waiting list.

• executable Op Returns true whenever an operation is executable.

The flow chart in figure 8.4 shows when an operation is executable.
This is the case when no operation holds a lock on the corresponding

data item. If the granted list is not empty, then the operation at
the front of Exec Op List is only executable, if it is a read operations

and all operations already holding a lock are also read operations.
A special case occurs when read operations of the same transaction
as the operation requesting an exclusive lock hold shared locks on

the data item. In such a case the write operation is also executable.
When no operation requests a lock, executable Op returns false.

! Empty 
granted

list

Return FALSEReturn FALSE Return TRUEReturn TRUEReturn FALSE Return TRUE

wait list
! Empty

! Only read
operations in
granted list

Front op in
wait list is 

write

All ops in
granted list of 

same trans

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Figure 8.4: Flow chart indicating when a lock table entry contains an executable operation

• get Executable Op Returns a pointer to the next executable op-
eration. It has to be the operation at the front of the Op List Wait.
This operation is removed from the waiting list and appended to
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the granted list. If the next operation in the waiting list is exe-
cutable in this new situation, its data item address is appended to

the Exec Op List and its executable flag is set.

• delete Lock First looks for the operation op in the granted list. If
op is in this list, it verifies if op has already been processed. If its

execution is still in process, nothing is done for the moment. Oth-
erwise op is deleted from the granted list and the Exec Op List is
updated. Then delete Locks verifies whether the first operation in

Op List Wait has become executable, if there is any.
If the operation has not been found in the granted list, then it is

contained in Op List Wait. We loop through the whole list in or-
der to preserve the order of the operations. A pointer is kept on

the searched operation. If the operation was at the front of the
waiting list, it might have appended the lock’s data item address

into the executable operations list. This can be checked by inspect-
ing the executable flag. If it is set, the corresponding entry in the
Exec Op List is deleted. Then the situation is reconsidered with a

call to get Executable Op.

• abort Lock Gets an operation identification (Initiating node of
transaction, transaction ID and operation ID) and the current round

ID of the transaction in the argument. It does exactly the same as
the function delete Locks.

• undo Updates Takes an identifier of the operation op, the corre-

sponding transaction’s ID and initiating node in the argument as
well as the current round ID and a DM process identifier DMi.

Looks for op in the granted list, sets op’s undone flag and drops it
into the DMi’s mailbox.

Granted locks are only appended to the granted list when they are ac-

tually executed. This means that a lock might have been granted, but
no data manager process is available to process the corresponding op-

eration. In this case the operation is still kept in the waiting list. It is
appended to the granted list as soon as a data manager executes it. This

allows to determine which write operations have to be undone in case of
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an abort, namely the writes in the granted list.

Every time a lock request is treated, the lock table checks whether an

operation gets executable.

Cl Lock Table

This class implements the structure of the lock table. In particular, it

defines a hash table with the data item’s address as key. Every entry in
this hash table is either null, when no locks on the corresponding data

items have been requested, or consists of a list of Cl Lock Table Entry
objects. In the current version of the RDBS simulation tool the hash
function h(x) is simply

h(x) = a mod M, ∀a, 0 ≤ a < D, a integer

where M : size of lock table
D : size of the DB

Most of the functions of this class are the equivalent to the primi-
tives in Cl Lock Table Entry. They just walk through the list of op-

erations in a transaction object of type Cl Transaction and apply the
corresponding Cl Lock Table Entry primitive to every operation. A spe-

cial case presents the function abort Locks. In addition to just calling
Cl Lock Table Entry::abort Lock for every operation, it distinguishes be-

tween write and read operations. All write operations that have been
done involve a call to Cl Lock Table Entry::undo Updates.

The function execute Next Op is of particular interest. It takes the iden-
tifier of a DM process (DMi) as input. First of all it checks whether

the Exec Op List is empty. If this list is empty, nothing has to be done.
Otherwise the front element of the Exec Op List is extracted and the cor-

responding lock is accessed. A call to the function get Executable Op
of the lock object returns a pointer to the executable operation. This

operation is then dropped into DMi’s mailbox.
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8.6.3 Cl Lock Mgr

This class exports the primitive loop. It is responsible for the synchro-
nization of the communication with the other components in the DBS.

We have already seen how this synchronization is done conceptually in
section 6.7.4.

Synchronization with the Data Managers

The lock manager controls the operation execution. An operation can
only be processed, if it is executable and if a data manager process is
available. The only exception to this approach occurs, when a transac-

tion has been aborted and its write operations need to be undone. In
order to process them as soon as possible, they are immediately sent to

a data manager. However, no data manager might be available at this
point. We therefore decided to chose arbitrary a DM process to whom

we confine the write operation to be undone.

We could also have chosen another design for the execution of operations.
It would have been possible to simply drop every executable operation

into the mailbox of some data manager process. However aborts would
have become very expensive, since the operation to abort could be in the

mailbox of a DM process, waiting for some other operation(s) to finish.
For example suppose that the mailbox of DM process DMl contains the

operations [oi, oj, ok] with oi in process at the moment. If the transac-
tion Tk gets aborted, there is no way of preventing DMl from processing

ok, even though this is not necessary any more. The execution of ok

is delayed until oi and oj are processed. Worse, if ok has been a write
operation, it would have to be undone again. By keeping the mailbox

queue length at 0 or 1, the probability that the operation is already in
the mailbox queue when an abort for the corresponding transaction oc-

curs gets much smaller. Nevertheless it is possible for the mailbox queue
to get longer than 1, namely in the case of an abort of a transaction.

When the effects to the DB of a write operation have to be undone, this
operation is given to a arbitrary DM process, because all DM processes

might be busy at the moment. Therefore a DM process could actually
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contain more than one operation in its mailbox.

Synchronization with the Interface Adaptor

All objects received from the interface adaptor are of type Cl Commit Abort
or its subtype Cl Transaction. An event is assigned to the mailbox Int out
in order to signal the message arrival to the lock manager.

Every time a write-set of a transaction T is received, the round number

attached to this write-set is compared to the round number of T ’s en-
try in the transaction handler. It is possible that the write-set’s round

number is smaller than the round number in the transaction handler.
This means that, while the write-set was broadcast, T has been aborted
and restarted. Therefore some of T’s read operations might already have

been received by the lock manager and are processed. In this case the
lock manager recognizes this situation by using the round number and

ignores this write-set of T . If the write-set’s round number is equal to
the round number of T ’s entry in the transaction handler and T has not

been aborted in the meantime, then the write locks are requested for T .

Synchronization with the Transaction Manager

The objects sent from the transaction manager to the lock manager are of
type Cl Op and are single read operations. In this case it is also necessary

to verify, for every received read operation, whether its round number is
still valid. The round number of a read operation ri[x] can only become

invalid, when Ti has been aborted after the transaction manager sent
ri[x] to the lock manager, but before the latter has received ri[x]. In
such a case the read operation is ignored.

Figure 8.5 illustrates the activities of the lock manager when a read
operation of transaction T is received from the TM.

First the lock manager checks whether T is already in the transaction

list. If it is not, then the operation ID of the read operation has to be 0,
because we expect the first operation of T , and the lock can be requested.

In the other case an out-of-date read operation arrived.
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If T is in the transaction list, and the operations round number is higher
than the round number in T ’s entry in the transaction list, this entry is

removed. This situation occurs when T has been aborted in the mean-
time. Then the read lock is requested and a new entry is made in the
transaction list.

Coordinating Interactions

The lock manager uses an event-set to coordinate the different interac-
tions. The event with index 0 in this event-set is assigned to the mailbox

Int out. The mailbox TM out works in cooperation with the event in-
dexed by 1, whereas the mailboxes Lock in occupy the remaining events.

This order implies a priority on the handling of the event. The events
with the lowest indices have the highest priorities.

The following files implement the behavior of the lock manager: lock Table.h,
lockMgr.h, lock Table.cpp, lockMgr.cpp

8.7 Data Manager

The behavior of a DM process is accomplished by a class called Cl Data Mgr.
This class exports a primitive called loop, which contains an infinite loop.
In this loop the data manager waits for any incoming message and pro-

cesses it depending whether it is a read or a write operation. While read
operations simply do nothing, write operations update the accessed data

item to a random value.

The reader might also have realized that the data manager processes
are not signaled by an event when a message has been dropped into the
corresponding mailbox. Since DM processes only inspect one mailbox,

there is no need for the introduction of an event. Remember that the
termination problem has not been addressed. Certainly this additional

feature would be needed in order to terminate the DM processes prop-
erly. Setting the event at the end of the simulation would then ensure

that the DM process executes the break condition statement and even-
tually terminates.
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There exists multiple data manager processes per node. Each process
differs by a unique global identifier from all the others. DMj specifies

the data manager process with global identifier j. The same identifier
is also attached to the corresponding mailboxes Lock in and Lock out.
In addition to the global identifier every DM process has a local ID. In

particular this local ID will be used to signal the corresponding event in
the LM. We will use the notation DMik to identify the kth DM process on

node i. Consider for example the database system node i. The function

j = f(i, k) = i + k ∗N, ∀i, 0 ≤ i < N,

∀k, 0 ≤ k < L, i, k integer
where N : number of nodes and

L : number of DM processes per node

computes the global index j in order to access DMik from the lock man-

ager LMi. It will be the mailbox at the (i + k ∗ N)th position in the
Lock out array.

When the DM process DMj has executed an operation it is returned to
the lock manager LMi. For this purpose DMj uses the mailbox Lock inj.

In addition DMj has to compute its local identifier k and the node ID
i it belongs to from its global identifier j in order to signal the correct
event in the LMi. This is done by computing:

i = g1(j) = j mod N

k = g2(j) = j/N, ∀j, 0 ≤ j < (N ∗ L), j integer
where N : number of nodes and

L : number of DM processes per node

Since the first two events in the event-set of the lock manager are reserved

for other mailboxes, DMj signals the event (k + 2) in LMi’s event set.

The files dataMgr.h and dataMgr.cpp implement the data manager.

8.8 Input Parameters

Every important simulation parameter can be specified in a file called

params. The RDBS simulation tool reads these values at the beginning
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of its execution and starts a simulation run according to this parameters.
In particular, the following parameters can be specified:

• the number of nodes in the system

• the global simulation time

• the different simulation delays

• the number of DM processes per node

• the size of the DB, ...

In addition, as already mentioned in section 6.5, the transactions can be
specified in a second file. Every line determines the set of operations of

a transaction. The first column thereby indicates the number of opera-
tions, followed by all the operation entries. Each operation entry consists

of two numbers: the type of the operation and the data item accessed.
In contrary to the simulation parameters, the transaction input file is
read continuously during execution of the simulator.

It is important to see that all transaction managers actually access the
same file. This approach allows to create only one such file, instead of

N , where N is the number of nodes. Since CSIM does not support real
parallelism, the processes never access this file simultaneously.

Having read all the input parameters, the simulator starts all the pro-
cesses necessary to model the components of the RDBS. Then transac-

tions start to get processed.

8.9 Initializing the System

When the system is started, it first reads the values of the input param-

eters. Then it allocates the storage for all components in the system and
calls the CSIM function sim. This function attaches a process to every

component and starts it on every node. The processes initialize the cor-
responding objects and call the function loop. An additional process is

created for reporting the simulation results. It is called reporter. It prints
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its measurements in regular intervals into a file, which allows to observe
the behavior of the system during the whole simulation time.

8.10 Limitations

This section outlines the limitations of the current version of the RDBS
simulation tool.

8.10.1 Internal Limitations

1. The maximal number of r-broadcasts that can be sent on one node

is limited by the parameter BCAST NBR INTERVAL specified in file
simulation Globals.h.

2. The number of mailboxes, events, messages, processes and facilities

is limited to some default values set by CSIM. The current version of
the RDBS simulation tool has relaxed these limitations where it was

necessary. If these limits are violated by some simulation, due to a
big number of system components, the simulator stops with a CSIM

error message. The user might want to increase these parameters in
such a case.

8.10.2 External Virtual Memory Limitation

The main problem when running a simulation is the amount of memory

that is required. It might happen that the memory requirements of the
simulation exceed the virtual memory allocated to this application by

the operating system. We could imagine different scenarios where this
actually occurs:

• when the communication module can not handle all the incoming
messages any more. These messages then get queued up and cannot

be deleted.

• the longer the simulation runs, the more entries are created in the

different measurement tables. These tables also require memory.
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• the number of components in the system also limits the memory
available for the actual simulation.
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Figure 8.5: Flow chart indicating the activities of the LM upon reception of a read operation
from the TM
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Chapter 9

Conclusion and Further Work

9.1 Conclusion

We presented in this paper a simulation tool for a replicated database
system that relies on an atomic broadcast primitive. It uses the serializa-

tion protocol proposed in [AAE96] to preserve database consistency and
integrity. In this protocol the concurrency control is distributed between

the lock manager and the communication protocol.
A modular, object-oriented architecture has been selected for the simu-

lation tool. The system design is extensive in that it includes important
components of a replicated database system like transaction process-
ing, concurrency control and communication. Moreover it considers the

hardware components that can be potential bottlenecks like CPU, disks
and the network. It is easy to exchange single components of the sys-

tem by others, that implement different protocols. This and it’s highly
parametrisied nature makes it an ideal tool for testing various database

configurations.

The first set of testing has shown that the atomic broadcast proposed
by Chandra/Toueg [ChT93] proves to be a serious bottleneck in the

RDBS. This incurs basically from the cost of the reliable broadcast. Ev-
ery broadcast produces N2 messages in the network. Since we require

reliable communication channels, the network is not able to handle the
number of messages produced already in a system with a limited number

of nodes.
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The atomic broadcast algorithm has an indeterministic behavior, because
we do not have any influence on the moment the consensus is started.

This leads to a degeneration of system performance for some particular
system configurations. We have seen that rotating the initial coordinator
of the consensus could be a solution in such cases.

From this considerations we incur that the atomic broadcast algorithm
has to be modified in order to use it in a real database system. This
can be done either by using a reliable broadcast algorithm, which does

not produce such a high number of messages, or by selecting another
algorithm for the whole atomic broadcast.

The replicated database system simulation tool should prove to be a

valuable tool for further work in this field of interest.

9.2 Further Work

As indicated in chapter 7, the testing of the current version of the RDBS

simulation tool is not yet entirely performed. For a better understanding
of the behavior of the RDBS further tests are necessary.

This chapter provides an outlook on the future work which can be done
in this domain. Whereas in a first part we only consider the atomic

broadcast, we will look on the entire RDBS simulation tool in the second
part.

9.2.1 Atomic Broadcast Simulation

The tests performed up to this point are limited to a certain interval of

message sending delays. Additional information and indications about
the behavior of the atomic broadcast might be obtained by considering

larger testing domains. In addition, special cases need to be paid more
attention. This is especially the case for system configurations, which

lead to a degenerate behavior in terms of message response time. In this
context it is important to clearly understand the influence of the con-

sensus onto the overall performance. Also it would be interesting to test
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the protocol for different hardware configurations regarding CPU power
and network capacity.

We also believe that modifications to the existing atomic broadcast pro-
tocol would allow better results in terms of response time. For example, a
good improvement would be to decrease the number of messages needed

for the reliable broadcast.

In future it might also become necessary to explicitly model the compu-
tation time used by the reliable broadcast, the consensus and the atomic

broadcast. In our simulation this overhead is combined with the general
overhead of sending and receiving a message.

9.2.2 Replicated DBS Simulation Tool

More measurements can be done using the RDBS simulation tool in order
to estimate the cost of the serialization protocol and find the bottlenecks

for different system and workload configurations. In particular, system
configurations should be studied where some nodes fail. How does the
RDBS perform in such failure-prone environment?

In addition it might be interesting to measure the performance of the
RDBS with other communication modules or other serialization proto-

cols.

A final step would be to implement a real system with the best perform-
ing serialization protocol.
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Appendix A

Performance Measurements Tables
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100 3.7 173.8 28.6 0.2862 0.2186 0.2492 7 1.217 2501.4 1519.8
500 4.0 483.8 40.5 0.0876 0.0666 0.0762 4 1.0462 502 501.2

1000 4.2 905.5 74.3 0.0444 0.0334 0.0382 3.6 1.0478 252.2 251.8
1500 4.0 1488.9 124.7 0.0298 0.0222 0.0258 4.2 1.0604 168.8 168.8
2000 4.7 1685.1 105.2 0.0226 0.0168 0.0196 2.8 1.034 127.4 127.2
5000 4.8 4093.0 256.1 0.0096 0.007 0.0082 1.6 1.013 52.2 52.2

Table A.1: Performance Measurements for 5 Nodes on TCP
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100 8.5 262.3 73.2 0.9236 0.446 0.496 15 3.1574 3999.2 3982.8
500 6.5 580.1 40.0 0.3314 0.1582 0.188 8.8 1.087 804.8 804.8

1000 6.6 760.0 43.8 0.169 0.0812 0.0962 4.6 1.0528 402.8 402.6
1500 7.0 1047.8 58.2 0.1142 0.0544 0.0642 4.6 1.0488 271 271
2000 6.6 1155.9 59.4 0.088 0.042 0.0508 3.2 1.0292 204.6 204.6
5000 7.3 2502.4 157.8 0.0348 0.0164 0.0198 2.4 1.0214 84.6 84

Table A.2: Performance Measurements for 8 Nodes on TCP
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500 9.2 535.9 65.3 0.5594 0.2146 0.258 9.4 1.2714 1004 1002.8
1000 9.0 856.0 60.2 0.3038 0.1172 0.1414 6.2 1.1288 505.4 505
1500 9.2 1354.1 83.9 0.2044 0.0786 0.0952 8.2 1.1068 339 338.8
2000 9.5 1456.7 78.6 0.1564 0.06 0.0728 6 1.071 254.2 254.2
5000 9.1 2620.6 235.9 0.0634 0.0244 0.0296 4.8 1.0522 104.6 104.6

Table A.3: Performance Measurements for 10 Nodes on TCP
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A.2 UDP
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100 2.6 188.4 28.4 0.0982 0.1488 0.1764 7.2 1.283 2501.4 1568
500 2.7 829.3 84.0 0.0298 0.0434 0.053 5.8 1.162 502.6 502.6

1000 2.8 1191.3 161.7 0.0148 0.0214 0.0264 5.4 1.1692 251.2 250.4
1500 3.1 1891.2 267.6 0.01 0.0146 0.0174 4.4 1.172 168.2 168.2
2000 3.1 1923.4 257.9 0.0076 0.011 0.0136 4 1.1274 127.4 127.2
5000 3.3 4962.3 1001.9 0.003 0.0044 0.0054 3.6 1.2332 53 52.4

Table A.4: Performance Measurements for 5 Nodes on UDP
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100 3.9 201.5 32.6 0.257 0.3084 0.3756 12.6 1.5854 3998.2 2691
500 3.6 644.5 57.9 0.079 0.0914 0.1198 8.8 1.2066 803.4 802.8

1000 3.8 944.6 91.3 0.0396 0.0462 0.0612 5 1.1596 403.4 402.4
1500 4.0 1573.5 140.6 0.027 0.031 0.041 6.6 1.1836 271.4 271.4
2000 4.1 1920.4 187.7 0.02 0.0234 0.0306 5.4 1.1724 203.8 203.2
5000 4.2 4788.2 620.6 0.0086 0.0098 0.0126 4.4 1.2262 84 83

Table A.5: Performance Measurements for 8 Nodes on UDP
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100 4.8 209.9 42.1 0.424 0.4546 0.5592 16.4 2.1152 5000.2 4298.4
500 4.5 570.6 57.1 0.1202 0.1276 0.1738 8.6 1.2732 1004.2 1003.4

1000 4.5 892.0 96.3 0.0616 0.0654 0.089 5.8 1.235 503.6 502.4
1500 5.0 1566.0 135.9 0.0412 0.0436 0.0598 8.4 1.23 338.2 336.6
2000 4.9 1796.0 172.4 0.0306 0.0326 0.0446 5.4 1.2362 254.8 253.2
5000 5.2 4571.0 450.3 0.0124 0.0134 0.0184 5.2 1.2922 104.8 104.4

Table A.6: Performance Measurements for 10 Nodes on UDP
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100 9.9 274.1 71.9 0.5962 0.6884 0.8034 34.4 5.7518 7497.6 7485
500 7.0 517.2 66.9 0.2388 0.2258 0.3166 12.2 1.5938 1505.6 1500.4

1000 6.9 927.6 96.1 0.1276 0.1198 0.1704 10.4 1.4364 755.2 753.6
1500 7.1 1450.2 163.7 0.0848 0.0798 0.1138 12 1.4294 507.2 506.2
2000 7.3 1887.9 196.8 0.0638 0.0604 0.087 11.2 1.3972 381 379.2

Table A.7: Performance Measurements for 15 Nodes on UDP
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Appendix B

User Manuel

Since further work might be done with the RDBS simulation tool, this

chapter briefly discusses its application. The discussion is divided into
two parts: section B.1 presents the simulation environment for the atomic

broadcast, whereas in the second part (section B.2) we explain how the
entire RDBS simulation tool can be invoked.

B.1 Starting the Atomic Broadcast Simulator

The atomic broadcast simulation tool can be started with the following
command:

./test params com

The simulation parameters are specified in the input file params com.

Each line of this file consists of the name of the parameter and its value.
Whenever the corresponding parameter specifies a delay, it has to be

given in milliseconds. Table B.1 displays a possible parameter input file.

The parameter sim Seed has not been explained yet. CSIM usually gen-

erates the same ‘random’ numbers for every simulation run. It basically
keeps a sequence of random numbers and always accesses it from the

beginning. Every time a random number is needed, the next number in
this sequence is returned.

However, there exists a CSIM primitive which allows to specify the ini-
tial index at which the simulation should access the sequence of random

numbers. The parameter sim Seed specifies this index.
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sim Number Of Nodes 10
sim Number Msgs Per Node 10000000
sim Seed 1
sim Simulation Time 50000.0
sim Timeout Value 1000.0
sim Network Delivery Delay 0.1
sim Send Preparation Time 0.2
sim Receive Preparation Time 0.2
sim Msg Delay 500.0
sim Delay Var 0.1

Table B.1: Parameter input file for the atomic broadcast simulator

The following files implement the atomic broadcast simulation tool:

simulation Globals.h
communication.h, communication.cpp
consensus.h, consensus.cpp
atomicBcast.h, atomicBcast.cpp
test.cpp

B.2 Starting the RDBS Simulation Tool

The RDBS simulation tool’s main program is contained in the file db test.cpp.

It can be invoked with the command:

./db test params infile

The file params contains the simulation parameters. Each line consists

of the name of the simulation parameter followed by its value. Table B.2
gives an example of a parameter input file for the RDBS simulation tool.

The second input file contains the transactions. Every line defines one

transaction. It starts with the number of operations in the transaction,
before then specifying the corresponding operations. Every operation is

given with its type (0 for a read operation and 1 for a write) and the
data item it accesses. The following table presents such a transaction

input file:
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sim Number Of Nodes 10
sim Number Msgs Per Node 10000000
sim Seed 1
sim Simulation Time 50000.0
sim Timeout Value 1000.0
sim Network Delivery Delay 0.1
sim Send Preparation Time 0.2
sim Receive Preparation Time 0.2
sim Max Size Database 2000
sim Lock Table Size 200
sim Number DM Processes 5
sim Number Ops Per Transaction 6
sim Nb Trans Proc 2
sim Data Access 40
sim DM Operation Time 0.7

Table B.2: Parameter input file for the RDBS simulator

4 0 617 1 1895 0 1404 0 989
6 1 629 0 1834 1 802 1 1570 1 1739 1 1348
6 1 831 0 1958 0 425 1 1474 0 1560 1 1913
5 0 118 0 1830 1 237 1 504 0 473
4 0 1728 1 415 0 589 1 437

Table B.3: Transaction input file for the RDBS simulator

The following files implement the RDBS simulation tool:

simulation Globals.h
communication.h, communication.cpp
consensus.h, consensus.cpp
atomicBcast.h, atomicBcast.cpp
transactMgr.h, transactMgr.cpp
interfAdapt.h, interfAdapt.cpp
lock Table.h, lock Table.cpp
lockMgr.h, lockMgr.cpp
dataMgr.h, dataMgr.cpp
db test.cpp
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Appendix C

Code

This chapter contains the code of the RDBS simulation tool. In addition,

the code used for the performance measurements of the atomic broadcast
is added at the end (file test.cpp).


